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TRANSLATION EDITOR’S NOTE

THE PRESENT monograph by three prominent Russian theoreticians from
Landau’s Institute is by now well known to Western readers, and the
question may be asked why a second English version is being brought
out. When the authors kindly sent me a copy of their book on publication
m 1962, T immediately got in touch with Dr. Abrikosov, asking him
whether he would be agrecable to an English edition being brought out,
and whether he knew of any other Western publisher bringing out such a
translation. He replied that he would be pleased to see an English edition
published, and that he preferred it to be published by the publishers of
the Landau and Lifshitz series of textbooks, that is, by Pergamon Press.
He also told me that as far as he knew no other Western publisher was
preparing a translation. I then got in touch with Pergamon Press who
obtained approval from the Russians and started to prepare a translation.
When this translation was about finished, we were informed by Dr. Abri-
kosov that an American publisher had translated his book. In order to
improve the presentation Dr. Abrikosov sent both to Pergamon and to the
American publisher some material (about 25 pages in the present trans-
lation, in sections 16.2, 17, 19.1, 21, and 22.3-4) and at the same time
told me that the authors were preparing an extra chapter on transport
properties of a Fermi liquid. Rather than rush the translation without the
extra chapter Pergamon decided to wait for the extra chapter, but at the
end of 1964 Dr. Abrikosov informed me that he now did not think that
the chapter as he had envisaged it would be written. He sent me, however,
2 shortened form of the extra chapter (Chapter VIII) as well as some new
material for sections 4, b, 17, 39 and a complete new subsection (19.6).
Compared with the original Russian edition, about one-sixth is new ma-
terial, so that this translation can truly be called a second edition.

I should like to express my thanks to Dr. Abrikosov for his assistance in
the preparation of this second edition.

D.t. H.
Oxford

March 1965
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FOREWORD

SUBSTANTIAL success has been achieved in statistical physics in the last
few years as a result of the wide use of methods borrowed from quantum
ficld theory. The fruitfulness of these methods is connected with a new
formulation of perturbation thecory and above all with the extensive use
of so-called Feynman diagrams. The main advantage of the diagram
technique lies in easc of visualisation bascd on the concepts of the single-
particle problem, it enables the structurc of any approximation to be
established and the nceessary capressions to be written down with the
aid of correspondence rules. The new methods are the most powerful and
effective ones in quantum statisties at the present time, and have made
it possible to solve a large number of problems which were insoluble in
the old formulation of the theory: moreover, many new general rela-
tionships have been obtained.

Numerous articles in many journals have recently been devoted to an
exposition of field theory methods in quantum statistics and to their
application to concrete problems. At the same time, workers in statistical
physics are not always acquainted with these methods. It has thercfore
scemed to us that the time is ripe for a logical and reasonably complete
treatment of the subject to be accessible to a wide readership.

A few words about the subject-matter of this volume. We have tried
primarily to demonstrate the practical nature of the new methods. We
have thercfore considered varions concrcte problems of quantum statis-
tics in addition to providing a detailed treatment of the mathematical
side. Naturally, the questions touched upon do not exhaust the new
discoveries made in this ficld in recent years. They have been chosen
with a view to their general interest, and the possilility of using them
to illustrate the gencral method.

We have counfined ourselves to just one pussible variant of the state-
ment of quantum statisties in the language of field theory (for instance,
we have not touched upon the so-called three-dimensional perturbation
theory). The Green function method, upon which the present book is
based, is the simplest and most convenient one from our point of view.

The reader is assumed to be familiar with the fundamentals of statis-
tical physics and quantum mechanics. We deseribe the method of second
quantisation, and give all the information needed for deriving the field
theoretical technique. This derivation is the subject of the first chapter,
which briefly describes some modern ideas regarding the nature of energy
spectra and includes simple examples.
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A system of units in which # = 1 is used. Temperatures are expressed
in energy units (k = 1).
The authors express their gratitude to Academician L. D. Landau and

to L. P. Pitayevskii for valuable discussions of the problems dealt with in
this book.



PREFACE TO THE SECOND EDITION

WE ARE very pleased that our book, in translation, will be aceessible to
English readers. We are especially gratified that this publication was
undertaken by Pergamon Press who publish all books by Landau and
Lifshitz from which we learned our physics. Finally we much regret that
we had to disappoint Dr. ter Haar and were not able — because of lack of
time — to write a eomplete chapter on kinetics. It is, however, possible
that this decision, although not a pleasant one to take, is all the same the
correct one.

The study of kinetic problems by means of quantum field theoretical
methods is usually much more complicated than the theory of equilibrium
properties of substances and the proposed chapter would in its style appre-
ciably differ from the remainder of the book. We restricted ourselves to
adding a short chapter on the derivation of the kinetic equation for a
Fermi liquid. From this exposition the reader will already see how com-
plex and cumbersome these problems are.

We wish to express our thanks to Dr. ter Haar for his patience and for his
efforts in the completion of this publication.

Moscow A, ABRIKOSOV
2 April 1965 L. Gor’kov
I. DzYALOSHINSKII
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CHAPTER 1

PROPERTIES OF MANY-PARTICLE SYSTEMS
AT LOW TEMPERATURES

§ 1. ELEMENTARY EXCITATIONS.
ENERGY SPECTRUM AND PROPERTIES
OF LIQUID Het AT LOW TEMPERATURES

1. Imtroduction. Quasi-particles

Statistical physics studies the behaviour of systems composed of very
large numbers of particles. The macroscopic properties of liquids, gases
and solids are due to the microscopic interactions between the particles
composing the system. A full solution of the problem, involving a deter-
mination of the behaviour of each individual particle, is obviously un-
thinkable. Besides, the over-all macroscopie characteristics define only
certain average properties of the system as a whole.

To fix the ideas, let us consider the thermodynamic properties. The
macroscopic state of a system is defined by specifying three independent
thermodynamic variables, say the pressure P, the temperature 7', and
the average number N of particles in the system. From the point of
view of quantum mechanics a closed system of N particles is charac-
terised by its energy levels E,. We split off from this system a subsystem
such thatit can again be regarded to be macroscopic. Since the number of
particles in the subsystem is, as before, extremely large whilst the inter-
action forces between the particles act at distances of atomic order, the
subsystem, neglecting boundary effects, can in turn be regarded as closed
and characterised by the energy levels for the given number of particles
in the subsystem. Since the subsystem in fact interacts with the re-
maining particles of the closed system, it does not have a strictly fixed
energy and number of particles, and can find itself at any level with a
finite probability.

It is well known from statistical physics (see [1]), that the microscopic
deduction of the thermodynamical formulae is based on the so-called
Gibbs distribution, which gives the following probability of the subsystem
finding itself in a state with energy B,y and number of particles N:

Wy = z exXp ['—(EnN - [,LN)/T] . (1'1)

Q.F.T. 1 1



2 MANY-PARTICLE SYSTEMS AT LOW TEMPERATURES

Here T denotes the absolute temperature, y the chemical potential, and
Z a normalising factor which is defined by the condition

EwﬂN = 1. (12)
We have from (1.1): n¥
Z = Zexp[— (Byy —pN)T). (1.3)

The quantity Z is called the grand partition function. If the energy
levels F,y are known, the partition function can be calculated. This in
turn determines the thermodynamic functions, since Z is connected with
the thermodynamic potential £2 (the potential, if the independent varia-
bles are V, T, and p) by the relationship

Q=—-ThhZ. (1.4)

Obviously, we can very easily compute the thermodynamic functions
of ideal gases from these formulae, since their energy is the sum of the
energies of the individual particles. A determination of the energy levels
is impossible in the general case of a system with a large number of
interacting particles. It has therefore only been possible so far in quan-
tum statistics to take interactions between the particles into account
when these are sufficiently weak. In practice, one can only obtain the
first one or two approximations when one uses perturbation theory to
evaluate the thermodynamie functions. For the majority of physical
problems, in which the interaction is far from small, an approach based
on the direct use of formulae (1.1)——(1.4) is out of the question.

The case of very low temperatures is a rather special one. As 7— 0
the energy levels of importance in the partition function are not far above
the ground state energy (weakly excited states). The nature of the energy
spectrum of a system in this energy region can be established in fair
detail on the basis of extremely general considerations, which hold inde-
pendently of the size and particular features of the interactions between
the particles.

To make these last remarks clearer, let us take as an example the
vibrational excitations of a crystal lattice. Provided the oscillations are
small, the lattice can be regarded as a set of coupled harmonic oscillators.
Introducing normal coordinates, we get a set of 3N (&Vis the number of
atoms) linear oscillators with eigenfrequencies w,. In accordance with
quantum mechanics, the energy spectrum of such a system is defined by

N

3
the formula £ = }_,; (n; + 1/2) w,, where the n, are positive integers or
=

zero. Different sets of n, yield different energy levels of the system.
The lattice vibrations can be described as a superposition of mono-
chromatic plane waves propagated in the crystal. Each wave is charac-
terised by a wave vector, a frequency, and a number s, defining the type
of wave. The possibility of different types of waves being propagated is
equivalent to the frequency w not being a single-valued function of the
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wave vector k; instead, it is composed of several branches w,(k), the
total nuraber of which is equal to 3r, where r is the number of atoms in
an elernentary cell of the crystal. In the case of small momenta, three of
the branches (the so-called acoustic branches) are characterised by a linear
dependence of the frequenecy on the wave vector: w,(k) = u,(0, ¢) |k|.
For the other branches, the curve w, (k) starts at a finite value for k = 0
and depends weakly on k for small wave vectors (f).

Whilst a knowledge of the frequency spectrum, the energy levels, and
the matrix elements of the displacements in the lattice (the oscillator
coordinates) always enables us in principle to work out completely both
the thermodynamic and kinetic characteristics of the oscillating lattice,
it proves very convenient in practice to use a picture obtained with the
aid of the quantum mechanical correspondence principle rather that the
coupled oscillator picture. According to the correspondence principle,
every plane wave can be associated with a set of moving “particles”.
The wave vector k will define the momentum of these particles(f), and
the frequency w,(k) their energy (). The excited state of the lattice can
be pictured as a collection of such “particles” (called phonons), moving
freely in the volume of the solid. This is in complete correspondence
with an expression for the energy levels of the system which is similar
to the energy of an ideal gas.

The number n; can be interpreted as the number of phonons in the
state ¢ (¢ = (k, s)). The n; can take on any values. It follows that the
phonons are subject to Bose statistics even in the case when atoms com-
posing the system have half-odd-integer spin.

At very low temperatures the phonons with small energies will play the
most important role. It follows from what we have said earlier about
the branches of the frequency spectrum that the smallest energies are
those of the acoustic phonons with small momenta. The function w(k) is
a linear one in this case, and we can deduce from this fact alone a whole
series of qualitative conclusions, such as the 7® law for the specific heat
of the lattice.

The so-called Debye isotropic model is often used instead of the real
lattice for quantitative calculations. Instead of the three acoustic branches,
the low frequency part of the spectrum is assumed to be the same as in
an isotropic solid, i.e. composed of longitudinal phonons with energies
(k) = u,k and transverse phonons with two possible polarisations and

() For more detailed information on the lattice vibration spectra sce, e.g.
R. E. Prreres [2].

1) In reality k is a “quasi-momentum” rather than a momentum (see [2]),
through the distinction is of no importance here.

(1) Remember that % = 1in the system of units used here. This means that
energy has dimensions secl, and momentum cm=1. To pass to ordinary units, all
the energies and momenta must be multiplied by &.

i»
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the same dependence of the energy on the momentum w,(k) = u,k. It
is also assumed in this model that the phonon momenta do not exceed
some limiting value kp, determined by the normalisation to the correet
number of degrees of freedom. Obviously kp ~ 1/a, where a is the inter-
atomic distance. This modcl lcads to the familiar Debye interpolation
formula for the specific heat of solids. We shall use this model later for
investigating the electron-phonon interactions in a metal.

If the anharmonic terms are taken into account in the potential energy
of the vibrating lattice, the expression given above for the energy ceases
to be accurate. There are then non-vanishing transition-probabilitics be-
tween states with different values of the n,. This can be interpreted in
phonon language as different interaction processes between phonons,
leading to mutual scattering and to the creation of phonons. In other
words, in a rigorous treatment the phonons can only be approximately
regarded as independent particles.

The role of the anharmonic terms will increase with the amplitude of
the vibrations, i.e. with an increase in temperature. In the phonon pic-
ture, the number of phonons increases with increase of temperature,
which means that the role of the interactions between phonons inereases
in importance. The very concept of phonons as independent particles is
thus only applicable in the fairly low temperature region (well below the
melting point).

We now turn to the general case. By analogy with the example discus-
sed, the fundamental picture of the cnergy spectrum for weakly excited
states of a system is provided by the assumption that the energy levels
can be constructed, to a first approximation, in accordance with the same
principle as the energy levels of ideal gases.

In other words, it is assumed that any energy level can be written as
the sum of the encrgies of a certain number of “quasi-particles”, or ele-
mentary excitations, moving in the volume of the solid and possessing
momentum p and energy &(p). (The dispersion law of the perturbations
e(p) is in general not the same as the expression for the energy of the
free particles, g,(p) = p?/2m.) It must be emphasised right away that the
elementary execitations arise as a result of collcctive interactions between
the particles of the system, so that they relate to the system as a whole,
and not to individual particles. In particular, their number is by no
means the same as the total number of particles in the system.

All energy spectra can be divided into two major groups — Bose type
and Fermi type spectra. In the first case the excitations possess integral
angular momentum eigenvalues (spin) and obey Bose statistics; in the
second, they have half-odd-integral spin and obey Fermi statistics. Accor-
ding to quantum mcchanics, the angular momentumn of any system can
only change by an integer. It follows that Bose excitations can appear
and vanish singly, but Fermi excitations only in pairs.
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As already mentioned in our example involving lattice vibrations, the
statistics of the elementary cxcitations are not necessarily the same as
the statistics of the particles composing the system. The only obvious
fact is that a Bose system cannot have excitations with half-odd-inte-
gral spin.

Elementary excitations do not correspond to strictly stationary states
of a system, but represent a superposition of a large number of strictly
stationary states with a narcow energy spread (packets). In view of this,
there is a finite probability of a transition from one such state to another,
which leads to the diffusing of a packet, i.e. to the damping of the exci-
tation. Hence a description of a system by mcans of elementary excita-
tions is valid only in as far as the energy width of the packet, which
defines its damping, is small compared with its energy.

The diffusing of a packet and the rclated damping of the elementary
excitations can be regarded as the result of interaction of “quasi-parti-
cles” with one another. The laws of conservation of energy and momen-
tum are fulfilled here. Obviously, all these transitions can be gplit into
processes of ‘“‘decomposition” of one excitation into several others and
processes of “scattering” of excitations by one another.

As we shall see below, decomposition of excitations can occur only for
fairly large energies. Scattering processes become important only when
the number of excitations is fairly large. Thus at low temperatures, where
excitations with small energies are important and the number of them is
small, neither type of process leading to the damping of excitations will
be important. The weakness of the interactions between excitations at
low temperatures enables them to be regarded as an ideal gas of “quasi-
particles™.

It is now possible to assume, on the basis of experimental data and
direct theoretical calculations, that the ideas we have just outlined
regarding the structure of the spectra are solidly established facts. The
energy spectra of different physical materials (e.g. the liquid isotopes
He?® and He4, metals, dielectrics, etc.) are of course quite different. Thus,
liquid He? has a Bose type spectrum, whereas the spectra of liguid He3
and the electron spectra of metals(f) are of the Fermi type.

2. Spectrum of a Bose liquid (%)

An example of a system possessing a Bose type spectrum is provided
by a so-called Bose liquid, i.e. a liquid consisting of atoms with integral
SPins. Only one such liquid is found in nature, namely liquid helium

(T) To avoid confusion we shall stipulate that the isotropic model of a metal
(which is naturally a long way from the true picture) is considered throughout what
follows. The electron spectra are sharply anisotropic in real metals, so that many
of the results described in this book are merely qualitative as applied to metals.

(£) The ideas outlined here regarding the spectrum of a Bose liquid were first
Proposed by L.D. Laxvavu [3, 4].
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(more preciscly the isotope Het), which does not solidify at the absolute
zero of temperature under its own vapour pressure. Since He? atoms
possess zero spin, we can essentially confine ourselves to this case.

The dependence of the excitation energy of a Bose liquid on the mo-
mentum, at lmitingly small values of the latter, is determined from
extremely general considerations. The domain of small momenta p cor-
responds to long-wave oscillations of the liquid. An oscillation of this type
is in fact ordinary sound. We at once conclude from this that the elemen-
tary excitations at small p are identical to sound — phonons, for which
the connection betwcen energy and momentum is well known. Indeed,
noticing that the frequency of sound w is connected with the wave
vector by the relationship @ = uk, where « is the sound velocity, we
immediately obtain the relationship of interest:

&= up. (1.5)

Thus, at small momenta the excitation energy in a Bose lignid is linearly
dependent on its momentum, the coefficient of proportionality being the
sonnd velocity.

As the momentnm increases the function £(p) ceases to be linear and
the further course of the &(p) curve cannot be determined by so simple
a method. The following discussion is of interest in this connection, since
it enables a number of deductions to be made regarding the function
&(p) for arbitrary momenta (}).

The energy of a Hquid is a functional of its density p(r) and of the
hydrodynamic velocity »(r):

E(p,v) = —})—f pv?Br 4+ EV(p), (1.6)

where EQ is that part of the energy which is independent of the velocity.
We shall consider small vibrations. In that case, p(r) = p 4 dp(r), where
g is the equilibrium density, independent of the coordinates, and Jp(r)
and @(r) are small quantities ‘describing the vibrations. Notice that, by
definition,

0 =% femnd®, [ spd’r=0.

Neglecting second order terms in dp and v, the function p(r) in the
first term on the right-hand side of (1.6) can be replaced by its mean
value g. The expression for E®¥ may be written to the same accuracy as

EM () = B (g) + [ p(n)do(r)d®r —|—% [ [ o(r, ¥)do(r)dp(r)dPrd®r.

The functions y(r) and g(r, r’) are defined solely by properties of
the liquid when not excited by vibrations, i.e. when homogeneous and

(f) The derivation given hcre is due to L. P. Prranvsgm [3].
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isotropic; in view of this y(r) must be constant: (r) = const =y,
whilst @(r, ') depends only on [r — r'|: @(r, ') = @(|r — r'|). The first
order term in the expansion of E® is thercfore simply proportional to
fﬁ_g (r)d3r = 0. Finally,

E=EQ) + L[ z’2d3r+—12— [ [ ollr—7)éo(r)do(r)asra®r.

The velocity » is connected with the density oscillations by the equation
of continuity

e + div (gv) =0,
which, up to first order terms in dp and v, can be written as
o+ odive =0. (1.7)
We now change to Fourier components:
1 ; 1 ; 1 .
— N (D7) — (p'1) —— (p-r)
69(’,)_?%91)611)"’ l'(r)—_ﬁs‘:vpe“p :lp(r)—V;‘:leetp 3

and taking into account that small vibrations of a liquid are always
longitudinal, i.e. the velocity v, in a wave with wave vector p is always
directed along p:

v, = app.
We now easily find from (1.7) that
r, = Q:_p £
Poep
and
(1 fop]
B=50Q) + ;2 (12 4+ S oleol). .9

The first term in (1.8) represents the energy of the undisturbed liquid,
the second splits into a sum of terms, each of which is the energy of a
harmonic oscillation of frequency w,, where

wlz) = -sz‘pp' (1.9)

We sec thus that any small vibration of a liquid can be split into clemen-

tary oscillations, i.e. elementary excitations desecribed by the equations
for a harmonic oscillator.

In the quantum case the energy of cach such oscillator is expressed by

1
ep=cup(-n+5); n =012, ...

The resulting structure of the spectrum is in complete agreement with
the picture outlined above of elementary excitations. The spectrum is
the sum of the energies of different numbers of elementary excitations
and the dependence of the encrgy of an elementary excitation £(p) on
its momentum is determined by (1.9) and the obvious relationshin
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To complete our solution, we must express @, in terms of the charac-
teristics of the system. We have to note that in the quantum case the
ground state energy of the system is not E)(p), as in the classical case,
since we have to take into account the so-called zero-point energy of the
oscillators, which we know to be equal to 1/, w,, for each oscillator. Thus
the ground state energy of a Bose liquid is equal to

By = E®(g) + X2,
p 2

where (compare (1.8))

%: 251102 lop® +%‘Pp|-9p12: @plopl- (1.10)
We immediately obtain (f) from (1.9) and (1.10):

E(p) = w, = ?ﬂ%(‘m, (1.11)
where S(p) = |z)p_|2/ Vmy is the Fourier component of the so-called den-
sity correlation function

S(r—r) = ) =l [n(r) —=m] (1.12)

n

Here n(r) = o(r)/m is the number of particles per unit volume.

Although it is impossible to evaluate S(p), (1.11) enables us to draw a
number of extremely important conclusions about the form of &(p).
Alternatively, if we know certain general properties of the spectrum &(p),
we can draw conclusions about the behaviour of S(p), which determines
the interaction processes between the liquid and various particles (such as
neutrons; see below, Chap. III, § 17).

As already mentioned, in the small momenta region the excitation
energy is linearly dependent on the momentum: ¢ ~ up. It follows that
S(p) is also linearly dependent on the momentum: S & p/2mu.

In the region of small distances, or what amounts to the same thing,
of large momenta, the function S(r) has the familiar form (see [1], § 114):

8(r) = 8(r) +»(n), (1.13)

where »(r) has no singularities as r — 0. We have then for the Fourier
components:

S(p) =1+v(p),
?{p) = 0as p — oco. Hence S(p) tends to unity at large momenta and
pz
2m’
(t) ¥ormula (1.11) was first obtained by R. P. FEyNmax [6] by another method.

His derivation is & good deal more complicated and does not seem to us more
general than the method described above.

e(p) ~
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i.c. the energy of an elementary excitation is the same as the energy of
a free atom of the liquid (He? atom).

For intermediate momenta, S(p) may either increase monotonically
from zero to unity as p increases, or may have a maximum at p ~ 1/a,
where @ is the interatomic distance (this follows from dimensional con-
siderations, since there is only one length para-
meter, i.e. the interatomic distance, in the liquid
problem). In the latter case, the spectrum of
the elementary excitations may be of the form
shown in Fig. 1. The suggestion that the exci-
tation spectrum of liquid He? may have a mini- )
mum at p ~ l/a was first made by L. D. Lan- 4 V4
dau [3, 4]. Fig. 1

It should be noted that the above derivation of (1.11) is based on a
hydrodynamic approximation, in which the liquid is regarded as a con-
tinuous medium. This approximation loses its validity in cases where
distances of interatomic order, or momenta of order 1/a, are important.
Hence (1.11), correct for small momenta, must be looked on as an inter-
polation between the small momenta region and that of very large mo-
menta, for which the particles are, in fact, free and the elementary
excitations are the same as the particles, i.e. have energies p%/2m.

The elementary excitation spectrum in liquid He? can naturally not be
evaluated in full detail. The most accurate e(p) curves were obtained
quite recently from experiments on neutron scattering in He? [7].

A knowledge of the energy spectrum enables us to work out the ther-
modynamic functions of liquid He* (more precisely, the differences
between their values at a given temperature and at 7' = 0). The part of
the spectrum that plays the leading role depends on the value of 7
(see Fig. 1).

At the very lowest temperatures the part corresponding to small p,
i.c. the phonons, will be the most important ones. At higher temperatures
the excitations in the neighbourhood of the minimum of e(p) (at p = p,)
become the most important. On expanding the energy € in powers of
P —pp, we geb(f):

17

1
e(p)=4+ Fyeey (p — po)*- (1.14)

The clementary excitations are called “rotons” in this part of the spec-
trum ().

All the thermodynamic quantities will be sums of “phonon” and
“roton” parts. To find the thermodynamic potential we only need to
- () The numerical values of the constants appearing in this formula are, for

et [7]:

4 =11-4%x10" sec™t, py = 1-92 X108 e, m* = 0-16 mpet.

1) The term “rotons” is due to TaMM.



10 MANY-PARTICLE SYSTEMS AT LOW TEMPERATURES
substitute (1.5), (1.14) in the formula (see [1], § 53):

d3p

— [u—e(p)T] =

Q="VT [In (1 — el )'(?n?' (1.15)
The following facts should be borne in mind here. Firstly, the number

of excitations is not fixed, but is itself determined from the equilibrium

condition — that the free energy be a minimum with respect to any
variation in the number of particles; this gives:
oF
=u=20 (F =80 4+ uN). (1.16)
oN/y.p

When p =0, the potential 2 is the same as the free energy F. Secondly,
in view of the fact that the roton energy is always large compared to the
temperatures under discussion, the Bose distribution for the rotons may
be replaced by a Boltzmann distribution. This is connected with the fact
that in the case T'< g, we can simply confine ourselves to the first term
in the expansion of In (1 — exp [— &,,4/7']) in powers of the small quantity
exp [— &,t/T'] when evaluating the integral in (1.15), whence follows the
Boltzmann formula

_ —rot/T 43P
Fo=—VT f To (27:)3
We find with the aid of these substitutions:
w2 T
= oo (1.17)
7o 9 g &112 T312p% a7 .
rot (275)3/2

All the remaining thermodynamic functions are now easily obtained.

3. Superfluidity

The most interesting property of a Bose liquid is its “superfluidity”,
i.e. its ability to flow through capillary tubes without friction. Landau
showed [3] that this property follows from the form of the excitation
spectrum that he proposed.

Let us take a Bose liquid at absolute zero, flowing along a capxllary
with velocity ». In a coordinate system fixed in the liquid the latter is
at rest, whilst the capillary moves with velocity — ». The presence of
friction between the liquid and the wall means that the liquid starts to
be carried along by the walls. This implies that non-zero momentum and
energy are present in the liquid. This is only possible when elementary
excitations appear in the liquid. If one such excitation occurs, the liquid
acquires momentum p and energy £ (p). Let us now change to a coordinate
system fixed in the capillary. The energy of the liquid in this system is
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equalto
M2
et (p-v)+ =

Hence the appearance of an excitation changes the energy of the
liquid by an amount & 4+ (p - v). This change must be negative if such
an excitation is to appear, i.e.

e+ (p-v)<O.
This quantity is a minimum when p and » have opposite directions. It

is therefore always necessary that e —pv < 0, i.e. ¥ > gfp. Finally, in
order that excitations appear in the liquid as a whole, the velocity must

satisty
v > (i) . (1.18)
P /min

The minimum value of /p corresponds to the point of the £(p) curve at
which

de_ & (1.19)

dp p
i.e. the point where a straight line from the origin touches the g(p) curve.
Superfluid flow can therefore only occur when the liquid veloeity is
less than the elementary excitation velocity at points satisfying condi-
tion (1.19). (Remember that de/dp is the elementary excitation velocity.)
There always exists for any Bose liquid at least one point at which
condition (1.19) is fulfilled. This point is the origin p = 0. Since the
excitations move with the velocity of sound for  close to zero, the super-
fluidity condition is clearly violated at flow velocities exceeding the
velocity of sound u.
There is still one danger point in the excitation spectrum of liquid He4.
It is clear from the curve in Fig. 1 that it lies to the right of the roton
minimum. We easily find by using (1.14) that the superfluid flow velocity

must be
v<—1 ([/ 2—|—2m”‘£]— )
oo Do Py

or, if we make use of the numerical values of the constants (from which it
is clear that p2 > 2m*A),
4
v<l—.
Py
We arrive at the final conclusion that the motion in He? is certainly not
superfluid at velocities exceeding A/p,.
Excitations occur in a Bose liquid at non-zero temperatures. It may
easily be seen that this does not alter the above discussion regarding
the possibility of the appearance of new excitations during the flow.
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However, it is interesting to consider what effect excitations already
present may have on the liquid motion.

To do this, we imagine that a “gas of clementary excitations’” moves
in the liquid with some macroscopic velocity v. The distribution function
is obtained in this case from the distribution function of the gas at rest
by replacing ¢ by € — (p - v). The momentum of the gas per unit volume
is obtained from the integral

d3p

P=fpn[e-(p-v)](2ﬂ—)§.

We can expand n[e — (p - ©)] at small veloeities in powers of (p - v). We
obtain

P=—[p(p-v

(1.20)

i B v [, Ep
de (27)8 3 de (2m)®’

It follows from (1.21) that the momentum P of the moving gas of
excitations is proportional to the velocity v of the motion. The cocffi-
cient of proportionality between P and v is obviously the mass of the
moving body. Hence it may be seen that the gas motion relative to the
liquid is accompanied by a mass transfer. The individual excitations may,
of course, interact with the walls and be scattered from them. In the case
of scattering, a momentum exchange takes place betwcen the gas and
the walls. This means that the gas motion will be viscous. Since the gas
motion is accompanied by mass transfer, as we have just seen, we arrive
at the conclusion that viscous flow can oceur in a Bose liguid in which
excitations are already prescut, with velocities at which the superfluidity
condition (1.18) is certainly not violated. It is essential, however, that the
viscous motion be accompanicd by transfer of a mass which is by no means
the same as the mass of all the liquid; this mass is determined by (1.21)
and depends on the number of excitations (in particular, P = 0 at
T=0).

We now consider the general picture of the motion of a Bose liquid
when the velocity is such that the superfluidity condition is not violated.

We start with the absolute zero. If the liquid is in the ground state
initially, i.e. there are no excitations in it, none can appear in it later
and the motion will be superfluid.

The picture is quite different when T 7= 0. Excitations are now pres-
ent in the liquid, the number of them being determined by the relevant
statistical formulae. Although no new excitations can arise, there is
nothing to prevent the excitations already present from colliding with
the walls and exchanging momentum with them, as already described.
Only a part of the liquid mass, as described by (1.21), will participate
in this viscous motion. The remaining part of the mass will move as
before, without friction either with the walls or with the part of the
liquid participating in the viscous motion. A Bose liquid at 7' % 0 is

(1.21)
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therefore so to speak a mixture of two fluids, “superfluid” and “normal”,
moving without relative friction.

There is no such division in reality, of course; there are simply two
motions in the liquid, each corresponding to its own effective mass or
density. The “normal’” density is the coefficient of proportionality be-
tween the momentum per unit volume of the moving excitation gas and
its velocity. On substituting in (1.21) first the Bose distribution formula
with € = up, and then the Boltzmann distribution formula with ¢ from
(1.14), we can find the phonon and roton parts of the normal density:

2n2 T
Onph = "45" 6

2mE phe—AT
Crrot = Wn’)‘sh—T”z— .

(1.22)

The remaining part g, of the liquid density corresponds to the super-
fluid motion. Hence
0 = 0p+ 0s- (1.23)
Let v, denote the macroscopic velocity of the gas of excitations, and
v, the superfluid liquid velocity. This latter has an important property.
If a Bose liquid is placed in a cylinder and the latter rotated about its
axis, the normal part is carried along by the cylinder wall and starts to
rotate with it. On the other hand, the superfluid part remains at rest.
It is thus impossible to introduce a rotation into the superfluid part. In
other words, the motion of this part is always potential. This is expressed
mathematically as

curl v, = 0. (1.24)

The motion of the superfluid part plays the role of boundary conditions
for the cxcitations. It should be noticed that in the system of reference
fixed in the superfluid part the function e(p) has the form described
above. We obviously obtain in the system at rest:

e =e(p) + (P-vy), (1.25)
where p is the momentum in the system of reference fixed in the super-
fluid liquid.

This must be taken into aceount when writing out the transport
equation for the excitations, which thus has the form

on on ce'y on ce'

ot or ¢cp p or

) = I(n), (1.26)

where I(n) is the collision integral.

The presence in a Bose liquid of two types of motion with two distinct
velocities leads to a very particular form of hydrodynamics. The equation
of hydrodynamics ean be obtained from the transport equation (1.26).
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The derivation (which we shall omit here) was carried out by I. M. Kha-
latnikov and is described in his review article [8](F).

The two-velocity hydrodynamics of a Bose liquid differs a good deal
from ordinary hydrodynamics. In particular, oscillations of two different
types can occur in such a liquid, with different velocities of propagation.

Oscillations of the first type are ordinary sound, or what is called first
sound. The liquid moves as a whole in a wave of this sound; the normal
and superfluid parts are not separated. The velocity of propagation of
first sound is equal to u. Oscillations of the second type — so-called
second sound — are propagated with a velocity

—
Uy = ‘/ SR (1.27)

0,00

where C and S are respectively the specific heat and entropy per unit
volume. In awave of this type the normal and superfluid parts oscillate
in counterphase, in such a way that the total flux of the liquid is
Jj= 0,0, + 0,0, ~ 0.

We shall not discuss in more detail problems connected with the hy-
drodynamics of a superfluid liquid. A discussion of sound in liquid He?,
and also excitation interaction processes leading to various dissipative
phenomena (viscosity, heat conductivity, and so on), may be found in
numerous specialist works and are described in detail in the reviews by
E. M. Lifshitz [9] and I.M. Khalatnikov [8], to which the reader is
referred.

We now consider what can be said regarding the behaviour of a Bose
liquid at higher temperatures, when the number of excitations in it be-
comes large. In this case it is no longer possible to neglect interactions
between excitations and our picture of the excitations as a gas of free
particles ceases to correspond to reality. Formulae (1.17) for the thermo-
dynamic functions, being based on the gas model, now lose their validity.
This equally applies to formulae (1.22) for the normal density. On the
other hand, the idea of two types of motion in a Bose liquid, occurring
with corresponding effective densities, is not directly connected with the
picture accepted above of the state of excitations, and we can suppose
that this idea will still hold good at relatively high temperatures. The
same applies to the hydrodynamical equations, which are no more than
consequences of the laws of conservation, from which they can be deduced
(see [8]). As the temperature rises, the normal density g, increases up to
the point where it reaches a value equal to p. A phase transition takes
place in helium at this point (the so-called A-point). Superfluid flow is
possible below but not above this point; above it, the Bose liquid is
subject to ordinary hydrodynamies.

(t) Hydrodynamical equations of superfluid He4, valid at reasonably low voloci-
ties, were first obtained by L. D. Laxpav [3].
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In principle, the transition from g, 7 p to p, = o could occur conti-
nuously or discontinuously. Experiment shows that the phase transition
in helium is of the second kind and is not accompanied by emission or
absorption of any latent heat (see [10], § 130). It follows from this that
the normal density g, increases continuously as the temperature rises
until it reaches the value p at the transition point.

Well above the transition point, helium has no special features as
compared with an ordinary liquid. As regards the neighbourhood of the
1-point, we have reason to expect a whole range of striking new properties
here. The behaviour of the characteristics (in particular the thermody-
namic functions) of a system close to a transition point of the second
kind represents an as yet unsolved problem which is at the same time one
of the most interesting of the physics of condensed media.

§ 2. FERMI LIQUIDS

1. Excitations in Ferm: liquids

Let us consider a system of interacting particles obeying Fermi sta-
tistics. We shall confine ourselves to the case when the particle spin is1/,,
since the discussion is necessarily limited to liquid He?, electrons in metals
or nuclear material. We shall refer to a system of interacting particles
with spin 1/, as a Fermi liquid.

A theory of the weakly excited states of a Fermi liquid was expounded
by L. D. Landau [11, 12]. His theory is based on the assumption that
the excitation spectrum of a Fermi liquid has a similar type of structure
to that of an ideal Fermi gas. Hence, before turning to the Fermi liquid,
it will be useful to link up the familiar picture of the excited states of a
Fermi gas with the idea of elementary excitations.

It is well known, that in the ground state of an ideal Fermi gas at
T = 0, the particles fill all the quantum states with momenta less than
some limiting value p,, whilst no states with momenta greater than p,
are filled. The filled states form in momentum space a sphere of radius
Do, called the Fermi sphere. The value of p, is determined from the con-
dition that the number of states with p < Py be equal to the number of

Particles:
3P N\ V3
po — (—V—) N (2.1)
where N|V is the particle density.

The particles will have a different momentum distribution in an excited
State. It is easily seen that every such state can be formed from the ground
State by successive translations of particles from inside to outside the
F.ermi sphere. The state obtained with each such elementary action
differs from the initial state by the presence of particles with p > p,



16 MANY-PARTICLE SYSTEMS AT LOW TEMPERATURES

and “holes” with p <C p,. These particles with p > p, and holes with
p < p, obviously play the role of elementary excitations in an ideal
Fermi gas. They possess spin 1/,, they can appear and vanish only in
pairs, and they possess momenta in the region of p, for weakly excited
states. The energy of such elementary excitations is conveniently meas-
ured from the Fermi level (i.e. from p2/2m). The particle-type excitation
energy is measured upwards from the Fermi boundary, and the hole
energy downwards (i.e. the particle energy is & = (p*/2m) — (p/2m)
A V(p — Po)s v == Polm, whilst the hole energy is — & = (p2[2m) — (p2[2m)
~ v(py — P))-

It is assumed in Landau’s theory that the weakly excited state of a
Fermi liquid is very similar to the corresponding state of a Fermi gas.
It can be described with the aid of a set of elementary excitations with
spin 1/, and momenta in the neighbourhood of p,. An essential hypothesis
of the theory is that p, is connected with the liquid particle density by
the same formula (2.1) as in the ideal gas case (a proof of this assertion
will be given in Chap.IV). As in a gas, the excitations in the Fermi
liquid are of two types — *‘particles” with momentum greater than p,,
and “holes” with momentum less than p,, which can appear and vanish
only in pairs. It follows from this that the number of “particles” is
necessarily equal to the number of “holes™.

In spite of the great similarity between excitations in a Fermi liquid
and in an ideal Fermi gas, there are important differences, due to the
fact that the excitations in the liquid mutually interact. The clearest
outward sign of such interaction is the existence of superfluid (or super-
conducting, if we are speaking of electrons in a metal) Fermi liquids. The
excitation spectrum described above for a Fermi gas does not lead to
superfluidity, for an arbitrarily small energy is sufficient for excitation
of a Fermi gas, i.e. for the formation of *“particles” with p > p, and
“holes” with p < p,. At the same time, the total momentum of this pair
can reach the value 2p,. In view of this (¢/P)yuy, == 0, and hence it fol-
lows, by (1.18), that the critical velocity is zero, in other words, super-
fluidity is absent. The appearance of superfluidity is bound up with the
fact that a definite type of quasi-particle interaction leads to a radical
change in the spectrum. In particular, the excitation of such a Fermi
liquid requires an expenditure of energy which cannot be made less than
a certain definite value. The excitation spectrum is said to have a gap in
such cases.

We defer further discussion of superfluid Fermi liquids to Chapter VII,
and turn now to the properties of normal Fermi system excitations.

The interaction between excitations means that the very idea ©
elementary excitations only has a meaning close to the Fermi momen-
tum p,. As mentioned earlier, we can only speak of elementary excita-
tions in the case when their damping is small compared with their energy.
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The magnitude of the damping is determined either by processes of de-
composition of one excitation into several others, or by collisions of
excitations with each other. If the excitation energy is large compared
with the temperature of the liquid, the chief role is played by the de-
composition processes, and the damping is proportional to the probability
of these processes. On taking into account the laws of conservation of
energy and momentum, and the condition that the number of “particles”
be equal to the number of ‘“holes”, the probability of decomposition
may easily be seen to the proportional to (p — p)?(f). On the other
hand, the excitation energy is proportional to p — p,. Hence it is clear
that the damping will be relatively small for excitations with momenta
close to .

If we are talking of an equilibrium Fermi liquid at finite temperatures,
the mean energy of the “particles” and “holes” will be of order 7. In
view of the fact that the excitations are subject to Fermi statistics, the
number of them is also proportional to 7. It is easily seen that the pro-
bability of decomposition and scattering will be of the same order for
such excitations, i.e. they are both proportional to 72(}). Hence it fol-
lows that a description of a Fermi liquid with the aid of elementary
excitations only applies at fairly low temperatures.

The properties of the energy spectrum of a Fermi liquid can be visu-
alised more easily with the aid of a model based on the analogy with a
Fermi gas. Suppose that the ground state of the liquid corresponds to
a set of quasi-particles filling the Fermi sphere with limiting momentum

(1) The probability is best estimated by using the analogy with a Fermi gas.
Let us consider the following process: a particle with momentum p,(p; > py)
interacts with a particle inside the Fermi sphere with momentum P, (p; < ). As
a result two particles are obtained, with momenta p; and p; = p, + P — Ps»
where p,, p; > p,. The particle with momentum p, has thus “decomposed” into
particles with momenta p, and p, and a hole with momentum p,. The total pro-
bability of such a process is proportional to

Jo(er + & — &5 — €2) 3p2 %P5,
P2 < Po P3> Po 1= [P1+ P2 —Ds| > po-
It is easily seen that, for p, — 5, < p,» the permissible domains of variation of the
moduli of the vectors p, and p, are

Po<P3<Pr+ P~ P 20— P <P < Po-
The angle between P, and p, can be arbitrary. The angle between p, and p; 4 P,
is defined from the conservation of energy condition, whilst the integral over this
angle makes the é-function vanish. The remaining integral over d*p, d3p; is taken

close to p, & p, & p, and gives the factor (p, — py)%

1) These processes are in essence aspects of the same phenomenon for an almost

‘»al Fermi gas, and the relevant probability is proportional to

Jotes + ea— e — e miea) (1 — (&) (1 —n(ey)) 4D, 42D,

It can be assumed formally that it is a question of scattering when |p;| > pg

and of decomposition when |p,| < ,. The integral is proportional to 7% in both
Cases when &, — pu ~ 7.

Q.F.T. 2
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Po- The relation (2.1) can be interpreted as an equality between the num-
ber of quasi-particles and the number of liquid particles. Excitations in
such a model are in complete accord with the idea of *“particles” and
“holes”. In particular, the equality betwecn the numbcr of “particles”
and the number of “holes” is expressed as the conservation of the num-
ber of quasi-particles in the model. If we introduce a quasi-particle
distribution function »(p), its variations will be restricted by thc con-
dition
[ dnddp = 0. (2.2)
The gas model is convenient for further investigations into the pro-
perties of a Fermi liquid. It must be borne in mind, however, that the
concept of quasi-particles only has a meaning in thc neighbourhood of
the Fermi surface. Hence, it follows that the properties of the gas model,
in which quasi-particles far from the Fermi surface play an esscntial
role, by no means correspond to an actual Fermi liquid.

2. Quasi-particle energy

Apart from the assumptions made about the nature of the elementary
excitations, Landau’s theory is based on a hypothesis concerning the
quasi-particle interaction. He assumes that this interaction can be de-
scribed through a sclf-consistent field, acting on a quasi-particle and
produced by the surronnding quasi-particles.

The energy of the system will now be no longer equal to the sum of the
energies of the separate quasi-particles; instcad, it is a functional of
their distribution function. The energy of an individual quasi-particle is
defined in a natural manner as the variational derivative of the total
energy with respect to the distribution function:
a3p
(2my®

(the factor 2 comes from summation over the spin).

In fact, it is clear from this formula that € is precisely the variation
in the system energy due to adding one quasi-particle of momentum p (}).

It is assumed in (2.2) and (2.3) that the quasi-particles are distributed
uniformly in space. This restriction means in practice that non-uni-
formity in space may occur only at distances substantially exceeding the
quasi-particle wavelength. Since we are only considering excitations in
the neighbourhood of the Fermi boundary, i.e. with momenta close to
Py, it follows from (2.1) that the wavelength is of the order of the inter-
atomic spacing. The requirement of spatial uniformity thus implies no
restrictions in practice.

OB =2 [ én 14 (2.3)

(f) Remember that n(p) is the quasi-particle momentum distribution, i.e.
2 f n(p) A3p/(2=)® is the number of quasi-particles per unit volume.
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In the presence of a magnetic field, and also in the case of a ferro-
magnetic system, the distribution function must be regarded as an oper-
ator acting on the spin indices (density matrix): #,5. The quasi-particle
energy £,p is also an opcrator. When there is no magnetic field and the
system is not ferromagnetic, the operators 7,4 and g,5 are proportional
to the unit matrix. Formula (2.3) must therefore be written in the gencral
case as

E ds
0 (7) = ;%‘ f £,507p, (?75—3 .
This last expression can be conveniently written in the abbreviated form
s(Z) =T *r
(T/—) = rgfeén (2m)®’ (2.4)
provided we rcmember that £ and » stand for the respective matrices;
the sign Tr, denotes as usual the sum of the diagonal elements of the
product of matrices e and dn.

The definition of the gnasi-particle energy in accordance with (2.4)

means that their equilibrium distribution function is in fact a Fermi
function. This is most conveniently proved by using the familiar expres-
sion for the entropy (1)
—‘—SV—= —Tr, f [nlnn 4 (I —n)ln(l —n)] (2 )3
This formula has a purely combinatorial origin, and its applicability to
a Fermi liquid is determinced by the fact that the classification of the
quasi-particle levels corresponds by hypothesis to the classification of the
particle levels in an ideal gas.

Given that the number of particles and the cnergy arc constant,

0N =0, £ =0,

(2.5)

the distribution function

1
expl(e — )T+ 1
can be found from the condition that the entropy be a maximum, by
taking the variation with respect to én. The energy ¢ is here a functional
of n, so that (2.6) is in fact an extremely complicated implicit expression
for n(e).

Being a functional of 7, € depends on the temperature. This dependence
can be represented as follows. If we denote by £@ (p) the quasi-particle
equilibrium energy at 7' = 0, it will be expressed at small deviations
from equilibrium or at fairly low temperatures by the formula

E(P: G) = E(O)(Ps G) + 65(1)’ G)

=9(p,0) + Tr, [ j(p. o5 P', &) on (D', 6)(27)5 (2.7)

() As usual, we understand by Trs In # the sum of the logarithms of the di-
agonal elements n,q.

2

n(e) = ngle) = (2.6)
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Here on = n — np(T = 0), whilst f is an operator depending on the
momenta and spin operators of two quasi-particles. Formula (2.7) uses
a notation indicating the matrix nature of the quantities appearing in it.
As already said, € and # are matrices in the spin variables. To emphasise
this fact, we have written them as e(p, 0), »(p, 6), where ¢, 6,, 0, are
the familiar Pauli matrices, connected with the quasi-particle spin oper-
ator s by the relationship s =1/,6. The operator f is a matrix both with
respect to the spin variables appearing on the left-hand side of (2.7) and
with respect to the spin variables of the operator d», under the integral
sign on the right-hand side of (2.7). We can write (2.7) in a more detailed
form (here, and in the following, summation over repeated indices is
implied):

d3p

@z

This shows the significance of the notation f(p, o; p’, ¢’).

g.5(P) = 5(023) (p) + f fap; yo(D> P') 0725, (D)

The function f thus defined is the second variational derivative of the
energy per unit volume with respect to dn (cf. (2.7) and (2.4)), and is
therefore symmetric with respect to an interchange of p, ¢ with p’, ¢’.
The function f is a very important characteristic of a Fermi liquid. As
we shall see below (see Chap. IV), it is connected with the amplitude of
scattering of two quasi-particles at zero angle.

The dependence of f on the spin variables can be written in the general
form

(P, a5 P, &) = ¢(p, p') + 0,0.La(P, P)- (2.8)

If the interaction of the spins has an exchange origin (}), the second term
in (2.8) has the form (o - ¢') { (P, p').

The quasi-particle energy ¢ is independent of the spin in the absence

of a magnetic field. The function £© in (2.7) depends only on p, and can
be expanded into a series in p — p,:

E(p) =V(p) —p(0) =v(p —B,), (2.9)

where y(0) is the chemical potential at 7' = 0, and v is a constant. We
can write v, the excitation velocity at the Fermi surface, as

v T’L*’

(2.10)

(1) Several types of particle interaction are usually distinguished, depending on
the spins: exchange interaction, connected with the possibility of exchange of
identical particles; spin-orbit interaction, originating from the relativistic inter-
action of the moving magnetic moment with electric fields; direct magnetic inter-
action of the angular momenta. Exchange interactions are usually much larger
than the other types, and are distinguished by its invariance with respect to a
rotation of the total angular momentum of the particle system in space. The scalar
product (o - ¢’) has this property.
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where m* is the effective mass. Landau has shown [11] that there is
a definite connection between m* and f.

Let us write a relationship expressing the simple fact that the momen-
tum per unit volume of liquid is the same as the mass flow. The momen-
tum per unit volume is obviously the same as the quasi-particle momentum,
i.e. equal to

dsp.

2 f pn— 2n ik
On the other hand, by virtue of the assumption that the number of
Fermi liquid particles is equal to the number of quasi-particles, the flux
of liquid particles is the same as the flux of quasi-particles and is equal to

where » is the quasi-particle velocity. We get the mass flux density from
this expression simply by multiplying it by the atomic mass m of the
particles in the liquid. Bearing in mind that by definition v is equal to
fe/op, we can write the condition that the momentum and mass flux

be equal as
dasp ce a3
y = 2.11
[ or s =" | o™ &1
We vary (2.11) with respect to », noting that the change in the energy
€ due to this is connected with d»n by (2.7), which when there is no mag-
netic field (i.e. when » and ¢ are independent of spin), can be written as

&p
(27

——~Tr Tr, ff(p,o p', ") on'

It follows that:

P d&p
f‘”(%ﬁ
ée , D dsp’
f on (2 )3+ Tr Tr, fnén gf(p, ;Do) 3p(2 B

We integrate by parts with respect to p in the second integral and re-
designating the variables po 2> p'o’:

l’_a &p
(2m)?
on' aspap’

f (2 )3 5 T, Tr, [ [ onf(p,o;p', ) o5 5
As the dn are arbitrary, this leads at once to

p_o% 1 P
it 5 T, Tr, [ (P, 05 P, 0

r

o ap
) ap” (2"
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When 7' = 0 the energy & close to the Fermi surface has the form
(2.9), whilst on'/op’ ~ — (p'[p') 6 (p" — p,)- We note that f depends only
on the angle ¥ between p and p’, inasmuch as the liquid is isotropic,
and then get

L1 P gy [ f(x) cos zdQ2 (2.12

m*_‘ m 2(275)3 c+to’ (%) oS ¥ 4 . )
where f(y) is the value of f for |p| = |p’| = 2,- The integration in (2.12)
is performed over the direction of the vector p’. This relationship con-
nects the atomic mass of the liquid with the effective mass of the quasi-
particles. It remains valid to a fair approximation as long as the tem-
perature is sufficiently low.

The specific heat of a Fermi liquid is expressed in terms of m* in
accordance with the usual formula for a Fermi gas. Indeed, we have,
from (2.3), for the specific heat per unit volume:

_ (2B g () &
Cp = ( o7 )N,v_2fe(8.’l’)1v(2n)3' (2.13)

It may easily be shown that replacing ¢ by @ in the integrand gives a
relative error of the order (7'/u(0)). We therefore obtain, in a linear
approximation in 7', the usual gas formula

1

Oy =5 m*p, T. (2.14)

The entropy at low temperatures is given by the same formula (f).

3. Sound

The propagation of sound has a number of special features in a Fermi,
just as in a Bose, liquid (though the features are different in the two
cases). If we consider sound of a given frequency, it will be propagated
in accordance with the laws of ordinary hydrodynamies provided the
temperature is not too low. The damping will be proportional to the
time 7 between collisions of the excitations. As the temperature falls
the probability of collisions will diminish as the square of the smearing-
out of the Fermi distribution, i.e. the time of collisions will increase in
accordance with a 7'-2-law. In general sound ceases to be propagated at
temperatures for which 7 is of the order 1jw.

The propagation of sound nevertheless becomes possible again as the
temperature is further lowered. Its velocity is different, generally speak-
ing, and it is no longer simply a wave of compression and rarefaction.
The phenomenon was predicted by L. D. Landau [12] and called by

() Formula (2.13) can be used to determine m* from experimental data on spe-
cific heats. By (2.1), the momentum p, is determined from the density of the liquid.
Thus we find for liquid He?® (see [13, 14]):

Pp = 076X 10® cm—1, m¥* = 2mges.
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him ‘“zero sound’. In view of the fact that the nature of sound is deter-
mined solely by the relationship between w and 7, the two types can be
characterised as low-frequency sound (w7 < 1) and high-frequency sound
(wT>1).

At moderate temperatures, where the condition w7 € 1 is satisfied,
the sound velocity is determined by the compressibility in the usual
way. It proves to be substantially dependent on the function f [11].

The compressibility may be conveniently expressed in terms of the
derivative of the chemical potential with respect to the number of par-
ticles oufoN. Using the fact that the chemical potential depends solely
on NJV, we find:

ou vzerPp 1 oP
AN Nz‘ﬁ—ﬁq_li—) (2.15)

(P is the pressure). A relationship between 9u/oN and 42 follows imme-
diately from this:

oP A
=

We evaluate du/oN as follows. Since u = £(p,), the variation of y
will be the combined result of the variation of p, and the variation of
the form of the function £(p):

1 Cdp
op =5 Tr,Te, [ fom (27‘:)3+ 831)(7’0) 2, (2.17)

(We are assuming that no magnetic field is present.) By (2.1), the varia-
tions 6V and dp, are connected by

1
aN=Fp§ Opo V.

Since only variations 6n close to the Fermi surface are important in
the integral of (2.17), the integration can be performed over the absolute
value of the momentum. This gives:

g SN
[ 100 obs= gy | 192
Hence
2
% E—TrTr ffdQ—|—pm*V (2.18)

Using expression (2.12) for the effective mass and the relation (2.1),
we get

2
U — gf’n% + % (%’; )3 Tr,Tr, [ f(x) (1 —cosx)dQ2.  (2.19)
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The sound velocity is thus dctermined by (2.19) in the frequency re-
gion w1 Z 1. It differs from the sound velocity «? = pZ/3m? when
mteractlons are absent.

To investigate the propagation in the frequency region w 7> 1, we
use the ordinary transport equation

on on Ot on 0Ot
5+(3—r.55)—(—51—).8—r)_1(n), (2.20)

where I(n) is the collision integral. For small deviations from equilibrium
we can write the distribution function as

n = np -+ on,
where np is the cquilibrium function and dn a small additional term
which is a periodic function of time:

an ~ e’i[(k-r)——wl]-

The collision integral is of the order

I(n)N%

and it can be neglected compared with &n/ét. 1t must be borne in mind
when linearising equation (2.20) that ¢ is a funetional of n, so that dg/cr
does not vanish. By (2.7):

oe oon’ dsp’
‘5;'—Tl‘o/ ff—-—ar En?.

Taking account of our remark, we get

(k- ©) — w)on — (k - v)anFT [ fén (21’ = 0. (2.21)

B
It follows from the form of this cqnation that &z is proportional to
inplte ~ — 8(e — p). Denoting dn = (872-F/86) ¥, we get:

d.Q,

(k- ) — )+ (k- v) Tr fFv =0 (2.22)

where
Fy) =

If we take k as the polar axis and introduce the notations « = ofk for
the wave propagation velocity and s = ufv, cquation (2.22) becomes

(2.23)

(s — cos 0)» (0, ¢, 6) = cos O%Tror f Fyv (0, ¢, 0") g (2.24)

Equation (2.24) reveals thc fundamental difference between ordinary
sound and the sound propagated in a Fermi liquid when w7 > 1. In
the former case the distribution function remains isotropic in a system
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of reference in which the liquid as a whole is at rest. This implies a vari-
ation of the radius of the Fermi sphere and in addition, an oscillation
of its centre relative to the point p = 0. In the latter case the distribu-
tion function varies in a more complicated way, and the Fernii surface
does not remain spherical. The variation of the Fermi surface is deter-
mined by the function ».

Let us first of all consider the solution of (2.24) that is indcpendent
of spin. The only part that remains of the function F(y) is now @(y),
which is connected with the function ¢ in (2.8). We start with the sim-
plest possible casc, namely @ = @, = const. We obtain from (2.24):

__ const- cos 0 giller—ar]

8 —cos 0 (2.25)

As we shall soon sec, 8 must be greater than unity. This means that the
Fermi surface is stretched out in the direction of motion.

On substituting (2.25) in (2.24) with F = @,, we obtain an equation
for s. This gives after integration:

s, s+1 1

St 1= 2.26

g s —1 @, (2.20)
It is clear from this that, if s is rcal (which corresponds to undamped
waves), it must be greater than unity, i.e.

%> . (2.27)

From (2.24) it follows that this condition remains valid for any function@.
Further, in view of the fact that thc left-hand sidc of (2.26) is always
positive, the condition for the existence of zero-point sound is evidently
Dy > 0.

If &, is large, s will also be large. We obtain from (2.26): s»VW)
as @y —> co. On the other hand, s—>1 as $y— 0, i.e. % —> . This is the
case of an almost ideal Fermi gas.

The conclusion that s— 1 as @ — 0 may easily be seen to be inde-
pendent of the form of @. For it follows from (2.24) that s - 1 as @ — 0,
whilst » differs from zero only for small 6. By (2.19), u® = pZ/3m? in a
weakly non-ideal Fermi gas, i.e. u ~~ v/l/gm i/[/g. The zero-sound velo-
city is therefore l/§ times that of ordinary sound. It must be mentioned
that, in the limit of an almost ideal Fermi gas, 7T is substantially incrcased,
as a result of which the frequency range corresponding to zero-point
sound is increased, whereas ordinary sound only exists in the very low
frequency region.

Equation (2.24) ceases to admit such a simple solution in the general
cage of an arbitrary function @(y). If we expand »(0, ) and P(y) into
a series in spherical harmonics, separate equations can be written for
the amplitudes corresponding to spherical functions with different
azimuthal numbers m (i.e. factors &™*). The number m does not exceed
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the maximnm index 7 in the expansion of @ (y) in Legendre polynomials
D(y) = T"‘ D, P, (cos ). We can therefore conclude that several kinds of

“zero sound” can be produced in the general case, for which the vari-
ations of the distribution functions are non-isotropic in a plane perpen-
dicular to the direetion of propagation k. As in the elementary case, the
possibility of such vibrations being generated is determined by the form
of the function @. For example, if @ = @, + D, cos g, the condition for
the generation of vibrations with v ~ €% is®; > 6.

Attention should be drawn to the absence of compression and rare-
faction of the liquid in such wavcs.

When the function f depends on the particle spins, peculiar waves,
which we can call spin waves, may be propagated in the liquid. Indeed,
suppose F () has the form (exchange intcraction of the spins)

F(y) =D(x) + Z(y) (o - 0). (2.28)
In this case, apart from spin-independent solutions, (2.24) is satisfied by
a function » of the form

y=(v-0), (2.29)
where » is an unknown vector. We obtain the equation
dQ
— = o 2.30
(s —cosO)yr (:050_[21147z (2.30)

for v. The equation for the componcnt of the vector v differs from the
equation for a spin-independent » only in the substitution of Z for @.
Hence, all our future arguments will still hold for spin waves. It can be
shown {11] that thc zero-order term in the expansion of Z in spherical
harmonics determines the expression for the magnetic susceptibility of
a Fermi liquid. It proves to be negative for liquid He?, which in all
probability indicates that spin waves cannot be propagated in this
liquid.

The case of electrons in a metal is rather special. Obviously, oscilla-
tions accompanied by variations of the clectron density alone without
any vibrations of the crystal lattice cannot be propagated in a metal.
Such oscillations would lead to the appearance of an uncompensated
electric charge, i.c. their excitation requires a very large energy. This
implies in all probability that the function f contains in the case of Cou-
lomb forces, an infinitc constant, independent of angle (see also § 22).
From (2.26) it then follows that s = oco. This argument only refers to
density oscillations; however. under certain conditions, higher order
“sounds” with » ~ ¢™® (where m 7% 0), and spin waves unconnected
with density variations, may be propagated in an clectron liquid.

The possibility of the propagation of acoustic waves at 7' = 0 means
that the excitation spectrum of the liquid contains Bose type phonon
branches with energy lincarly dependent on the momentum: e, = u;p.
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However, the corrections to the thermodynamic functions due to the
phonons contain higher degrees of 7' (the specific heat ~ 7%), which arc
not to be taken into account in the above approximation.

We shall show later (Chap. IV) how the basie propositions of the thcory
may be obtained from microscopie considerations of a system of ferm-
ions with arbitrary short-range interaction forees.

Landau’s theory in the form described refers primarily to the low
temperature propertics of liquid He3. The existence of Coulomb inter-
actions between the particles leads to a number of special featurcs. Some
of them will be demonstrated in terms of a simple model in § 22. Super-
fluid (superconducting) Fermi systems differ in an even more essential
way from an ordinary Fermi lignid. The properties of superconductors
will be discussed in Chap. VIL. Finally, mention must also be made of
ferromagnctic Fermi systems, which also differ from the model con-
sidercd. The properties of such Fermi liquids were investigated by
A. A. Abrikosov and I. E. Dzyaloshinskii [15], to whose work the reader
is referred.

§ 3. SECOND QUANTISATION

The theory of Bose and Fermi liquids described above has been to
some extent phenomenological. It has becn based on definite assumptions
regarding the temperature dependent excitation spectrum. We shall be
concerned in the following with providing a microscopic basis for this
theory. The present section will be devoted to an auxiliary mathematical
device known as the method of second quantisation ().

Supposc we have a system of N non-interacting particles, which may
find themselves in states with wave functions ¢ (§), go(£), . . ., which
form a complete orthonormal system. Here, £ denotes any set of vari-
ables characterising the states of the particles —usually the coordinates
and spin components. The system can evidently be described by spe-
cifying the number of particles in states ¢y, ¢, ..., rather than by spe-
cifying the complete wave function. This implics passing to a new
representation, called the second quantisation representation. The
numbers N,, N,, ..., play the role of variables in it. Let us start with
the case of partieles obeying Bose statistics. We know that the complete
wave function of a system of bosons is symmetric with respect to any
permutation of the variables corresponding to different particles. It may
easily be shown that the wave function corresponding to the occupation
numbers .V, N,, ..., has the form

N IN,L.\2
( IN'? _) -~ P60y, (52) - - - Py (E)s (3.1)

NN —

(1) It seems useful to give a brief description here of the method of second
quantisation (sce c.g. [80]), inasmuch as this method is basic for the mcthods
developed later.
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here, the p; denote the states, whilst the summation is over all pos-
sible permutations of different p,. The factor in front of the sum is for
normalisation ( [|@P? I d, = 1). We shall consider @y y, .. as a
i
function of the variables IV,.
Let F be an operator symmetrical with respect to all the particles,

of the form
FO = = o, (3.2)

where f, is an operator acting only on functions of §,. It is easily seen
that when such an operator acts upon the function @y . ..., it either
maps it on to the same function, or on to some other, corresponding ta
a change in the state of one of the particles. In view of this, the matrix
elements of F with respect to the functions (3.1) have the form:
diagonal elements:

@ 1

F )2%‘/;‘)1\74"
off-diagonal elements:

FONTE = [PV NNy, (3-3)

19 = [ of €)M, E)dE.

The operator F® can be pictured as acting on the numbers N; if we
introduce operators a;, which decrease by one the number of particles in
the ¢th state and possess the matrix elements

(@)¥—* =VN,. (3.4)

The Hermitian conjugate operators @; obviously have the matrix
elements

where

(@Y = @ =VN, (3.5)

i.e. they increase the number of particles by one. It is easily shown that
the operator F® can be written as -

FO = 3 fBaf o (3.6)

Indeed, the matrix elements of this operator are the same as those of
(3.8). This is in fact the expression for F® in the second quantisation
form.
By (3.4) and (8.5), the products of the operators ;" and @, are the
diagonal operators
ajta; = N,
(3.9)
aaf = N; -+ 1.
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The following commutation relations for the operators a, are a conse-

quence of (3.4), (3.5) and (3.7):

e, = aa —ata, = 6,
[z L]—— z-: +L (3 ik (38)
[a;,a,)_ = [a; a7 ]_ = 0.
The symmetrised operator
F® =302, (3.9)

where /& acts on functions of £, and &,, can be similarly written. In the
second quantisation form F® becomes
2 2) ik
F® = 3 @kqtotaa,, (3.10)
iklm
where

12 i = [ o (€0 9 €D [P pu(Er) i (E2) A6, OE,
The same applies to more complicated operators.

Let us take the Hamiltonian of a system of interacting particles situ-
ated in an external field,

H = Eﬂt(zl) + ‘%‘ U(z)(ra, rb) +a%: U(g)(ras Ty rc) + ] (311)

where H® = (— p2/2m) 4 U(r,). It becomes in the second quantisation
form:
H= XHpal 4+ 3 U5 af af gy + - (3.12)

If we take for the ¢, the eigenfunctions of the Hamiltonian H" the first
term in (3.12) becomes’ equal to

HY = Yeafa, = XN, (3.13)

In the case of Fermi statistics, the complete wave function of a system
must be anti-symmetric with respect to all the variables. This means
that the occupation numbers can only be 0 or 1 in the case of non-inter-
acting particles, and the wave function has the form

1
Prive- =T & (=17 0, ED P E) - - - BpplEn)s  (3:14)

where all the numbers p,, p,, . . ., py are different. The symbol (—1)P
indicates that odd permutations appear with the “minus” sign in the
sum (3.14). For definiteness, we shall take with the “plus” sign that term
in the sum in which
P <P <pg<---<Py- (3.15)

The matrix elements of an operator F® of the type (3.2) are in the
Present case:
diagonal elements:

F)Zisfiilvi’ (3.16)
off-diagonal elements: 10
(FD) g o= £ 1R,
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where the “plus” or “minus” sign is taken, depending on whether the
total number of particles in states between the ¢th and kth is even or
odd. We introduce operalors a; with matrix elements

=1

2N
(@) ) =(af) g= (1" . (3.17)

The operator F® can bc written with the aid of these operators in the
form (3.6).
The products of operators a; and @}t are equal to

+ T
(li (li - Ai’
n 3.18
;a7 =1—N,. (3.18)
Hence
0o} = aad + ot =1.
All the remaining anti-commutators are equal to zero. Thus
a;a;t} = Oy,
{ i L} ik (3-19)

{wa) ={dt g} = 0.

The more complicated operators, and in particular the Hamiltonian,
can be written in terms of operators g @;" precisely as in the case of
bosons.

§ 4. DILUTE BOSE GAS

A weakly non-ideal gas, i.e. a gas in which the role of the particle
interactions is relatively small, provides a simple example of a quantum
liquid. As we shall see, a necessary condition for such a gas is that the
particle scattering amplitude be small compared with the mean wave-
length 4 = 1/p, which, for a degenerate gas, is of the same order of mag-
nitude as the mean distance between the particles.

In these circumstances, due to the smallness of the momentum of the
colliding particles, it is sufficient to a first approximation to take only
the s-scattering into account. If we denote the s-scattering amplitude by
a, the p-scattering will be of the order a(af1)?(t). Triple collisions also

() If 7, characterises the range of the forces, uantum mechanics shows (see
[16]) that, for A > 7, the scattering amplitudes with different momenta I will be
of the order 7y(ry/2)2%. It will be clear from what follows that the wavelengths of
importance are different for boson and for fermion gases. Since p-scattering can
occur only for particles with non-vanishing momentum, the order of magnitude
the most important momenta in the case of a boson gas can bc obtained by con-
sidering the integrals (4.20) and (4.15) over the non-condensed state. The essential
momenta in these integrals are of order (a N/ V)12, or A~ (V/a N)/2: hence it follows
that the contribution to the energy from p-scattering will be (a/1)2 ~ a3 N[V times
the contribution from s-scattering. In the caso of a fermion gas, the essential
momenta arc those near the Fermi level, or A~ (V/N)/3. The correction from p-
scattering will thus be about a?(N/V)?/3 times the contribution from s-scattering.
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contribute little. A very clementary estimate shows that taking such
collisions into account must lead to the appearance of extra powers of
the volume in the denominator; this means that the correction is of the
order a® N|/V. However, this is in actual fact only correct for a boson
gas while for a fermion gas the contribution from triple collisions is even
less (~ (a® N[V)®/3) (1). We shall assume that the interaction between the
particles is repulsive, i.e. that the scattering amplitude has the ““plus”
sign. This is connected with the fact that, no matter how weak the attrac-
tion, 2 Bose gas can never remain dilute at low temperatures. In a Fermi
gas, the attraction between the particles leads to superfluidity. We shall
not discuss this case herc.

We shall evaluate in this section the ground statc euergy and energy
spectrum of a dilute boson gas (7' = 0)(f). A dilute Fermi gas will be
discussed in the next section. We shall assume for simplicity that the
Bose gas particles have zero spin. The energy of intcraction may be
written in this case as

U
Hyy=5= X aja)a,a,. 41
MOV gyt pimpe o @p, Cp, %p,¥p, (4.1)

Taking U outside the summation sign corresponds to assuming the in-
teraction to be the same between any pairs of particles, the scattering
amplitude being independent of the angle (s-scattering). To a first ap-
proximation, U is connceted with the scattering amplitude by the rela-
tionship

UZW(Z. (4.2)

This equation is easily obtained by the following argument. By definition
(see [16]), the s-scattering amplitude is connected with the effective
cross-section for the scattering of two identical particles by the relation
(in the centre of mass system)

do = (2a)2d02.

On the other hand, do can be determincd with the aid of the Hamil-
tonian (4.1). We obtain in the Born approximation (see [16]):

2
do = (ﬁ) QU)2dQ,
iy
whence follows (4.2).

(1) This last statement follows from the fact that the wave function of three
colliding fermions must be antisymmetric. This requires that the third particle
possesses odd orbital angular momentum relative to that particle of the first two
that has the same spin z-component. As a result, at least one extra factor (af2)?
appears.

t) The energy spectrum of a dilute boson gas was first obtained by N. N. Bogo-
LYUBOV [17]; the ground state cnergy was found by Huane and Yawxe [18] and
by BRUECKNER and Sawapa [19]. We shall in essence follow references [17] and
[191 in the present section.
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N. N. Bogolyubov has shown [17] that, when we are concerned with
the ground state for the weakly excited states of a dilute boson gas, the
interaction energy operator (4.1) can be considerably simplified, and it
becomes possible to carry out the diagonalisation of the Hamiltonian
and hence obtain the energy spectrum. The simplification is based on
the following idea. In the ground state the particles of an ideal Bose gas
are in the lowest level with zero energy, or, “in the condensate”. In
view of the weakness of the interaction in a dilute gas, its ground state
will only differ slightly from the state of an ideal gas, i.e. the number
of particles in the condensate will still substantially exceed the number
in other energy levels: N — Ny € N,. The same applies to weakly excited
states. Since the matrix elements of the Bose operators a; are equal to
]/l\—v’i, we can clearly neglect the interactions of particles above the zero
energy level with each other, and simply take into account only the inter-
actions of condensate particles with one another and with the excited
particles. This means that we need only retain the following terms in
the sum of (4. 1)'

H‘”’"zv[

+ 2at,ad a_pa, —|— af at apay + af af pa_p)]. (4.3)

ag af agay + 2 (207 af a,a,

In view of the fact that N, is an extremely large number, we are justi-
fied in regarding the operators ag and g simply as ¢-numbers, and in
replacing them by Vj\’ Indeed, the commutators of these operators
with one another or with any other operators a;, a;" give 1 or 0, i.e. are
always small by comparision with the matrix elements of the operators
ag and af. We thus obtain:

U
H’i’nt 2 4

+ X 3 (af at, apa_p)]. (4.4)

The total number of particles in the system can be written as

[1\’2+2N0 v(a 20, + af ay)

1
N=Net+5 % (af @, 4+ atja_). (4.5)

This enables us to express the total number N, in (4.4) in terms of N.
On confining ourselves to terms in H;, of not less than the first degree
in N, and adding the kinetic energy operator, we get the following Hamil-
tonian:
UNZ 1 [ p?
H=——-1—- * +
v T2 2 [(2m )(“ @p T 0-pl—p)

D#0

+ 5N @ty apa )| (4.6)
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The last term in the Hamiltonian is non-diagonal. To diagonalise, we
carry out a linear transformation of the operators a, and a} :

1

a, = =——=(x, + 4, 0%,),

D lr—_l—Ai p » )
1

af :V—~———1_A% (of + A, y).

The new operators &, and «, satisfy the same permutation relations as

the old ones. On expressing the operators @, and a,; in (4.6) in terms of
+

op and oy, we get

U 1 [[p* NU NU
U s ¥ 2
H 2V+1,§;0 1_A;,[(zm+ V)A T A]

NU UN
Z(; f,[(Zm )(1+ )+27Ap](0c;ocp—l—ocipoc_p)

1\1
[( m+ VU) 24, —I— (1 + 4 )](oc o).
(4.8)

For the non-diagonal terms to vanish, the coefficient 4, must satisfy
the relationship

(ﬁ+A;/U)2A N (1+A2)—0

This gives us

4 p® NU (p®  UN\: [UN\2
=g~ B BT - (5} o

The “plus” sign is required in front of the radical in order for the excited
states to possess positive energy. On writing the coefficients 4, in (4.8)
in accordance with (4.9), we get

_UN 1 p®  UN p2  UN\2 [UN\
-S4 8-V T

21;9&0 2m

UN UN
Zp;eo l/(2m ) ( % ) (oo 00p+ 6500 ). (4.10)

The expression obtained consists of two terms. The first is a constant,
whilst the second is a diagonal operator which can be written in the form

Na.oe
X ne(p),

where the #,, are the occupation numbers corresponding to operators s,
The least energy is obtained when all the n, are zero, i.e. ;S nye(P) is

the excitation energy. This expression has the same form as (3.18) for
the energy of a system of non-interacting particles. It follows from this
that the weakly excited state of a dilute Bose gas can be described with

QF.T. 8



34 MANY-PARTICLE SYSTEMS AT LOW TEMPERATURES

the aid of an elementary excitation model with the energy spectrum (1).

2 UN UN
- BT

The expression becomes in the limit of small momenta,

Vimal
e(p) ~ %/Vp, (4.12)

i.e. it corresponds to the phonon part of the spectrum of a Bose liquid.
In the case of large momenta the encrgy &(p) becomes the energy of a
free particle:

P2

&(p) ~ om’

which is also in accordance with the results of § 2.
The first terms in (4.10) obviously represent the ground state energy of a

Bose liquid. Itis easily seen that the sum over p in this expression diverges

as ‘1,2 1/p? for large momenta. This is connected with the fact that the

(4.13)

energy cannot actually be expanded in powers of U. The presence of the
constant U leads to an infinity in the energy, as may be seen at once
from (4.10). It is essential in the present case that the scattering ampli-
tude @ be finite and small, thus enabling the energy to be expanded in
powers of a.

Equation (4.2) between U and a is not exact; it only holds up to first
order terms. Since we are in fact interested in higher order terms in the
energy, (4.2) needs to be corrected. On considering in second order per-
turbation theory the scattering of two particles in the condensate ac-
companied by a transition to the states p, — p, we get

Uz 1 dma
0—71;%_7. (4.14)
On now expressing U in terms of @ and substituting the result in (4.10),
we find for the ground state energy:

B 2ma N2 8p2a? (1\")2 1
m V m? \V/] ;&5 p*lm L
1 <« /p*® , 4malN 4maN|mV
LB Amely qfy (__AmaNimVo g
2 5% (2m + m¥ ] 22/2m 4+ 4 maNmV)] | (4.15)
Expression (4.15) is convergent for large p. On integrating over the
momenta, we get

E  2na(N\2 198 o [N)I2
Vo m (V) [H_ 5Yr (7) ] (4.16)

(1) Notice that the Born approximation has been used in our derivation. Actu-
ally, (4.11), when expressed in terms of the scattering amplitude ¢ with the aid
of equation (4.2), holds whenever the condition afl < 1 is fulfilled, and not just
in the Born approximation. We shall prove this in Chap. V. The same applies as
regards (4.16), (5.20) and (5.21).
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Notice that the expansion is in [a(N]V)/3]32,
The sound velocity can be found from this formula:

[ V2 ¢E [/4naN/V
o l/ mN Ve m

This expression is the same, as it must be, as the coefficient of p in
expression (4.12) for the phonon part of the spectrum.

We mentioned at the start of this section that the amplitude a must
be positive in a Bose gas. This is also clear from (4.17), since the sound
velocity would be imaginary (unstable state) if a < 0.

The momentum distribution of the excitations is given by the usual
Bose formula

(4.17)

1

> =T 1" (4.18)

7 =t
Ty = 0p &

As regards the momentum distribution of the particles themselves in a
Bose liquid, this can be found by evaluating

=
Oy

On using (4.7), we get

(4.19)

This expression naturally refers only to p % 0. The number of particles
with zero energy is obtained from the formula

Ny=N— N,.

p#0
At absolute zero #, = 0, so that we have from (4.19):
8 n%a® (N\?2
; w(7)
N, = (4.20)
p 4malN
£(p) [E(PH- i + ]
N, 8 N\12
P a2 . 21
N 31F (V> (.21

It is clear from this that, even in the ground state, in a non-ideal Bose
gas, not all particles have zero momentum.

§ 5. DILUTE FERMI GAS

We now turn to a Fermi gas. We shall find the ground state energy,
the effective mass of the excitations and the f-function(}) up to terms
of order (a/2)?, where a is the s-scattering amplitude.

(1) The ground state energy was obtained by Huance and Yawxa [20], and by
LEE and Yanc [21], and the effective mass of the excitations by A. A. ABRIKOSOV
and I. M. KrEavLaTNIKOV [22], and by V.M. Garitskru [23]. The f-function was
obtained in [22].

3» »
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The excitation energy operator cannot be deseribed with the aid of
(4.1) as in the case of bosons. For, if we take 4, &, [, m in (4.1) to indicate
not only the momenta but also the spin, the sum vanishes by virtue of
the anti-commutativity of the Fermi operators. This is connected with
the fact that the Hamiltonian (4.1) takes no account of the specific
nature of fermion scattering. According to quantum mechanics (see [12],
§ 114), s-scattering can only occur for identical particles with spin 1/,
when the spins are anti-parallel. The amplitude is then twice what it is
when the particles are different. On taking this into account, we can
write the interaction energy as

U
Hyy =+ al et e, 100 5.1)
wnt Vpl+l’;m+p¢ e 1/2%Da, —1/12 %D, —1/2%py, 172 (
or equivalently
U
L= 3 + oo+ ,
WO ptpimpetpe P PR8I0 (5.1)

As before, U is connected to a first approximation with the s-scattering
amplitude by
dma

U=-""2 (5.2)
m

Let us apply perturbation theory with respect to H;,. The first order
correction to the ground state energy is equal to the diagonal matrix
element of H;,:

U
EV — 7 X Qs (5.3)

where the subscripts ¢, & correspond to given momenta and spin, =, is
the occupation number at 7' = 0(}), equal to 1 for p < p, and 0 for
P > po (0o = (372N V)13), whilst the factor Qy takes into account the
fact that the spins of particles in states ¢ and k are anti-parallel. This
factor may conveniently be written in the form

1
Qu = 7 (1 — (o, - Gk)): (5.4)

where !/,0, is the spin operator of a particle in the state ¢. On substi-

tuting (5.2) and (5.4) in (5.3), we get

N2

B T2

m V

To find the second order correction we use the perturbation theory
expression :

(5.5)

B — % | H gy [ (5.6)

7 .
m¥#En E’n - Em

(f) The %, here denote the occupation numbers for non-interacting particles.
It may easily be realised that, at 7 = 0, they are the same as the occupation num-
bers of the quasi-particles and differ from the occupation numbers N; for a system
of interacting particles.

.
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On substituting (5.1) into this, we get the sum

Vz Z 7y Ny, (1 nl) (1 nm) sz le .

e BT
& (P pi—pi—pu)em (5.7)

Since our aim is to obtain an expansion of the energy in powers of a,
we must recall as in § 4 that the relation (5.2) between U and the scat-
tering amplitude is not exact, and only holds to first order in U. If
second order terms are taken into account, we get instead of (5.2):

202 Qi _tna
v+ Z(Pz—l—Pk—Pl —pn)f2m  m

(5.2)

If we use this to express U in terms of @ and substitute the result in
(5.8), terms proportional to a® are obtained in the expression for EM),
and these naturally belong to the second order correction. Taking this
into account, we get the following second approximation to the energy:

7O _ 16a*7® < [n (1 —ny) (1 N) Qe Qi
m2 V2 g |~ (p; + Pi — pi — pm)[2m
_ 77y Qi sz. }
(Pi -+ PE— Pl — Pi)[2m

ikl

(5.7)

In contrast to (5.7'), this expression is not divergent for large p. Conse-
quently, as in a Bose gas, a renormalization of U leads to the elimination
of a divergence in the energy.

Notice that (5.2) appears to be contradictory at first glance, because
the left-hand side depends on the angle between p, and p,, whilst the
right-hand side does not. This might suggest that the form we took for
the interaction energy operator is incorrect. In reality, however, this
fact should not be detrimental. If we split the integral over the momenta
in (5.2) into its principal value and a circuit around the pole, we see
easily that only the last term depends on the angle between p, and p,.
The principal value is a divergent integral over p, and we can assume
in it that p, and p, &~ 0. The circuit around the pole leads to a purely
imaginary expression while the correction to the energy must be real.
It follows therefore that this term does not contribute to the energy.

The term containing four =, that appears in the first part of (5.7)
vanishes, because the denominator is anti-symmetric with respect to the
substitutions 7, k5.1, m, whereas the numerator is symmetric and all the
domains of summation are the same. The remaining two terms with pro-
ducts of three n; are equal to one another. Hence we finally obtain

32 a2n? ;7,7 @,
P 7 Qe . 58
m2V? w% (P} -+ pt— pi — pm)[2m (5-8)
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On passing from summations to integrations, this expression can be
written as

E®  32a?n? 6(py + Py —Ps — P4)
— = d ds ds ds s .
vV w2 '][pﬂ g}),{p,l fﬁ,{h[ <p§’f P o2+ pE—p2 — pi)/2m
(5.9)
In accordance with § 2, the excitation energy is given by (})
OF
& = 6—";. (5.10)
Variation of (5.8) and (5.8) with respect to =, gives
2walN  16n%a?
epr=2 4 270Ny &p, [ dip, [ d®
» m? (27)° flpllfi..lfpol LK f s
% [ PL+Po—P—Py) _, (PP —Pa—P) ] . 61
(p*+ pi—pi—pi2m (P*+ pi—pi—ph)/em

The evaluation of the ground state energy and effective mass of the
excitations thus requires the evaluation of the integrals (5.9) and (5.11).
The integration is fairly laborious, due to the multiplicity of the integrals
and the awkward domain of integration.

An alternative, simpler method can be used, based on using the func-
tion f. If we introduce
O’E
= — 5.12
o= g s (5.12)
we shall be able to find the effective mass and low frequency sound
velocity according to (2.12) and (2.19) of § 2. The ground state energy

can be found from the sound velocity after suitable integration.

The problem therefore amounts to finding f. On varying (5.3) and (5.8)
first with respect to %, then with respect to n, we find the following
expression for f:

8an 64n2a? S(p+p —pi—Po)
—_ -, d3 d3 ) Iz 3 2
I="m Yo = 3 fmuf};.,f Pz [Q""’ (P*+P*— pi—pi)iam
_}_l 6(1’ +P1~P —P,) i 6(P'+P1‘—P““P2)
4 (pPP+pi—p*—pi)em ' 4 (p®+ pi—p*—ph)/em

] . (5.13)

(t) This formula may appear to be incorrect at first sight, since ¢ is the vari-
ational derivative of E with respect to the distribution finction of the quasi-par-
ticles, and not with respect to the particle distribution. But the derivative in (5.10)
is not with respect to the true particle distribution, but with respect to the distri-
bution of the non-interacting particles, which, as remarked earlier (footnote on
p- 36), is the same at 7' = 0 as the distribution of the quasi-particles of an inter-
acting system.
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If we put |p| = |p’| = p, right away, the integration in (5.13) is
much simpler than in (5.9) and (5.11). We get

4
1 sin £-
SN\U3
f) = 2@ 1—}—20,(—N) 24 BX 1y 2
m 7 2sin—x— l—sinl
2 2
.y 4 N 4
L 14 sinZ&-
3 N\ 1/8 sin
2oy |1 e 2a PY 1—— 21 2 (5.14)
m TV 2 %
1—sm—2—

A special feature of (5.14) deserves attention. The function f for par-
ticles with opposite spins has a logarithmic singularity for angles ¥ close
to m:

1
w—y
The approximation that we have used is evidently not strictly applicable
here. The singularity in f for y = =z is a reflection of the singularity in
the scattering amplitude of excitations colliding at an angle z (see
Chap. IV). The correct expression can be obtained for this case by sum-
ming the main terms of the perturbation theory series, i.e. the terms in
which the logarithm appears to a maximum power (one less than the power
of a). If we regard y as exactly equal to 7, but 1 = 9% + p'2 — 292 # 0,
summation leads to the appearance in f of the factor

1

3N\UB[ pE im
1+“(ﬁ) (‘“Tr?)

(the real part is written down neglecting terms of higher order than the
logarithm). Since a is positive by our hypothesis, this expression tends
to zero as A— 0.

The case a < 0 is also possible in principle in the case of a Fermi gas.
As distinct from a Bose gas, the Fermi gas will remain dilute by virtue
of the Pauli principle, and at first sight all the formulae will retain their
validity. If we look at (5.16), however, it becomes clear that the scat-
tering amplitude will have a pole for some small imaginary value of A.
This is connected with the instability of the ground state relative to the
formation of bound pairs of quasi-particles with opposite momenta and
spins (Cooper effect), which is the main reason for the superconductivity
of metals (see Chap. VII). We shall confine ourselves here to the case
a> 0.

All in all, the expression that we have obtained for f does not hold
at angles close to z. But in view of the fact that the singularity is loga-

fx)~[1—(o-0')]Iln

(5.15)

(5.16)
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rithmic, it is only important in the immecdiate neighbourhood of the
singularity. Moreover, only integrals of f with regular functions appear
in the quantities of interest to us, so that the logarithmic singularity of f
is of no importance.
On substituting (5.14) into (2.12), we find for the effective mass
2
ﬁ_1——(71n2—1)a (3N) o (5.17)
424

m*

Similarly, we get for the sound velocity, from (2.19):

A8 (N\23 1 na N 4 [SN\UB
A EAR R N 4 . .
=" (V) — 2T [1 +a (n V) (11 21n2)]. (5.18)

The ground state cnergy of a Fermi liquid is readily obtained from this
formula. We make use of (2.16): u? = (N[m) (du/oN), and obtain after
integrating (5.18) twice:

3N

E=[pdN = E<°>+”“N [14-6 (V

The results (5.17) and (5.19) can also be obtained directly, by integra-
tion of (5.9) and (5.11). This demonstrates the validity of the main pro-
positions of the theory of a Fermi liquid using our present model. A
general derivation of these ideas will be offered in Chap. IV.

As in the case of a Bose gas, it will be interesting to conclude by find-
ing the momentum distribution of the particles. To do this, we have to
evaluate the matrix element

Npje = Np_1jp = F*a} 1100y 11D (5.20)

where ¥ is the truc wave function of the interacting particles. We sub-
stitute the function ¥, obtained from perturbation theory as far as second
order terms (sce [16]):

1/3
) (11—21112)]. (5.19)

(0) N7 (ant mn N (Hint)mk_(flin!)kggjg
=2 +Z - (B,—E) (E,—E,)

(Ifznl)mn T(O) l[/,gO) l (Ifrnt) mn |
— (Hipg)un Z EEy ey i SR

m

On noting that the operator apllo @, is diagonal in the rcpresentation

in terms of the functions Y, we get

- ~ (H, Y — 7

Noyje = mpre = I mt)"(l(l)gl f_p” E ) (5.22)
m mn

where 2}, is the number of particles with momentum p and spin up

in the state ¥ of the non-interacting system and 7, is the number in

the ground state. As already mentioned, the distribution of the non-

interacting particles 7y is the same as the distribution of excitations

at T = 0.
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On substituting here If;, from (5.1), we get

Yoz — Rp1je

167%a? 8(p + p1—P2—P3)
—— ds ds d3pg - — 5 9 5 ’
it SR [ Ea [ Popi 32" pe ey s
for |p| < po»
- (5.23)
16n2a2 8(p+ p1—Ps—P3)
70 d3 d3 d3 0 < ) > e
(27)8m? [1{l>p10)llpglf<po II;:Kfp., Pa [(p*+ pi— P53 — p3)[2m]?
| for |p| > p,-

Thus it turns out that there is only a sccond order difference in a be-
tween the momentum distribution of the particles and the distribution
of the quasi-particles %p;;5. The integral of (5.23) over all p obviously
vanishes, in agreement with the fact that the number of particles in the
liquid is equal to the number of quasi-particles. It is of interest that the
function N,y has a discontinuity at |p| = p,.

It will be shown in Chap. III that this is a gencral property of Fermi
liquids.

Evaluation of the integrals in (5.23)(f) leads to fairly unwieldy ex-
pressions, which we shall not write down here in full. We shall just give
some limiting values:

g N\2/3 1
N0,1l2= 1-—2a? (;?) (1—511’12),

3 N\¥3/1
Npoqje = 1— 202 <—7) (E—I_ In 2),

T

3 N\23 1
Npyroup = 20 (; V) (1112 —g) , (5.24)
3N 2/3
Npeo1z— Npro2e = 1 — 4a? (; 7) In2,
16a? [ 3 N\2/3 (p,
Npspire = 5 (; 7) (; } .

Thus N, is close to 1 for p < p,, decreasing slightly as p increases
from 0 to p,; N, then drops discontinuously to a value of the order
a?(N[V)*3 and, for p > p,, decreases proportional to a(N[V)*3 (p,/p)*.

(1) This has been done by V. A. BELyarov [24].



CHAPTER 11

QUANTUM FIELD THEORETICAL
METHODS AT T=0

§ 6. THE INTERACTION REPRESENTATION

In THE form described in the previous chapter, the method of second
quantisation is unsuitable for solving a wide range of problems. It can
actually only be applied in the case of weak interactions between the
particles. Either perturbation theory is applicable in this case, or the
Hamiltonian is so far simplified that it can ecasily be diagonalised. But
we often find ourselves in a position where it is impossible to confine
ourselves to the first few terms of the perturbation theory series. In these
cases we need a method which will give reasonably simplc and translu-
cent rules for describing any term of this series.

Quite often, by virtue of the physical situation, it is possible to extract
from the perturbation theory series a sequence (as a rule infinite) of the
so-called “main” terms, of a higher order of magnitude than the remain-
der. The problem then reduces to the summation of this sequence.

In the gencral case, however, when all the terms of the perturbation
theory series are of the same order, the problem consists in obtaining
various general relationships (e.g. (2.1), connecting the Fermi boundary
momentum p, and the number of particles of the liquid; this formula is
at the basis of Landau’s theory of a Fermi liquid). The most convenient
approach for these purposes is the diagramn technique developed in the
present chapter, and borrowed from quantum field theory ().

We shall start our exposition of the methods of quantum field theory
by putting the method of second quantisation in a rather different form.
We introduce the operators of a ““ficld of particles™:

y(é) = —i‘-“l’i(f)“i:
vHE) = X of (el

where a, a} are the second quantisation operators introduced in the
previous chapter, g,(£) is the wave function of the particle in state i.
We can interpret y(£) and y* (&) as operators producing the annihilation
or creation of particles at a given point in &-space. The commutation

(1) See e.g. [25].

(6.1)

42
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relations follow for these operators from § 3:
vy ) FytE)ypé) =06 —¢),
pEpE) F vy @) =0, (6.2)
yH(EyHE) Tyt )yt (6) =0,

where the npper sign corresponds to Bose, and the lower to Fermi statis-
tics. The one-particle operator F® may be written in the new represen-
tation in the form

FYO — f"/’+ (E)]‘(l)w(f)df- (6.3)

The two-particle and more complicated opcrators may be expressed
similarly.

The Hamiltonian is readily expressed in terms of the operators y and
yt. For instance, thc Hamiltonian for a system of spin 1/, particles in
the absence of a magnetic field is

1
H =f[2_'7n pyl () pya(r) + U(r)y pt(r) ‘/’a(f)] d3r

1 ’ o ’ ’ ;
+5 [ [vd v U Oy 4o (6.

We are assuming here that the interaction between the particles is in-
dependent of their spin. The indices o« and § denote the z-component of
the spin, summation being understood over pairs of repeated indices.
The Hamiltonian for a system of bosons with zero spin only differs in
having no indices for the opcrators ¢. The extension to more complicated
cases presents no difficulty.

The form of (6.4) is the same as the expression for the mean energy
of a system of IV particles in identical states ,(r), normalised by the
relationship f |9s|?dr = N. The Hamiltonian in the second quantisa-
tion representation can always be easily found on the basis of this simi-
larity.

The operator of the particle density at a given point is of importance
as well as the Hamjltonian. Since it is #n(r) = 71‘: 6(r—r,) in the usual

representation, we get here:

n(r) = [yl (1) 8(r — r)p.(r) &ry = v (Nya(r). (6.5)

The operator of the number of particles is correspondingly

N = [ n(r)d®r = [y} (r)y.(r) &r.
Now suppose that we have a system of particles with Hamiltonian H.
Let us determine how the states of the system vary in time. To do this,
we have to solve the Schrodinger equation

.o
iG=Ho (6.6)
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(@ is the wave function of the system). The solution of (6.6) can be writ-
ten in the symbolic form ():

D) = ¢ Ho,, (6.7)
where @y is a function independent of time.

The time variation of the matrix element of any operator F can be
found from (6.7):

Frn(t) = DEOF B, (1)) = (P, 6 Fe H Dy, 5. (6.8)

The last expression can be interpreted as a matrix element in the func-
tions @g of the operator

F(y = Bt e, (6.9)

This means the transformation to a new, the so-called Heisenberg
representation. The representation considered earlier, in which the opera-
tors ¥ are independent of time (for instance, y(r) and yt(r)), is known
as the Schrodinger representation. The most important property of the
Heisenberg representation is that the wave functions @y are independent
of tims. The time dependence is carried over to the operators; we find
from (6.9):

oF

= = i(HF — FHy=i[H, F1].. (6.10)

The situation is precisely the opposite in the Schrédinger representation.
The operators are time independent (provided we are not speaking of a
variable external field), whilst the wave function depends on time. It
is clear from (6.9), that both representations are the same for the Hamil-
tonian itself.

If we consider the stationary state of the system, the wave function
Dy, satisfies the equation

Hoy, — B, &y, . b.11)
We have in this case, from (6.8):
F,,.(t) = (D} F Dy, > & FnEmk (6.12)

Let us take, for instance, a system of non-interacting particles without
spin. We choose as the g, (£) the free-particles eigenfunctions (1/]F) i(on)

(V is the volume). In the Schrodinger representation, the operator ¢
will be

p(r)= Vt X a,d®n, (6.13)

We find by using (6.4) that the Hamiltonian in the Schrédinger repre-
sentation has the form (3.13), i.e. H = X ¢ (p)n,, where g(p) is the
energy of the free particles. Hence, by (6.9), the operator %(r, f) in the

(f) The operator e Bt represents a symbolic way of writing the series
1—iHt+ -+ + (Unt) (—iHO" 4
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Heisenberg representation turns out to be
$ 2 (D Myt
o P

- —i Zep” gt
p(r,t)= = Ie a,e P
Vv >

)

i[(p-r)—elD)t]
VV ,:_‘ a,€ . (6.14)

Tt must be remarked that the Heisenberg operators %(r, ) do not in
general satisfy the commutation rules (6.2) for the corresponding Schro-
dinger operators. However, when the operators p are taken at a single
instant, it follows from (6.9) and (6.2) that the commutation rules for
these are the same as the rules for the Schrodinger operators y(r).

In addition to the two representations mentioned, there is another one
which is extremely important for what follows; it is of an intermediate
type, and is known as the interaction representation. The properties of
this representation are fundamental to the methods of quantum field
theory.

We split off from the Hamiltonian the part H,,, corresponding to the
particle interaction:

H=H,+ H,,, (6.15)

and carry out the following transformation of the Schrodinger wave func-
tion of the system:

G, =Bl @, (6.16)
If we differentiate the function @; with respect to time, we get
. 0D, i1l H —iH,
G = H,D; 4 " (Hy + H,;,,) D = """ H € Q;.  (6.17)
Hence
i H, (1) @;,
o (6.18)

H int (t) = ¢'fld Ifint e_iHot .

The interaction representation is achieved in terms of the functions @,.
.Any operator is obtained in this representation from the Schrédinger
representation in accordance with the same formula (6.18) as H,(t).
It follows that any operator F(f) in this representation satisfies the
equation
oF ({)
XA
i.e. the same equation as the Heisenberg operator for a system of non-
interacting particles. We therefore arrive at the conclusion that all the
operators in the interaction representation have the same form as
the Heisenberg operators for the corresponding non-interacting system,
whilst the wave function satisfies the Schrodinger equation with Hamil-

— i[H,, F(0)]-, (6.19)
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tonian H,(t). A great advantage of this representation is that it is
possible to use “free” operators.

We now determine the time-dependence of the function @, (f) in the
interaction representation. Since the operators H,(f) do not commute
with one another at different instants, we cannot simply write down the

solution of equation (6.17) as
'

D;(t) = const exp[—7 f (ydr'y.
We therefore proceed as follows. Suppose we know the value of @, at
the instant t,. We transform the differential equation (6.17) into an
integral equation by integrating both sides with respect to t from t, to
t(t > ;). We have:

B;(1) = By(tg) — f () By(0)AE .
We look for the solution of this equatlon in the form of a series in Hy,:

D) =P O + D@ + - -
In the zero-th approximation, @ (t) = @, (ty)- To a first approximation,

'mt

V() = —i f H,,(t,)dt, D;(to);

to a second approximation,
t

SO (l) = — f e (£1) by f it (£2) Abs D (£) 5
to the nth approximation,

n—l

t &
@g"‘) (t) = (—i)ﬂ tf Hint (tl) dtl tf Hint (t2) dt2 f int n) dtn Qi (to) .

It follows from the structure of the series for @i(t) that the complete,
result can be written as
Qi (t) = S(t: to) Qi(to) ’ (6.20)

where the matrix S{¢, ;) is given by the series

S(t tO)_l_Zf int l)dtl+"'

tna

-+ (—7/ f int tl dt : f Hint(t'n)dtﬂ + - (621)
1

The characteristic feature of series (6.21) is that the operators H,,
taken at later instants, always appear to the left of operators at earlier
instants, since we always have

E> 4>t >0 >, > .
We can make (6.21) more symmetrical. Let us take the nth term

(_i)ﬂf o f Hz‘nt(tl)Hint (tg) Tt Hint(tn) dtl dtz e dtn

g g Y
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and arbitrarily transform the variables of integration #,...,%,—¢,,

fpes - - =» s Which naturally leaves the term unchanged. On carrying
out all the possible permutations of the variables ¢, .. .,¢,, adding all
the expressions and dividing by the number of permutations #n!, the
domain of integration will be extended for each variable to the full
interval from £, to £. At the same time, it is essential that all the opera-
tors Hj, be arranged in decreasing order of time from left to right. On
denoting by 7' the operator of this ordering, the time-ordering operator,
we can write the nth term of the series as
_ o ¢ t
5, 1) =L}t v [ T (0) - Hog(t)}t - dty (6.22)

It is now easily verified that (6.21) can be written as

¢
S(t, ty) = T exp {—i f Him(t’)dt’}, (6.23)
23
as can be seen by expanding the exponent into a series and using the
definition of 7'. The operator S(¢, t)) has the obvious property

S(tgs 1) S (tys to) = Sty tg)s 1o >t > fo- (6.24)
Equations (6.16) and (6.18) establish the connection between the
Schrodinger and the interaction representation. The connection between
the interaction and Heisenberg representations may be found from (6.20).
Suppose that the transformation of the wave functions is given by
(Di(t) = Q(t) ¢H’
where ¢ is a unitary operator. We have from (6.20):
Q) = 8(t, £) Q%)
whence it follows, by (6.24), that
QW) =8 )P,
where « is a certain instant, and P is a time-independent operator. To
find P, we substitute into the relation @;(f) = € (t) Oy expressions (6.16)
and (6.7) for @; and Dp in terms of the Schrédinger function @. This
gives
¢t — S(t, ) P,
Observing that S(x, «) = 1, we have
P = eiHaoce-'iHoL.

It is convenient at this stage to bring in an assumption regarding the
so-called “adiabatic switching on of the interaction” (t). Suppose that,
at the instant { = — oo, there is no interaction between the particles,

(1) It must be emphasised at once that our use here of “adiabatic switching on
of the interaction™ is purely formal. It enables the correct result to be obtained
in the shortest way, but is by no means necessary (see e.g. [26]).



48 QUANTUM FIELD THEORETICAL METHODS AT 7 =0

but that interaction is then “brought in” infinitely slowly. If we now
let &« — — o0, then P —1, i.e.

D,(8) = S()Dg, (6.25)
where
S() = 8(t, — o0). (6.26)
Using (6.24), we get
S(ty, 1)) = S(E) ST 6 <. (6.27)

The relationship between the operators in the interaction representation
and the Heisenberg operators becomes, from (6.25):
F(t)y=S1@)F(t)S(t). (6.28)
We shall often encounter the following time-ordered products of several
Heisenberg operators, averaged over the ground state of the system @%:
KO TIAWB(E) O - - - 105 (6.29)
In the case of Fermi operators we shall somewhat extend the definition
of T-ordering as compared with that given in the derivation of (6.23);
whereas we retain this definition for Bose operators. We shall now un-
derstand, by the T-product of operators A (&) B(t;) C(L;) -.. their pro-
duct from left to right in order of decreasing time, multiplied by (—1),
where P is the number of permutations of the Fermi operators
with one another, required to obtain the time-ordered product from
A() B(ty)) C(t;) . .. Thus if F,(8), Fy(t,) are Fermi, and B(&), By(ty)
are Bose operators, we have
Fi() Folty), 6> 1,

T (1) Fy(ty)} =
{ .l( 1 2( 2)} {_Fz(tz)Fl(tl), tl < t2’

B(ty) Iy (t), s>,
T{B, (t;) F; (¢ :I FoIvL e

{ 1(3) 1(1)} l Fl(tl)Bl(ts)’ ty < t,
_ | Bty Bylta), 5> 1y,

1 B, (ty) By (%) ty << ly.

The new definition of T-ordering is the same as the old one in the
case of Hy,(t), since Fermi operators always appear in pairs in H,,. Of
course all the rules for 7-ordering are the same for operators in the

Heisenberg and in the interaction representation.
Let the time order in (6.29) be such that

E>E >0 >
We use (6.28) to change to the operators in the interaction representation.
This gives: v
(DS AHSOS({)BE)S({E) - - - DY
= (DY S o0)S(co, ) A()S (L, t')B(E) - - - DY
= (DY 87 (co) TIA()B(#)C(t") - - - 8(c0) DY) (6.30)

T{B,(t;) By(ty)}
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The transformation from (6.29) to (6.30) is obviously independent of the
order of the times ¢, t', ", i.e. it holds always.

It now remains for us to determine @Y S8 (cc) = [S(c0) DL, i.e.
the result of the action of the operator S(oc) on the ground state wave
function. It follows from (6.20) and (6.25) that

DY =D;(—c0), 8(c0)PY = PD;(c0).

Hence S(co) @Y is the function @;(cc) which was obtained from the
ground state wave function @,(— oo) as a result of adiabatically switch-
ing on the interaction between the particles. We know that the ground
state of the system, i.e. the state in which the energy is minimal, must
be non-degenerate. But by the general principles of quantum mechanics
(see [16]), a system which is in a non-degenerate stationary state cannot
be carried to another state under the action of infinitely slow excitation.
We can therefore conclude that the function @, (cc) = S (o0) By can only
differ from @Y by a phase factor:

S(c0) DYy = L DY, (6.31)

Hence follows finally the relation
KDY TIAWBE)C(@") - - 10%

(DS TIAWBE)CE) - - - 8(c0)1 D>
(PY S(c0) DR ’

Let us emphasise that this conclusion only holds for averaging over
the ground state of the system, since any other energy level of the system
is multiply degenerate, and the system in general passes to another state
as a result of collisions between the particles. Thus (6.30) holds for aver-
aging over an excited state, but not (6.32).

We shall consider in this chapter systems at 7' = 0, i.e. in the ground
state. For simplicity, we shall denote the corresponding averages simply
by < - -> and write operators in the interaction representation in ordinary
type. In cases where Schrodinger operators are required, we shall empha-

size that they depend only on the coordinates (e.g. w(r)), whilst at
the same time specifically indicating such cases.

(6.32)

§ 7. THE GREEN FUNCTION (1)

1. Defination. Free particle Green functions
One of the most important characteristics of the microscopic pro-

perties of a system in quantum field theory is the one-particle Green

(1) This section is largely based on a paper by V. M. Garytskir and A. B. MiGDAL
[27].

Q.F.T. 4
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funection (1). It is defined as

G, 2) = —iT (¥a(@) 95 (&) (7.1)
We understand by z (or z) a set of four variables — the coordinates r
and the time {; « and B arc the spin indices.

A knowledge of the Green function enables us to find the average over
the ground state of any une-particle operator of the type (3.2). Indeed,
we have from (6.3):

p) — 4 ; (1) /

F* =41 f tr’l—iﬁ-o f"‘ﬁ (x)GaB(x! z )] d?r
(the plus (minus) sign for Bose (Fermi) statistics). For instance, the
density of the number of particles and the particle flux density are,
respectively, equal to

n(x) = + zt']—g&oG"“"(x’ z'),

r—=r

_7(27) = ._j: (Vr_Vr’)Goca(x’ x,)'

2;t,l]_%n+0

We show below that the Green function can be used to find the energy
as a function of the volume, and hence the equations of state of the
system (the dependence of the pressure on the density) at 7' = 0. It
will further be shown that the poles of the Fourier transform of the
Green function (7.1) determine the excitation spectrum. This enables
the thermodynamic functions of the system to be found at temperatures
different from zero (though reasonably low, of course).

A fact of extreme importance is that the Green function can be eval-
uvated by mecans of so-called diagram techniques (see §§ 8 and 9), which
have considerable advantages over perturbation theory in the ordinary
form.

We shall be concerned in this section with an analysis of the general
properties of the Green function. For typographical simplicity we shall
omit the indices ¢, . This cannot lead to misunderstandings, since in
the absence of ferromagnetism and external magnetic field G5 must be
of the form G5 = G'd,5. We shall confine ourselves to these cases.

We shall consider in this chapter the properties of systems of Fermi
particles; we know that a Bose system has a number of special features
at absolute zero, connected with the existence of the condensate; these

() The term “Green function” has not the same meaning in field theory as in
the theory of linear equations. Although the Green function satisfies an equation
with a -function on the right-hand side, this equation is generally speaking non-
linear (see § 10). The free particle Green functions are exceptions: they are the
Green functions of the linear equations for the Heisenberg field operators §(r, t).
The term Green function was originally only applied to this case, but was later
extended to expression (7.1) for any interacting system.
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latter systems will be discussed in Chap. V. The phonons (lattice-vibra-
tion quanta) provide an cxception. In view of the fact that their number
is not given, no condensation can occur in the phonon gas and its pro-
perties can be considered by ordinary methods.

The Green functions of homogencous, spatially infinite systems de-
pend, in the absence of external fields, only on the differences r —#’
and t—1t". We expand G into a Fourier integral:

Gxz—=z)= G(p, )Mo=t (qty — @®pdw).  (7.2)

(2 )4

We can find G(p, w) very simply for a system of nou-interacting par-
ticles. In the case of a system of fermions, on substituting in (7.1) expres-
sion (6.14) for the Heisenberg operators of the free field and taking into
account that all the levels with |p| << p, are occupicd, whilst those with
|p| > py are empty, we have:

i 1—n,t>0
(0) ~ D)~ )] D ’
Px) = V=~ «{ ny 1< 0, (7.3)
where

1, [p| <2
—ata,—] 0
7y, Ay = l 0, |P|>Po-

We go over to the momentum representation. We have by (7.8):

6O (p, ) = —i {e(lpl —pp) [ oy
0

— 0 —|p) J e““‘““”“’”‘dt}, (7.4)
0

where

1, 2> 0,
B(z)z{ 0, 2<0.

The expression for G(p, w) contains two integrals of the type
f e*tat,
0
An integral of this type may be found as the limit

f ezst Mdt—?, lim 1
6~>+0

s>tos s+ 10" (7.5)

The 46 in the denominator indicates the method of going round the pole
8 = 0 when integrating this function, namely,

[F6)- isw =]CF§S) ds — inF(0),

4%
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where f denotes the principal value of the integral. We can therefore
write:

1 1,
m = ? —ind (S) .
The symbol d,.(s) is sometimes used for denoting (1/7) (¢/(s + 70)):
1
8y (8)=0(s) — - (7.6)
We obtain from (7.4) and (7.5):
O(IP"“PO) 0(1’0"'1’“

GOp, w) = .
(P @) o—g(P)+id o —e(p)—id

Observing that the only difference between the formula for G when

|p| < po and the formula when |p| > p, is in the change of sign in front

of 4, we can finally write

¢ (p, w) = -

w — g (p) + 96 sign (IPI — D) )

Let us now consider a system of phonons, and confine ourselves to
the elementary case of longitudinal vibrations in a continuous isotropic
medium.

Let us first of all determine what is to be understood by the phonon
field operators.

Let q(r,f) denote the displacement of a point of the medium. The
momentum per unit volume will be equal to ¢ q(r, t), where o is the
density. In accordance with quantum mechanics, the ¢ and ¢ are re-
placed by operators with commutation relations

[ [éi (r7 t)’ Qk(r'7 t)] - 7:6(’. - r,) 67,'](:' (7.8)

The integral of (7.8) over a small volume d3r yields the usual commu-
tation rule for a coordinate and momentum.

We expand the operator ¢ in plane waves. Here, a specification of
the wave vector k uniquely determines the frequency, which we denote
by o, (k). We therefore have

(7.7)

1 k i[(k-r)—w, i[(ker)—
q(r,t)y= ﬁ‘kzl_k_l {qke%[(k Y—wo(k)] + q:- g Hiker) wo(k)t]}_ (7.9)

We are considering longitudinal waves, so that the Fourier components
of the vector ¢ will be directed along the wave vector k. In view of
this we shall in future use the projection ¢, on the direction k, which
we denote by g. .

We now introduce operators b,, connected with the ¢, by

br

= Vrgon®

(7.10)



THE GREEN FUNCTION h3

It then follows from (7.8) that the operators b, satisfy the usual com-
mutation relations for Bose creation and annihilation operators.
The operator of the kinetic energy of the vibrations is equal to

K= % [ 14 (r, . (7.11)

Using the fact that the mean kinetic energy of the vibrations is equal
to the mean potential energy, we arrive at

H=2K = w,(k) (nk + %) , (7.12)

where #,, = by by.

The displacement operators g could be taken as the free phonon field
operators. However, it is more convenient to use a rather different de-
finition, in view of the investigation of the interaction of the phonons
with the electrons in a metal (see § 8), namely

- k
7 (@) = lﬁ Z]/ wo( ) {bee TUer—ouk)]_ -t g—ille: r)—w.,(k)t]} (7.13)

This formula refers to the longitudinal phonons in the Debye model
(see § 1), if we restrict the summation over k by the condition |k| < kp.

Let us emphasise once more that the phonon field operators are real,
since they correspond to real displacements of the atoms of the lattice.
This property is obviously retained when discussing the interaction of
phonons with one another and with other particles.

The Green function of the phonons is usually denoted by D. The
definition of this function is similar to (7.1):

D(x, #') = — i{T (@) (x))>. (7.14)
On substituting the free operators (7.13) as the () in this, and re-
calling that there are no phonons in the ground state, we get

oy (k) { GLED—0dN] < 0

Y S
D) = —5 % T9 ] eiltkn—amn 4

(7.15)

If we take the Fourier components of this expression with respect to r
and ¢, we get
k) 1 1
DOk, ) = “ol .
(k, @) 2 fo—oyk)+id o+ o,k)—if
_ wi)
0?* — (k) +i6°

(7.16)

2. Analytic properties

Let us now consider the general properties of the Green functions of
systems of interacting particles. We shall start with a Fermi system.
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In terms of Schrédinger operators, we get
Gir—r, t—t) = —ileyp(r)eHECy* (1) e H
= — i I Py ey (r)e DY (D] (1) D
— — i Sy, (i (1) EEED, s,
Gr—r,t—t)=1i ;wg;,(r')wo (1) et~ E—) t<t.

The dependence of the matrix elements v, (r) and v, (r) on the co-
ordinates is, for a homogeneous system:

Pun (1) = Py (0) € P |k (r) = g f (0) &Pun™),

where P, = P, — Pm> and p,, P, are the momenta of the system in
states # and m(f). We have, taking p, = 0:

Gr — 1,1 —t) = —i 3 |y, (0) p’Prr g HE—IIED gy,
s
G(r—1',t —t) =i 3 |y (0) P *Prr ) lE—EIC) - (7.17)
-

The operator y*(r) increases the number of particles by one. In view
of this, the summation over s for ¢ > ¢’ is performed over the states
where the number of particles is IV 4 1. Conversely, the summation
over s’ for t << ¢’ is performed over the states where the number of par-
ticles is N — 1. We introduce the notation

ES—EO(N)_——ES_'_‘M: (7'18)
where

& = Es - EO(N + 1) (7'19)

is the excitation energy of the system, which is positive by definition,
whilst 4 = E,(N + 1) — E,(N) is the chemical potential at 7' = 0.
Similarly,

Ey—Eo(N) = Ey — Ey(N —1) — [Eo(N) — Eg(N —1)] =g, —p'. (7.18")

The & and g’ in the last formula refer to a system of N — 1 particles.
It is possible, however, to assume g, = g, g = p'. This only introduces
an error of order 1/N.

Further, we introduce the functions

A(p, B)AE = (22 X lv: (O PO(p —p), E<e,< B+ dE,

(7.20
B(p’ E)dE == (273)3%‘ I"l)s’o(o) I26(p +ps): E < Es'< E + dE- )

() This follows from the fact that, in accordance with quantum mechanics
(see [16]), the operator corresponding to a translation is €i(®'7) (P is the momentum
operator). Consequently, y(r) = ¢—i(B) (0) €i®'1). Notice, by the way, that if we
write p(r) as p(r) = (V) Z ap, €07, we evidently get ppm (0) = (1/ VV) (@—pnm)um-
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We now expand @ as a Fourier integral(f):

. o A(p, E) B(p’ E)
G(P’w)—f dE{w_E_‘u—Fié_'_w—l—E—‘u——ié

0

The coefficients A, B in this expression are real and positive. The analy-

tic properties of the function G(p, ) can be investigated using (7.21).
On separating the real and imaginary parts of ¢, we find that

}. (7.21)

_ [apl A®:B) | Bp D) }
ReG(p,w)_OJCdE o—F—p T ot i—m (7.22)

| 2B,y —w), o <p

(_—f denotes the principal part of the integral). The imaginary part of the
Green function thus changes sign at @ = y. A comparison of (7.23) and
(7.22) leads to the following relation between the real and imaginary
parts of G:

ReG(P, (L)) :%

fxm G (p, @) sign (' —p) 4 (7.24)
o —w ’ '

An asymptotic formula for G' as @ —> oo can be got from (7.21) and
(7.20):

| -
G(p, @) = [ ABLA(P, B) + B(p, 1]

1
= 2127 2 lves(0 6P — o) + (20 X |9 (O PSP + P}

It is easily seen that the coefficient of 1/w is equal to the Fourier com-
ponent of the anti-commutator

(N yH(r) + 9t (r)y(r) = o(r — 1),
i.e. unity. This is proved simply by averaging the anticommutator over
the ground state (which does not change its value), transforming the
resulting average as in (7.17) and taking the Fourier component with
respect to r — 7. We obtain in this way

G(p, w) —>wl as @ —>o0. (7.217)

As regards the properties of G as a function of the complex variable
w, it follows from (7.24) that it is not analytic. The connection between
the real and imaginary parts of a function analytic in the upper half-
Plane is an expression that differs from (7.24) in replacing sign (0" — u)
by unity. We have — 1 instead of sign (" — u) in the case of a function
analytic in the lower half-plane.

(1) A formula of this type was first obtained by LEaMANN [28] in quantum field
theory.
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Let us consider alongside G the two functions G'g, Gy, analytic in the
upper and lower half-planes respectively and defined by the relations
(for real w):

ReG = RelGp = Rel,,

Im G = Im G sign (0 — u), (7.25)
Im@, = —ImGsign (0 —u).

It follows from (7.25) that Gy is the same as G* on the real semi-axis
w —u < 0; similarly, G, is the same as G* for @ —y > 0. We can thus
write :

[¢p, 0), o>y,

Gr(p, 0) = lg*(p, w), o<y, (7.25")
_le*(p, 0), o> up, i
GA(P, w)_{G(p, w), w<.u-

It follows from (7.25) that Gy is the analytic continuation of G from
the semi-axis w > u, and G4 the continuation of G from the semi-axis
< W

The functions Gy and G, are defined as follows in the coordinate
representation:

#) [T IF@FE) F @) as 1>,

Grlx — —l 0 as t<<t,

(7.26)
¢ "o 0 as t>t,
4le—=) "{ it (a9 (@) 4 @) P () as t< £,

Indeed, on carrying out the same operations as were performed when
deriving (7.21), we get
A(P, £) B(p. £) }
Gr(p, d R = —rs  (7.27
A(p’ ) = G;(p’ o).

On comparing the real and imaginary parts of Gy and G, with (7.22)
and (7.23), these functions are easily seen to satisfy (7.25). Gy, G, are
known as the retarded and advanced Green functions.

We now turn to the phonons. The phonon field operator is real, i.e.
@ (x) = ¥ (%) + 7" (x). It must be remembered in addition that the chemi-
cal potential y = 0 (see §1) and that there are no particles present in
the ground state. We find in the same way as above that

[ X |10, (0) e FrEUD iRy,
D(r—r’,t—t’):i i

i . o (7.28)
-3 ‘82 IXOs (0) ]2ez(E.—Eo) ) e—z(kx-r—r ) , f<t.

We introduce the function

P(k, B)AB = (27° X |10, (0) PO (k — k) = 270 X |0,(0) 23 (ke + ),
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where the summation over s refers to those states whose energies E, are
between the limits £ << B, — B, << E - dE. Expanding (7.28) into a
Fourier integral we have

. 1 1
D = [ P(k,E)y — ~— ;

(k, ) Of (k, ){w—E—[—zé o+ E—i§

The imaginary part of this function is always negative:

ImD(k, ) = —nP(k, |o|). (7.30)
The real and imaginary parts are connected by the same expression as
for G(p, €). 1t follows from this that the phonon Green function has the
same analytic properties as the Green function of a system of fermions
with g = 0.

We can therefore construct two analytic functions Dy and D, satis-
fying (7.25) with u = 0. These functions are, in the coordinate repre-
sentation:

Dy — ) :{-z«p(x)«p(x ) —g(x )@ (@), §> v,

; <t,

| 0, t>1,
|- ig@)g@) —g@ @), t<t.

}dE'. (7.29)

(7.31)
Dyl —2') =

3. Physical meaning of the poles

We have already mentioned, that a knowledge of the Green function
enables us to find a whole series of physical characteristics of a system.
In particular, the elementary excitation spectrum can be determined
from it.

Let us take a Fermi system, which is described at the initial instant ¢’
by the wave function

Vo) =y () D;(t), (7.32)
where 1/); (#') is the operator of the creation of a particle with momentum p
in the interaction representation, i.e. a) (P’ and @, (') is the wave
function of the ground state of the particle system in the interaction
representation. At an instant £ > £’ the wave function of the system will
have the form

() =S 1) vy () Dit).

Let us find the probability amplitude of the state ¥ (t). It is equal to

FE (VP (1)) = (DF B)y, (1) S(E, 1)yt ()P ()
= (DTS (B) v, () S (L, )yt () S() PR
= (P, P (F)) = iG(p,t—1), t—¢ > 0. (7.33)

We have passed here from the interaction to the Heisenberg represen-
tation.
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To find @(p,t), we have to evaluate the integral
- do —iol
Q(p, 1) = f 5GPy )¢ (7.34)

In view of the fact that G(p, @) is not analytic, we split the integral
into two parts: from — oo to g and from y to co. In the first interval ¢
is the same as the analytic function G4, and in the second the same as Gp.
As already remarked above, the function G4 has no singularities in the
lower half-plane. We can therefore deform the contour of integration
in the first integral (Fig. 2). If the horizontal piece of the contour is
removed a sufficient distance into the lower half-plane, the integral over

= w=p
A Wmfw-f}’
_
Fig. 2 Fig. 3

this piece will be extremely small due to the factor ¢~ in (7.34), and
we are left only with f (dw/27) G4 e7*“*. We now turn to the second

integral. The functlon GR generally speaking has singularities in the
lower half-plane. Let us suppose that, in the fourth quadrant of the
complex variable w — u the singularity closest to the real axis is a simple
pole at the point w = £(p) — iy, where p < e(p) — . We deform the
contour of integration as illustrated in Fig. 3. The horizontal piece of
this contour must evidently lie above the next singularity and cannot
be displaced to — ico. However, the integral can be made small by taking
a sufficiently large time £. There now remains the integral over the ver-
tical part and the circuit round the pole:
p—ico
do 4o g e — igeHo
: 27
where a is the residue of G, at the pole. We shall show below that, when
> [e(p) — p1, the contribution from both integrals over the vertical
parts of the contours of Figs. 2 and 3 is small. We therefore obtain in the
limit, for large t:
iG(p, 1) ~ ae P, (7.35)

If we bad one free particle in the initial state with momen-
tum p and energy g, (p), the quantity analogous to (7.33) would be
exp [—ig(p) (¢t —¢')]. It follows from this that there is a wave packet
in state (7.32) that behaves like a quasi-particle with energy £(p), and
is damped in time according to the law exp [~y (f —t')]. Hence the
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energy and damping of the quasi-particles are determined by the real
and imaginary parts of the pole of Gy in the lower half-plane. The wave
packet amplitude is connected with the residue of Gy at the pole.

We now show that the parts of the integrals that we have neglected
can be regarded as small in the momentum region where &(p) ~ pu.
Recalling that G4 = G5, we find for the sum of the integrals over the
vertical pieces of the contours of Figs. 2 and 3:

pbee cor o s op A0
J (Gg -—G;';)e“""’t% =2i ’;f Im GRe—'“”t% .
In accordance with the phenomenological considerations described in § 2,
the condition y < &(p) — p only holds in the neighbourhood &(p) ~ u(1)-
Assuming that > 1/(e(p) —p), we can therefore replace Gy by
af(w —e(p) + ¢y). On introducing the new variable ¢(w — pu) = u, we
get -

2yaeint due

o JW+EW—M+WF

Since £ > [e(p) — p1L, the integral is equal to

yae i
ntfe(p) —ul®”
If ¢ is regarded as not too large compared with 1fp, this quantity is much
less that the result of the circuit round the pole in Fig. 3.
Similar arguments can be developed for the state with wave function

Zo(t) = v, () D; ). (7.36)
On considering this state at a later instant t’, we get
PP (¥)y = —iG(p,t — ) for t —1' < 0.

When evaluating G(p, t) in accordance with (7.34), the poles of G4 (p, )
in the upper half-plane are important, since << 0. When |t| > |e(p)—p [
we find as above:

—iG(p, t) ~ ae EPH

where £(p) < p, y << 0. We obtain a wave packet corresponding to a
hole with &(p) << u. Consequently the energy and damping of the holes
are given by the poles of G4(p, w) in the upper half-plane. Notice that
v has opposite signs for “particles” and for “holes™.

The same results hold in regard to the phonons. It may easily be seen
from (7.29) that, in this case, for each pole of the function Dy (k, @) in
the lower half-plane, there is a corresponding pole, located symmetrically
with respect to the point w = 0, of the function Dy (w, k) in the upper

(1) The validity of the assumption that y < e(p)—pu as &(P)—p — 0 has
been strictly proved for numerous concrete examples (see e.g. §§ 21, 22).
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half-plane. Thus both methods of determination of the excitation spec-
trum yield the same result.

Apart from the energy spectrum, the Green function can be used to
find the connection between the chemical potential and the number of
particles per unit volume, and also the ground state energy and the mo-
mentum distribution of the particles (naturally, given our restrictions,
all this refers only to Fermi systems).

It follows from the definition (7.1) of the Green function that

N ~ ~ . .
7= pF @)y, @) =—1 lim, Gz — ') =—2¢ lim G(z —),
£+ ¢>+0

where G,z = 0,5 G.
On changing to the momentum representation for G, we get
N - dipde
v 2@&1{3_1() _(2:77)4
Since the integral in (7.37) depends only on u, we arrive at the function
N (p). If we find the inverse u(N) and use the equation y = (0Ey[ON)y,
the ground state energy can be found. Actually, this approach is not the
most convenient one in practice. We shall return to the ground state
energy in § 9.
To find the momentum distribution of the particles we only need to
evaluate the expression

Nyp(P) = N_y;0(p) = <¢:)k“;1/2“p 2Py = <a;1/2% 12

where @y, = e ¢ @Y is the Schrédinger wave function of the ground
state of the system. On comparing this expression with (7.17) (see also
the remark on p. 54), we find that

> 14 Py T dw
Nye(p) = N_yp5(P) = — zztklfo __£ G(p, w)e™ o (7.38)

G(p, w)eé*. (7.37)

An interesting property of the momentum distribution can be obtained
from (7.38) (A. B. Migdal [29]). We define the limiting Fermi momentum
Py for the excitations using the equation e(p,) == u. We consider N (p)
close to |p| = py. In accordance with the hypothesis of § 2, the exci-
tations of a Fermi liquid are “particles” and “holes” with momenta
close to p,. The damping of these quasi-particles is small compared with
le(p) — p|- These data can be used for finding the poles of the functions
G4 and Gg. When |p| < po. G4 has a pole in the upper half-plane close
to the real axis; this pole disappears when |p| > p,, and a pole of Gy
malkes its appearance in the lower half-plane. Now suppose that integral
(7.38) is written as two contour integrals of G4 and Gy, as was done with
integral (7.34). We displace the horizontal pieces of the contours in Figs. 2
and 3 into the lower half-plane through a distance from the real axis
much greater that ¢(p) — pu. The integrals over these pieces will now be
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insensitive to small changes in the momentum p. As regards the integrals
over the vertical pieces of the contours, they can be combined into
pil dow

ZJ ImGR(p,w)%.

This integral can be split into a part over a region remote from the
point £ = p by a distance greater than £(p) —u, and an integral over
a near-by region. The integral over the remote region will only depend
slightly on variations in |p|, whilst we can substitute Gp =~
af(w —e(p) -+ iy)in the integral over the near-by region and verify that
it is negligibly small (~ p/(e(p) — u)). Hence it follows that the only
difference between expressions (7.38) for N(p) when |p|<< p, and
] p| > p, lies in the fact that, in the first case, there is no circuit round
the pole in Fig. 3, whereas there is in the second case. It follows that

N1/2(P0 —0)— N1/2(Z’o + 0) = a. (7.39)

By (7.21), the constant @ must be positive. We therefore arrive at the
conclusion that the momentum distribution of the particles has a jump
at the same point |p| = p, as the excitation distribution. By the funda-
mental assumption of the theory of a Fermi liquid, the Fermi limiting
momentum p, of the excitations is connected with the density of the
number of particles by relationship (2.1) (the validity of this assumption
will be proved in Chap. VI). The jump of the momentum distribution of
interacting particles therefore ocours at the same point as for non-inter-
acting particles. Since 0 << Nys(p) << 1, we have for the size of the jump:

0<a<l. (7.40)

An example is provided by the momentum distribution of the particles
in a dilute Fermi gas, which we found in § 5.

4. Green funciion of a system in an external field

We now turn to a system in an external field, which is independent
of time. The Green function will depend in this case on the variables
t—t, r and r'. We now get, instead of (7.17):

G(i‘, i — t') =—1 ‘;;S ("/)(r)Os"/):s(r'))e—‘i(Es_E“)(t_t')’ t>,

. , (7.41)
Gr 1, E — 1) = i X (p* (Mot (1) BB, p <,
8

where p(r) and (') are Schrodinger operators. If we proceed as in the
case when there is no external field, we get a formula such as (7.21)
with complex functions 4 and B. We can get round this difficulty by
taking the symmetrised combination

%[G(r, rot—t) 4 G, t—1)]. (7.42)
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As far as the dependence on w is concerned, the Fourier component of
this function has all the properties of the function G in the absence of
external fields. Formulae (7.21)—(7.27) will all hold for it, the only
difference being that all the quantities will depend on the parameters
r, ' instead of p.

If we consider fermions, not interacting with one another, in an ex-
ternal field, it is convenient to take the operators y(r) in the form
p(r) = X a,p4(r), where @ (r) are the eigenfunctions of the particle in
the field. We find in this case, instead of (7.17):

’ ’ . —ies(t—! 1— 3’t>0
G(r,r',t —¥)=—1 vqu(f)qu(f)e “ ”{ —mn,, £<0,
s ?

where
7%:{1, b <

43
0, &, > u, (7.43)

and g, denotes the energy of a particle in the state ¢,. On taking the
Fourier component with respect to time, we get

/ s ¥ () gs(r) @5 (1) gs (1)
q 44
(r, 1, @) = 0 — & +z6+5§co——ss id" (7.44)
We now introduce a quantity similar to 4 and B in (7.20):

A(r, v, E)dE = ‘, eF (Mg, (r), E<e, < E - dE.

We put r = r’ and integrate this relation over d3r. In view of the
normalisation of the functions ¢ (r), we simply obtain on the right-hand
side the number of levels dNV in the interval dE. Hence

dN (E)
dz -

[ &BrA(r,r,E) =

Equation (7.44) may be written in terms of the function A as
A(r, ', E)
o —E +idsign (BE—u)’

Hence it follows that the imaginary part of G(r, 7, w) (4 is real and
positive when r = r') is equal to

G(r,v,0)=[dE

l—nA(r, r,ow), o>y,

. _
mG(r, 7, w) | =drr o), o<p.

We therefore obtain

dZ:iT;JE) = _;lz‘Sig“ (B —p) [ Tm G(r, r, B)dr. (7.45)
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§ 8. BASIC PRINCIPLES OF DIAGRAM TECHNIQUES

1. Transformation from N to u as independent variable

Before starting to evaluate the Green function, we shall transform
to new variables. We have so far considered a system with a given num-
ber of particles. It will be convenient for us in the following to regard
this number as variable and to specify the chemical potential. In essence,
we have already made use of variables of this sort for phonons, where
we had g = 0 and the number of particles in the system was not speci-
fied. In the case of a Fermi system, however, it was precisely the num-
ber of particles that was specified, whilst the chemical potential y ap-
pearing in the formulae had to be regarded as a function of this number.
In practical calculations it is more convenient to regard u as the inde-
pendent variable, then pass to a specified number of particles in the
final result.

The transformation from one independent variable to another can be
performed as follows. We know that the wave functions and energy
levels of the system can be obtained from the variational principle

P*HYS = min (8.1)
under the condition that

(P* NP> = const, (8.2)
where I and N are the Hamiltonian and the operator of the number of
particles. Instead of this, we can use the method of Lagrangian multi-
pliers and find the absolute minimum of the expression

FHH — )P,
where y is a constant, determined by using condition (8.2). Changing
from a given N to a glven p therefore amounts to replacing the Hamil-
tonian by the operator H— HN In view of the fact that the operator N
commutes with the Hamiltonian, formulae are easily found for trans-
forming the operators 9 (x):

Pu(@) = Y (@)
inasmuch as the operator yy decreases the number of particles by one.
Similarly, we have for the operator ;| (x):

Py (@) = e Hyf (). (8.4)

—'mNt

et — s (), (8.3)

The Green function is defined as

G, (z, %) = Gy(z, z') ), (8.5)
It follows from this that all the results of the previous section still hold
for G, provided we perfcrm the substitution

Wiy —> Oy -+ - (8.6)
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Since we never require more than the values of G at ¢ = ¢’ when evalu-
ating the number of particles and their momentum distribution, the
relevant formulae (7.37) and (7.38) evidently remain unchanged. The
poles of the new Green function give the excitation energy, measured
from the level of the chemical potential.

As already mentioned, it is more convenient in practice to make use
of the functions @,,. In future, therefore, we shall as a rule have in mind
this definition of the Green function, and denote it simply by G. A special
proviso will be made when an analysis of the general properties of the
function G requires that the number of particles be assumed to be given
(as in the previous section).

2. Wick’s theorem

We now turn to the evaluation of the Green function. Formula (6.32)
of § 6 for changing to the interaction representation enables us to write
the perturbation theory series in a simple and compact form. As applied
to the Green function, (6.32) has the form

n _ — KTy @)yt (') S (o))
Gz, 2) = S(00)> s (8.7

where

— o0

S(co) =T [exp (—i fH‘-mdt)] . (8.8)

Let us again emphasise that the operators ¢ appearing in (8.7) (and also
in Hy,) are subject to the equations for non-interacting particles.
We expand S(oo) in the numerator of (8.7) in powers of H;,. We get

o _ng e
S(eco)=1—1¢ f Hintdt+ (=) ff T[Him(tl)Him(t2)]dt1dt2 +--

-9
PO R Sl G S S P
G(z, z') Fioo) = n! Mfg _Ofc de, dt,

XLT [y @)yt (@) Hypy (1) - - - Hyy ()15 (8.9)

We shall not as yet expand the (S(co)} in the denominator. The
interaction Hamiltonian H,, is as a rule the integral over the spatial
variables (and sometimes also over the time) of the product of & number
of operators y (actual examples will be discussed below). Hence each
term of the series (8.9) contains the average of the time-ordered product
of several operators of the particle field in the interaction representation.

In view of this, we must first of all consider an expression of the form

(T(ABCD - - - XYZ)>,
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where 4, B, ..., X, Y, Z are field operators in the interaction represen-
tation (remember that these operators are the same as the corresponding
operators for non-interacting particles).

Each of the field operators can be split into two terms. One of them
gives zero when it acts upon the ground state wave function. This part
may be called the “annihilation operator”. In the phonon operator
(7.13), it is the sum containing the b, whilst it is the part of the sum
with |p[> po in the Fermion operator (6.14). The other part, which
may be called the “creation operator”, has the property that its Hermi-
tian conjugate gives zero when it acts upon the ground state. We shall
define the normal product of several operators

N(4B...XYZ)

as the product in which all the “creation operators’ are arranged to the
left of all the “annihilation operators”, the sign being dependent on
whether the permutation of the Fermi operators is even or odd. Further,
we define the “contraction” of two operators as the difference

A°B° = T(AB) — N(AB).

We now show that the 7-product can always be expressed in terms
of all possible N-products with all possible “contractions’:

T(ABCD---XYZ) = N(ABCD - -- XYZ)
4+ N(A°B°CD--- XYZ)+ N(A°BC°D - - - XYZ)+ - -+
-4+ N(A°B“C*. .. X°Y°ZY). (8.10)

This relationship is known as Wick’s theorem (see [25]).

We note first of all that simultaneous permutation of the operators
on both sides of (8.10) does not destroy the relationship. We can thus
assume without loss of generality that the time-ordering of the operators
is in accordance with their arrangement in (8.10). In order to obtain the
N-product from the 7-product, we have to take all the creation oper-
ators and commute them in turn with all the annihilation operators
to their left. This gives a sum of N-products of the type written down in
(8.10). But it will only contain contractions of those operators whose
order in the 7T-product is different from that in the N-product. But since
the contractions of operators for which both orders are equivalent. vanish,
we can assume that the right-hand side of (8.10) contains normal pro-
ducts with all possible contractions. Hence (8.10) is proved.

It may easily be verified by means of (6.14) and (7.13) that contrac-
tions of the Fermi operators ¢t (z') and ¢ (%), and also of two phonon oper-
ators @(x) and @(z'), are simply c-nnmbers, whilst all the rest vanish.
QF.T. 5



66 QUANTUM FIELD THEORETICAL METHODS AT 7T =0

For example,

+ —e( p)+
V@) (@) = Z {ap a,— &I‘J:D + ayay | o~ (07 e D) +8p ) ]
20 D|<De

i Sﬂ O T )—ieDNI—T) £, ¢ > t,

4 |D|<Pa
, 1 .
+e(x) ¥ (z) = V 2 {__apap, ap a,+ a0 } SO N (") —sp)i+elp' W]
|P|>170 ipl<pe

— _i N7 'l(D r—r"y—ie pXt—') for ¢ < L.
|4 15>
By definition, the average of a normal product over the ground state
vanishes. Consequently,
A°B =T (AB)>.
We obtain after this, on taking the average over the ground statc of
(8.10):
KT(ABCD - -- XYZ)) =LT(ABY KT (CD)) - - - LT(YZ))
+LT(ACHLKT(BD)) - - - KT(YZ)) £ - - -. (8.11)
Our average thorefore splits up into the sum of all possible products
of averages over the ground state of individual pairs of operators. It
follows in particular from (8.11) that the operators A4, B, C, ... neces-
sarily include an even number of operators of each field. If we take into
account the definition (7.1) of the Green funetion, we arrive at the
conclusion that the average of the T-product of any number of field
opcerators is given by the sum of the products of the free Green functions.

3. Feynman diagrams

We now return to the initial expression (8.9). Since Hy, is the integral
of a product of operators p, each term of the sum in (8.9) can be trans-
formed in accordance with (8.11). The result can be expressed in a trans-
lucent form using Feynman diagrams. This may best be illustrated by
an actual example. Supposc our systcm consists of identical fermions
with binary spin-independent interaction forees. In accordance with § 6,
H;,, has the form

1
H;,, = Ef "Pj (ry) "/’3. (ra)U(ry — 1a) (7] (ra)y, (71)d371d3"2- (8.12)

If we writc V(z —a,) = U(r; —1,) 6(t; —t,), the operator f H, dt
will contain two four-dimensional integrals.
Let us now consider the terms of sum (8.9). The first term is the Green

function of non-interacting particles. The next one is -
1
GV = — —— [ d% d*
505 )>fdx1dxz

XCT (wal@) wr @) 95 @) 5 (22) Y5 (@) Py @)DV (@, — 23).



BASIC PRINCIPLES OF DIAGRAM TECHNIQUES 67

By (8.11), the matrix element under the integral is
(T (pa @)y (22)> ¥d @)yalz> (T (v, @)y (&)
— (T (pa @)y (2))> <7 (2w, (@) T (v (2)97 ()
+ (T (pa(2) 93 @) <y @)w, (@) (T lys(z)yy (@)
— (T (pa @3 (@)> vy (@) s> (T, (@) ys (&)
+ (T (@5 @) ¥y @), (@) ¥7 (@)ys(za))
— (T (@) v (@) oy (@)vs(z2)> <ws (@), (2,))-

In accordance with definition (7.1) of the Green function, this expression
can be written as

1G9 (x, 2,) G (0, )G9 (2, ') — iGY) (x, £,) G (2, 7o) G (., )
+ iG(aO,,) (x, )G (2, 2,) G (2,. ') — iGQ (z, 2.) GY) (,, )G9 (z,, ')
(0) s (T, T )G(O) (15 xl)G{ (z2, To) + "G(O)(xs x’)GSS? (3, xl)G%) (%15 %) -
(8.13)

Our expression thus splits up into a sum of terms, each of which contains
three Green functions of non-interacting particles.

Feynman showed that each such term can be associated with a special
diagram, drawn in accordance with the following principle. The set of
space-time coordinates and the spin, on which the operators p appearing
in our expression depend, may be pictured as points in a plane. We
then join by continuous lines the points which appear as arguments in
one funetion G, and by a wavy line the points #;, ,, appcaring in the
function V(z; — z,). The quantity 6G will now correspond to six such
diagrams, as illustrated in Fig. 4(1). Each of them hag two external

) g"’ (b7 © ?‘7’ (d)m

z 5 sz L 5 I T 7 > Tz
OO =D+
Z %
T © 'z ® Fa
Flg.4 »

coordinates z, z". Integration is performed over the coordinates of in-
terior points, and, in addition, the sum is taken over the interior spin
variables. A similar correspondence between formulae and diagrams
holds at higher orders of perturbation theory, as also for other forms of
interaction Hamiltonian. The diagrams are known as Feynman diagrams.

(1) For sumplicity, the spin variables are omitted in the figure.
5.
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A definite analytic expression corresponds to each Feynman diagram.
Evaluation of the perturbation theory series amounts to drawing all the
possible Feynman diagrams and evaluating the corresponding integrals.
The rules for drawing the diagrams and writing the corresponding for-
mulae depend on the actual form of the interaction. However, a general
pattern may always be observed independently of this, and as a result
the calculations are greatly simplified.

All the Feynman diagrams for & can be split into two groups — con-
nected and unconnected diagrams. We shall describe as connected dia-
grams those in which all the points are linked somehow with the lines
with endpoints  and z’. For instance, diagrams a, b, ¢, d of Fig. 4 are
connected, whilst ¢ and f are unconnected. In the general case, when
we have a term of the perturbation theory series (8.9), the connected dia-
grams will be those in which  (z) is paired with y* of Hy,(f,,), w of Hy,(f,)
with yt of Hyy(t,) and so on, the net result being that we arrive at
y*(z') without leaving out any H;, (Fig. 5a). The remaining diagrams,

in which one or more

@ @ of the operators H;, are

% - % ~, not connected by any
() (b) pairings with p(x) and

Fig. 5 yt(z'), are called uncon-

nected (Fig. bb).

We now consider the correction to the Green function corresponding
to anunconnected diagram. It is obviously made up of two factors. The
first includes all the H;, connected with ¢(x) and ¢ (2°); in other words,
it includes the expression corresponding to the connected block of Fig.bb,
which contains the end-points. The second factor describes the remaining
part of the diagram. The expression of the correction is therefore

(_1) f [ty 8, KT (p@)yt @) Higll) -+ + Hin (6)e

X f T f dtm+1 e dtﬂ(T(H’int(tm+l) Tt Hint(tn))>'
We understand here by {--->, and {--)> a well-defined method of
splitting operators 9, ¢ into pairs in accordance with Wick’s theorem.
The symbol {- - -), emphasises that the pairing is carried out so that a
connected diagram is obtained.

It is easily seen that the diagrams will include ones that give precisely
the same contribution. Indeed, if we change the pairing in such a way
that it is simply a question of rearranging the different H,,, between
the brackets (- - >, and (.- ), this will correspond simply to a trans-
formation of the variables of integration and does not alter the value of
the approximation to G. The number of such diagrams is evidently equal to

the number of ways of splitting the » operators H,,, into groups of m
and »n —m operators, i.e. (n!)/[m!(n —m)!].
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The total contribution of all these diagrams will be

o T [y T (@t @) Halt) - Hon )

iy

o1 [ g AT (Ha ) - H0)-

We sum the contributions of all the diagrams, of any orders, contain-
ing a definite connected part and arbitrary unconnected parts. We
obviously get

0 T [l e At (T @y @) Hh) - HolEa),
{1'—7‘ fdtm+1< m(tm+1)>— ffdtm+1dtm+2<T(Hint(t1) mt( +2))>

+:if fdt : dtm+k <T (H-int(tm+1) e mt( +k))>+ }

We return to the initial formula (8.7). If we expand the denominator
{S(oc0)> in powers of H,,, precisely the same expression is obtained as
in the curly brackets in the last formula. Hence

(T [p@)y* ()8 (00))) = (T @)y (=) S (00>, <8 (c0)>
and, by (8.7),
Gz, o) = — il (y @)y (=) S (c0))),.- (8.14)

The rule obtained holds not only in regard to the Green function, but
also when evaluating any expression of the type (6.32) with any number
of field operators. This conclusion will be of importance later. The rule
enables us in practice to omit the factor {S(co)) in the denominator of
(8.9) and at the same time to ignore the contribution of the unconnected
diagrams.

A further simplification arises from the fact that all the types of pairing
in the expression

(_ 1) f f dtl dtm<T (1/) (x)"/) (x ) int (tl) ) Him (tm))>c,

differing only in commutations of the H;,, give the same contribution.
In view of this, we can omit the factor 1/m! and only take into account
those pairings that lead to topologically non-equivalent diagrams, i.e.
those that cannot be obtained from one another by a commutation of
the operators Hj;, The eontribution from each such diagram no longer
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contains a factor which is strongly dependent on the order m of the
diagram. Due to this, each diagram can be split into elements which can
be regarded individually as corrections to the appropriate Green func-
tions. Afactor A, where 2 is a constant, can evidently be regarded as a
trivial dependence on m. This factor does not hinder the splitting of the
diagram into elements. On the contrary, the appearance of a factor of
the type 1/m prevents this splitting and the summation of the parts
of the diagram individually.

§ 9. RULES FOR DRAWING DIAGRAMS FOR DIFFERENT
TYPES OF INTERACTION

1. The diagram technique in coordinate space. Examples

We now turn to a detailed consideration of the rules for drawing
Feynman diagrams in different cases. The basis of each diagram is a
line representing the Green function of the fermion or phonon. We shall
represent the former by a full-drawn, and the latter by a dotted, line.
We draw an arrow on the line to indicate its direction: the line departs
from the point with coordinates 2 and spin o and arrives at the point
with coordinates =’ and spin f. Thus the line in Fig. 6a denotes the
Green function

P, 2) =GPz —=),
apd in Fig. 6b the Green function
' _ (1) ’
Ggl)(x ,x) = Gf%f(:z: — ).

We can omit the arrow on a phonon line (Fig. 7), since, as we saw in
§7, DO is an even function of x —z’. Integration is carried out with

(@ (b)
zZa z6 za z8 z z
Fig. 6 Fig. 7

respect to the coordinates of the vertices, i.e. the points joining lines

(over all space and over ¢ from — co to co0). In addition, summation is

carried out over the spin variables of these vertices.
The following is an analysis of actual cases.

-~

A. Two-particle interaction. We have already considered the simplest
Feynman diagrams for this interaction (Fig. 4), where our aim was to
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explain the connection between the diagrams and formulae. As already
said, unconnected diagrams must be discarded along with the factor
{S(c0)> L. Thus there only remain, to first order, diagrams 4gq, 45,
4cand 4d. But in view of the fact that integration is carried out over
the coordinates z; and z, (and summation over the corresponding spin
variables), it turns out that diagram c¢ is equal to diagram a, and dia-
gram d to diagram b. This leads to a compensation of the factor 1/, in
H,,. A similar situation holds for higher approximations. Thus the rule
is to leave outthisfactor andto consider only topologically non-equivalent
diagrams (for instance, ¢ and b).

Attention must also be paid to the following. As already mentioned
earlier, the sign attaching to each diagram depends on whether the per-
mutation of the Fermi operators g is even or not. It is easily seen that
a change of sign is connected with the formation of a closed loop in the
diagram. The sign of the diagram is therefore determined by the factor
(—1)¥, where F is the number of closed loops.

Another point deserving attention is the case when the times are the
same in both arguments of one of the functions G‘®. This only happens
when two operators of one Hamiltonian pair off. In view of the fact that

the order of the operators in H;,is given (allthe ¢ are to theleft of all
the g), such G have to be understood as hm G, t + d)= hm G(—9)

=1 (gt (r)) p(r5)>. We now state the rules by whlch the apm‘ommatlons of
any order are evaluated.

(1) We draw all the topologically non-equivalent diagrams with 2n
vertices and two endpoints. Two full-drawn and one wavy line join at
each vertex.

(2) Each full-drawn line is associated with a Green function Gfgg’(m, z')
(%, & are the coordinates at the beginning of the line, 2’, § the coordi-
nates of the end).

(3) Each wavy line is associated with a potential V(z — z')
=Ur—1) o —1t).

(4) Integration is carried out with respect to the coordinates of all
the vertices (d%x = d3r df), summation with respect to all the interior
spin variables o.

(5) The expression obtained is multiplied by *(—1)¥, where F is the
number of closed loops.

(6) If there are any G'@ with time argument zero in the expression,
they are to be understood as the limit G(@ (— 0).

Let us take the second order correction as an example. The relevant
topologically non-equivalent connected diagrams are shown in Fig. 8.
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In accordance with the rules stated, the corresponding analytic ex-
pressions are

— [ d*, d*r, A%y d*e, G, (& — ;) G, (), — 3)

X GO(zy — 2')GD, (0G0, (0) V(2 —z) V(25 —2,),  (a)

Ya¥a

— f d*z, - - - A%, G (z — )G (1) — 2,) G0, (4, —ag)

X GO (@5 — 2 )G (s — 2 )V (2 —2) V(s — ),  (b)
+ [y - - A%, G9 (x — 3,) G, (%) — 22) G, (%o — )

«yy Y1¥Vz Yzls

X Gs:i)S (x5 — 2 )G () V() —2,) V (2, — 5), (c)

Va¥a

+ [ d'%;- - - A%, G0 (& — 2,) G5, (2, — @) Gy, (T — )

Y1¥2 V2Vs

X GOy — )G (0)V (2 — ) Viwg — ),  (d)

YaVa
-/ d*z, - - - %, 60 (x — 2,) G () — )G, (2, — )

X G0, (25 — %) G () V (2 —z) V(2g — %), ()

VsVa Yava

+ f d*e, - - - d4x4Ggg,),(x — -7"1)G£2,)3(371 — )G (x5 — x5)

Vevs
X G0 (2g — ) GO, (@, — x5) V() —2) V(25 — ), 63
+ f de, - - d4x4G£,)l(x — %) G5 (2 — 25) G, (2 — %3)

P1ve ViVs

X GO (x5 — ) GD () V (2, —25) V(zp — ),  (8)

Va¥e

- f d4“71 T d4x4G(£})l (x— xl)G(O) (¢, — xz)G(O) (2o — x3)

V1% V2Vs
X G0, (23 — 2 Oy (2 — 2) V@, —2) V(# — ), (h)
- f day - - - d4x4G£,)1(x — )G (2 — xg)G(O) (zg — x3)

1Y V2¥s
X Gﬁ:;. (x3 — :1:4)G§,% (g — @) Ve, —x) Vi, — ), (1)
-+ f dz, - - - d4:z:4Gf,g,)l (x —,)GD (2, —2) (2, — B)

N1¥z

X GO (x5 — 2)09, (3, — 25) V(2y —2) Vige —29). (i)

Vi¥s

Perturbation theory can be presented in a rather different and more
symmetrical form for the case of two-particle interactions. This proves
convenient, when the interaction depends on the spins. The Hamiltonian
of such an interaction is

1
Hyy =5 [0 (1) (1) Unpy (1 — 1)9s(ro)y, (ry) &, rpn - (9.1)

The integral f H;,d¢t which appears in the operator S is written in a
form symmetrical with respect to all the variables:

1
f H;,dt = 7 f--- [, --- Az, ph (2)psh (@) T, o (@1 T, Z3,)

Y1V2:VsVe

wa. (2:4),(/)7. (xa) - (9-2)
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In view of the anti-commutativity of the y-operators, I'® can be re-
garded as an anti-symmetric function with respect to the interchanges
;91 < Loy OF Xgys x4y, This function can be obtained from

wa,vm (1, — 72) Y (tl - l”l?.) Y (xl - x3) Y (x2 - x4)

by subtracting the analogous expression with arguments 3 and 4 inter-
changed (}). The first order correction to the Green function is

1
G — _.Zf d4x1 cee d4x4l"°’ (1 %0, T374)

V1Ve:¥s¥a

XLT (a (@) 97 @)y (@) 9, @) ¥y, @)y, (@)D

[1 ”

(we shall everywhere omit the index on the averaging symbol <. - ->).
Since ['© is anti-symmetric in its arguments, we obtain from this the
single term

i [ d*e,d*r,d*ey A%, 0 (2 — ,) G (25 — )

Vo¥2

0 0 )
XG( ) B(xy —2 )I’f,l;,lz ey (X1 T3 T3Ty) .

[N [ |
??@mﬁ

© ( 0
Fig. 8

We shall denote I'” by an open square on the diagrams. The first order
diagram is of the form illustrated in Fig. 9.

Q. 8 00

(b)
Fig. 9 Fig. 10

There are altogether three conunected and topologically distinet dia-
grams for the second approximation (Fig. 10). The corresponding expres-

(1) With this method of writing, the *plug” sign precedes the term correspond-
ing to the “tramsition” z; p; — 23 95, %, 2 = %, ¥, (cf. (9.1)). This has to be borne
in mind when determining the sign of the diagram (see below).
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sions are
(1) 0 ’ 0
- f d*z, - - - dzg Gf:y)l(x — ) Gg;,,?;(xa - )G;.;, (x4 — 25)
0 0 0) 0
X Gi"l;’l (x7 - 2:2) Gi’s;’o (xs - xs) I”f‘ﬂ'ml’:i’l (xl xz: xa 14) Ivi's;,,y,y, (x:') xﬁ’ x7 2:8) ? (a')

— f dz, - - - d4x8Gf,g,’l(x —2,) 9 (25 — ) G“:,’g(:z:7 — ')

Va¥s ¥
X GO

vaye (Fa — xz)G(o) (x5 — ¢) L o (125, Z374) e (2526, T;%5), (b)

VaVe Y1¥2VsVs YsVesV7Ve

“¥1 Ya¥s Yi¥e

1
—5 f d*zy - - - A*2gGQ (2 — 2,) G (x5 — 25) GO (z, — x,)

0 . 0 0 ()
X G‘i’zi)g (xs -z ) G;l;! (274 - xe) I”f"xz’z,’}"syl (xl 132, 2:3 14) Fl(’ul)’nxyvys (x5 xs’ x7 xs) * (C)

Notice that the last term contains the factor 1/,.
Evaluation of the nth order approximation proceeds as follows:

(1) All the topologically non-equivalent diagrams are drawn (in the
present case, all the diagrams obtained by commutation of the vertices
of the square are topologically equivalent).

(2) With each line we associate a Green function GQ(x —z').

(8) With each square we associate the function I'(%), . (%%, 24Z,).

(4) We integrate over the coordinates of all the vertices of the quadri-
laterals and sum over the spin variables.

(5) Each diagram is multiplied by (m/2") (¢)*, where m is the num-
ber of different diagrams which correspond to the given diagram in the
non-symmetrised technique. The sign of the diagram is also determined
from a comparison with the non-symmetrised technique.

The last statement may be illustrated as follows. Take diagram 10,
for example; it corresponds in the non-symmetrised technique to dia-
grams 8e, f, g, h. Thus m = 4. As regards diagram 10¢, there are
only two corresponding diagrams 84, j, so that m = 2 and the cor-
responding expression appears with the coefficient 1/, (1).

We shall again use diagram 10¢ to illustrate the choice of sign in
front of the diagram. The quantity '@ is obtained by antisymmetrising an
expression, in which the point 3 is the same as 1, and 2 as 4. If we now
regard these coordinates as the same in the expression corresponding to
Fig.10a, we immediately get the diagram of Fig. 8¢, which contains two
loops and appears with the coefficient (¢)2. In practical calculations it is
simplest to start by writing down the arguments in all the I"®, then fix
the arguments in G©, whilst bearing in mind the correspondence with a
diagram in Fig. 8.

_ (1) This programme can prove difficult to carry out in complicated diagrams.
It is easier to obtain the analytic expression directly from (8.14), and use the dia-
gram merely as a guide to the different methods of pairing.
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According to the rules laid down, the third order approximation dia-
gram in Fig. 11 corresponds to the expression

f d*z d*2,,GQ (x — 2,) GO (23 — x5) GO (z, — 7z,)

oYy Va¥s VYo

X G, )l (n —= )Gi’?;’w(x‘i — Zy0) Gi'?zv. (210 — xs)GS:L, (x5 — 2,)

0)
I;(’ﬂ'n VYaVa (xl Zas T3 x4) Vﬂ's Y7¥s (x5 xﬁ’ x7 xB) prm,‘}’uyu (x‘.)xlo’ T3 xl2) .
Obviously, if we substitute for I its expression in terms of the poten-

tial U,g,s(r; —r;), all the expressions concerned transform to the cor-
responding formulae of the non-symmetrised theory.

Q

—_—
(@ [T — ()
Fig. 11 Fig. 12

These expressions take a particularly simple form when we are con-
cerned with spin-independent point interactions, i.e. with a potential

U,prolty — 1) =2 5,:7 5,9.55 (ry —19).
In this case '@ ig

L3 e = 48,0 )8 (2, — %) 0 (%) — 23) 6 (z, — )

V1V2.VsVa V1¥s 1’°74 713‘4 7273

=AL,, ..0(x — %)0(x; — 23)0(x; — ;). (9.3)
There remains only one of the four integrations over the vertices of
the squares in Figs. 9 and 10. These squares can therefore be replaced
by points. For example, the diagrams in Figs. 9, 10¢ and 11 will have
the form illustrated in Fig. 12, whilst the corresponding expressions

will be
iZL?ﬂ’z’VWA g’?:’: (0) f d4x1G£g’)1 (x - :1:1)6;;(2))8 (271 - xl) H (a)
22

—E Y172,YsVa 1’575,7775

f 'z, d%, ny’, (& — )Gy, (2 — o)

Vs¥s

X G(O)

Ya¥e

(x2 — xl)Gtzﬁ(xo )G (21 — 25), (b)

YaVe
128

9 Y1¥VesVs¥Va™ VsVe:V1¥s LVﬂ'mel 1Y12

[ d*z, d*2, A%z, G (x — 2)) G (2) — )

Va¥s

0 0 0 0 0)
X G, (e — 25 G5 (25 — &) GL, (1 — %) ), (23 — ) G, (25— 1) - (€)
B. Interaction of fermions with phonons. We shall assume, with a
view to future applications, that we are discussing the isotropic model
of a metal, in which the electrons interact with the phonons. The me-
chanism of the interaction is equivalent to the appearance of a polarisa-
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tion as a result of lattice vibrations. The electron energy changes by an
amount

—e [ n(r)K(r —r') div P(r')@*rd?, (9.4)

where n(r) is the electron density at the point r, P is the polarisation,
and K(r —r') is the interaction function. When |r — #'| is less than the
lattice constant, K(r — ) a~ 1f|r —r'|. At great distances K(r —r’)
rapidly drops to zero due to the screening of the polarisation charge by
the electrons. This enables us to replace K(r — ') by a28(r — r’), where
a is a constant of the order of the lattice period. The polarisation P is
proportional to the displacement of the medium:

P(r) = Cq(n),

where C is a constant of the order ZeN|V (N/V is the number of ions
per unit volume, and Ze is their charge).

Since div P = C div ¢ enters into the energy of interaction of the
electrons with the lattice vibrations, it follows that the electrons interact
only with the longitudinal vibrations. By (9.4), the interaction energy
operator can be written as

ea®C [y (r)p(r) div g (r)dsr.

Since the operators g, can themselves be expressed in terms of the cre-
ation and annihilation operators with certain coefficients of proportion-
ality, we can include an additional factor in the definition of the field
operators, such that a more convenient form of the operator Hy, is
obtained. It is easily seen that, given our choice (7.13) of operators

¢ (x), the Hamiltonian of the electron-phonon interaction may be writ-
ten as

Hypy =g [ 95 (Npanen)dir, (9.5)
where the constant of interaction ¢ is equal to
g — eazg
U VQ

(2o = wy(k)/| k| is the sound velocity). If we substitute in this the orders

of magnitude of all the constants, expressed in terms of the electron
parameters, we get

o 272

_po’m’

(9.6)

where m is the mass of an electron. The constant ¢ is dimensionless in

this definition and turns out to be of the order of unity from experimen-
tal data.
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When finding the Green functions, it is only necessary to take into
account the even terms of the expansion of S{(co) in powers of Hy,.
Since the averaging of the electron and phonon operators proceeds
independently, the diagrams for the electron Green function turn out
the same as in the case of two-particle interactions of fermions with
one another. The only thing we need do is replace the wavy lines every-
where by dotted lines corresponding to the Green function of the pho-
nons, and to carry out the substitution

Ve, —ap) > gzD(O) (2 — o)

in the relevant expressions.

We now consider the Green function of the phonons. The first non-
vanishing corrections to this function are found in the second approxi-
mation in H;, and are represented by the diagrams in Fig. 13. The cor-
responding expressions are

—g%i [ Ay d', D (2 — 2,) DO(ay — &) G () — 2) G5 (2 — ), (a)
+g%i [ dhy d*ep DO (@ — 2y) DO, — 2') GL(0)GH(0). ()

We show that the second term in this formula must be put equal to zero.
In fact, by definition in the function D@ appear the quantities ¢ that

are proportional to div ¢, where g is the displacement vector. It follows
that D©(x — ;) is proportional to

(T(p(@), divg(2y)> = div, (T(p() g (@,)>.

Since, in the expression for diagram 13 b, the coordinate r; only appears
in D©(x — ), and this function is a divergence, the integral over d3r,
transforms into a surface integral and vanishes, independently of whether
the displacement on the boundary is regarded as zero or is subject to

periodic boundary conditions. By the
same reasoning, all the diagrams for "“"O(G)“ ""(b)O C>'"
D-functions in which the end-points Fig. 13

are unconnected vanish.

General rules for evaluating the corrections to the Green functions of
electrons and phonons may be stated as follows. To find the 2nth order
approximation, we must

(1) draw all the topologically non-equivalent connected diagrams with
29 vertices (connected in the sense of also excluding diagrams like 13 b);

(2) associate with each continuous line a function GQ(x — '), and
with each dotted line a function DO(x — a');

(3) carry out integration over the coordinates of all the vertices and
summation over the spins;

(4) multiply the expression obtained by g (—1)¥ (i)", where F is the
number of closed loops formed by the Fermi G©-lines.
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We give as an example the expression for the diagram of Fig. 14:

g* [ &y - - - A, D@ — 2)) DO (2, — 25) DOV (2, — )
X G’i’ol')}’x (xl - xz) G‘y%. (xz - x4) GT(VAYS (x4 - x3) GT(Vﬂ'l (x3 ) °

C. External field. Our last example is the interaction of particles with
an external field. In accordance with § 6, the interaction Hamiltonian is

Hyy = [} (1) Vg(r, ) pp(r) d3r. (9.7
The indices «f of the potential V refer to the case when the influence
of an external magnetic field on the spins is considered. Then, V 4(r, )

= po[0ap - H(r, t)], where y, is the magnetic moment of a particle and
the components of ¢ are the Pauli matrices.

_@_ {a) b {c)

Fig. 14 Fig.15

It is easily seen that the diagrams have in this example the elementary
shape shown in Fig. 15. A cross on the diagram corresponds to the poten-
tial V,g(x). For instance, the expression for diagram 155 is

[ d*a, @*,0%) (& — )G () — o) G (g — &)V, (@) V, . (@) -

The rules for forming the diagrams and corresponding expressions are
trivial. The diagrams of all orders have the same coefficient 1. The only
thing that needs to be mentioned is the destruction of the uniformity
of space and time. As a result, the Green function now depends on =
and =z’ separately, and not only on the difference & — &'.

2. The diagram technique in momentum space. Examples

The technique described above enables us to write down without dif-
ficulty any term of the perturbation theory series in integral form.
Evaluation of the integrals is extremely difficult, however, due to the
fact that G'@ and D@ are discontinuous functions in the time argument.
To find the corrections to the Green functions by this method would
mean integrating over the time over a set of domains whose number
would increase at catastrophic speed with the order of the approxi-

mation. We can get out of this situation by expanding all the quantities
into Fourier integrals.

Let us start with two-particle interactions.

A. Two-particle interaction of fermions. We take the expression cor-
responding to the diagram of Fig. 45:

2 f G(O) (% — xl)Gg'?;. (2, — x2)G'(y(::)3(x2 — ')V (@, — xp) ', d ',
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We expand all the quantities into Fourier integrals in accordance with
the formulae

d4p
0) (0) (y z)
Gfxyl ..) (2 )i oy ( )e’w o

Ve, —ap) = f an); V(q) i)

where p and ¢ are the four-dimensional vectors p = (P, w), ¢ = (¢, w),
and the product p(x; —=,) is equal to (p-r, — 1) —w(t, —1£,). The
expression for the free Fermi function G{)(p) has already been found
in § 7 (formula (7.7) with the substitution o — o + ). If we substitute
these expansions in the first approximation term in the Green function
written above, the latter becomes

i (2n)—16 f G(O) (pl)G(O) (po) G(O,)S (Pa) 4 (q) etp,(z—xx)-l-tpg(z,—:cz)

2967 Y1¥z2
X ew-(z,—z’ )+ ig(z—z2) a4 D, a4 . d? D a4 q d*xl d4x2 .

We integrate with respect to d4x; and dfz,. We get

i27)8 [ G2 (9))GD, (95) G (05) V(9) 8 (91 ~ P2 — )
X&(pz+ ¢ __p3)eszz g p1d4p2d4p3d4q.

We now take the Fourier components of this integral in « and z'. We
obtain:

3G (0, p') = i [ GO (D)GD, (o) Gh(2) V (9)
X8(p — ps—q)8(ps + g — p')d*pydYg

On comparing this expression with diagram b b, we see that each contin-
uous line now corresponds to GO(p), the wavy line to V(g), each vertex
to the d-function §(X p) = §(2 p) (2 w), expressing the laws of con-
servation of energy and momentum, the integral being taken over the
momenta of the interior lines. On performing the integration with respect
to d4p, and noting that GQ (p) = G (p) 8,5, We get

0GR (p, p') = 66D (p) 6 (p — ') (27)* 8 .5,
86M (p) = i6(p) [ GO (p —q) V(9) 7 (2 )4 7.69(p).

The resulting expression for 5™ (p), which is the first approximation term
in the Fourier component of the function G (x —x’) with the variable x —z’,
enables us to interpret the diagram in a very visual way. We can imagine
a particle with momentum p, which in the course of its motion emits
an “interaction quantum” with momentum ¢ and itself acquires mo-
mentum p — g. After a certain time the particle absorbs this quantum
and remains with momentum p.
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Similar transformations can be performed on the other diagrams. For
instance, the first approximation term G (p), corresponding to diagram
4a,is

06 = — 2iG (p) V(0) f gj%i GO (p)) ' GO (p),

where t — 4- 0. The factor ¢! is introduced under the integral sign
because, in the coordinate representation, a G-function with equal argu-
ments is present here, and, as already mentioned, this is defined as
lim G@(— 0). The factor 2 appears when taking the trace over the spins.
The diagrams of 6G¥ and 6G*? are illustrated in the momentum form
in Fig. 16.

We now take the diagram of any order #, containing 27 vertices,
29 - 1 continuous lines and » wavy lines. If we substitute the Fourier
transforms, for G©@ and ¥V and integrate over the 27 coordinates of the
vertices, we get 2n factors of the type (2 p), expressing the laws of
conservation. One of these laws leads to the equality of the external
momenta, as a result of which all the terms of the expansion of G (z, z')
into a perturbation theory series are only de-

4 pendent on the difference & —a’, this being an

g immediate consequence of the homogeneity in

g Y’m space. The remaining 2» —1 §-functions imply

s £F # that, of the 3» —1 integrations over the 4-
(a) (b) . . . .

Fig.16 momenta of the interior lines (both continuous

and wavy), only » remain.
We now give the general rules for writing the expressions correspond-
ing to different diagrams.

(1) Every line is associated with a definite 4-momentum. The two
outer lines have an external momentum, whilst the momenta of the interior
lines must satisfy the laws of conservation at each vertex.

(2) Every continuous line is associated with

Oug
o —&(p) + idsign &(p)’

G (p) =

where
2

E(D) =2, (p) — =»213";—,;, 5= 4 0.

(3) Every wavy line is associated with
V(i)=U(q)-
(4) The integrations are performed over the n independent 4-momenta.

(5) A coefficient (¢)"(27)~*"(—1)¥, where F is the number of closed
loops, is put in front of the expression obtained.
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Any correction to a Green function is easily written down with the
aid of these rules. For instance, the expression for Fig. 17 is

—i8,,0% (p) 2y ™™ [ d*qy--- ¢ U (@) U(g) Ulgs) Uy + 92+ ¢5) U (g,)

X GO(p—q)0%(p — s — )07 (P — 1 — 1 — ) OO (P —h — G2 — 45— q,)

X GO (p—q,) [d*p, GO (9,) GO (9,4-45) G0 (2182 5) G (914012 125)-

We next consider the symmetrised version of the diagram technique for
two-particle interactions. The symmetrised quantity 170, ... (%), Ty; @5, Ty)
was introduced earlier. By definition, '@ depends only on the coor-

A A

Fig. 17

dinate differences. The Fourier components of I'® will therefore contain
py + pe —P3 —p4)- In view of this it will be convenient for us to
define the Fourier component of I'"® at once as
27)*0(p1 + 23 — P — P T (1> D23 Py D1 + 12 — p3)
— f d4.'):1 . d4.'):4 o (21 %y Ty,) € DT Potat iPpTatipata

The Fourier transform of the first order term corresponding to the dia-
gram of Fig. 9 is

—iG (p) f @n )4 L, 5 @Dy 0) G (21).

The diagram in momentum space is illustrated in Fig. 18. The general
rules for drawing the diagrams are just the same as before. In particular,

¢ z

yz yZ P~
Fig. 18 Fig. 19

the coefficient of the nth order diagram only differs from the coefficient
in the coordinate form by the factor (2m)—*"

Q.F.T.6
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B. Electron-phonon interaction. The general rules for interpreting the
diagram of order 2% for the Green function of an electron or a phonon
are as follows:

(1) each full drawn line is associated with

1
G(O) = Y T T o . N
P) = () F iosign £(p)
where é - + 0;

(2) each phonon (dotted) line is associated with (see (7.16))

_ (k)
Do) = w? — wg(k) 176’

where 6 — - 0;
(3) integration is performed over the 7 independent momenta;
(4) the result of the integration is multiplied by

g2n(2n)—4n (i)n(_l)F ,
where F is the number of closed loops.

For example, the second order diagram of Fig. 19 corresponds to the
expression

—2DOWT f %4 6O ()6 (p — ).

C. External fields. As already mentioned, the space becomes inhomo-
geneous in the case of an external field and G (z, «") ceases to be a func-
tion of « —«’ only. In view of this, we shall consider the Fourier trans-
form G.g(p, p') of Gg(x, ') with respect to both variables:

’ n Jipr—ip'z’ d4p d4p !
Gop(2, 2') = [ Gop(p. p') €™ @m) (2m)
On Fourier transforming the expression corresponding to diagram 15 a,
i.e.
f d*a, Gz(x?, (x — wl)G-fl% (2, — ') V(@)
we get
(D) Vop(p — 2 )60 @),
where V,g(p) is the Fourier component of V,4(z):

, ipe_A'P

Vesl@) = [ Vap(2) ™" 55

The corresponding diagram in momentum space is illustrated in Fig. 20 a.
The next order diagram, illustrated in Fig. 20 b, corresponds to the
expression

4,
6O [ Voy(p — 216 (09) V. (0y — ) (‘; L),

Thus, in the nth order diagram for G(p, p'):
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(1) the left-hand end-point is associated with @@ (p), and the right-
hand one with G©(p');

(2) the cross denotes the Fourier component of the external potential
with a momentum equal to the difference between the momenta of the

G© lines to the left and the right of X N
the cross; 7w 7 4 4 r
(3) integration is carried out over . (b)
Fig. 20

all the momenta of the G®-lines apart
from the two external ones, and summation over the spin variables on
which V depends (with the exception of the external ones);

(4) after integration and summation, the expression is multiplied by
the coefficient (27)*»—D,

§10. DYSON EQUATION. THE VERTEX PART.
MANY-PARTICLE GREEN FUNCTIONS

1. Diagram summation. Dyson equation

In the majority of problems of quantum statistics it is as a rule impos-
sible to confine ourselves to the first few terms of the perturbation theory
series. Instead, we have to sum different infinite series of terms, cor-
responding to the so-called “main” diagrams, the contribution of which,
by virtue of the conditions of the problem, is of the same order of mag-
nitude. A remarkable property of the diagram technique for Green
functions described above is that we can associate summation of an
infinite (or finite) set of terms of the perturbation theory series with a
special type of “graphical summation” of diagrams. The diagram re-
presenting the sum is composed of elements, each of which is in turn
the result of a summation. For example, the lines of such a diagram may
represent the sum of an infinite sequence ofterms of the perturbation
theory series for the Green function (the “sum” of the diagrams). The
association of the diagram with definite expressions is carried out in
accordance with the same rules as those for evaluating the expressions
in perturbation theory; each line of a diagram is associated with the
corresponding sum of diagrams, and so on.

The possibility of a graphical summation is based upon the rules
described above for evaluating the corrections to the Green function
from the relevant diagrams. It may be seen at a glance that these cor-
rections are formed as it were from separate bricks — the Green func-
tions and vertex operators, the connecting element (“cement’) being
integration over the coordinates (or momenta). This enables us to form
a diagram, not merely from basic elements — the zero Green functions
G© and elementary vertices, but directly from whole blocks, composed
of a large number of basic elements.

06*
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Let us take the diagram of Fig. 21 a as an example. We can first use the
rules of the diagram technique to write down the expression correspond-
ing to it. We now proceed as follows. We find first the contribution of
the part of the initial diagram surrounded by the dotted line, then write
down the expression corresponding to the diagram of 21 b, but taking
instead of GO for the crossed line the more complicated expression. It
may readily be seen by direct calculation that both methods yield the
same result.

This conclusion is completely general. We can always distinguish from
the diagram for G a part not containing external lines and joined to the
rest by two G©@-lines, find its contribution, and write down the expres-
sion for the whole diagram by using the “abbreviated’ diagram; here,
we have to substitute the contribution of the extracted part for the
corresponding line.

We shall describe as the self-energy part any part of a diagram joined
with the rest by two G- (or D©.) lines. A self-energy part will be called
irreducible if it cannot be split into two parts joined by a single G©-line.

o For example, the self-energy parts
in Figs. 9, 10a and 10 ¢ are irre-
ducible, whilst the part of Fig. 105
is reducible. Any diagram for the

Fig. 21 functions G and D consists of a base

line with irreducible self-energy

parts threaded on it; these parts may be repeated an infinite number
of times and may appear in any order.

It is impossible to sum all the diagrams for the Green functions in
the general case. However, we can carry out a partial summation, in such
a way that there only remains a sum over different irreducible self-
energy parts.

Let us take any diagram for a G-function. It starts with a G©-line.
Then there is an irreducible self-energy part. It we chop off these two
elements from the diagram, the remainder will again start with G and
may contain any number of arbitrary self-energy parts. Thus the re-
mainder is again a complete G-function. This gives us the following
equation for G:

G =69 - 6Ox@
or
Gl=60"1_3, (10.1)
where
P= 4Ty 4T+ (10.2)
is the sum of different irreducible self-cnergy parts. We shall call X the
total irreducible self-energy part or the mass operator.

We can find 2" by using diagrams that differ from the diagrams for
@ in that the two end G©-lines are absent. But in these cases where it
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is impossible to confine ourselves to evaluating the first diagrams and
an infinite series has to be summed, it is as a rule more convenient to
express 2 in terms of another set of diagrams, which we call the vertex
part. This procedure depends on the actual type of interaction and will
be illustrated by reference to the interactions considered in § 9.

A. Two-particle interactions. In this case it is most convenient to use
the symmetrized form of the theory. The first order term in 2 corre-
sponds to Fig. 9, without the external G©@-lines. From the terms of
subsequent orders we first of all extract all the diagrams in which the
self-energy part is linked with the basic G-line by means of a single
shaded square I'®. An example is provided by Fig. 10 a. It is completely
obvious that the set of all such diagrams for 2 can be obtained from
the first order diagram by adding all possible self-energy parts to the
interior G©.linc. The latter is now transformed into a complete G-line.
Thus the set of all diagrams for 2, linked with the basic G-line by a single
square I'®, is equal to

rdl
20y =i f (2:;11” D 56 (05 D15 D1 D) G,y (11). (10.3)

Let us agree to use a heavy line for a complete G-function. We can
now represent X by the diagram of Tig. 22.

The simplest diagram not appearing in this sequence is the self-energy
part in Fig. 10 c. Certain of the more complicated diagrams may be
obtained by including self-energy parts in the interior of the G©-line.
It is not possible, however, to obtain the diagram of Fig. 11 by this
method. Nevertheless, it can also be regarded as a more complex form
of the diagram of Fig. 10¢c. If we chop off the three interior G‘@-lines

issuing from the left-hand square
I'®from the rest of the diagram, it
will be seen that diagram 11follows 0O —= O
from diagram 10 ¢ by replacing the
Fig. 22 right-hand square by another dia- Fig. 23
gram, illustrated in Fig. 23.

It is easily seen that, in general, all the diagrams for X not appearing
in (10.3) follow from 10¢(f) by insertion of self-energy parts in the
interior G®.lines and by replacing the right-hand square by a set of all
diagrams with four ends that do not decompose into unconnected parts.
_We call this set the vertex part, and denote it by I'p,s(21, Do} Pss Pa);
1t will be represented on diagrams by a shaded square. Notice that,
Just as in ', the 4-momenta in I" must satisfy the laws of conservation:
P14 po = p; - p,-

. (1) Since diagrams 9 and 10c¢ provide the basis for obtaining more complicated
diagrams they are sometimes known as skeletons.
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The second part of X' is therefore represented by the diagram of Fig. 24
and is equal to

I =—5 f 216 (D5 D15 Dos @+ 21 — D) G, (D) Bre(94)

dP] dp,
@2n)E
On substituting 2 = X® 4 3@ in equation (10.1), we get

X G, (P + D1 — D) L yp (P25 © + 21— D25 P1s D) — (10.4)

[0 —£(PNGus(2) = [ T (02352101 (21 G

+— f s (22013 Po- P1 + D —P2) (D) Go (P1) Gy (9 + D1 — D)

P dip
pr,vg(p27p +p1 Pe: P15 P) _(2 )32 gﬁ(p) :6043' (10'5)
This equation, eonnecting the G-function with the vertex part, is known
as the Dyson equation. It has been obtained here by a summation of

----
d “a

- &
d N 4 £ )
h \ 2

(a) (b)
Fig. 24 Fig. 25

diagrams. An analytic derivation of the Dyson equation and a more
detailed consideration of the vertex part will be found below.

B. Electron-phonon interaction. The simplest diagram for 2 in the
Green function of an electron is Fig. 25 a. It may readily be seen, in
precisely the same way as above, that this diagram is the only skeleton,
i.e. any more complicated diagram may be obtained by addition of
self-cnergy parts to the interior @©- and D©.lines and by replacing the
right-hand vertex by the set of all diagrams with one phonon and two
electron ends. We shall call this quantity the vertex part I'(p,p —k; k)
and represent it by a shaded triangle on a diagram.

In the case of the electron-phonon interaction, therefore, the total
irreducible self-encrgy part for an electron 2 is represented by the dia-
gram of Fig. 25b and is equal to

d*k

T=ig [6(p~HDWI @~k p: b s,

(10.6)

(we have put here G,; = G J,5).
Substitution of this expression in (10.1) gives the Dyson equation:

[0 —E@N6(p)—ig [ G(p—B) DI (p—Fp; k) o G(p)=1. (10.7)

(27)
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The self-energy part for the phonons, whieh we denote by the symbol 17,
can be similarly obtained from the skeleton diagram of Fig. 26e by
replacing the electron G®-lines by complete G-lines and one of the con-
stantsg by the vertex part. Diagram 26 @ now transforms to 26, equal to

II(k) = — 2ig [ G(p)G(p —k) O @
X I'(p, p — k; k) (10.8)

(27 )4 (a) . (]
The Dyson equation is in this case Fig. 26

[wd (k)] [0® — wj (k)1 D (k)

dip
+ 2ig [G(P)G(p —B)'(p,p —k; k)

@ )4D(k)—1 (10.9)

C. Eaternal fields. A Dyson type equation can also be written down
for a system of fermions in an external field. Noting that all the dia-
grams for G are chains similar to those of Fig. 15, we arrive at the con-
clusion that the role of 2 is played by the Fourier component of the
potential V,g. The Dyson equation is in this case

44
[0 — ()1 Gap(2 ) = [ Vi (0 = 9)Grp(D0 #) (o s = 8o (10.10)

2. Vertex parts. Many-particle Green functions

The Dyson equation also follows directly from the equations of motion
for the Heisenberg operators
31pa 5 + [ 3
=W A—Npl . H=— [yl -y (ndr + Hy,.

The operators H and IV ean be represented by expressions either in terms
of the Schrodmger operatom (1), or in terms of the Heisenberg operators

Pa(r, 1), sinee H and N are the same in both representations.

On separating HW from H — ‘uN and using the commutation rules
for the operators ¢ and g, taken at the same instant, we get

. 0a g ” ”
i :(_,V__ )%(x)+ 70 @), Higl.

We differentiate the G-function with respect to the first time argument:

i-L Gopla, &) = 2 (T ()i @)
We write T'(...) as
0(t — )P, (@) pf (@) — O — )95 @) . (=),
1, ¢t>0,
0, t< 0.

where 6 (1) = {
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We now have: .

3%( )

i 26, 0y =00 —1) ¥ @) — 6 — i ) P&

ot
+8(¢—¢) (%(r, Hys(r', 8 + pi (', Dy,(r, 1)

<T (3y)oé§x) o ))> + 6(x —2")d,-

We have used the commutation rule here. We finally have:
( + + {u’ ) off (x’ x’)

= 8(x — )65 — KT ([Yu()) Hipgl» 95 @)  (10.11)

The form of the right-hand side depends on the actual interaction, so
let us turn to particular cases.

A. Two-particle interactions. The operator Hg, is defined by (9.2).
On carrying out the detailed calculation and writing the result in a
symmetric form (just as was done when deriving (9.3)), we get for the
last term in (10.11):

7
- E f d4x2 d4x3 d4 1(’«(1)’)2 3Vs¥s (x xo ’ x3 x4) < T (y)Tx (xz) y)Ta (x4) y)y, (x3) y)ﬁ (x ))>

The problem therefore amounts to finding the mean of the time-ordered
product of four p-operators. We shall call this the two-particle Green
funetion:

Gl o (%o ) = T (0, () Yp () W) (wa) 9 (,))>.  (10.12)

By (6.32), GI can be expressed in terms of the operators g in the
interaction representation:

ST (yal 1) P (%) 43 () i (24)) S (00))
<S(co)) )

This expression can be evaluated in a similar way to the Green funetion.
The operator §(oo) in the numerator is expanded into a series in powers
of H;y,. On then applying Wick’s theorem, we can write each term of
the series as a sum of terms containing products of the functions G(©,
A Feynman diagram can be drawn for each of these terms. In contrast
to the diagrams for the Green function, all the present diagrams will
have four end-points. It is easily seen that, as previously, we only need
to take into account the connected diagrams, i.e. those in which there
is no part not connected with one of the ends; at the same time the
factor {(S(co)) must be thrown away in the denominator of (10.13).

Gop (@) Tos Tymy) = (10.13)
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Another rule still holds, namely, all the expressions depend on the order
of the diagram only via the factors A" This enables us to work with
parts of diagrams and to carry out partial summations.

All the connected diagrams for G fall into two groups. One group
contains the diagrams in which the point %, is connected by suceessive
pairings with the point z,, and =z, with x,, whereas e.g. z; and x, are
isolated from one another. Such diagrams fall into two separate parts,
with no lines joining the parts. We put in the same group the diagrams
in whieh %, is connected with z,, and z, with z;, whilst there is no link
hetween x; and .

4 %
5 5 % % 2><;
Z 3 & 5 ’ 4
(o) (b) (c) o NI

Fig. 27 Fig. 28

The simplest diagrams of this type are to zero order in Hy,; and are
illustrated in Fig. 27. The corresponding expressions are

(0)(331 - x3)Gﬂ¢5 (g — 24), (2)
(0) s () — Zy) Gﬁy (g — z5). (b)

It is easily seen that any more eomplicated diagram of this group can
be obtained by addition of self-energy parts to the G@-lines, i.e. by replacing
light G©-lines by heavy G-lines.

The other group contains all the diagrams that do not deeompose
into separate parts. The simplest diagram of this type is to the first order
in H;, and is as shown in Fig. 28 a. The corresponding expression is

i [ G, (2, —22) Gh) (w2 — @) O, (% — 23) Gih (), — )

oY1 vs¥

x I'®

PAP CAE R R AT: i ot e

More complicated diagrams are obtained from 28¢ by complieating
the external G‘?-lines and replacing the square by more eomplex arrange-
ments with four vertices, as in Fig. 23, for instance. At the same time,
the G© in the above formula are replaced by @, and I'® by I', corre-
sponding to the set of all possible diagrams with four outer ends; in
other words, Fig. 28a becomes Fig. 28b.

It follows from our arguments that Gip,s(%;, @y; T3 ,) is conveniently
vwritten as

GLIB,yd (1295 2524) = G, (%) — X3) (X — xy) — G (% — x4)pr (xg — %3)
+ i f d4x'1 e d4x;Gayl (xl - x;)Gﬁyl (xZ - x;)
X Gy (& — 23) G, s (2 — ) T rerarete (7 %g; T32y), (10.14)

where I" corresponds to the vertex part introduced earlier.



90 QUANTUM FIELD THEORETICAL METHODS AT 7T =0
The last term in (10.11) is equal to

% [ a%,d%,d'%, 79

. 113 ’
ope;¥sVe (:I: Zg5 X3 x4) Gymmﬁ (x3x4’ Zox ) "

On expanding G,,..,s in accordance with (10.14) and taking into
account the anti-symmetry of I'® with respect to the arguments with
indices 3 and 4, we get from (10.11):

.0 . .
(za —Hy + ,u) G plx—a') —i f Az, Az, A, IO (22y; 252,)

aY23¥VsVa (x Lo, x3 x4)

, 1
X Gy, (X3 — @) Gy.ﬂ (®y—2") + l f d4.'1:2 S ro

x va (%4 — %) Gysvs (23 — 25) Gym (%7 — ) Grzﬁ (g — ') I VsVeVa¥s (w5%g; Tq %g)

= 8(x —a')J,p- (10.15)

In view of the spatial homogeneity, I" and G only depend on three
coordinate differenees. Their Fourier components may therefore be con-
veniently defined as in the case of I'"®. For example,

Faﬁ,ya (P1> P2 P> P1 -+ P2 — P3) (275)46(1’1 + Pe — Ps —DPy)

= [ T sy g3 Tgmy) € PP St WEA DOty . - A%, (10.16)

By (10.14), the connexion between the Fourier components of G and
I' is given by

G5 (D1> Po; D3> Py + Po—Ps) = Goy, (P1) Gs (05) 0 (p; — p3) (27)*
— G, (’Pl)Gﬁy(Z’z) d(pg — ps) (273)4 + iGay, (pd) pr,(pz) Gy,y(P3)
X Gos(P1 + Do — P3) Ly iy (P15 P23 D3> 01+ D2 —p5)- (10.17)

Fourier transformation of equation (10.15) leads to equation (10.5).
The Dyson equation has thus been derived analytically, the quantity I’
appearing in it being defined by (10.12), (10.17) and (10.16).

We can evaluate I by a summation of diagrams. Examples of sueh
diagrams are given in Fig. 23, and also in Fig.29a, b, c. It follows from

the fact that the diagrams for I" can be
regarded as a part of the diagrams for
(@ the G-functions that the rules for asso-
ciating each diagram with the corre-
sponding expressions remain the same

as when evaluating G. This may easily
G @ be verified direetly, if we use the analytic
definition of I" and proceed in precisely

Fig. 29 the same way as in the previous section.
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When evaluating I” it usually proves convenient to carry out a pre-
liminary partial summation of the individual parts. We introduce for
this purpose the eoncept of a compact diagram. This is a diagram that
does not contain self-energy parts. For example, the diagrams of Figs. 23
and 295, ¢ are compact, whereas the diagram of Fig. 29« is not. All
the diagrams for I' follow from compaet diagrams by the addition of
self-energy parts to the interior G©-lines, i.e. by replacing the G(®-
lines by eomplete G-lines. It is therefore sufficient, when finding I, to
confine ourselves to drawing compaet diagrams and to associite complete
G-functions with each eontinuous line on the diagram.

B. Electron-phonon interactions. On taking H,, in the form (9.5), we
find for the last term in (10.11):

—ig<{T (p. (@) 95 (@)@ (@)>.

We can also associate

Pogl@rg; %) = (T [y (@) 95 (@) @) (10.18)
with a set of Feynman diagrams with one phonon | !
and two electron ends. The simplest of these dia-
grams oecurs in first order perturbation theory (o (b)
{Fig. 30 @) and is equal to

—g0,5 [ A*yGP(; — )P (y — 25) DO (y — 7). Fig. 30

On arguing as above, we can associate P,z with diagram 30 b, and it is
equal to

Paﬁ(xlxz; ) = 6aﬁP(x1x2; %3)

= —8,p [ A% Q% d%3G (2, —2)) G (2, —35) D (w3 —g) ['(%)35; @) (10.19)
The function I" corresponds to the set of all diagrams with three (one
phonon and two electron) end-points. Thus I' is the vertex part for the
electron-phonon interaction. In view of the spatial homogeneity, I" and

P depend only on two coordinate differences. We can therefore represent
e.g. I' as a Fourier integral:

L(p,p—k; k) 27)*8(p —p" — k)
= [ @ A%y d ey I'(&) @y; 7)€ P #HtEn - (10.20)
The relationship between the Fourier components of I” and P is
P(p.p—k; k) = —G(p)G(p — ) DT (p,p — ks ). (10.21)
On using (10.18) and (10.19) to write the last term of equation (10.11)
for the electron-phonon interaction, we get an equation for @ in coor-

dinate space. On Fourier transforming this equation with the aid of
(10.20), we get the Dyson equation (10.7).
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All that has been said regarding the evaluation of the vertex part for
two-particle interactions still holds in the present case. To find I, we
have to draw all the compact diagrams and associate them with analytic
formulae in aecordanece with the same rules as when finding G. Each
full-drawn line will now denote a eomplete G-function, and each dotted
a complete D-function. Examples are shown in Fig. 31.

Let us dwell on the meaning of the funec-
O tions G and P, which we introduced when

' deriving the Dyson equations. These fune-
1 &
(o) (b) ) e

tions, and also other averages of time-ordered
1

products of a larger number of field opera-
tors, are known as many-particle Green fune-
Fig. 31 tions. The function @ and D themselves are
therefore ealled one-particle Green functions.
Many-particle, like one-particle, Green functions determine the macro-
scopie properties of a system. In particular, the two-particle Green fune-
tion G determines the behaviour of a system of electrons in an external
electromagnetic field (see Chap. VI). In view of the faet that these fune-
tions depend on a large number of arguments, the analysis of their
analytic properties presents econsiderable difficulties. The situation is
simpler when several arguments can be regarded as equal. For instance,
if we take x, = x5, @5 = %, in G'%, the analytie properties of the Fourier
transform of this function with respeet to the variable ; — =, are the
same as those of the phonon Green function D{w, k). Sinee it is precisely
such particular cases that usually interest us, it is simpler to determine
the analytic properties of particular Green functions, without attempting
an investigation of the general case.

The poles of the Fourier eomponents of the many-particle functions,
like the poles of G(p) and D (k), determine the exeitation spectrum of a
system. These neecessarily include all the poles of G(p) and D(k). Apart
from these poles, there may be new ones, corresponding to other branches
of the excitation spectrum. We shall not be coneerned with a general
analysis of this question. A concrete example is discussed in Chap. IV,
§ 19, where we find the equation for the poles of the two-particle Green
function of a Fermi system and show that they determine the Bose
branehes of the excitation spectrum.

We could in prineiple evaluate many-particle Green functions by
writing down equations analogous to the Dyson equations, connecting
these funetions with higher-order functions. In practice, however, this
proeedure gives no useful results and it is simpler to sum the diagrams
directly. It often happens that a certain sequence of diagrams is the
most important and summation of the diagrams does not usually present
much difficulty in these cases.
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3. Ground state energy

We shall eonclude this section with some expressions that enable us
to find the correction to the ground state energy resulting from inter-
actions between the particles.

We subtraet from equation (10.11) the ecorresponding equation for
GO, We get

207 Ve, —a) — 69 —
ot L )G —a) — 69 @ —a)]

= — T ([Yala) Hind), v @)
We let r—t' and ¢ — ¢ + 0. We then integrate both sides over r,
and get
y(Hyy = —i [ dr P 207 LN @ — ) — O — )
nt ptro\ OF  2m o o ’
where » is the number of g+ operators appearing in H;,. Let the inter-
action Hamiltonian be proportional to some eonstant ¢ (such a econstant
can always be brought in). The ground state energy (more precisely, the
potentlal {2 =F —puN), considered as a function of u, is equal to
— (H —ulVy.
By virtue of a familiar statistical formula (see Landau and Lifshitz
[1]), we have
a2 /e o 1
/2 m_ui)\=Lcm .
P \ g ( u )/ g {Hyy
Integration of this with respect to dg from 0 to g gives
g
d
Q-0 = [ Bty (10.22)
g

where £, is the potential for non-interacting particles. On substituting
in this the expression found above for (Hy> in terms of the Green
function, we get

dg, . (
Q-0 = —— d? lim _|____|_ )
o f wl i
X [Go:o:(x - xl) - Gg)tz (x - x,)] .

Putting G,4(x — ') = 8,4G(z — '), changing to momentum spaee and
using the equation for GQ, we finally get

Q—0Qy=— f 4 (24 i GO (p) [G(p) — GO(p)]&t, (10.23)

where ¢ — —}— 0, and where V is the volume of the system.
We can get another useful formula from the following relation (see [1]):
a0Q 42N

(%)T v = \om/ "
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Since
eH 1
= a3 Y3 Oy (ndr,
we have
oQ i 9
— = G, (x—a')| d3r.
am 2m2f [Vx x’_‘:::( )]
¥->t+-0
On changing to Fourier eomponents, we get
02 _ iV 2 ot A%p
om~ medF ¢p)e (2m)*’

where t— - 0.
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(10.24)

Finally, it is pertinent to reeall here a formula mentioned in § 7:

a‘Q . s Tt dAl;p
a—‘u————N—ZVfG(p)e (27t)4-

(10.25)



CHAPTER III

THE DIAGRAM TECHNIQUE
AT FINITE TEMPERATURES((1)

§11. TEMPERATURE-DEPENDENT GREEN
FUNCTIONS

1. General properties

We have so far studied the properties of a large number particles at
absolute zero. The subject becomes much more complex at finite
temperatures.

The ordinary “‘elassical” method of statistical physics eonsists in a
direet evaluation of the thermodynamic funetions of a system as fune-
tions of its temperature and density. Since no problem of this type can
in fact be solved exactly, the answer is expressed as an expansion in
powers of some small parameter. If we use ordinary thermodynamic
perturbation theory (see Landau and Lifshitz [1]), we can easily write
down the first two terms of the perturbation theory series for the free
energy F':

F = FO + 2 Vnnexp{(FO_Egzo))/T}

LV
9 Z E© — F©

[exp{(F, — ED)| T} — exp{(Fo — E)/T}]

1
+ g g (S Ven oxp{(Fo — BT} +

But it is no easy matter to write down the next terms, not to mention
to evaluate them directly. The summation of an infinite sequence of
terms is a quite hopeless task. It is for these reasons that the diagram
technique of quantum field theory becomes so attractive in statistics at
finite temperatures; this technique, based on Green functions, enables
a elear visual representation of the structure and nature of any approxi-
mation to be made.

(f) The arguments and calculations of this chapter are largely a repeat of cor-
responding passages of Chap. IT. Tt seemed useful to write the chapters in parallel
because of their importance for what follows. Actually, the reader already ac-
quainted with the methods of quantum field theory, and only interested in the
temperature diagram technique, can start his reading here.

95
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The description of the diagram technique in the previous chapter does
not permit us directly to generalise to the case of finite temperatures.
A diagram technique can only be developed at finite temperatures for
speeial quantities — the temperature-dependent Green functions, which,
instead of depending on time like the Green funetions eonsidered earlier,
depend on a fictitious imaginary “time” ¢ 7, varying from — ¢/7 to zero
(Matsubara [30]).

Matsubara’s method, like the technique at absolute zero, does not
evaluate the thermodynamic funetions themselves; instead it finds the
above-mentioned temperature-dependent Green functions @ (r, 7). Any
term of the perturbation theory series for the latter is deseribed by the
appropriate Feynman diagram, and is evaluated in aceordance with the
Feynman rules: each line of the diagram is associated with the tem-
perature Green function for a free particle & (r, 1), each vertex with
an interaction operator, and so on. The only difference as compared
with the 7 = 0 case is that, instead of integrating over a time ¢ from
— o0 to oo, we integrate at each vertex over 7 from 0 to 1/7.

The temperature-dependent Green function occurring in the diagram
technique at non-zero temperature is defined as

®¢xﬁ (fl, Ty ¥o, 72)

—Tr [e(ﬂ+MN —H)|T e(H_MN )(fx—fg)wa (rl) e—(H—MN )(rx—fa).y);- ("2)] , T Tyl

+ Tr [e(!? +uN—H)|T e—(H—uN )(fl—T:),(p;‘ (rz) e(H—uN)(fx—f:) Y (rl)] y T < Ty
(1L.1)

Here vy, (1), p.(r) are the Schrodinger operators of the system, and the
plus (minus) sign refers to the case of fermions (bosons). The operation Tr
denotes taking the sum of all the diagonal matrix elements. The sum-
mation is carried out both over the number of particles in the system
and over all the possible states of the system for a given number of
particles. Henee & is by definition a function of the temperature 7' and
the chemical potential p. The £2 oecurring in (11.1) is the thermodynamie
potential in the variables 7, V, u(d2 = — SdT — PAV — Ndy). Re-
member that the operation Tr [exp (2 + uN — H)/T ...] is the usual
grand ensemble average; we shall often denote this by {- - ->.

The temperature-dependent phonon Green function ® is similarly
defined:

D(ry, 745 13, 7))

B { _ Tr [6(Q—H)IT6H(11—‘12)¢ (rl) e—H(fl—f:)q) (rz)] , Tl > 12 N (11‘2)

—Tr [e(ﬂ-*H)l T g Hm—) @ (1) et @ (’1)], 7, < T,

where @(7) is the Schrodinger operator of a phonon field.



TEMPERATURE-DEPENDENT GREEN FUNCTIONS 97

It follows at once from the definitions (11.1) and (11.2) that the tem-
perature-dependent Green functions depend only on the *“time” dif-
ference 7; — 7,. If the system is isolated and homogeneous, they are of
course only dependent on the differences between the spatial coordinates:
& = @(r; — 1y, Ty —T,). G(7) is a discontinuous function of 7, with a
discontinuity at the point 7 = 0. The size of this discontinuity can be
found directly from the definition. For the case of fermions, we have

®(1) — (=) |rsyo = —Tr{e Ty (r)yy (o) + 97 (rDpalra)]}
or, using the commutation rules for y and y™+,
A® = — 8,50(r; —13).
The discontinuity of the boson G-function is equal to that for fermions.
Expressions (11.1) and (11.2) can be written in s form analogous to
the definition of the Green function at absolute zero. This is done by

introducing the “Heisenberg” operators of the particles, dependent on
the “time” 7, through the equations(¥)

alr, 1) = eF Dy, (e @D,

Falr, 7) = B Dyt (1B, (11.3)
F(r,7) = eBg(r)ea,

With the aid of these, the unwieldy expressions (11.1) may be written
as (cf. (7.1) and (7.14)):

B op(ry, 715 15, Tg) = — Tr {e(m-"ﬁ—ﬁ":p T, ("7’04(’1: Tl)—‘r/}'ﬁ(rw Tz))}

= <T‘t (’7)04 (rl’ Tl)@_ﬁ(r% T2))>'

The symbol 7', in (11.4) denotes the operation of 7-ordering already
familiar from the previous chapter. The operators under the sign of the
T -product are arranged from left to right in order of decreasing “time”
T (we give the T-product symbol an index 7 in order to distinguish it
from the temperature 7'). Recall that, in the fermion case

(11.4)

T (p1ye- - ) = Opi, 9, -
where the operators p are time-ordered from the right, and dp is equal
to 4+ 1 or — 1, depending on whether the permutation

1,2,...> 4, 0,...
is even or odd. In particular,
T.[(p09(2) = §1%(Q) 71> T,
T. (@)% (2) = —F(P(D), T < Tg.

(1) Notice right away that yp and p are no longer Hermitian conjugates of each
other.

QFT. 7
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Many-particle Green functions may be defined in Matsubara’s method
by similar relationships. For instance, the two-particle temperature-
dependent, Green function is

Gapipa(L, 25 3, 4) = — (T, (7. () 95(2)%, (3)%5 (). (11.5)

The extension to the case of Green functions depending on a large number
of variables is obvious.

In principle, the @-functions determine all the thermodynamic pro-
perties of the system. If we use e.g. the formula

N=+4 [ G,u(r,7;r, 7+ 0)dr, (11.6)

which follows at once from the definition of ¢ and the relationship
N= f ¥ (1) w,(r) d3r, we can find the number of particles in the system
as a function of its chemical potential u or alternatively, by solving
(11.6) for p, the chemical potential as a function of the temperature and
the density # = N|V. If we then integrate the familiar thermodynamic
relationship &f/én = u(n,T), we can find the free energy f(n,7) per
unit volume.

If there are only binary interactions between particles in a system,
described by the Hamiltonian

1
B=—g [ v pandr

1
+ 5 [ [ Endropd (n)yf (1) Un — rdpp(radya(n),

its energy may be expressed in terms of the two-particle temperature-
dependent Green function:

\
By, Ty =y =F 517; [ 7.8, 2)l,1=,,+0d3r1

Ty=17y

1
_? f U(rl - 1'2) ®tIxIﬁ;ﬁtx(1’ 2; 37 4) Ta=TaTy=1y d3r1d3r2.

Ta=74+0,74=7,+0

7,=73+0

We shall later give a further series of relationships between the tempera-
ture-dependent Green funections and the thermodynamic functions.

The range of problems that can be solved with the aid of the tempera-
ture-dependent Green functions is not confined to thermodynamics.
The Green functions determine various correlation properties of a sys-
tem, including, in particular, those that make their appearance in the
interaction of condensed solids with neutrons, X-rays, and so on. For

example, the two-particle Green function is connected by an obvious
relation with the density correlation function

F(r,r;) = n(r)n(ry) = (7'1)’/)“('1)"/)3_ (ra)wp(ra)d,
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which determines the elastic scattering of X-rays and neutrons. We shall
also establish in the following a connection between the temperature-
dependent Green functions and corresponding time-dependent quantities,
which enables us to study various kinetic phenomena.

We now note an important property of the temperature-dependent
Green function . As already mentioned, it is a function of the “time”
difference 7, — 7, = 7, and as such, is given in the interval —1/T to 1/T.
Let us carry out a cyclical permutation of the operators under the trace
sign ({) in expression (11.1) for G(z < 0):

G(r < 0) = + Tr {e.Q/T e(ii—pﬁ)rw(rl) e—(ﬁ—nﬁ)(r+1ll’)w+ (rs)}
= L Tr {e(ﬂ+ﬂN—H)lTe(H—ﬂlV)(f+llT)y)(rl) ¢ E—r D UD o (e ) (11.7)

On comparing (11.7) with the expression for § when 7 > 0 and observ-
ing that 0 <7+ 1/7 << 1/T when 7 << 0, we get

1
ST < 0)=:l:@5(f+7), (11.8)
relating (¢ at negative “times’ with its values for v > 0. Of course,
1
D(rz<<0) =D ('r + -j,—) . (11.8a)

Another useful relation follows from the obvious fact that the ®-
function of a phonon is real (the operators ¢ (r) are real!). Let us evaluate

D*(r << 0) formally:
Dz < 0) = D*(z < 0) = — Tr{e™Tp(ry) X p(r)e e HI7}.

On comparing the expression obtained with ®(z > 0), we arrive at the
conclusion that the temperature-dependent phonon Green function is
an even function of :

D(r) = D(—7). (11.9)

This statement holds for the Green function for any real field.

2. Temperature-dependent free particle Green functions

In perturbation theory as based on the diagram technique, an impor-
tant role is played by the Green functions for free particles. If there are
no interactions, the statistical averaging in (11.1) is performed inde-
Pendently over the state of each individual particle. The energy levels B,
of the system (and with these the thermodynamic potential £) can be

(t) That such a permutation is possible follows at once from the definition of

the trace of the matrix of a product of several operators:
Tr(ABC...DF)= X A4,B,Cy,...D,F,
L

= X BuCun-..DpyFpdy = Tr (BC ... DFA).

£,K,...

ad
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expressed as sums of the energies of the individual particles with given
momenta p and spin o:

0 __ wv — v
Eit _;’:TxnpaEO(P)i 'QO_S’-‘;QM'

Because of Pauli’s principle, the occupation numbers of the states can
only take the values 0 and 1 in the case of Fermi statistics.

Definition (11.1) is the most convenient one for evaluating the Green
functions of free particles. We substitute in this the Fourjer expansions
of the Schrodinger operators :

1 'I .r 1 -
P = o B a0 )= e,
We have:
1 ;i .
Q> 0) = —7 p:_'ze"(Px'ﬂ)—'t(p,-r.)

x Tr {e(9o+ #N—H)T ,v(Hy—pN) Op e—i(H o—#¥) a;-,ﬂ

On observing further that the Hamiltonian H has the form
0 = ) £ N = za
(1 N— Fm pu O(P ) s po
in the momentum representation, we can easily prove the identities
" (Ho—uNN) O e THoeeN) s e—r(eo(p)—it),

) (11.10)
T(N o"‘I‘N )] a+ —T(Ho—'I‘N ) — “; e‘t(sn(P)—I‘) ,
o

simply by evaluating the only non-zero matrix element on the right and
left-hand sides. Hence

B> 0) = — L 3 (fPerI—itprr—rep—s)
P1py

X Tr {exp(Qy + uN — Hy)[T)a,, . a s}
The product a,,, a;,: s has non-zero diagonal matrix elements only when
Dy = Py, o0 = f, so that

1 o ipr—
@5(;2 (rl — 1T > 0) [ 6“ﬁ —Tf ‘:T‘ e‘i(l’ 4 f:H(En(P)—F)<apaa;‘“>.

The quantity (a,,a,.> is expressible in terms of the equilibrium occu-
pation numbers n(p), which depend on the temperature and the chemical
potential. For particles obeying Fermi statistics,

(Upatipgy =1 —n(p),  n(p) = [PIT L1717 (11.11)

for bosons,

(Opatped =1 +n(p),  n(p) = [exp{e®P M} 117", (11.12)
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‘We now let the volume V of the system tend to infinity and change
from a summation over the momenta to an integration in the usual
way. We finally get:

GQ(r, > 0)= “,,(2 g [ @per (1 T (p)), (11.13a)

where the upper (lower) sign corresponds to fermions (bosons). We can
most easily find B@ for T < 0 by means of equation (11.8):

GQr,r<0)=F “”(rr—l— )

=4 a“ﬁ(z—n . [ @pelPredpy (p) | (11.13D)

The Green function for free phonons is similarly evaluated. On sub-
stituting in (11.2) the Fourier expansion of the operator ¢(r):

1 /) ) i s
o= 3 0 e e,
where wq (k) is the phonon energy, we find after the necessary calcu-
lations:

D, 7) = [ e (k){(IV (k) 4 1)en o

2(2 2(27)°
+ N(k)En—e®iN (11 14)
N (k) = [e»™T — 1772,

D@ is an even function of 7, in accordance with (11.9).

§ 12. PERTURBATION THEORY

1. The inferaction representation

If the particles in & system are not free, we can transform in the ex-
Pression for the temperature-dependent Green function to a special type
of interaction representation, similar to the interaction representation
of quantum field theory (Matsubara [30]). We introduce for this purpose
the matrix &(r) (0< 7< 1/T), the analogue of the S-matrix of field
theory; it is defined by

—T(H—FN) — e——r(H I‘N)@(T)
(12.1)
'r(H—pN) . @_1 (T) et(H ptN)
We also introduce the opcrators of the particle field in the interaction
representation:
w(r, ) = eT(H ) (r)e—r(H ;tN)
(12.2)

(1, 7) = eT(Ho_f‘N) + (r)e —Y(Hn—IlN)



102 DIAGRAM TECHNIQUE AT FINITE TEMPERATURES

which are the same as the Heisenberg operators mentioned in § 11 when
H = H,,
The other operators in the interaction representation are defined in
analogy with (12.2). In particular,
H (r) = ef(flo—itﬁ) H e—‘t(fl.,—nl'\i') ,

[Iint (r) = PUU o) Hint e—'r(Hn—IlN )

It follows from this definition that the operators H (), I':/,M (z) are ob-
tained from H, flw when the y(r), y+(r) are replaced in the latter by
w(r, 7), p(r, T) respectively.
Notice also that I;To (7), N (7) are in fact independent of ¢ (the Hamil-
tonian of frec particles commutes with the operator N ):
Hy(r) = oFHeuN) Hoe—r(ﬁo—uﬁ) =,
Nz) = e Hiul) fy —HeF)y _ {7
The matrix &(z) satisfies a simple equation which only differs from
the corresponding equation for the S-matrix (6.17) in that ¢ is replaced

by — ¢z. We shall derive the equation afresh, however, by differentiat-
ing the first of equations (12.1) with respect to z:

—f — p By = B OO0 g e g ).

On multiplying both sides of this by exp T(HO ——,ulv ), we get

2 .
——681(’) = —H,,(" G (). (12.3)

The solution of (12.3), satisfying the condition &(0) =1 (which is a
consequence of the definition of &), is

S(r) = T, exp { — fﬁw(r’)dr’} . (12.4)
0

The symbol 7', in (12.4) denotes, as already remarked, that all the oper-
ators must be arranged from left to right in order of decreasing 7. We
can easily prove (12.4) by direct differentiation, if we bear in mind the
meaning of the operation 7T',.

We shall consider, in addition to G(r), the matrix &(z;, 1,) (1 > 72):

S (19, 7o) = T, exp {— f H,-m(-r’)dt’} ,
&(r) = 6(1, 0).
This matrix has a number of obvious properties:
Sty 73) = ©(1y, T3) E (T, T3) (T > 1> 13),

(12.5)
B(1y, To) = G(11) & Hzy) (T3 > 7o)
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We now turn to the interaction representation in expression (11.1)
for the Green function; we have, on expressing all the exponents con-

taining H in terms of H, and €:
. - 1 i
G(r>0) = — " Tr {e"p [— (2, —p ) T] & (?) &7 (my)e TP g (ry)
X e—(ﬁo—-l‘ﬁ)fx e (Tl) @—1 (72) e(ﬁo—ﬂl\f)f.w+ (rz) e—(ﬁu—ﬂﬁ )7y e (12)[ ,

or, on taking (12.1) and (12.5) into account:
(x> 0) = — " Tr {eXP[—(Flo—um/Tl@ (‘;? n)

Xp(ry, T1) S (11, T)P(1s, T2) S ('rz)}. (12.63)

We can write & for 7 < 0 in a similar way:
N - 1
Gt <0)=+TTr {BXP [—(Hy—pN)|T]E (*1—1, Tz)

X (g 73) & (Tp T)P(11 73) @(rl)} . (12.6b)

Expressions (12.6a) and (12.6b) can be combined into the single
formula:

8r) = — {exp (= —u )71 T ["P(rl’ T)P(r, 7)) © (_117)]} ’
(12.6¢c)

which follows immediately from the definition of the 7'.-ordering and
(12.5).
It now remains for us to transform e?”. We first notice that, by
definition,
T Ty {e—(z?—pN“)/T},

whence it follows immediately that
e T Ty {exp [—(H, — ulyT18 (—1{,—)} .

The expression for § in the interaction representation may finally be
written as

@G (ry, 7y; 12, Tg)
) _ 1
Tr {exp[—(Ho —u)T] 7T, ['y)(rl, T)p(re. 7) S (—T—)]}

Tr {exp (A, —ulN)TIS (71;)}
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or, if we bring in the symbol of ensemble averaging over the states of
the system of non-interacting particles,

Ty (rpT) P (1 T2) B
(&> ’

. 1
¢ =Tr fexplQotpNo—HITH 6= (7). (128)

& (1, Ty5 19, Tg) = —

(12.7)

By an exact repetition of the above manipulations, we can find express-
ions for the phonon Green function and the many-particle Green func-
tions in the interaction representation. The phonon Green function
becomes

TA(p1
<&
whilst the two-particle Green function is
T.(y(1 p(3)y
(&%

The formulae for Green functions depending on a large number of var-
iables only differ from (12.7), (12.9), and (12.10) in the number of y-
operators under the 7-product sign.

We conclude by mentioning the relation between the thermodynamic
potential Q and the & matrix:

Q =0, — T In (&. (12.11)

Here £, is the potential £ when interactions are absent:

Qy = — TInTr{exp[—(H, — pN)/T]}.

(12.10)

2. Wick’s theorem

We now return to our fundamental problem, the evaluation of the
Green functions of systems of interacting particles. If the interactions
between the particles can be assumed to be weak, the expressions for
the temperature-dependent Green functions in the interaction represen-
tation enable us to write the perturbation theory series in powers of

-~

H;, in a particularly compact form.

The interaction Hamiltonian appears in the Green function only via
the & matrix. On expanding the exponent on the right-hand side of
(12.4) in powers of f]w (T), we get:

yr 1 uUr yr . R
G=1— Of Hm(r')dr’—l——z— of of dv' de”’ T, (H;py (7)) Hyy (7)) — - - -
o (__1yn UT yr
= Z (=1) f e f dry - - - dtnT‘t(Hint(Tl) T Him(fn))- (12.12)

= A 0
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On substituting this expansion in the numerator of (12.7), we get the
perturbation theory series for the Green function

1 (— 1),, yr yr
Gop(ry, Tys T, Tg) = (&, Z’ 6[ .. 6[ drgy, - - - dy

X<Tr(’/)a(7'1, 71)’/)5("2: 72) H,, (Tay - - - Ay (T(n)))>ox (12.13)
the first term of which is of course, the same as the free Green function
GO = — (T, (p(1) p(2)))y evaluated in § 11.

We shall not expand the @ matrix in the expression {(&),in the denomi-
nator of (12.13), since it cancels with the same factor in the numerator.
Moreover, (&), is & constant, independent of r, 7, and cannot make any
appearance in further calculations.

In all practical problems H,,(t} is the product of a (usually quite
small) number of operators y(r, 7), ¥(r, 7) (and possibly ¢(r, 7)), inte-
grated over the spatial variables. The problem of evaluating the Green
function from perturbation theory therefore reduces to evaluating the
average of the 7-product of a number of operators y, taken at different
points of space and “time”:

(Tr(%(f: 7). y)a’(r" T)-- ')>0‘ (12'14)
We have already encountered a similar type of problem in the previous
chapter, when evaluating the ordinary Green functions at absolute zero.
It was shown there that the average of any number of operators reduces
to the sum of the products of all possible paired averages, these latter
being equal by definition to the free-particle Green functions (Wick’s
theorem). As we shall see shortly. the situation is similar in our present
case.
What we do is replace the operators  in (12.14) by their coordinate
Fourier expansions ()

1

p(r, 7) = = 3 a,(v) PP,
. (12.15)
(f, T) V—_ 2 a (-r) e""‘([’ f)+1(50(l’)—l‘)
v

The apy(r) and af (r) in (12.15) are ordinary annihilation and creation
operators and are in fact independent of 7. We retain the t, however,
to denote the place that the operator must occupy in the 7-ordering.

After substituting expansions (12.15) in (12.14) and getting rid of the
exponents we get

s s
e R R
e KT, (1) A, (T3) « - - 055 (27 gk (25) - - ). (12.16)

(f) We can most easily verify (12.15) by using the definition of the operators
in the interaction representation and the identities (11.10).
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The only non-zero terms in the sum over p,, ..., p;, ... are those con-
taining an equal number of creation and annihilation operators referring
to the same momentum. In particular, the non-zero terms include those
that contain only one crestion and one annihilation operator with the
same momentum; thus the term

7S e e @ ) 0217

P1FED~

is non-zero, along with the other terms that differ from (12.17a) by a
permutation of the momenta p,, p,, . -. in the operators at.

When there are several (e.g. two) creation operators with the same
momentum, the corresponding non-zero terms in the sum are of the form
T DT ) an (e ) - (), ) () Do

P Daret (12.17Db)
Expressions such as (12.17a) have a distinctive feature as compared
with the rest, namely, the number of factors 1/V in (12.17a) is the same
as the number of summations, whereas the former number is always
greater in the other terms. Supposc now that we have alrcady carried
out the averaging {: - -), and that we let the volume V of the system
tend to infinity, whilst maintaining the density of the number of particles
NV constant. (The sums are now replaced by integrals according to
Vy...—> (2n)—3f. ..) In the limit, as V —oo, the sum (12.17a),
when expressed in terms of integrals over the momenta of the diffe-
rent combinations of Fermi or Bose functions, remains finite. (We
have already encountered an clementary example of this kind in § 11,
where we found the free Green function G@ = — (T {p(1) v(2)})¢.)
On the other hand, in expressions such as (12.17b), apart from the
integrals over the momenta, a certain number of extra factors 1/V
remains, with the result that these cxpressions vanish as V— oco.

Therefore, the only remaining terms in the sum in (12.16) when ¥V — oo
are those of the form (12.17a), in which all the creation (and annihilation)
operators have diffcrent moments. This means that, when evaluating
(T {ap, (1)) ap,(T5) - . . af(r) ak (r3) . . .}>y we can in practice average
each pair of operators a,. af, independently. The mcan value of the
T-product of a large number of operators may now be cxpressed as the
sum of all possible pairwise averages. For instance,

(Tefap, (T ap, (T ag; (1) g (r)} o= T lap, (1) (2P0 (12.182)
X KT {ap, (Ta)ag; (1) Do F (T {ap, (r1) ay; (11010 T, (7o) @ (Te)} 0
(the minus (plus) sign for Fermi (Bosc) statistics) (f).

(1) It can be shown that this is the case also for averages of T -products of
several ap and af with the same momenta (as in (12.17 b)) excluding the operators
ay and a7 for a boson system below the condensation temperature (p. 108). The
proof will not be given herc.
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In the coordinate representation form, these results mean that the
average of the 7-product of a number of y-operators splits into the
sum of products of all possible pairwisc averaged operators p, p. In
particular, we have instead of (12.18a):

(T Ay (r 1) (12, T)w(ry, 1) 9 (7 ) o

1 - 1 [ I I
Y oexpil(py- 1) + (P2 1) — (P10 1) — (P2 T9)]

BRE DoDip1Ds
Xexp[—1,; (30 (py) _,“') —T2 (30 (P2) _ﬂ)] exp [T; (30 (py) _,“') +12 (50 (P2) _,“')]

X <Tr {a'pl (Tl) apa (12) ap-; (T;) a':)_; (T;)}>0

1 « - ’ r r r
= Vp-}:, exp [i(Py- 1) — (P2 Ta) — 11 (g0(Py) —p) + Tz(EO(Pz) _I‘)]

’ —l- - r ’
X{T{a (T1) a&(fz)»o 79—,‘7; exp[i(ps- ro) — 1 (Py- 1) — To(gp(P2) — 1)
+ 71 (g0 (P1) — )1 < T {ap, (z) aff: (2) Do

1 - . ’ r r r
+ Vp.%,("xp (E(Py- 1)) —3(Py- 1) —Tal(ee(Ps) — p) + T1(g0(PY) —y)]

[ l 3 . ’ 1
><<T,{a,,l(fl)a;§ ()P VD.E,eXP ((pa- 1y) — 2 (Py- 7o) — To(Eo(P2) — 1)
+ T; (30 (P:’.)_ H)] <Tz{a‘p, (Tz)a'gi (1'2)}>0
= (T {p(r;, T])’/’(";’ T;)}>0 (T {p(re )y (1), T;)}>0

F LT p{(ry, )9 (13 T)o (T {p(re, T 9 (12 T}, (12.18D)

Similar relations also hold for a larger number of operators.

Apart from the sign, the averages on the right-hand side of (12.18h)
are the same as the temperature-dependent Green functions of free
particles. When evaluating the temperature-dependent Green functions
we encounter, thercfore, the same situation as was found in the absolute
zero case. As there, an expansion (12.13) holds for the Green function 64,
which has the same form (apart from the factor i* and the limits of
integration over t) as the cxpansion (8.9) for the function G. As earlicr,
we can evaluate the averages (T,(...)>, appearing in (12.13) by using
Wick’s theorem, according to which these averages can be expressed in
terms of the averages of pairs of creation and annihilation operators.

Notice that there is no concept of a normal product in the technique
described. Wick’s theorem holds only for the averages, and not for the
T-products themsclves.
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If we use Wick’s theorem to write out any term of the series (12.13)
and replace {7'.(y, ¥)>o by the free Green function

@f,‘}a’(ﬁ — Ty, Ty —Tp) = — <Tz{%z("1’ T1)'/7ﬂ(’2’ 72)}>o,

we arrive at an expression which has precisely the same structure as the
corresponding series for 77 = 0. This enables us to describe the different
approximations of the perturbation theory series with the aid of the same
Feynman diagrams as we used in the previous chapter. The only rules
affected are those for associating specific expressions with the different
parts of a diagram. In our present case each line of the diagram has to
be associated with the temperature-dependent free particle Green func-
tion B instead of with G, whilst the integration over time from — oo
to oo at each vertex of the diagram is replaced by an integration over
the imaginary “time” 7 from 0 to 1/7.

We have so far tacitly assumed that, when the volume of the system
tends to infinity (with a given density), all the free particle Green func-
tions and their integrals remain finite. It was on this basis, in particular,
that we neglected terms of the form (12.17b) as ¥V — oo, and were thus
able to formulate Wick’s theorem. The situation changes substantially
in the case of a system of Bose particles at temperatures below the con-
densation temperature 7, and in Fermi systems possessing superfluidity
properties.

In the case of a Bose gas at T << T, the creation and annihilation
operators of particles in the zero momentum state are proportional to
the root of the volume:

toreat T VT,
so that the terms of type (12.17b) remain finite as ¥ - oo and moreover do
not satisfy Wick’s theorem (see footnote on p. 106). A similar situation arises
for Fermi superfluids. In both cases it is a question of using special tech-
niques, which will be described in separate chapters (Chapters V and VII).

We now turn to the case when the ordinary diagram technique is
suitable. Just as in the previous chapter, the diagrams for the Green
functions have two external lines; one of them starts at the point ry, 7y,
corresponding to the coordinates of the operator y,(r, 7;), whilst the
other ends at the point r,, 7,, corresponding to the coordinates of the
operator yg(ry, T,). As before, the diagrams for & can be split into two
classes — connected and unconnected. It can be verified, by means of
exactly similar arguments, that taking into account the unconnected
diagrams leads to cancelling the denominator in (12.7). We have thus
for the @&-function:

Bty 715 T T2) = — (T {ya (11, T) p(re, T2) €1, (12.19)
where {- - -}, denotes taking into account all the connected diagrams.

Since our discussion has made no use whatever of the fact that the
number of external lines on the diagram is equal to two, it will still
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hold for many-particle Green functions. We can omit the (&) in the
denominator of the relevant formulae (of the type (12.10)) and consider
only the contribution of the connected diagrams when evaluating the
averages.

As in the previous chapter, each diagram enters into the series for &
with a coefficient of the type 4™, not essentially dependent on the order
of the diagram. This fact is extremely important when summing infinite
sequences of diagrams.

§ 13. THE DIAGRAM TECHNIQUE IN COORDINATE
SPACE. EXAMPLES

The main result of the last section was to establish the fact that the
ordinary Feynman diagram technique can be used for evaluating the
temperature-dependent Green functions. The chief element in every
diagram is the line representing the Green function for a free particle
or 2 phonon. As in the previous chapter, we represent the Green func-
tion for a free particle by a full-drawn line (Fig. 32); the arrow indicates
its direction: the line “departs” from the point with coordinates r, 7,
and spin «, (this point corresponds to the operator y in the definition
of @-function) and “‘enters’ at the point r,, Ty, ory (it corresponds to the
operator ). The coordinates of the point of “departure’ are written to

-

r

7.59.% Z20% L.L.4 2. 5.%
(@) (b)
L I z
Vil d 4
(c}
Fig. 32

the left in the argument of the Green function, the coordinates of the
“entry” point to the right. For instance, the line in Fig. 32a represents
the Green function

GO (11,715 1o, To) = B, (1, — 10,7y — 7o),
and in Fig. 32b the function

@21(,("2, To; 11, T1) = @g‘,("z — 1, To—Ty).

We shall represent the phonon Green function by a dotted line
(Fig. 32¢). We do not need to indicate the direction on the phonon line,
since, as we saw in § 11, 9@ is an even function of r, — r, and 7, — 7,.

The integration is over the coordinates of the points of intersection
of the lines — the “‘vertices”: over all space with respect to r and from
0 to 1/T with respect to 7. Summation over the spin variables is also
carried out at the vertices.
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The actual form of the diagrams depends on the type of interaction
between the particles. The diagrams are drawn by using Wick’s theorem,
in accordance with which the average of the 7T-products of several
operators appearing in the perturbation theory series for the Green
function (12.13) is represented by the sum of the products of paired
averages. These latter are connected with the free particle Green func-
tions by the following relations:

(T {palry, 1) ys(re, T2} = — @52‘3(r1 — 15 Ty —Tg),
<Tt{¢ﬁ(r2’ T)Palry, 7)) = & @ﬂfg(fl — Ty — Ty)

(the plus (minus) sign for fermions (bosons)).
The average of the product of two phonon operators can be expressed
in terms of @©:

T Ap(rnT)e(rs w)}) = — DO(ry — 1y, 1y — 7). (13.2)
Let us take the different types of interaction.

(13.1)

A. Two-particle interaction. Let binary forces described by the poten-
tial U (r, — ry) act between the particles. The Hamiltonian H,, is, in the

interaction representation,
~ 1 _ _
Hip(z) = '2__[ f d®r d3"2’% (1 D)y (re, T) U (ry — 1) py(rs, 7)y,a(ry, 7)-
(13.3)

It is convenient to introduce instead of the potential U(r; — ry) a po-
tential B(r; —ry, 7, —71,), dependent on the ‘“‘time” 7, through the
formula

Bry — 127 — 1) = U(ry — 1) 0(7; — 7). (13.4)

Using (13.4), we can write (12.4) for the & matrix in the symmetric
form:

1 _
@ =T, exp {—Eff ds"1d3"2d71d72'l'ﬁ("2, 7o) Pulry, T1)

XB(ry — 15, 7y — To)Yp(rs, o) P, (rys Tl)} .

Let us find the first order approximation in U to the Green function.

We have(¥):
1 _ _
@g‘lﬁ? (z—y)= Pl f f d4z1 d422<T T {Wa(f”) V'ﬁ(y) B (2, —29) ¥, (21 ¥y, (29)

Xy, (2) 9y, ()} - (13.5)

(T) Throughout the rest of this section we shall use Latin italic type to denote
the set of four variables z = (r, 7). For instance, &(x —y) = &(x — ¥, 7, — To)»
d%x = d%r dr.
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It follows from Wick’s theorem, that {---) can be written as the sum
of the following four terms:

T, {'P (x)"/’ﬁ(y)» <{'py1(21)"/’y1(21)}> <{7/;yg (22)1/’7, (z2)}> (I
F AT fpa @)y ) <9y, 22w, (201 {1, (2) 9, (221, (IT)
(T {ya (@), @)D T {p, @) v D v, G v, )}, D)
F AL {w.2)p, ) vy, 2w, @D (T {p, @) v )P Iv)

together with the two terms that are obtained from (III) and (IV) by the
substitutions z; — 25, 9; —> 5. The contribution of these latter to integral
(18.5) is evidently the same as that of (I)—(IV), which simply leads to
the disappearance of the 1/, in front of the integral.

On replacing (7.{---})> by the Green functions G in accordance
with (13.1), we find that the first order approximation is the sum of the
following four expressions:

—@D (= —y) [ [d2d%6D, (0)B (2, — 2) G2, (0), (I)
+BQ@ —y) [ [d'%2d%260 (2, —20) B)), (22 —2,) Bz, —20), (ID)
+ [ [ d%2,d%, 8D (x —2,) X% (2 —y) GO, (0) B(2, — 25), (I11)

— [ [ Q' d%, B (x —2;) B, (2 — 25) BX) (2, — 9)B (2, —2) . (IV)

Notice that we always take G®(r; —ry; 0) as 7— — 0.

We shall represent the function 8B (z; —z,) by a wavy line on the
diagrams. We can now associate the diagrams of Fig. 33 with expressions
(I)—(IV). Diagrams I, IT are of the unconnected type described in the
previous section. We showed there that their contribution is to be neg-
lected when evaluating the Green functions.

A contribution to the first order P
approximation is thus only supplied by O\NV\@ 4@4
diagrams ITI, VI, together with the _
diagrams that differ from these in a < 7 4 s ¥
commutation of the coordinates of the
vertices z;, 2,. It will be recalled that
such diagrams are termed topologically ‘-"J\"l
equivalent; all topologically equiva- = Z y T4 %
lent diagrams give the same contri- “z Fig. 33

. 2.
bution.

It should be noted that the expressions corresponding to diagrams III
and IV have opposite signs in the case of Fermi statistics. This is con-
nected with the presence of the closed loop in diagram ITI. It can be
shown for a diagram of any order that any closed fermion loop (not
necessarily formed from a single line, as in the present case) enters into
the relevant expression with the “minus” sign.
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We now state the rules by which the correction of any order may be
evaluated:

(1) First of all, all the connected topologically non-equivalent dia-
grams with 22 vertices and two end-points must be drawn; two full-
drawn and one wavy line meet at each vertex.

(2) Every full-drawn line of the diagram is associated with the par-
ticle Green function BQ(x —y) (x, « are the coordinates of the begin-
ning, ¥, B the coordinates of the end of the line).

(3) Each wavy line is associated with the generalised potential
B(x — ).

(4) Integration is performed over the coordinates of each vertex z
(d%2 = d3z dr) and summation over the spin variable «.

(5) The expression obtained is multiplied by (—1)**¥, where = is the
order of the diagram, and F the number of closed fermion loops in it.

(6) If Green functions of the same time arguments ®(®(0) appear in
an expression, they are to be regarded as lim0 GO, — 7y, —1).

T4
-2'414.!/ z & 44]"45’
72
21
? 4
T g & 2z r z
T4 g Y z 7

&
N
5]
&N
&N
X
B
N
N J\N\@
N
&N
&

Fig. 34

Let us consider the second order correction. All the possible topolo-
gically non-equivalent diagrams with four vertices are illustrated in
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Fig. 34. Using rules (1)—(6), we can easily write down the expressions
corresponding to these diagrams:

f d421 d422 d4z3 d4z4 @&'3. (x —2) & (2, —29) @ﬁ‘y% (22 —v)

¥z

X B (2, — 25) B (22 — 24) GD (0) G2, (0), @
f d421 d4z2d4z3d4z4 @‘993, (x—2) @522;, (2y —2) @522;, (29 —25)
X OO (25 —2,) B0 (2, — ) B2y —25) Blzg —2,), (1)

+ f 'z, A2, A%, d"2, O, (x — 2)) O, (21 — 25) B, (22 — 23)

&Y

X B (25 — ) G, (0) B (21 —2,) B(22 —25), (TIT)
f d421 d4zz d4z3 d4z4 @ﬁf’y’, (x —2) @g,%(% —¥) @5‘7‘3, (22 — 23)
X @593, (23 —29) @;2;.(0) B (z; —22) B(zg —24), (Iv)

f 'z, d*2, A%, A%, O (x —2,) B, (2, — 20) B, (22 — 25)

&Y 1Yz Ve¥s

X G (25 — 24) BTh (24 — y) B2, —20) Bz —25), V)
+ f d421 d4z2d4z3 d4z4 @g;;)l (x—2) @5;?;):2 (2, —29) @s:,),, (29 — 23)
X O (25 — y) B, (0) B(z; — 2) B2, —24) » (VI)

F [ d%2,d%,d%5d%, 85 (x —2,) B0 (2, — ) B, (25 —25)

oY1

XG0 (25 —2) O, (24— 29) Blzy —2) B(zs —24), (VD)

f d4zld4z2d4z3d4z4 (@55,‘.‘,0)1 (x —2;) GO (2, —20) @O (7o — 25)

VP2 V2V3

X G0, (25 —20) Oh(zs —y) B2, —23) Bz, —2,),  (VII)
F f d*z, d*%,d%z,d%, @5&01?1 (x —2;) GO (2, —2,) @g,%(zz —9)

"¥e

X G0 (25 —2) B9, (24 — 25) B2y — 25) Blee —24),  (IX)

F [ d%2d%,d%,d%, GO (x — 2,) B, (2, —25)
X @;(:,),9 (22 —25) @y,ﬁ (73 —¥) @ym(o) B(2) —29) B(23 —~24). (X)
Perturbation theory for the case of two-particle interactions can be
given another more symmetrical form, which proves particularly con-
venient, when the forces acting between the particles depend on the
spins as well as the distance. The Hamiltonian of such an interaction is

N 1 _ _
Bip(0) =+ T @ Brofp(ry, O G310 1) Ugos, (11 — 1), (o, T (13, 7).

(13.6)

We write the integral
T

Of H,,(r)dr,

QF.T. 8
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appearing in the expression for &, in a form symmetric with respect
to all the variables:

1 ur T .
Zd[ d[ dTl"'dT4f"'fdrl"'dsrzfﬁh(rn'ﬁ)1/772("2,'[2)

(C; .
X (7—'}’1')}’:;'}’3'}’1 (rl’ T1 rz’ Tg; I3 Ty, r4:’ 14) w-h (,'4, 14) W'h(r:;’ 13) ’

or, introducing a ““four-dimensional’’ notation,

1 _ _
vy [d'% A2y d23d%%, 9, (21) 9y, (22) T o0y B> 225 230 209y, (20, (25) -
(13.7)

In view of the fact that the operators y, (%), 1,,(25) (or ¥,,(23), ¥,.(24))
anti-commute or commute, depending on the statistics, we can regard
J @ in the case of fermions as anti-symmetric with respect to the per-
mutation z;, 93 2, Ps OF 25, V3.2 Y4 and as symmetric in these
variables in the case of Bose statistics.

The function 7@ thus defined is obtained from

U, v (T1 — 1) 0(11 — T0) 6(r; — 15) O(ry —13)0(ry —1,)0 (1, —1y)

by anti-symmetrisation with respect to the variables z y;, 2,7, (and
25 Vs, 2474 In the case of Fermi statistics, and symmetrisation with
respect to these variables in the case of Bose statistics.

Let us find the first order correction to the Green function. We have

1 4 4, (0
z ) .
n f d%z - - - d%, T }(,m;ym(zl, 295 2, Z4)

XL w2 95 N0, (21) 9y, (22) ¥, (20) 9, (25) > . (13.8)

On applying Wick’s theorem and using the symmetry properties of 7 (@,
(13.8) is easily shown to be expressible as the sum of two terms:

1
—5 GG —y) [ &% - 4%, G0 (5 — =)

X OO (24— 2) T () @1 203 28,20, (D)
— [ &% %2 B0 — 1) T e B 225 700 2)
X Gz — Y) O, (25 —22). (I1)
We shall denote 7@ by a square on the diagram. We can now asso-
ciate expressions (I), (II) with the diagrams of Fig. 3. Diagram I is
unconnected, and its contribution may be neglected. Hence, to the first
order of perturbation theory, we have a single diagram, whose contri-
bution is given by expression (IT).
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To the second order of perturbation theory, there are altogether three
connected topologically distinct diagrams (Fig. 836). The expressions
corresponding to the diagrams may readily be found:

0 0 . (0)
[z Qg G (@ —2)) T (210 225 2, 24) G (24 — 25)

X TO

VsVe3Vi¥s
0 0 . 0;
f le e sz @g‘y)‘ (x - 21) (/C“‘}(’l‘Z’z;'}’aVA (21, Zg5 23 24) @‘f’aé (24 - y)

. 0
X O, (25 —26) &) (27— 20) T (0,0 (25 %65 205 28) By (25 —25), (1)

(255 265 27, 2g) @g,% (23 —¥) @52;, (27 —2¢) @9,),),, (23 —29)5 (I)

1
Ol [ dzy - A2 O (2 —2) T 10,0 (1) 225 25, 24) B, (25 — 25)

X GO

VaYe

(24 — 2¢) G (2p —22) T @ (255 25 27, 2g) @5‘7%(28 —y). (I11)

Yi¥2 VsVesVVs

ZN 1%

z 7 z EARA 4

I y/4
Fig. 35

The correction of any order to the Green functions is found in ac-
cordance with the following rules:

(1) We have to draw all the topologically non-equivalent diagrams,
containing n squares (in our case the topologically equivalent diagrams
include those that differ only in a
commutation of the coordinates
of the square vertices);

(2) each line of the diagram

is associated with the particle
Green function;
7 T

(3) each square is associated
with a function J ©@;

(4) integration is performed
over the coordinates of the square Z
vertices; Fig. 36

(5) the resulting expression is multiplied by m/2", where m is the number
of different diagrams in the non-symmetrised technique corresponding to
the diagram under consideration. The sign is also obtained from a com-
Parison with the non-symmetrised technique.

88
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By using these rules, we can easily write down the expressions corre-
sponding to the diagram of Fig. 37:

1 4 0 0
+ f d’z, - d*z, @o% (x—2) T ,(,1;);5 wave (215 225 235 24) @5‘7,; (25 — 25)

0 (0
X B0 (24— 26) T vy (Zss 263 215 2) B (27 — 29) B, (25 —210)
©

0)
X T e For 2105 2115 Z10) @yl,ﬁ(zlz —96,.,.@n —2).

The rather unwicldy expressions that are
obtained by this technique (their complexity
is to some extent redeemed by their symmetry)
become very much simpler when it comes to
dealing with point interactions described by

Fig. 37
the potential
U, popo(Ty — 1) = 40,505,0(r; —15).
In this case J @ has the simple form:
(7_‘}(’(3’:,'}’:75 = 1(6'}’17: Ya¥a 6'}’1'}’4 6'}’2'}’3) 6 (21 - 22) 6 (21 - 23) 6 (zl _— 24)
= AL, 00,0 (21 — 22) 0(2 —25) 0 (21 — 24).
Due to the presence of three §-functions in J (9, of the four integrations
over the vertices of squares in the expressions for the corrections, only

one remains. This enables us to replace
O the squares by points (vertices) on the
o RGN diagrams. For instance, diagrams II

o of Fig. 36 and III of Fig. 36 are more

Fig. 38 conveniently drawn asshown in Fig.38;
the corresponding corrections are transformed to
—AL‘Vﬂ’z;'}’S}’I f d4z @g‘O) (x — z) @f}’(:)ﬂ (Z - y) @‘(}’(3’: (0) 2 (a)

a2
2 L‘Vl‘Vh‘V:‘}’A VsVesVVs f d421d @(O) (x 21) @'(}’(:‘Z’n (21 - 22)
XG0 —2) B (2o —2) 8}z —y). (D)
The general rules for calculation using this diagram technique will
be obvious from the foregoing.

B. Interaction of particles with phonons. The interaction of particles
with phonons (for instance, the interaction of particles of a liquid with
sound waves or the interaction of electrons in a metal with lattice vibra-
tions) is described by the Hamiltonian

Hepy(7) = g 9,(r, O)pa(r T)@(r, 1) dr,
where g is the coupling constant.

It is easily shown that the only non-zero approximations to the Green
function for a particle & and for a phonon ® are those of even orders of
perturbation theory. (The expressions for the odd order approximations
contain an odd number of phonon operators ¢.) By evaluating the ex-
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pressions for the approximations to the particle Green function §it can be
gshown that they are precisely the same as the expressions for the approx-
imations to & in the first statement of perturbation theory for two-particle
interactions, provided
we replace the potential ___ <:>____ _____ S
B(z; — %) in the latter ) (b)O C>
by 9% DO (2 —2z5). The Fig. 39
approximations will na-
turally be described by precisely the same diagrams as in Figs. 33 and 34.
However, to fix our ideas, we shall represent the phonon Green function
DO by a dotted instead of a wavy line.

The second order approximations to the phonon Green function are de-
scribed by two connected diagrams (Fig. 39 a, b). The expression in the
case of Fig. 39 a is found to be

g7 [ A%, 8%, D% (@ —2,) 6 (z; —25) B (22 — ) DV (2, — ),
and in the case of Fig. 39 b:
g° [ %2, DO (% —21) 6, (0) [ A% D (25 — ) Gg(0).-

It can be shown as in §9 that the expression corresponding to dia-
gram 39 b vanishes. It is this fact that enables us to ignore, in general,
the diagrams whose expressions contain the integral
[®)(z) d%2. These latter include all the diagrams for D
that split into two disconnected parts, each part being

approached along a single external line, as also the 1
diagrams for @ of the type of Fig. 40 (these always con- 'I
tain a part with no external lines, joined to the rest by Fig. 40

a single phonon line).

If we consider the corrections to ®© of subsequent orders and take
notice of what has been said regarding @, the following general rules
can be stated for using the diagram technique to compute the correc-
tions of order 2n:

(1) each full-drawn line of the diagram is associated with the free
particle Green function @Y(x —y), and each dotted line with a func-

tion DOz —y);

(2) integration is performed over the ---———@ ------
coordinates of all the vertices (over r and -
over T); Fig. 41

(3) the expression obtained is multiplied by ¢**(—1)*+¥, where F
is the number of closed fermion loops in the diagram.

For example, the fourth order correction to the phonon Green func-
tion, described by Fig. 41, is

+ g4f d421 Tt d424@(0) (z —z) (G (71 — 2) @5;(,);, (25 — 2)

P1¥z

X DO (2o — 23) @5%. (ze —24) @5;(.);, (24 — 23) DO (s —9)-
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§ 14. THE DIAGRAM TECHNIQUE IN
MOMENTUM SPACE

1. Transformation to the momentum representation

The diagram technique in coordinate space developed in the previous
section proves to be far from convenient in practical calculations. The
fact is that the success of the methods of ficld theory at absolute zero
is due in the last instance to the highly automatic nature of the calcula-
tions, this being a consequence of the expansion of all the quantities
featured in the theory into Fourier integrals over all four coordinates;
this was in fact the method adopted at 7' = 0. In the Matsubara tech-
nique described above, this automatic quality is absent, due to the fact
that the variable 7 varics between the finite limits 0 and 1/7, and the
consequent impossibility of passing to a Fourier representation (in ).

In the coordinate form, G and D@ are discontinuous functions of
T; every integration over 7 splits up into integrals over a large number
of domains, and this number incrcases very rapidly with the order n
of the approximation. As a result, an application of the Matsubara
technique is rendered extremely difficult.

A substantial improvement in technique results if we expand the
quantities dependent on 7 into Fourier series in this variable (Abrikosov,

Gor'kov, Dzyaloshinskii [31], Fradkin [32]).

The temperature-dependent Green function @ (or D) is a function
of 7, —1,, and, as such, is specified in the interval (—1/7, 1/T). We
expand @ (z) into a Fourier series:

G(r) =T X " §(w,),
" (14.1)

1 1/T .
G (w,) =3 f e @ (t)dr, o,=anT.

—1T

Our problem isto find a means of passing to the Fourier representation
in the expressions of § 13 for the approximations to the Green functions.
At the same time, we want above all to avoid introducing any further
complexities into the formulae (e.g. we want no cxtra factors to depend
ou the “frequencies” w,).

It turns out that, in practice, we cncounter the same sort of situation
at finite temperatures as we had at 1" = 0. This refers to a general
property of Green functions, remarked upon in § 11. We showed, in
fact, that &(z) at T << 0 is connected by simple relations with () at
7> 0 {cf. (11.8) and (11.8a)). It follows from these relations thai the
Fourier components & (w,) of the Green function for a boson or a phonon



DIAGRAM TECHNIQUE IN MOMENTUM SPACE 119

only differ from zero at “‘even’ frequencies w, = 27n7, whereas the
@& for a fermion only has components with @, = (2n 4 1) z7. Indeed,

1 17 . 1 T 0 .
Glon=y | 6 =5 [ ¢ 6@de +5 _If, don  (z) de.

We use (11.8) to replace the & (z << 0) in the second integral and then
carry out the change of variable v/ =7 4 1/7. We have:

@5 (wﬂ) -

ur zwr 4 1 4 i, T 1
6[ " () ‘l':F— f e ﬂ(B(r—l—T)dr

2 g7

( :Fe—ztu /T)f elw".r@('l')d'l',

w[n— m]

whence our assertion follows at once. Notice that we always have
yr |
G(w,)= [ ¢ @(r)dr,
¢ (14.2)
. [ (2n 4 1)z T for fermions,
* 7 | 2na T for bosons.

We carry out Fourier transformations in all the terms of the pertur-
bation theory series, by substituting the Fourier expansion (14.1) in the
relevant expressions. At the same time, we carry out Fourier trans-
formation with respect to the position variables:

1 )
G) = g0 270 @),

. (14.3)
G(p) = [P (r)dPr.

The transformations in the position variables are performed here exactly
as at T.= 0.

Note that cvery point, over whose coordinates integration is perfomed
is a point of convergence of an even number of fermion lines; as a result
of this, in the integral over the time voordinates of a vertex,

YT
f drexp(it X w,), (14.4)
0

the sum of the “frequencies” X w, in the power of the exponential is
always “even”: X w, = 2N=T (N is an integer). In the casc of even
frequencies, integral (14.4) is equal to

_Il @, =0,

1
T(SZmﬂv lO w, + 0. (14~5)
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In essence, therefore, we have the same situation here as at 7= 0.
In the latter case, the integrals over the coordinates and the time ¢
of the vertices were found to contain d-functions of the frequencies and
momenta, expressing the laws of conservation of energy and momentum
in the virtual processes. When 7' £ 0, the é-function of the frequencies
is replaced by the Kronecker delta 0o, expressing the law of conserva-
tion of the discrete “frequency” w,,.

All this enables us to retain the ordinary Feynman diagrams, with
which we were concerned at 7' = 0, for describing the perturbation
theory series in momentum space. The only important difference (apart
from differences in the coefficients) is the appearance, in the expressions
for the matrix elements, of sums over discrete frequences w,, instead of
integrals over frequencies w.

Before turning to actual examples, we shall quote expressions for the
Fourier components of the free Green functions. These functions were
calculated in coordinate space in §11. By (11.13a), the Green function
for a free fermion becomes, at T >> 0, after carrying out the coordinate
Fourier transformation (14.3):

GQ(P, 7) = — 0,5 (1 — n(p)) exp[—(eo(P) — )]
n(p) = [e(so(p)—u)lT_'_ 1]——1_

On substituting this into (14.2), we get (w, = (2n 4+ 1) =T):
yr

@59}(1), w,) = — Baﬁ(l ——n(p))of expliw,t —r(go(p) —,u)]dr

- Oap__ - _ _
= o e a T PN xR0 - Di — (o (p) — )/ T] — 13,
i.e. finally,

1
1w, —&(p)+ 1’

Similar calculations give us, for bosons:

@5&0&(1), wﬂ) =4 w, = (2’)?, + 1).7ZT. (14.6)

1
& (p, w,) = - , = 2anT. 14.7
(P wn) @wn‘—b‘o(P)"l"ﬂ W, an ( )
and for phonons:
2(k
DOk, 0,) = — o (k) w, = 2anT. (14.8)

oy + oj(k)’

The free Green functions for fermions and bosons therefore differ
only in the “parity” of the frequency w,. The functions (14.6)—(14.8)
are obtainable from the Green functions (7.7) and (7.16) at 7'= 0 by
the substitution o — e,,. We shall see later that a similar connecéion
(admittedly with certain restrictions) exists for the exact Green functions.
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2. Examples

We have shown that the temperature-dependent Green functions can
be found from the Feynman diagram technique in momentum space.
Each line of the diagram is associated with the zero-order Green func-
tion BO(p, w,) for a particle or DV (k, w,) for a phonon, and each
vertex with 6(2 p) dz., , expressing the laws of conservation of mo-
mentum and discrete “frequency” o,. Along every interior line, we
integrate over the momenta and sum over the “frequencies” w,.

The actual nature of the diagrams and of the associated expressions
depends on the type of interaction. We start with two-particle inter-
action.

A. Two-particle interactions. Let us consider the approximation to the
Green function given by diagram IV of Fig. 33. We obtained the expres-
sion for it in §13:

_f f d421 d422 @g?y), (z — =) @5;(3;2 (71 — 29) @5521)3 (22 —y) B(zy —2zp)-

We carry out a Fourier transformation in it with respect to the coordi-
nates and the *““time” t:

860 (p, ) =5 [ (s —3)
YT

X f d(z, — Ty) sED (*—y, 1, — Ty) DY) Fion(ta—ry)
—1T

We introduce the Fourier component of the potential R (2 — z,):

T .
B(r7) = (g s o [ E9ETB(G, ).

In view of the fact that

T pS e2ninTr — 6(‘1’),

fA=r—00

B(g, w,) = U(q).

We have:
6@5(1) — _}_ b d3 d3 d3 d3 T 14 (0)
ap (P> @) = 5 W= f D &P A P3Py (27)? &gy, (P1: @1)

X @5232 (PB’ wn2) @5;223 (P3r wns) 'SB (q1 wn4) f d3 (x - y)d32;1 d3z2 f d(Tx - Ty)
Xdrydzy exp[—i(p - ¥ —y)] exp[iw,(r, —7,)] exp[i(py - ¥ — %))
T 1Py 27 — %) + i(Ps - 23 — ¥)] exp[—iwy, (T, — Ty) —io,(T; —Tg)]

X exp [~iw,g(Ty — 7)1 exp [4(q - 2y — 2p) —t @, (77 — 75)]-
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We make the transformation ¥ —y— &, 7, —7,— 7 in the integrals
over space and time. Now,

1 YT  yr yr
- [ Ped &z, [ do of Of dr;drgexp[i(¥ - —p + py)

—ir

F (2 —prt Pt q)+i(z - — Py 4+ P — Q)]

X exp [iT (0, —0y) + 173 (01 — Opo — ©,4) F iT (W — Wy + Wpy)]

(27)®

X exp[e(y - Py —Ps) T o7, (—0,y Fo,5)] = ( T )BB(P — D)

X 6 (P] - P2 - q) 6(P2 - P3 + q)amn_wnlawnl—wng_wnc6nz¢0—wna+ Wya?

whence
T
6@59[3)(1)’ w'n) = _(—27?)3(%:.[(131)1 @5(02;:)1(1): wn)
X @552215(1)1’ Wp1) (352223(17, wn) B (p — Py 0w, — wnl) .

On substituting here expressions (14.6) and (14.7) for the zero-order
Green functions, we finally get

_ 6"‘5 T Qg(I) _Pl’ wn_wnl) . (14.9)
liw, —&(p) + pI? (=) 10,1 —&(P1) + 1

Similar calculations give us, for the contribution of diagram ITT of Fig. 33:

5@55,,15) = %‘1‘[ a’p,

6:1 5 T glomT

. S B(0,0) (2541 > [&®p, - ,
o —ap) T pp P OO @+ D E [ Ep e a
(14.10)

+

where 7— 0 and sis the particle spin, equal to !/, for fermions and zero for
bosons. We have here introduced exp (fw,7) (zr —= - 0) under the sign
of summation, in accordance with the proviso mentioned in §13 that
the @-function be defined in coordinate space for coincident time argu-
ments as

&0, 0) = Jlim &0, —7).

Expressions (14.9) and (14.10) can be associated with the Feynman
diagrams of Fig. 42 a, b respectively. The external lines of these diagrams
carry the external momentum p and frequency w,; the momenta and
frequencies at each vertex satisfy the laws of conservation: the sum of
the momenta “‘entering’ the vertex is equal to the sum of those “leaving”.

Let us consider the diagram for &(p, w,) of any order k of perturba-
tion theory. It will have 2k vertices, 2k + 1 full-drawn lines, and k wavy
lines. When carrying out the Fourier transformation we have 2k integra-
tions over the space and ‘“time” coordinates of the vertices and one
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integration over the difference between the coordinates of the end-points,
leading to 2k + 1 quantities of the type &(2 p) 8z, expressing 2k 41

laws of conservation. It may easily be seen that two laws of conservation

£ty
ﬂgﬂvb% 7
(a)

Fig. 42

express the fact that the external outer lines have momentum p and fre-
quence w,. The remaining 2k —1 laws of conservation imply that, of
the 3k — 1 integrations over momenta and summations over frequencies
of interior lines (both full-drawn and wavy), there actually remain only &
integrations and summations.

Let us now state the rules for writing down the expression corres-
ponding to a given diagram for a Green function.

(1) We first of all have to associate the lines of the diagram with
momenta and frequencies; the outer lines must carry the external mo-
mentum and frequency, whilst the momenta and frequencies of the
inner lines must satisfy at each vertex the laws of conservation 2'p’ = 0,
2 w,, = 0. The frequencies of Bose lines are always even (o, = 22z T),
and of Fermi lines always odd (@, = (2n -+ 1)=T).

(2) Summations and integrations are carried out over all the inde-
pendent momenta and frequencies of the diagram.

(3) Each continuous interior line (momentum and frequency p’, w,)
is associated with

1
i, —&(P') + 1 ’

and each wavy line (g, m,) with

B(q, »,;) = U(q).

(4) Both outer lines (momentum and frequency p, w,) are associated
with

Oup
(i, —eo(P) F R

(5) The factor

_1VE Tk_ 9 F F

2
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has to be put in front of the expression obtained, where F is the number
of closed loops formed by particle lines on the diagram.

Using these rules, it is fairly easy to write down the correction corres-
ponding to a diagram, no matter how complicated. For instance, the
contribution of the diagram of Fig. 43 is

azxﬁ 13 3 3 3
Lo Fat e @ D, 2, d e
o 1 I 1
\i(w_aﬁ)—so(P—Pl)“l‘,u iy — o) —&(Ps—P) +

1 1 1
X e X o X —

tog—e&(Ps) T4 twy —g(Pg) + p i(wy + wy) —&(Py + Po) + 1o

X (U@ U —ps), wp = 2anT; gy 03 = (20 + 1) 7.

We nowturn to thesecond vari-
ant of thediagram technique for
the case of two-particle interac-
tions. The following formal me-
thod may conveniently be used
for changing to Fourier trans-
forms in the relevant expres-

_ sions. We introduced above the

l”_l.aj" Gy quantity CT;’?’?’:;T;Y« (zl’ 235 23, 24) -
Fig. 43 Thed @ depends on four “times”

T;, where each 7, varies from 0
to 1/T. We continue 7 @ into the interval —1/T, 1/T using relations
such as (11.8) for the @-functions:

T Oz, < 0,755 73, 7)) = F T O(zy + 1T, 755 75, T4)

together with similar relationships for z,, T4, 7, We define the Fourier
transform as

1 1T .
—E f dT] P d:l—4e"(w1"-'1+ WTy—WaTy—WeTy) CT(O) (Tl’ To; T T4) .
—17

Obviously all four frequencies will be “odd” in the case of Fermi sta-
tistics, and “even’’ in the case of Bose statistics.

Notice further that, since 7 O (z,, 2y; 25, 2,) is by definition a function
of the differences of coordinates and “times” ¢ only, the Fourier components
of J @ with respect to the space and time variables will contain a 4-
function of a sum of momenta §(p; + P, — Pz — Pa) and the Kronecker
delta of a sum of frequencies 8, o,—w,«. We therefore determine the
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Fourier component of 7@ at once as

(m)

8Py + Po—Ps — Pa) Ot wpwrw © (D101, Pos; Pgeig, Pyoog)
1 /T
=7 £Td1'1 ceodry [dPry - Broexp—i[(py - 1y) + (Do 15) — (P - T3)

— Py 1] expi(o;T; + 0Ty — W3T3 — 4 Ty) JO (1> 225 25, 24) . (14.11)

As an example, let us perform a Fourier transformation in the ex-
pression for the first order correction corresponding to diagram II of
Fig. 35. We find easily

1 T
I 3p. 7O
tio—eo(p) T 4 @ o | 01T

1
X (P, @5 Pys wl,Pl’wI’P,w)Zﬂ)l-—‘So(p)—'—‘u
1

which corresponds to the diagram of Fig. 44.

~p Wit U~
4

p'\'pz

Y472 A2 A, 5%y
Fig. 44 Fig. 45

Similar calculations, applied to the correction gives by the diagram
of Fig. 45, lead to the formula ()

1 ‘hl T* 3 (0) .
2 [t —£(p) + pP? (27)° 5@ fd P19°Pe T ) sy (P Py + Po—D3 D1 P2)
1 1
L Y
top—g(p) o toy—g(P) 1

1
X = T
i(w+ 0y —0) —& (py+pp—p) +p PP

(P1s P25 Py + P2 — D, D)

The nth order diagram for the @-function contains % squares (ver-
tices) and 2n 4 1 lines; of these latter, 2n — 1 interior lines are con-
nected at each vertex by the conservation laws X2 p' =0, X w, = 0.
It may easily be verified that there are altogether # independent integra-
tions and summations over the momenta and frequencies of the interior

(1) Four-dimensional notation has been used here: p = (P, w,).
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lines. The following operations are required for calculating the contri-
bution of a diagram:
(1) each interior line is associated with
1 -
o —&@) + 4
(2) each external line is associated with
1 .
io—e() 4
(3) each vertex is associated with the function
T Bows (D1 Do3 Py Py + Do — D)
(4) integrations and summations are carried out over all the inde-
pendent interior momenta and frequencies;
() summations are carried out over the indices «, §, ... of the JO
joined by the G©._lines;
(6) the result is multiplied by + 7"m/[2"(27)®" (m and the sign are
determined from a comparison with the non-symmetrised technique).
For instance, the diagram of Fig. 46 corresponds to

1 1
> d d
T4 [io —g(p) - pP (271)9 w o, waf Ps

1

x T 2 D1+ Do — D3 Py Pg)
P15 yiys(p pl p2 pl p2) 7/601 _eo(Pl) +[,L

1
N S () ) _
% Ty — £ (Py) + ‘u/yyzh;)’w; (Pr> P2 D3> D1 + Do — D3)
1 1

X = .
1oy —gg(Ps) + g (0, F wy —wg) —& (P + P —Ps) + 1
X T D 1 (Pas Dy + Pp — P33 D1 + P; — D, D)
v 1
iy + 0y — ) —&(Py + Py —P) +
In the case of a point interaction, 5 ‘¥ is independent of the momenta
and frequencies.

B. Interactions with phonons. In this case the only non-zero diagrams
are of even order. Any diagram of order 2 contains 3% -} 1 interior
(electron and phonon) lines
PP he= and 27 vertices, which cor-
) responds to
n—1—0L2n—1)=mn
independent integrations.
The following operations
are performed when evalu-
ating its contribution:




DIAGRAM TECHNIQUE IN MOMENTUM SPACE 127

(1) each interior full-drawn line is associated with
1 —_
i @)+ i
whilst both external full-drawn lines (in diagrams for the corrections to
the particle ®-functions) are associated with
dup )
(fw —&(p) +pi®’
(2) each phonon (dotted) line is associated with
__ of(k)
w® + wi (k) ’
(3) the result is multiplied by
Tn
2n _ —1)" (2 1 1 F,
where g is the coupling constant and F the number of closed loops on
the diagram of spin s particles.
Suppose we write down, say, the expression for the second order cor-

rection to the D-function for a phonon, corresponding to the diagram
of Fig. 47:
2 2
wp (k) 2

— 5 2 1
i[w2+w%(k)]g(s+ ) .

X ‘2 d3 ’ N o . ’ ’ .

o’ f P 0w —g(p) +p (0 —w)—g(p' —k) +p
The rules given in this section are related in a very simple way to the
corresponding rules for finding the corrections to Green functions at

T
(27)

T =0. As is easily verified, the ap- rwy

proximation to the temperature-

dependent Green function  can be 77~ 77K _ @077 2
obtained from the expression for the O, Cr )y

correction to the Green function G Fig. 47

at 7'= 0 by replacing all the fre-
quencies w in the latter by i w, (w, = 2nzT for bosons, and (2 n+1)=T
for fermions) and all the integrals over frequencies by the sums:

fdw---—>2nT732---.

Let us see in conclusion how we can pass to the limit to the case 7' = 0
in the new technique. When 7' tends to zero, the chief role is played in
the sums over frequencies by large #, so that we can replace these sums
by integrals. Noting that Aw = wyy1 — w, = 277, we get

1

Wy

It must be emphasised that, at T = 0, @ (w) is not at all the same as
G(w). The connection between these quantities will be established later.
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§ 15. THE PERTURBATION THEORY SERIES FOR THE
THERMODYNAMIC POTENTIAL

There are cases when it proves more convenient to find the thermo-
dynamic potential £ directly, rather than indirectly, via an evaluation
of the Green functions.

The correction to the thermodynamic potential is given in terms of
the average of the G-matrix by (see (12.11))

YT
AQ = —Thn(€>, & =exp {— f H,-m('[)d'z}.
0
The logarithm can in fact be taken in the ordinary form in (15.1); or,
more preciscly, a diagram tcchnique can be developed for dealing di-
rectly with .

(15.1)

It is obvious from the forcgoing that the diagrams which describe the
perturbation theory series for £ are made up of closed loops. Typical
diagrams are shown for both variants of a two-particle interaction in

Fig. 48a,b, and for interac-

tion with phonons in Fig. 49
4 @ (the diagram in Fig. 49, 1, isin
fact equal to zero).

Fig. 48 Fig. 49

The diagrams of a given order of the perturbation theory series will
include both types — connected and unconnected. The latter consist of
two or more closed loops, with no lines joining them. Connected diagrams
are obtained if, when describing a term of the series for (€) in accor-
dance with Wick’s theorem,

(_1)n 1T ur i
A f . Of dry - - - do, KT {H (T - - Hint('%)}); (15.2)

n! 4

we can start the pairing with an operator appearing in I;Vm,('zl) then

return to I it (t1) without passing over any of the H
case, the diagram must be unconnected.

In any other

int*

Suppose an nth order unconnected diagram consists of % closed loops,
and, for a start, that every vne of these loops contains a different number
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of vertices. The corresponding expression will be

- 1’ P e ael) Tl (1) - H ()P

X [dr® .. a2 (T A, ) - - Hyy (GO,
fde? . dP (T, {HW(T‘“)- B (5 Pes (15.3)

where

my 4 my - - fm =m0 (my F mg F - FEmy),

and the symbol (- - ->, denotes the averaging corresponding to a given
connected diagram. We now sum all the topologically equivalent dia-
grams containing % loops of the type selected. Obviously this can be
done simply by multiplying (15.3) by the number of such diagrams F,.
This number is the same as the number of methods by which we can acco-

modate # operators H e 1 k& different “cells” (- - ->,, containing respec-
tively my, my, . .., my places, i.e.

1
We get as a result:
g:n}sz dz? - dT(1)<T {# mt(T(l) . m(T(l))}>c
X (—ml)' [dd® . a0 (T (B @) - - - B G,
(mt) 2 [ &P de® (T (B (@) - - - B 6, (15.4)

Notice that we did not rcally need the assumption that each averaging
{- - >, corresponds to a connected diagram of a definite type; instecad,
we could have simply assumed that {- - ->, is the sum of all the connected
diagrams with a given number of vertices. It may be concluded from this
that the sum of all the unconnected diagrams containing % closed loops
with my, m,, . .., m, vertices respectively is of the form

I
3
E

where
_ =

m!

Fand
=
_

m

[ ey - de, KT {Hip(v) - - - Higlz,)}),  (15.5)

is nothing but the sum of all the connected diagrams of order m for (&).
Obviously,

14+ 54+ 54+ =(,. (15.6)
If some of the numbers my, m,, . . . are the same, so that the diagram

splits up into p; + p, + - - - + p; closed loops, containing respectively
Q.F.T. 9
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My, Mg,y « o o, My, (Mg F= - - - my) vertices, it can be shown that expression
(15.5) must be replaced by(})
1 1
Lo gm.. L (15.7)
pm! Tl T
or, what amounts to the same thing, by
1 1 1
Eh ... EP (15.8)

P n!
where the p, (p, =0, 1, 2, .. .) indicate how many closed loops of order !
are contained in all the unconnected diagrams. On summing (15.8) over
all p,; (the summations over different p; are obviously independent), we
get

1 1
<6> — ___E']’l__Epe R ’_'171 R
m,pzz,:...ﬁ! T pp! T 71 Pl Z
=e®e® ... —exp{Z, + E,+ ). (15.9)

Finally, on substituting (15.9) in (15.1), we get
A= —T(E + E+--)=— TGy, —1}. (15.10)

A very important result has been obtained: to find the corrections to
the thermodynamiec potential, we only need to find the contribution of
the connected diagrams for (&).

As already remarked, the diagrams for (€) are in the form of closed
loops, and these can be evaluated in accordance with essentially the same
rules as for &-functions. The only difference lies in the factor in front
of the diagram.

We mentioned in § 12 that the factor 1/»! in the perturbation theory
series (12.13) for the -functions cancels out if we take into account
the contribution of all the topologically equivalent diagrams, the number
of which is in fact equal to n! The situation is different when we evaluate
{&), The number of equivalent diagrams that give the nth term of
series (12.12) will be equal(}) to (r — 1)!, so that a factor 1/n appears

(1) This can be proved as follows. When some of the m,, ..., m, are the same,
the F';, mentioned above is the same as the number of ways in which p,m; + pym,
+ --- 4+ ppmy = n operators Hy,; can be allocated to p, + p, + - -+ + p; cells
<+ > containing g, My, . . ., 7, places where, respectively, py, Py, - - -» P of the
cells are the same. In this case #), is equal to

n!
D11y )22, ) (1) - - -yt (g 1) PR

(i) All the equivalent diagrams follow by taking all possible permutations of
the » — 1 operators H,,; in (12.12). One of the H;,, must be regarded as fixed.

When evaluating @&. the beginning and end of the external lines were fixed, i.e.
the operators ya(ry, 1), ¥p (73, 7o) in (12.13).

Fk=
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in front of each diagram (assuming that only topologically non-equi-
valent diagrams are distinct). The presence of a factor dependent on
the order » makes the perturbation theory series for £ very awkward,
especially in cases when we cannot confine ourselves to a finite number
of terms but have to sum infinite sequences of diagrams.

We quote some examples of finding the corrections A€, and confine
ourselves for brevity to interaction with phonons. Only the connected dia-
gram of Fig. 49,11, is non-zero in the second order of perturbation theory.
We find its contribution from Wick’s theorem, putting Q, = — T'5,
(we use a four-dimensional notation):

= 45 T [ Aty 6D — ) BRl — DO —y).

It turns out that £, is proportional to the volume V of the system, as
may easily be verified by introducing the ncw variable ' = xz — 7 in the
integral. The situation is the same in any approximation; this is to be
expected, since the potential Q is well known to have the form

‘Q—___VP(MI T)y

where P is the pressure expressed as a function of the chemical poten-
tial and the temperature. In future, therefore, we shall always give the
formulae for AP(P = Py(u,T) + AP, where P, is the pressure in the
system of free particles).

We have for AP,:

AP, = F %92 [ @269 (z) B (—2) DO (2). (15.11)

If we change to the momentum representation, we have

1 e

T2
APzzi 7 Gy (2s+1) X [ a®pa’k
Zc"1—80(1)) +p i+ wy) —g(p + k) +p w0} +w0(k)

The corresponding diagram is shown in Fig. 50.

Let us take any diagram of order 27. It contains 37 lines and 2n ver-
tices. However, one of the 22 conservation laws turns out to be an iden-
tity, provided the remaining 27 — 1 laws are fulfilled. Thus there are
altogether # -}- 1 independent integrations in a 2nth order diagram.
The extra law of conservation leads to the appearance in the diagram

for (@) of an extra factor 6(p = 0), proportional to the volume V of
the system (1).

(1) By definition,

S(p = 0) = =~ [ds
=0 =apS "= @ap-
9‘
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The rules by which the individual elements of the diagrams are asso-

ciated with the Green functions (and the vertex parts, in the case of

-0, 0 g
50 4 ey,

ot

p.\—K: {d,,)'-@
ﬁ%} Bty
Fig. 50 Fig. 51

other interactions) remain the same as for the diagrams for . The factor
in front of the diagram of order 2x for the correction AP is equal to
= T (T )2n(:F1)F 25 + 1)F
n 2”/ g (27'6)3 ( 8 + ) ’
where F is the number of closed loops, formed by single &-lines of the
particles.
We quote in addition the expression for AP for the case of binary
interactions. When the interaction has the form (13.7), the second order
correction to the pressure, corresponding to the diagram of Fig. b1, is

1 7 1 1
—— X {d3p,dp,d3p, - . —
4 (2n)9w.w,w,f PP Ps P, —&(Py) +p i, —go(Po) + 1
1 1

X = - — —
iy —&(Ps) + p iy + 0y — wg) —&(Py 4 Po — P3) + 1
Xfi%);ya(lop Pa3 Py + D2 — D3> P3) j'fl%);ﬂa(pl + Do — D3, D3 Por D) -

§ 16. DYSON EQUATION. MANY-PARTICLE GREEN
FUNCTIONS

1. Dyson equation

As in the absolute zero case, statistical problems at 7'~ 0 virtually
always involve finding several of the first terms of the perturbation
theory series as corrections to the Green functions. Within the framework
of almost any physical problem which is correctly stated, the formal
parameter of the expansion of the diagram technique, namely the inter-
action Hamiltonian H mp> 18 Dot small; as a result, several infinite sequen-
ces of terms of the perturbation theory series will give contributions
of the same order of magnitude.

We saw in the previous chapter that a summation of infinite series
is carried out by the diagram method in the field theory technique.
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The sum can be presented in this method as a diagram whose elements —
lines and vertices — are in turn the sums of an infinite number of diagrams.
The association of definite expressions with the elements of such a dia-
gram is performed in accordance with the same rules as for perturbation
theory diagrams. This fact enables us to form different equations for
the Green functions. We have already encountered one such equation
in Chap. II; this was the Dyson equation, which expresses the Green
function in terms of the mass operator of the system.

Two properties of the diagram technique are fundamental to the
formation of such equations: the topological structure of the diagrams,
and the rules by which a diagram is associated with a definite expression.
The diagrams in the technique at absolute zero and in Matsubara’s
technique are in general the same, whilst the rules for association only
differ in that the integrations over frequencies for the first case are
replaced by summations over discrete imaginary ““frequencies” iw, for
the second; to be more precise, the expression for the correction to the

p- QO O ¢

@281

Fig. 52

temperature Green function & corresponding to a given diagram can
be obtained from the expression for the correction to the Green function
G at T = 0, corresponding to the same diagram, provided we replace
the w in the latter by iw,, and the integral by a sum in accordance with
the formula 1
fdw - —>iT X ..
2:7'5 n
(see end of §14).
The above-mentioned fact enables us to carry over at once all the
results of § 10 to the 7 = 0 case simply by changing the notation. In
Particular, the Dyson equation is retained in Matsubara’s technique.
It becomes, for a system of particles with binary interactions:

@aﬂ(_p) (0) (p) (9 )3 i f d CT-f:(:i)/, VsVa (p: P15 ppp)

1 T2
X G5, () Gy (1) By (P) + 5 63, (0) (56 X [ dpydt”
X (7;?;2 3¥sYa (p’ pl + p2 _p; pl’ pl) @57575 (-pl) @‘h‘}’o (-p2)
X Gy, (91 + Do— » T veesvine (D1 P23 D1+ Do — 2, D) &, 6(2)- (16.1)
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Here, 7 is the exact vertex part, with the same meaning as in the 7 = 0
method. It is equal to the sum of all the compact diagrams with four
external lines, each line being an exact Green function & (examples of
such diagrams are shown in Fig. 52).

The Dyson equation (16.1) is represented graphically in the same way
as the equation in Chap. II (IFig. 53). A heavy line denotes ©&, a light
line @, and a shaded square the vertex part .7 .

Fig. 53

If we introduce the inverse .4 of the matrix .5 equation (16.1)
can be written as

. T
65 (7) = liw —e(p) + ulous + s & [ &'y

XCT(}’l Yzﬂ(p’ P15 Dy p) @57,71(271) 2(2 )6 f d d3 5
X T D (02 D1+ B2 — D5 D12 ) B, (92) B, (02)
X @5767,(271 + Ps —'p) c7‘741;.;7/#(271’ Dos Py —I“ Po— D5 p)- (16.2)

We can write in a similar way a system of equations for & and D in the
case of interactions with phonons (Fig. 54):

@5;_;(1): wn) :[26{) —E(P) + lu’]aocﬁ

(2 )3—'_{d Gaﬁ(P"w;)@(P’_P’w;—wn)c?(l),P';www;),

Dk, 0,) = — 0y 2 (k) (0F + 0f(k) F X [ @' Gop(p’, @,)

(2 )3
X @po(p’ — b, 0, — 0,) T (P, p' — k; w0y, 0, —@,). (16.3)

The function 7 in (16.3) is the total vertex part. It is described by the
sum of all the compaect diagrams with two external particle lines and one
external phonon line (Fig. 55).

As in the absolute zero case, the total vertex parts at 7'~ 0 are con-
nected by definite relations with the many-particle temperature-depen-
dent Green functions. In Matsubara’s method these latter are given by
(11.1)—(11.4), which bave precisely the same form as the corresponding
expressions at 7 = 0. If we also observe that the statement of Wick’s
theorem is the same in both cases, we soon arrive at the conclusion that
the many-particle Green functions can be found by using many-tailed
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diagrams and retaining (in the r, 7 space) all the rules of association des-
cribed in §14.

A formal method is useful for passing to the momentum representa-
tion.

Let us take, say, the two-particle Green function

G5..5(1, 25 3, 4) = (T {F. () 75(2) 9,3 w5 (D} (16.4)

(the p are the “Heisenberg” operators (11.3)); it depends on four “times”’
Ty» Tg» Tgy Ty» €ach of which varies from 0 to 1/7. We continue (16.4)
in the 7, domain from —1/7 to 0, on the assumption that G'(1, 2; 3, 4)
with 7; < 0 is connected with its values for 7, > 0 by (11.8); similar conti-
nuations are made as re- o

L N
gards 7,, 75, .. On now =—— = —— + >
carrying out the Fourier
transformation (14.2) _
withrespecttoeachofthe ~ oo @__—-
7, we discover atonce that Fig. 54
the frequencies corres-
ponding to each “Fermi”’

[
[}
 §
variable (Fermi operator 1 = 3 "
in (16.4)) can only be odd : /A\ /\\ /A\
(2n 4+ 1) T, whilst the
(]
i

frequencies  correspon-
ding to a ““Bose” variable
are only even: 2nnT. *

Of course any many- }:I
particle Green function
can be subjected to a simi- Fig. 55
lar continuation procedure.

As in § 14, it can easily be shown that we can perform a Fourjer trans-
formation with respect to 7 in every term of the perturbation theory
series. The resulting rules of association are the same as the rules of § 14
for the single-particle Green function. We can also retain the connection,
mentioned at the start of this section, between the diagram techniques
at 7' = 0 and 7 = 0. The expression for the correction to GU(1, 2; 3, 4)
is obtained from the expression for G'{(1, 2; 3, 4), corresponding to the
same diagram, with the aid of the above-mentioned substitutions o — iw,,
(2m)-t f do — T T,LS The existence of this connection enables us to

repeat word for word everything said in § 10 about the diagrams for
many-particle functions. The perturbation theory series for (1, 2; 3, 4)
can be reduced to a sum of all the compact diagrams consisting of heavy
lines only, corresponding to the exact Green function ®(1,2). These
diagrams are the same as those for the total vertex part 7, whence it
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follows that a relation must exist between ®(1, 2; 3, 4) and 7. This
relation is easily shown to be(})

27)3 ((27)3
%50 20235 20 2) = T 16102 Gy (1) 80,0501 — 2
T+ ®ay (1) @5ﬂ6(p2)5w,w,5(1)1 —ps)] - Gu(py) ®ﬁp(p2) jly;vr(pl’ P2 D3> Pa)

X @,,(ps) @516(274)} Oyt wo—wy—0,0 (P1 + Po— P3 — P4)- (16.5)

In the case of interactions with phonons, the vertex part7 (py, p,) is
connected with the KFourier components of the Green function

Gap(Ls 2; 3) = (T, {Ta(1) 9 (DB
by the relation

2 )3
Gup 01255 1) = U G, () 6,5 () D (B)

XTI (91, 01 + k)0 (py — P2 + k)o, i rw- (16.6)

As might be expected, equations (16.5) and (16.6) only differ in their
numerical coefficients from the corresponding equations (10.17) and
(10.21).

Let us emphasise that the method of graphical summation can only
be applied to diagrams for @-functions. It cannot be used for the per-
turbation theory series for the potential 2, discussed in § 15, on account

+ >
Fig. 56

of the factor 1/n appearing in front of the nth order diagram. Diagrams
of this type, unlike those for &, will not break down into separate blocks,
and the result of the summation of an infinite sequence of diagrams is
not obtained simply by replacing light by heavy lines. In particular, the
graphical process illustrated in Fig. b6 is quite impermissible.

() The coefficients in (16.5), (16.6) are most easily verified by evaluating both
sides of the equation to the first order of perturbation theory.
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2. Connection between the Green functions and the thermodynamic
potential £2
We shall conclude by deducing some relations between the thermo-
dynamic potential £ and the temperature-dependent Green functions.
We start with the case of binary interactions between particles. Instead
of the potential 7 ©, we introduce the potential 17 @, 0 < 1< 1, and
differentiate the expression for £:

Q=0,— T ()

with respect to 4. We get
39 T f d4 %y ,ﬁg);ya(xv Xy X3, Xg)
XL Ao (1) Yo (%) Yo () 9, (205) © AMPHKEA)
or, from (16.4),
@ T f d*z,

0 ] I ]
cT,fcﬁ);v.s(-"cl’ T X3y Xg) Gapinp @4y Ty Ty, Xg)

u

On performmg a Fourier transformation and using (16.5), we get (&(p, 1)
is the Green function for 1 # 1):

02 VT
3}. 21(27[)3 el f p{(z )3 prond fd3p}'y‘l(’?'3: Va'l’a(p’ P1; D pl) @VIVl(p’ 2')

T
(E)P i [ & &pd T D (@ 91 + D2 — D5 P1s o)

X @1’31’5 (pl’ }') @'Vc‘yn (pz’ }') @Va‘yz (pl + Do— P> 1)

X @y‘y,(pl’ }') :[: _2

nyﬁy.;y,y,(pzhpl V¥ 51 +p2_p) @j'y,yl (p’}')} M (16‘7)

Notice that the expression in curly brackets in (16.7) is the same as
the right-hand side of the Dyson equation (16.1) with the interaction
potential 1.7 ©, i.e.

o

=+ 2 [ Ep T 9){Gplp A — GR(p)}-  (16.8)

27(2 )
On integrating (16.8) over A and using the condition (1 = 0) = 2, we
get the required relation

1
1 di T
=005V [} 50 [EPOGF @) G ) — 62} (16.9
0

Similar relations exist in the case of interactions with phonons; they
express £ in terms of an integral of the @-function of the system over
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the charge g. Proceeding in a way similar to that used for deriving (16.9)
we obtain:

g T
0=0,+V [ 5 = [Eplio,—e@) + 4] (Gunl, )
0

» k
— B2p, ) = +Vf omge 2 [ o O B

X (D(k, w,) — DK, w,)). (16.10)
Another useful formula follows from the familiar relation between
the derivative of £ with respect to the mass m of the particles and the

derivative with respect to m of the total Hamiltonian H of the system
(see Landau and Lifshitz [1]):

Since
eH 1
o = apzd V3 OP (N,
we obtain at once, from the definition (11.1) of the -function:

20 1 ,
= T %2[ [szgjoca(r: r; —0)],:,.:(131',

or in Fourier components(t)

o vT
= T meap

On using (16.9)—(16.11), together with (11.6), which becomes in Fourier
components

o

op
we can work out the denvatlves of £ with respect to the different para-
meters. These relations express the thermodynamic potential £ in terms
of the Green functions.

We conclude by deriving a further formula expressing the potential £
in terms of the exact Green function . As already remarked, the presence
of the factor 1/n in the perturbation theory diagrams for £ makes it
impossible to apply the methods of diagrams summation to the series
of § 15. In spite of this, there is an interesting possible approach, namely,
to carry out a partial summation and to write £ as the sum of an infinite

number of diagrams consisting only of heavy lines, representing the exact
®-functions (Luttinger and Ward [37]).

2 o
X [ &g Gualpy @), T+ 0. (16.11)

=—N= )3~fd D, (Py 0,) 6% (T +0), (16.12)

(f) We shall show in § 17 how the sum over the w, is evaluated.
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To simplify the treatment, we confine ourselves to the case of binary
interactions between the particles and assume a non-ferromagnetic
system (.5 = 6,5®). We select from the perturbation theory diagrams
for the potential £ all the compact diagrams, i.e. those diagrams of
which no interior part represents a correction to a &-function (cf. § 10,
sec. 2), and replace all the light lines by heavy lines. For instance, of the
three diagrams of Fig. 480 we should only take the first and second.
The sum of all the diagrams thus obtained (with the coefficient 1/n for
each diagram!) will be denoted by £'.

By definition, £ is a functional of the exact Green function . By
varying in turn each diagram for £' with respect to 6@ (p) it is easily
seen that the resulting series represents (up to a factor) the series for
the correction to the exact Green function ®&(p), if we replace in the
latter the product of the Green functions G® (p) and & (p), corresponding
respectively to the extreme left-hand and extreme right-hand lines, by
0@ (p). To be more precise,

d3
0 =+ 2TV§I(?£T3‘E (p) 6 (p), (16.13)

where 2'(p) is the self-energy part of the exact Green function &(p).
It is determined in precisely the same way as the self-energy part in the
diagram technique at 7' = 0 (see § 10, sec. 1) and is connected with @
by the relationship

G =01 3. (16.14)

If X' is understood as the sum of the corresponding diagrams consisting
of heavy lines, (16.14) is precisely the Dyson equation (16.2).
We now form the expression

_ » d3
2=0,F o1V x [ L lin (1 - 6O0) Z) + Z0) O 0} + 2 -
(16.15)

We show that £ = Q. To do this, we observe that £, considered as a
functional of X (or what amounts to the same thing, of @), possesses the
stationary property, namely 8Q/62 = 0, if & satisfies the Dyson equation
(16.14). For, on varying (16.15) and taking (16.13) into account, we at
once obtain:

80 = T TV > 331’-{ L er i ger 4 zew)
=+ +J @n@|l o1 X |
d3p
AN e
2y x [ T oo
_ d3p 11
=+ 2TV§f(2::)3{® — o1 Zxf 0%

whence follows our assertion.
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As at the start of this section, we consider now, instead of the inter-
action potential 7@, the potential 27 @, and evaluate 002(4)/04. Here,
in view of the stationary property just proved of the functional Q, we
can disregard the dependence of & and X on 4. Hence

o0 () o8 (A)
o o

where ®(2) is not to be differentiated when evaluating éQ(4)/é2.

On the other hand, it follows from the structure of the diagrams that
the functional £’ (1) is the same as £ at A = 0, if we substitute }/2 G (4)
in the latter instead of & (A = 0). We obtain from this, on taking (16.13)
into account:

o (2)
= 12TV X v[z " l/_ l’az (V2 6@),

and on putting 0@/éA = 0 here, we find that

o0
T=xTY f2)3 B E®@).

On comparing this expression with (16.8) (and taking the definition
of X' into account), we can conclude that

o2 (1) e
= @ {16.16)

On the other hand, by definition (16.15), £(0) = £,, whence, on inte-
grating (16.16) and substituting 4 = 1, it may be seen that Q = Q.

Formula (16.15) for £ in fact holds for arbitrary (not merely binary)
particle interactions. It is only necessary to understand by ' the func-
tional possessing the property (16.13). The existence of such a functional
may be proved by a word-for-word repetition of the arguments given
in § 19, sec. 4, for the case T = 0 as applied to the case of the temperature-
dependent technique. However, the actual construction of such a func-
tional is rather laborious, and we shall not dwell on this.

Let us mention another expression. It can be shown that (see, e.g.
the paper by Luttinger and Ward [37] cited above)

p
Lo=FeTr X (0) giwnd .
= FoTV f2)3111@5 8> 40
Hence (16.15) can also be rewritten as

Q=277 X (g 1;3 ot (ln G — X G} - 2. (16.17)
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§ 17. TIME-DEPENDENT GREEN FUNCTIONS ¢ AT FINITE
TEMPERATURES. ANALYTIC PROPERTIES OF THE GREEN
FUNCTIONS

The time-dependent Green functions @ considered in the previous
chapter still have an importance at finite temperatures, along with the
temperature-dependent Green functions . Later examples will show
that the functions ¢ determine the transport properties of a system, and
in particular, the electrical resistance and complex dielectric constant &
as a function of the field frequency; in addition, they describe non-
elastic particle scattering processes in solids.

The single-particle Green function G(r, — 1y, t; —t,) has to be defined
at non-zero temperatures as

Gaﬁ(rl 1'2, t2’ En! N) = i<En’ N |Tt{1;os(rl’ tl)q./;;- (1'2’ t2)}l En’ N>’
(17.1)

where 9, ¢+ are the Heisenberg operators of the system. The averaging
in (17.1) is over the states of the system with energies E, and number
of particles V. Definition (17.1) includes as a particular case the defini-
tion of @ at T = 0, when the averaging is over the ground state. The
Green function (17.1) depends on the total energy E of the system and
the number of particles in it. In quantum statistics, it is more convenient
to regard all the quantities as functions of the temperature and the
chemical potential g, this being equivalent to passing from a micro-
canonical to a grand canonical ensemble (see [1]). On averaging (17.1)
over the ensemble, we get
Gosﬁ (1‘1 — Ty tl - t2; T, .M) == ﬁZ;Le(Q-F“N_Eﬂ)IT szﬁ(rl — to, tl - t2’ Em N)
= —iTr{e® L[ (n, )T ()T (17.2)
The many-particle Green functions are defined by similar formulae. The
phonon Green function is
D(1,2) = — i Tr {" T T, (o) (2]} (17.3)
and the two-particle Green function is
GY(1,2; 3, 4) = Tr {77, [51) 59+ BT} (17.4)

The Fourier components of the Green function G(w, p) satisfy an
extremely general relationship (Landau [33)]. To derive this, we note
that the time dependence of the matrix elements of the Heisenberg
operators g, yt is given by

‘/N’nm(” t) = qpnm(r) exp (¢ Oppl),
%ZLm (r,t) = QPIm(") exp (¢ Wppl)s (17.5)
Oy = By — By, — p (N, — Np)
(N, =N, + 1 throughout).
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In turn, provided the system is homogeneous and infinite, the coor-
dinate dependence of the matrix elements of the operators p(r) is(})

P (1) = P (0)€XP [— 4 (P 7)1,
Vot (1) = 900 (0)€XP [~ (P 1)1, (17.6)
Py =P, — Py,
where P,, P,, are the momenta of the system in the states n, m. The

Pun(0) and 9;5,(0) in (17.6) are not dependent on the coordinates. On
substituting (17.5), (17.6) into (17.1), we get

Gup(r, 1> 0) = —i T exp (L +uN,—E,)[T]

’ X eXP (i @yl — & (P )1 0) il (O)) s
Gp(r, < 0)=+ ii_:‘bexp [(2+uN,—E,)T]

T X expl—i@ gl iPun )]0 9 (O

We change from the spatial representation of the Green function to its
Fourier components:

G(p, w) = [ [G(r, )e PTG gy,

Integration over space gives d-functions of p + p,,,.. Integration over ¢
is carried out in separate stages, from — oo to 0 and from 0 to co. We
have to use here the familiar formula

o0 )
(r

of ede =7d (o) -+ por

Integration over ¢ from 0 to oo gives (IV, —1):

(27)* = €XPp (2 + p N, — E)[T] (a(0)) Ef 0) Jrn

X6P+an)|: _iné(w—l—wmn)]'
The integral over the f < 0 region gives
+(27)* = exp[(Q + p Ny, — B,)[T] (%a(0)nm (5 (0))un
1

mn
whence

G5(P, ©) = — (27)° = exp[(Q + pN, — B,)|T] @ (D)) W (0)) 1

X 8(p —pm){ L f oo i — wp) [1 ace—‘"m»’T]}-

Oy — O
17.7
(T) See the remark on p. 54.
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The course of the future arguments is linked with the dependence
of G, on the spin variables. If the system is not ferromagnetic (and this
is the only case we consider), it follows from symmetry considerations
that G,; must be proportional to the unit tensor J,,:

Gop = 0,58, (17.8)
1

2s + 1
1
— @) X expl@ + uly = BIT] -y 2| (9al0)aml 8P —Pp)

G(P’ w) = Gmx(.p’ w)

X{w L et ind (0 — ) [We""m"m]} (%)

(s is the spin of the particles).
On comparing the two terms in the curly brackets in (17.9), it will

be seen that a definite relationship exists between the real and imaginary

parts G', G"' of the Green function (Landau [33]). We have in fact, for

Fermi statistics:

f z 6" (p, )

P’w) 2T T — 2

(17.10)
where the principal value of the integral is taken; in the case of Bose
statistics,

1 x G (p,
G (p, w) = ;t v P2 (17.11)

In addition, it follows from (17.9) that G’ is always negative for bosons.
On the contrary, the imaginary part of the G-function for a Fermi system
changes sign at o = 0; it is positive for w < 0 and negative for w > 0.

It follows from (17.10) and (17.11) that @, as a function of the complex
variable w, is not analytic. However, there are simple relationships be-
tween @ and two functions, G¥, G4, which are analytic in the upper and
lower half-planes of w, respectively. The function G¥is written in terms
of the real and imaginary parts @’ and G"' of @ as

R (p, w) =G (p, w) + 4 coth2—wTG’”(p, ) (17.12)
for fermions, and
6E(p, w) = G (p, w) -- i tanh 2“,} 6" (p, w) (17.13)

for bosons. Similarly,

64(p, w) = G (p, w) — i coth %G”(p, ),

G4 (p, w) = & (p, w) — i tanh ﬁG”(p, w).
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The functions GF, G satisfy the dispersion relations:
ReGE(w) = 1 JC m G (x) de,
7 T —w

- (17.14)

o

ReCA (o) = — Jf & (@) g,

T X —w

whence their analyticity follows by a familiar theorem of the theory of
functions of a complex variable.

It is easily shown that GF is the same as the so-called retarded Green
function:

(1, 2 — {—iTr{e‘““ﬁ—ﬁ”T PP @ £ @FW}}, 0> b,
’ 0, t <ty (17.15)
and G4 the same as the advanced function:
N _{0, b> 15, (17.16)
P I Tr {0 (et (2) £ 9t @9(D)) 4 < .

Indeed, we have, on carrying out precisely the same procedure for
(17.15) as we applied to G:

G (P, w) = — (2)° X £OTHIIIT g, (0) F (1 o &)

n,m
. 1
x8(p =Py fimdle — o) — =] (r.17)
The function (17.17) clearly satisfies the relations (17.14).
We can write formula (17.17) for G'E (and the analogous formula for
G4) in a rather different form:

o

¢t(p, w) = f _e(p.a)_ dz,

r—aw—10
N - (17.18)
7:\ . Q(P’x) . 0
&P, o) = fx—w—[—iédx’ 0>+0

where p is the real function
o(p; w) = — (2w)° X THuEmET |, (0) 2
nam

X [1 4 € TS (D — Ppn) O (@ — W) - (17.19)

Expressions of the type (17.18) were first obtained by Lehmann [28]
for the Green functions of quantum electrodynamics. They enable us,
in particular, to draw conclusions about the behaviour of GF, G4 for large

w. We find, in fact, on noting that the integral f o dz is finite:

~—co

Gt~ G4 ~ —% [ edzx.
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On the other hand, we can find the integral of ¢ by using the definition
(17.15) of GE. Indeed, we have, by the rules for the commutation of
Heisenberg operator at {; =1,

GR(ry, tosty =t -+ 0) = —id(r; —1y), GE(p;t, =1, +0) = —i.
We express GE(p; &, =, + 0) in terms of G%(p, w):
1 - —twe
GE(p, t, = t, -+ 0) Z%_L dw@®(p, w)e**, o—> 40,

and substitute into this the expression (17.18) for G¥:

. 1 co o —iewen R
Hence, co
[ ol p)dz = —1. (17.20)
We thus have, in the case of large w,
(2P NY SN 1 > (17.21)
w

i.e. G G4 behave like the corresponding functions for non-interacting
particles.

The retarded and advanced functions satisfy an infinite system of
coupled equations (Bogolyubov and Tyablikov [34]). There is no dia-
gram technique for evaluating them, however, as there is for the tem-
perature-dependent Green functions . It is therefore of interest to
establish a connection between GF and @&. This is done by finding an
integral form for &, analogous to (17.18).

We can use definition (11.1) to write (v > 0):

G(r,7) = — X @ HeNaET opn—iDyt) | (0) |2_ (17.22)
nam
Changing to Fourier components in (17.22) in accordance with the for-
mula YT

& (p, wp) = [ dr [ @PrexplioyT —i(p- 1N]G(r, 7),
0

where wy, = (2k+ 1)zT for fermions and w, = 2kn T for bosons, we get
14+ e “malT

(D, w) = —(2a)° 3 <THIBAT [y (0) P8 (P —p) .
nm mn k
(17.23)
The function (17.23) can be written as(f)
G(p, )= [ o(p, 2) (17.24)

x—iow,

—co

(1) It can be shown that, in the Bose case, with ,, = 0, the integral (17.24) has a
singularity at = = 0. It follows from (17.19), however, that ¢ ~ z for small z in
this case.

Q.F.T. 10
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with the same g as in (17.19), whence a relationship is obtained between
& for w, > 0 and GF(w):

G (0, = iw,), »,> 0. (17.25)
On the other hand, it follows from (17.24) that
¥(w,) = G*(—aw,). (17.26)

A knowledge of the function G¥(w), analytic in the upper half-plane,
thus enables us to form, with the aid of (17.25) and (17.26), the tempera-
ture-dependent Green function @& for all ‘‘frequencies” w,,.

Much more interest attaches, however, to the inverse problem of find-
ing the function GF, given ®. Suppose that @ is known for all frequencies
w,, and that we have managed to find a function F(w), analytic in the
upper half-plane, with the properties:

Fliw,) = 6(w,), w,> 0.

We could then fairly soon show, by using a familiar theorem from the
theory of functions of a complex variable(}), that F(w) is the same as
G%(w) everywhere on the upper half-plane.

The problem of finding G¥(w) thus amounts to the analytic continua-
tion of (w,) with a discrete set of points throughout the upper half-
plane (Abrikosov, Gor’'kov, Dzyaloshinskii [31], Fradkin [32]). Although
no general solution is possible, the analytic continuation can be perfor-
med in certain particular cases.

A special case is T = 0. In that case all sums over w must be replaced
by integrals, according to the rule

1 oQ
T — .
ﬁ‘d‘ezn_i dw

In contradistinction to the time-dependent technique for 77 = 0 which
was given in the preceding chapter, all integrals are here taken along
the imaginary axes in the complex planes of the true frequencies. The
external frequencies are also imaginary.

The analytical continuation onto the real axis can be performed as
follows. Let us take an arbitrary diagram for one of the many-particle
Green functions @™ or the thermodynamic potential £ and let us split
up the expression corresponding to that diagram into parts in which the
integrals are taken in such a way that all arguments of &®-lines have
a well-defined sign.

(1) The theorem in question says that two analytic functions coincide if they
take the same values over an infinite sequence of points having a limit-point in
the domain of analyticity. The sequence in our case is formed by the integral points
tw,, the limit-point being the point at infinity.



TIME-DEPENDENT GREEN FUNCTIONS 147

We replace each G® occurring in the diagram by G2 if w > 0 or
by 9 if w < 0. Let one of the frequencies w (external or integration
variable) be such that when it is replaced by zero none of the frequency
arguments of the functions changes sign. Using the notation G and
Gfg) enables us in this case to make the transformation w - — 7w, since
none of the arguments of G’ and G passes through the real axis. If
we assume that after this transformation we can find another frequency
which possesses similar properties, and so on, we can by successive trans-
formations of this kind transform all frequencies onto the real axis. It
is then clear that the arguments of all GY? functions will be negative,
while those of all G'9 functions will be positive, and those functions can
thus be replaced by G. We arrive in this way at the time-dependent
technique for 7' = 0. This argument is naturally also completely rele-
vant for diagrams which consist of complete ¢-lines.

We must also note that if the diagram considered refers to a tempera-
ture-dependent Green function G, the function obtained by the proce-
dure which we just described will just be the time-dependent Green
function G™ and not some other function. One sees this most easily
from the example of the single-particle function @ (w). If we have o > 0,
it changes to Gx(w), while if w < 0, it changes to G4(w). Hence, & (w)
changes into G(w).

The problem thus reduces to the question whether we can find such a
sequence of frequencies that they enable us to realise the successive
transformations @ —- — tw. In practice it is sufficient for this to show
that there is necessarily one such frequency, since after the transforma-
tion of that frequency the problem reduces to a completely analogous
one, but with a smaller number of variables (the diagram is obtained
from the original one by deleting one of the G-lines).

Let us consider an arbitrary diagram where the frequency @ occurs
in the arguments of some of the (®-functions. Let us denote these
arguments by o, o + oy, - .-, ® + w;. Let @ > 0, and let there be
negative frequencies among the ;. We shall now assume that w - o,
has the smallest absolute magnitude of the negative arguments of the
G©.lines. It is clear that if all other negative frequencies have a larger
absolute magnitude than wy, the substitution w - — ¢w would be possible.
If this is not the case, we perform a change of variables: ' = o + wy.
The arguments then become of the form o' —awy, o' + o — g, .. .,
o,..., 0 + o, — v, Since o < 0, those arguments which were posi-
tive remain the same when o’ = 0. Those which were negative remain
negative since the corresponding w;—wy> 0. In that case we can thus
perform the transformation o' - —iow'.

The discussion given here shows that the time-dependent technique
for 7= 0 which was given in Chapter II can also be obtained without
10*
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applying the very artificial method of the adiabatic switching on of the
interaction.

If we know the retarded functions G (w), DF (w) or the electromagnetic
field Green function D& s (o) (see § 29), a number of transport characteris-
tics of the system can be determined. For instance, having found the
pole of GE(w) for an electron in a metal, the time of free flight of the
electron can be determined as a function of its energy, whilst the pole
of DE(w) for a phonon yields the acoustic absorption coefficient. The
function DE s(w) determines the dielectric permeability £(w) of the
system, and from this the low frequency conductivity of the metal (from
the relationship ¢(w) - 4nio/w as @ — 0). The method of analytic
continuation in the technique of temperature-dependent Green functions
thus enables us to go beyond the framework of the purely statistical
problem of evaluating the thermodynamic potential; in essence, concur-
rently with the evaluation of £2, we can also find the transport coefficients.

But a whole group of transport coefficients (such as viscosity, heat
conductivity, etc.) is connected with the many-particle Green functions.
In principle, relationships similar to (17.24) can also be obtained for the
latter. However, in view of the fact that these functions depend on a large
number of frequencies (for instance, on three for the two-particle func-
tions), the general relationships prove unwieldy. Moreover, in the majo-
rity of cases of practical importance Green functions are required in
which several of the arguments coincide (we shall encounter examples of
this in the chapter on superconductivity). In this case the analytic pro-
perties are the same as those for the single-particle functions, and relation-
ships connecting the temperature-dependent and time-dependent quan-
tities may easily be established for them.

Let us take, say, the scattering of slow neutrons in a liquid, which we
shall assume for simplicity to consist of spin-zero bosons. It is well known
that the interaction of a slow neutron with an atom of a liquid can be
described by a point interaction (see e.g. [16]):

m -+ m,
mm,

n

V(r— R)=2xn ad(r — R), (17.27)
where r, R are the radius vectors of the incident neutron and the atom
in the liquid, m,, and m are their respective masses, and a is the scattering
amplitude. On summing (17.27) over all the atoms of the liquid, we obtain
for the energy of interaction of the slow neutron with the liquid:

_I_.

n

V(r)= 25 L M g V(S(r — R,). (17.28)

In the second guantisation representation for the liquid particles, V(r)

} V(= 22"t eyt (o),
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where yp, y* are the field operators for the particles of the liquid in the
Schrodinger representation.

The transition matrix element for neutron scattering with momentum
transfer q is proportional to

a [ Gy (Ny(n) |Hdr
(¢ is the initial, f the final state of the liquid). We thus have, for the differ-
ential scattering section (4 is the energy transfer):
do ~ @ [ &, d*re @ Gyt (n)p(r) |
X< |yt () w(re) [$) 0 (B; — By + A).

We sum this expression over the final state f and then take the ensemble
average over the initial state ¢:

do ~ a‘z%‘ [ @Pry @By HanT) AFRNENT (ot (1) (1) |

X<yt (ra)p(re) |0 6(B; — E; — A).
On substituting expression (17.6) for the operators y(r), we finally get

do ~a?(2q)°V S e HENENT (3 o (0)p(0) |52 6(Ps; — q) (s —4),

(17.29)

where V is the volume of the system, w,, = E, — E,, p,; = P, — P,.
Apart from a numerical factor, (17.29) is easily shown to be the same
ag the imaginary part of the Fourier component of the function

K(ry—15,t — 1)

— — T @I (G4 (r 1) (3, 0§ (1 1) (s )} 5
and in fact:
Im K (q, 4)
1447 °

K is the two-particle Green function with pairwise coincident arguments,
and its analytic properties are in no way different from those of the
single-boson Green function G. If, in analogy with G and @, we intro-
duce functions K2 and ®, we can repeat for them everything that has
been said about G, GE and @, after replacing the operators p(1), ¥*(2)
in all the formulae from (17.1) to (17.21) by y*(1)9(1) and »+(2)p(2)
respectively.

To find do, therefore, we only need to find the temperature-dependent
Green function § and construct its analytic continuation in the upper
half-plane KE. We can then find the cross-section from the relations

o Im K%(q, 4)

1 —eaT

do ~ —Va? (17.30)

do~—Va

(17.30°)
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Formula (17.30") is sometimes written in another way:
— S(g. 4)
V=41 “oxp (AT
where 4 is a constant, and S{(q, 4) is the so-called structure function
8(q, 1) = 27 Im K% (q, A).

It may easily be verified that S(q, A) is the Fourier component of the
average of the commutator of the density operators:

<[g(0), e(@)]1_> = (2@)™% [ S(g, ) exp [i(q - 2) —iwt] dqdw.
A useful formula has been published for S (Cohen and Feynman [72],
Noziéres and Pines [73]), which holds both for bosons and for fermions:

1 £ ng?h
el d =1
2n0f wdo S(g,0) =——

(n is the density of the number of particles in the system: 7 = (o (),
m i3 the mass of a free atom).

It may conveniently be derived by using the equation of continuity,
which is satisfied by the density and the number density current opera-
tors:

(17.31)

% (%)
ot
where p (x) =y (x)y (), and where the flux density operator, if the particle
interactions in the liquid are independent of the particle velocities, has
the form

+ divj () = 0, (17.32)

i B
jl@) = —5 v Pp—(Pyhp].

Equation (17.32) expresses the law of conservation of matter. On applying
it to the commutator [p(1), o(2)]_ at & = i,:

0 s -
7 (L), (2], = — div [j (1), 9(2)];,—, »

and using the commutation rule (6.2) for operators with identical time
arguments, we find that

P 0B 1
% [p(1),0(2))s,= 3;—7; divy [p (1) V16 (ry — 1) — 5 0(ry—rg) Vie()].

On taking the average of this operator equation and using the spatial
uniformity of the system, by virtue of which V{p(1)) = FVn =0, we
obtain in Fourier components:

+o0 i qz b

1
2—7;_0_{) wS(q, w)dw ="

But S(g, —w) = — S(¢, w), whence (17.31) follows.
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It also follows from (17.29) that

1 e S(q, w) dw
’ L _ —i(g- 1) . —
o [ 1_exp(_w/T)—fe 40 (o(0)o(r)y ar = S(q)7,

—oo

where S(q) is the correlation function which we introduced in § 1 (for
q == 0). This last relationship may be conveniently transformed to

1 & w _
%Of 8(g, @) coth 5 dw = S(q)7.

We conclude by showing how the sums over o, such as (16.12) are
evaluated. We note that, for large w,,

¢ ~ i (17.83)
to,
(this follows at once from (17.24) and (17.20)), so that
T3 ¢ (w,) exp(—iw,T) (17.34)

is divergent for T == 0. This implies in fact, as is clear from the definition
of @& (z), that the latter has a discontinuity at 7 = 0.

We shall take 7 to be arbitrarily small, but finite. The series (17.34)
is now convergent. Using (17.26), we rewrite it as

2T ‘Eo cos w,TRe §(w,) + 27 é‘o sin w,7Im ¢ (w,)

(the prime on the summation sign means that the w, = 0 term is taken
with half its weight). Since, by (17.33), Re @ tends to zero more rapidly
than 1w, as w,—> 00, We can simply put 7 = 0 in the first sum. To find
the second sum, we note that the w, for which w,t ~ 1 play the main
role in the sum over w,, i.e. large w, as 7 — 0. In view of this, we can
replace the sum over w, by the integral (72 — (1/2x) f ), whilst at
the same time we must, of course, use the asymptotic value (17.33) for
& (w,). We have:

>0 @, x

. ‘. 1 [ sin T 1 .
lim27 é‘osm o, tIm @ (w,) z—géf —dx:—;mgnt.
We thus get the following rule for evaluating the sum (17.34):

l’_)mi) Ty 6w, exp(—io,t) =27 %‘; Re @ (w,) ——;—sign 7. (17.85)

<=



CHAPTER IV

FERMI LIQUID THEORY()

§ 18. PROPERTIES OF THE VERTEX PART
FOR SMALL MOMENTUM TRANSFER. ZERO SOUND(¥)

WE sHALL start the present chapter by indicating how the methods of
quantum field theory can provide us with a basis for a general theory of
Fermi liquids. To do this, we consider a system of fermions with arbi-
trary short-range interaction forces at 7' = 0. We considered the proper-
ties of the Green function for this case in § 7. In particular, we established
there that an excitation of the ‘‘particle’” type corresponds to a pole of
the function Gy in the lower half-plane close to the real positive semi-
axis of the complex variable £(1{), whilst holes correspond to poles of
Gy in the upper half-plane close to the semi-axis ¢ < 0. Since both these
functions represent analytic continuations of the G-function from differ-
ent real semi-axes of the variable g, we can assert that, in the neighbour-
hood of the point £ =0, |p| =2, @ is of the form

a
e —v(|p| —po) + idsign (|p| — )’

where « is the coefficient whose meaning was explained in § 7 (see (7.40));
6>+ 0; v(|p| —p,) is €(p) —p. expanded in the neighbourhood of
|p| = 2, (remember that p, is given by the equation £(pg) =pg). The coeffi-
cient v in the expansion is the velocity of the excitations on the Fermi
boundary, equal to py/m*, where m* is the effective mass of the exci-
tations.

We consider the properties of the vertex part I". This function, along
with G, plays an essential role in the theory of Fermi liquids. We shall
consider the behaviour of the vertex part for p, close to p;, and p, close
to ps. We introduce the notation

F(.pl’ Pas P11k pg — k) = T(pl, P2 K)» (18.2)

G(p,e) =

(18.1)

() It will be convenient to denote the frequency variable in the Green function
by ¢ in this chapter.
%) This section is largely based on the results of L. D. Laxpavu [35].

(1) This corresponds to € > u for the Green functions with fixed NV, as defined
in §7.

152
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where the energy-momentum transfer k= (k, w) is a small 4-vector
(i-e. || <€ 2y || < p). The simplest diagrams for such a vertex part
are illustrated in Fig. 57. The expressions for these diagrams contain
integrals of two Green functions. Whereas there is nothing distinctive
about the case k = 0 for diagrams (a) and (b), in case (c) the poles of
the two Green functions approach one another as k£ — 0. As we shall
see below, this leads to the appearance of singularities in I". It should be
remarked that, although the diagrams of Fig. 57 formally refer to the

g DL papr ARG g LK

204 4
(a) (b) (c)
Fig. 57

WS
N

case of pair forces, the diagram of type (c¢) in fact remains distinctive
whatever the interaction forces.

Let us denote by I'™ the set of all possible diagrams for I', not con-
taining ‘“singular elements” (lines G(p)G(p + k)). It may readily be
seen that the complete I" is obtained by summation of the ‘“ladders”
illustrated in Fig. b8, where the vertices are the functions I'™ and all
the lines are singular. We can express such a summation with the aid of
the integral equation

Faﬁ,yd(pl’ P2 k) = Fa(:;izyd(pli Po) — 4 f Fzﬁ?yn(l’v 9)G(Q)

G(g + k)T 022 (18.3)
XG(q + k)L p.£6(2 Dos )(2_7154' (18.

In view of the fact that I'® has no singularities when k = 0 (short-range
forces), we can put k=0 in it.

We now consider the integral in (18.3). It consists of a term arising
from the domain remote from the point £ = 0, |p| = p,, and an integral
over the neighbourhood of this point, which determines the singularity
of the entire expression. If k is small, we can take this neighbourhood to

XX XXX DX XK

Fig. 58

be extremely small, and only the circuit round the poles of the G-func-
tions is important in the corresponding integral. Since the arguments
of the two G are close together, we can assume that all the remaining
quantities under the integral vary slowly with ¢. In this case there will
be a contribution from the poles only when these lie on opposite sides
of the real axis. For this, we must have |q| < p,, |q + k| > p,, or vice



154 FERMI LIQUID THEORY

versa. Recalling that k is small, it is easily seen that [q| &~ pyand & ~ 0.
Thus in the part of the integral over ¢ which is connected with the cir-
cuit round the poles, the product G(¢)G(g + k) can be replaced by
A46(e)0(|q] —po)-

The coefficient 4 can be determined by integration of G'(¢)G (g -+ k)
over ¢ and |q|; it is equal to

2mia? (k-v)
v o—(k-v)’

where v is a vector directed along g and equal to v in absolute value.
The product G(q)G(q -} k) can therefore be written as

2mia? (k-v)
v o —(k-v)

G@)G(g + k) = 8(e)0(lq| — o) + (@), (18.4)

where ¢@(g) represents the regular part of G(¢)@(g 3 %), which is only
important in the integral over the remote domain (so that we put kt = 0
in it).

The limit of (18.4) as k, @ — 0 depends essentially on the relation
between w and k. The same applies to I" in the limit as w — 0, £k — 0.

We first consider the limit of I, I'®, as w — 0, |k[/w — 0.

We obtain in this limit using (18.3) and (18.4):

o . w d%g
Tita(Pr 22) =T egyo(pry p2) — & [ Tiln(Pr D90 T'ioo@ P2) g

(18.5)

We can eliminate I from the two equations (18.3) and (18.5). To do
this, we write the equations in the operator form (the product is under-
stood to be an integral):

Ire=r®__irOgre,
(18.6)
I'=r®_iIrMEo +o)I.
Here, i@ denotes the first term in (18.4). We get from the first equation:
I'® = (14 Iy 1o,

We take the term containing ¢ over to the left-hand side in the second
of equations (18.6) and operate on it with (1 4- s ®¢)™; this gives us

r=re+4+reor.
We find on writing this explicitly:
L og.y6(P1P25 k) = L' ,5(P15 Do)
4 o (v - k)

@myo] Lot @ Dopsa@ 22) | ) 42 (187)
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We now take the other limit, namely |k|— 0, w/|k|—> 0. Denoting
this by I'%, we find that, by virtue of (18.7), it is connected with I'® as
follows

2 o2
Ffﬁ,yd(pli Do) = P:f)i,yﬁ (P1> Do) —'v—z()%n_ﬁ f F:é,w,(fpl, q) Ffﬁ,ea(q, Pg)dQ.
(18.8)

Let us investigate the poles of the function I'(py, p,, k) for small k
and w. In view of the fact that I'(p,, py; k) > I (p,, p5) in the neigh-
bourhood of the pole, we can neglect the term I on the right-hand side
of (18.7). It may be observed in addition that the variable p,, as also the
indices g and 6, play the role of parameters in the equation. We can there-
fore write I near the pole as the product of two functions y,,(p,; k)
258(22; k), the latter of which cancels on the two sides of (18.7). We intro-
duce the notation

(n- &)
w—v(n —k)
where n is the unit vector in the direction of p;. We obtain for »,, the
equation:

P8 ¢ o
(0 —v(n- k) v, (n)=(n-k) (271)3[1’“5”,,(:1, v, ()dQ. (18.9)

Equation (18.9) has the same form as the equation for zero sound and
spin waves (see § 2, equation (2.24)). We shall show in the next section
that this result is quite justified, since the poles of I" determine the spec-
trum of the Bose excitations of a Fermi liquid.

The quantity e2I™ in (18.9) plays the role of the function f introduced
in the theory of Fermi liquids (§ 2). This quantity, has in itself no direct
physical meaning; but it is connected with a2I™ by means of (18.8),
and we shall shortly prove that a2I'* can be interpreted, up to a constant
factor, as the scattering amplitude of two quasi-particles with |p,| =
|Ps| = pp at zero angle.

Let us consider the auxiliary problem of the scattering of two particles
in vacuo. Let the wave function of this system at # = —oo be a,,a,; Dy,
where @, is the vacuum wave function. At ¢ = co the system has gone
over into the states S(co)a, afsPo. The scattering amplitude for a

Dy
transition of the particles to states p,x, p,ff is proportional to

—i<a1’1°‘ap:ﬂs(oo) a;;ya;)};6>01 (18.10)

where (- - ), denotes the vacuum average. The operator S(oco) is defined
by (8.8), i.e. when expanded in powers of H,,,, it represents the sum of
the integrals of the T'-products of the operators g.

According to (8.10), each of these T-products can be written as a set
of N-products. It is obvious that the only important terms in our matrix
element are those which contain N-products of four y-operators with all

'Va-y(n) = Xay(pl; k)’
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possible contractions. Since the contractions arc simply numbers, they

do not take part in the averaging. Therc are two particles in the present
case, so that

N (y+ (@) p* (g v () (@02)] = w (a5) ¥ (wg) v (@) p (%) -

On averaging the matrix element (18.10) over the vacuum, this N-pro-
duet gives a factor

exp{i(ry - py) 4 (rz - Pa) — (13 P3) — (14 Py)
— i(eg (Pt + £ (P2l — &0 (Ps) s — & (Py) t4)}'

In (18.10) this factor is integrated over the coordinates along with an
expression that only contains the contractions. We obtain as a result
the set of all diagrams with four vertices, the cnergy and mmomentum of
every end-point being connected by the relationship & = g,(p).

This quantity corresponds to the last term of the two-particle Green
function (10.17) introduced ecarlier, without the final G‘®-functions. In
our prescent problem of the scattering of two particles in a vacuum, these
GO._functions are the same as the complete G-functions. For, by (7.3),

GO(r, t) = 0 for t < 0.

At the same time, a diagram for a corrcction to G always contains at
least one pair of lines in opposite directions(f) (i.c. one G for ¢ > 0
and onc G for t < 0), as a result of which any correction to G@ is equal
to zero.

For the same reason, of the diagrams for the vertex part only those
remain in which all the G lines are in the same direction (to the left
or the right), i.e. only diagrams of the typec of Fig. b7a.

It follows from all this that the scattering amplitude (18.10) is equal
t0(3) 1apy0(P1Pa> DsDa) ley=eipy» Where IV is the vertex part for our
problem,

Formula (9.17), expressing the counection hetween the two-particle
Green function and the vertex part, takes the form here:

Gobra (1923 Pspg) = GO (21) G (3) (200)* [6 (Py — P3) 8.1y Op

— 0(P, —Py) g, Ou0l + GO (20 @ (p2) G© (73) G (.p-'l)'r'o,c 6(P1D2; P3Dy)-
(18.11)

The momenta in this formula arc connected by the conservation laws.

We can regard G as the Green function of two particles (whence its

(1) Diagrams of the type Fig. 4a are exceptions, but, as already remarked in
§ 8, G (0) must be regarded as  lim GO (—¢) in such diagrams, and this limit
is here equal to zero. t>to

(1) A constant factor is omitted in all the formulae; comparison with perturbation
theory (see Chap.I) shows that it is equal to 4z/m.
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name derives). The first term in (18.11) corresponds to independent
motion of the particles, and the second to their scattering by cach other.

Let us return to Fermi liguids, and compare formulae (10.17) and (18.11).
By (18.1), in the domain of small ¢ and | p| close to p,, the Green functions
are very similar in form to the functions for free particles. In order to
be able to regard G as the Green function of two interacting quasi-
particles, it has to be divided by @ The free particle terin will have in
this case precisely the same normalisation as for real particles with
energies &(p).

The sccond term in (10.17) corresponds to the scattering of quasi-

particles. On comparing it with the expression for real particles, we can
conclude that

“ZFaﬁ,ya () P25 P3Ps) Ie,-=s(p,.)—,u (18.12)

plays the role of the scattering amplitude for the quasi-particles.

In particular, if |p,| = |py| =2, & =0 for all <. The scattering
amplitnde for small momentum transfer is now equal to a®I'(p,p,, k)
with o = 0, whilst the scattering amplitude at zero angle is a2I'%.

Equation (18.8), eonnecting a2I'* with the function f = a2I'®, can be
solved if we assume that the spin-dependent particle interaction has a
purely exchange origin. We can write a2/™® in this case as

7‘5826; a’I'* = A(n,, n,) + B(n,, n,) (0, - 0,), (18.13)
y '

whilst (pf/=%)f = E in accordance with (2.28). The equations for @ and
Z (sce (2.28)) separate:

. , 1Q
A(ny, n,) =d(ny, n,) — [B(ny, n') A(r, ng);—"; ,
(18.14)
’ ’ cl"Q
B(n,, ny) = Z(n,, n,) _fZ(np n’)B(n', nz)z; .

In an isotropic liquid, all the quantitics on the Fermi surface depend only
NN

on cos (1, n,) = cos . We cxpand them in Legendre polynomials, say
A(y) =2 A, P, (cos %), then at once obtain the following relationships
between the coeffieients of the expansions:

2] Z

A‘=1+(51/(2l¥1)’ B‘:1+ZIR21+1)' (18.15)
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§19. EFFECTIVE MASS. CONNECTION BETWEEN FERMI
MOMENTUM AND NUMBER OF PARTICLES(}). BOSE
BRANCHES OF THE SPECTRUM. SPECIFIC HEAT

1. Auziliary relations

We shall first of all obtain some useful relationships for the G-funetions.
Suppose that our system is in an infinitely small field éU (¢), uniform in
space and varying weakly in time. The eorresponding interaction Hamil-
tonian has the form H,,, = f i (r) SU(typ,(r)d3r. If we pass to the
interaction representation in respect of H,,,, expansion of the G-function
in powers of §U gives us, up to first order terms:

8G p(x, 2') = — [dySU ) (KT (val®)vy @) 9, (D) 95 @)
—<T (@) 95 @) oy 9, ()}

Here ¢ are the Heisenberg operators of the interacting particles in the
absence of the field dU. On using (10.17), we get

8Gp(x, ') = 8,5 [ Ay U (8,)G (@ — )G (y — ')
—i [ d*ydie, - - - A% 0T ()G (2 — 2,) G (y — 2,)
X G(zg —")G (g — Y) L oy (21, T35 T, @4) -
Fourier transforming we have:

0G5 = 8,40 (p)0U ()G (p + k) —iG(P)G(p + ky)
4

d
thy,ﬁ'y(p’ q; kl)G(Q)aU(w)G(q + kl) W’Tq)‘i’
where k) = (0, w).
In view of the fact that the field U does not affect the spins, 6G,z
must be proportional to d,5. On taking one-half of the trace we get

86 = G(p)SUG(p + ky) —iG(p)G(p + ky)
1
X 5 [ Topes (0> 4 B)G (@) 8U (0)G (g + k)

On the other hand, if we add to the Hamiltonian the term
8U(t) [ (nyu(r)d®r = UM,

in the limit 8U — const the function @ is simply multiplied by
exp[—¢8U (t —¢')], which corresponds to the addition of —6U to e.
Hence 6G/6U — — 6G/d¢ in the limit as w — 0. We therefore find that

oG
38 {Gz(p)}w [1 - _f Focﬁ ocﬁ(p’ {Gz(Q)}m (2 )4] ’

(1) These results were obtained by L. D. LaAnpavu and L. P. PrTAEVSKII and were
published in part in reference [36].

g
27yt
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where {G%(p)}, = ¢ (see (18.4)) denotes the limit of G(p)G(p + k;) as
w —> 0. Let us consider this relationship close to the pole of G(p). In
this case we can write G(p) in form (18.1). On dividing by —{G%(»)}w»
we get the first relation
oG 1
as(p)___l__f ﬂ“ﬂ(p’ }w(2 )4
The second relation is obtained as follows. Suppose the particles have
infinitely small charge de and the system is located in a magnetic field
which is weakly non-uniform in space and constant in time. The term
—(defc)A is added in this case to the momentum operator in the Hamil-
tonian. If the charge de is extremely small, the variaton of the Hamil-
tonian is given by the term (——6e/mc)fipj(r)[f)-A(r)]ipa(r)d"r, where
P is the momentum operator. As before we now get for the variation of
the Green function:

(19.1)

s .
66 = —6(p) — (p- A)G(p + k) +iG(p)G<p + k)

d 4
f b0 (D> 45 2)G(9) — (q A)G(g + k) (2:3)4’

where k, = (k, 0) (we assume k small here). On the other hand, it follows
from gauge invariance that, in the limit as k— 0, all the momentum-
dependent functions must transform to functions of p — deAjc. Hence
8G[(6e Alc) = — 0G[dp as k— 0.

Consequently, in the limit as de — 0, k— 0, we get our second relation
for G(p) close to the pole:
oG v P
W=—;=—m=——+ fpaﬁaﬂ(p’ —{ (9)}k )4 (19.2)
We get a third relation by considering the variation of the G-function
when the system moves as a whole with a small, slowly varying velocity
du (¢).

The variation of the Hamiltonian of the system amounts to the addi-
tion of the term

—(Ou- Py = — (bu- [y} (1) py,(n)d’),

where P is the operator of the total momentum of the system. The varia-
tion of the G-function is given by

86 = —G(p)( - bu (@) G(p + Iy
+ G(p)G(P + kl) fpaﬁaﬁ(p’ q9; kl) (q 6u(w))G(Q)G(q + kl) (2 )4’

where &, = (0, w). On the other hand, when w = 0, this transformation
implies the passage to a new coordinate system moving with constant
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velocity du. The energy of the system must in this case change by an
amount —(éu - P). The frequency ¢ is here replaced by & + (éu - p),
and consequently the Green function varies by an amount (8G/é) (p - du).
We therefore obtain close to the pole, as w — 0, 6u—> 0,
oG p
38 == —_frocﬂocﬁ(p! q{Gz(Q)}m

a

19.3
e (59

Finally, we get our last relation by considering the variation of the
G-function under the influence of a small field §U (r), constant in time
and slightly non-uniform in space. The variation of @ is in this case

6¢ = G(p)oU (k)G (p + k)

. .
_%G(P)G(Z’ + k) ffw,aﬁ(p, q; k,)G(q) U (k)G(g + k) (279)4,

where k, = (k, 0).
On the other hand, the equilibrium condition
4+ 06U = const

must be fulfilled in a constant external field. In the limit, as k— 0,
the chemical potential changes by a small constant —§U.
We therefore get, as k—> 0, U —0,

a6
=TT T2 @) @

This formula holds for all momenta.

G )4 (19.4)

2. Proof of the fundamental relations of the Fermi liguid theory

The fundamental relation of the Fermi liquid theory can be derived
using (19.1)—(19.4), together with (18.8), connecting I'* with I'®. It is
worth noticing that the last formula is suitable for I" for arbitrary mo-
menta p,, P,, regardless of whether or not they lie close to the Fermi
surface.

We start by substituting (18 8) in (19. 2)' this gives us

p P
m;k—a—l—ﬁz‘?fraﬁaﬁ(z’q = {6* }k

1 2 2
_E(gfg;;*f ocﬁocﬁ(p! Q)( a+ %)dg‘
It follows from (18.4) that
@ = PO} — 7% 5()8(1p| — p0)- (19.5)

We substitute this in the first integral of the previous equation and use
(19.3). We obtain after some cancellations when |p| = p, £ =0,

1 1 _
—= 2(2 0= [@®T% 5(x) cos xAQ. (19.6)
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It is easily seen that this is the same as (2.12), where a2l .=
Trou’ f(x’ O. Ul)'

Let us prove (2.1). We consider expression (18.1) for G close to the pole,
i.e. when |p|— py, €= 0. The coefficients @, v and momentum p, in
this expression depend on the chemical potential u. By differentiating G
with respect to w it may easily be seen that the terms originating from
differentiation of @ and v with respect to y are small close to the pole
(~(|P| — po)/pe or &[u) compared to the term produced by differentia-
tion of p,. We thus get

G ¥ 9P
Qu a dy

d& oG
Y du o

IP' =D

Hence,

We substitute (19.4) into this and write J™ in accordance with (18.8).
This gives

d
= g [ T2, 0 F @ 5
1 poa v dp
= e T 0 (5 1) 02

On substituting {G*}; in this in accordance with (19.5) and using (19.1),
we find after some cancellations that

dyp, —1 _
vT;:( 2(2 )3 f Tp.06(P 4 d.Q) . (19.7)

The total number of particles in the system is defined by (7.37). We
differentiate this relation with respect to u, and get(%)

ANIV) . (86 &% . 86M0)
du 21./ T (2n) 2Z./ T }k(2n)4

We substitute (19.4) in this and write J™® in terms of I'® using (18.8).
This gives us

d(v . d#
G =2 [ @by

du
+ [{G* (@)l ap,05(p5 9) {G* (@

dtg dip
@n)t (27)*

_ B em o e v dp, L\ dp
(27‘[)30‘[ {G (p)}kpocﬁ,ocﬁ (p9 Q) (a d‘u' 1) (27'[)4 dQ'

(1) For brevity, the factor et (t > -+ 0) is omitted here under the integral.
Q.F.T. 11
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We substitute (19.5) in this and use (19.1), obtaining as a result:
d(N/V
WD o [ G0N s+ [ 0N Tips(r 0

du
&g dp » %P0
©(2m)t @n)p T (27Pv @aPv du
paa® 121 ® v dp,
—8”[(2:1)3@] 5 Lebes2:9) @ dp”
By (19.1), the first two terms on the right-hand side of this relation
are none other than
G
= (234——%][@(8—00) Gle = ——oo)](2 o
and this last expression vanishes, since, by (7.11), G vanishes when
£ — - oo. This is also obvious from the fact that the expression is equal
to the variation of the number of particles in the system when we shift
the zero of the energy scale.
In the last of the remaining terms, we express f a2I"dQ in aceordance
with (19.7); this gives us
dV[V) _ 8np]dp,
o dw @aPdu’
Integrating over y we finally get
N 8z p}
V3 @Qnp
Formula (19.7) enables us to verify expression (2.19) for the sound
velocity. All we need to do is observe that, by virtue of (19.8), (19.7)
is the same as (2.18).

Brapy 8Bupge—1) dp,

x{G%(q)}

(19.8)

3. Bose branches of spectrum

We now consider the subjeet of acoustic excitations, and for this
purpose carry out an analysis similiar to formulae (7.32)—(7.33). We
consider the time variation of the state of a system which is deseribed
at the instant t = ¢’ by the function

Yo (') = pza Vo () Vg0 () D) - (19.9)
Here |k| < pg; ¥ps are the operators of particles with momentum p in

the interaction representation. On performing the operations in the
same sequence as in (7.32)—(7.33), we get the probability amplitude

1 ~ ~ -
POy = 72, p%;ﬁ P (P s GL N L ()
d3p, dp,
(27) (27)°

d4p1 d4p2 e—uu(t—t ) d_
(2m)t (27)% 27’

z_fGocﬁtxﬂ(Pvt stt P1+kt p2 )

= _ngE,ocﬁ(pli Pos D1 "l_ k, Po —k)
k= (k, w).



EFFECTIVE MASS 163

We substitute (10.17) for G into this formula, and obtain
. .
= k
CHOEOEY] [ [ewmow+h g (2 -

—i [@PIG@1 + W opop B 223 B)

d'p, d*p, ioo(t—r) 4O
— A —. .10
@n) @m)t | o (1910

The expression in square brackets (which we shall denote symbolically
by iall) can be transformed with the aid of (18.4), (18.7) and (19.1).
The aim of these transformations is to eliminate the terms econtaining
integrations far from & = 0, |p| = p,. The method of doing this follows
the same pattern as earlier in this seetion.

The vertex part I is expressed with the aid of (18.7) in terms of I'®,
whilst an integral such as f I'*g is replaced in accordance with (19.1).

The net result is that the function I7 is given by

)

:(‘Zn)% w—(k-v (2n)v o—(k-v)

X G (pg) G (py— k)

xXa Fﬁaﬁ(pl’p"’ k)L(k)i)dQ dQ

It may easily be verified direetly that the function I7 can be written
in the form (p§fv(27)3) f 11,40, where II,,, satisfies the equation

k 1
(0 — (k- o)), (, k, 1) Z’(oz( )3:) 5 [a®Ip o(n, 0 ) T, (0, k,n')dQ

— (k- ©)8,, (19.11)

It follows from (19.10) that, as in § 7, the value of (V¢ (5) P (¢)) as
t— oo is determined by the poles of the function I7 of the complex
variable w in the lower half-plane. The equation for the poles is obtained
from (19.11) by negleeting the right-hand side. On comparing the equa-
tion obtained with (18.9), we find that the function I; corresponds to
». Since our interest is in Tr, f 11,dQ rather than in I7}, the only solution
of equation (18.9) that we consider is the one which is isotropic in the
plane perpendicular to the vector k. By choosing other functions ¥ (t),
we can similarly obtain equations for all the components (with respect
to both angles and spins) of the ,,.

It has thus been shown that there can exist in Fermi liquids excita-
tions whose spectrum is determined by the poles of the Fourier trans-
form of the function I', i.e. by equation (18.9). These excitations obey
Bose statistics, since the corresponding operators are bilinear with respect
to the Fermi operators (see (19.9)).
11+
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We showed in § 2 that the differcnt branches of the zero sound spectrum
represent excitations of this type. In other words, we have determined
the physical meaning of the poles of the function I" in the domain of
small energy and momentum transfer and have proved the identity of
equations (18.9) and (2.24).

It follows from (19.9) that the acoustic excitations can be regarded
as bound pairs of quasi-particles and holes with neighbouring values of
momentum.

4. Another derivation of the conmection between the Fermi momentum
Ppo and the number of particles(t)

We shall now describe another derivation of (2.1).
We write formula (7.37) for the dengity as follows:

N [0 o dip _
-I—/—=2zf[a—£lnG(p) G (p) = E(p)] t(z o (19.12)

where t - 4 0, and X is the total irreducible self-energy part (G =
(e — & —2¥1). The integral of the second term in the square brackets
may be shown to vanish. To do this, we first of all prove that X'(p) can
be regarded as the variational derivative with respect to G(p) of a funec-

tional in G, i.e. d4p
80X = [ Z(p)6G(p)- 2y (19.13)

Let us find the variational derivative 62 (p)/6G(q); to do this we con-
sider the diagrams composing 2, and successively vary all the G-lines
in each diagram. Let us take, for instance, the self-energy part in
Fig. 10c. If we separate in turn each of the three G-lines in it and denote
the corresponding frequency and momentum each time by g, ¢, it may
easily be seen that the result will be equal to the product of this G-func-
tion with the sum of two diagrams, which represent simply the second
approximation to the function ' (p, g) introduced in § 18, i.e. that part
of the function I'(p, g), which does not contain ‘“‘singular elements”
with two identical G-functions. On applying this procedure to all the
diagrams forming X, we get

60X (p) = _L J I35, 966G (9) &
- PR (2m)t’
Hence it follows that
60X (p) v
TeAET 14
6G (q) 2 ocﬁ aﬁ(p7 q)- (19.14)

This quantity is symmetrical with respect to the exchange p < ¢, which,
as is well known, is a sufficient condition for the existence of the func-
tional X.

(1) The derivation in this section is mainly due to LuTrINGER and WARD [37].
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The funectional X can be represented as a set of diagrams that ineclnde
only complete G-lines. It is clear from (19.13) that these diagrams are
obtained from the diagrams for X (the skeleton diagrams with complete
G-lines) if we “‘close” each diagram by a complete G-line. In order for
(19.13) to be obtained with the correct normalization, we have to intro-
duce a numerical coefficient, dependent on the type of diagram (for in-
stance, if there is only one type of interaction, the coefficient is equal to
1/n, where n is the number of vertices).

The diagrams composing X do not change if all the frequencies in the
G-lines are shifted by a small amount &, since the limits of integration
over the frequency are (— oo, + 00), whilst the d-functions at the ver-
tices contain the same number of &, with the ‘“plus” sign as with the
“minus” sign. We obtain from this:

oG (p) o
68(0) f @) oe (2n)4

Let us return to (19.12). The integral of the second term in the square
brackets can be written as

o A%
B oG (p) dp
= — 27 fG(p)E(p)|—°° (2 )4+ f ( e (27'[)4-

The second term here is equal to zero. As regards the first term, by (7.21),
G(p,e) ~ GO(p, &) ~ Lje as e o0, i.e. X(p) cannot increase propor-
tionally to € and G (p) X (p) — 0 as ¢ = co. We have thus proved that the
integral of the second term in (19.12) vanishes. Hence

N o 4%
—_2zf O o (19.15)

As already mentioned in § 7, although the G-function is not analytie,
the funetion Gg(g), equal to G (¢) for ¢ > 0 and G*(¢) for £ << 0, is analytie
in the upper half-plane. It can also be shown that Gz has no zeros in the
upper half-plane(}). Hence it follows that

N <€l d3p 3 G(p)
v f 2e M On(P)e (2 )4 ./ @) % 2 G ()

- » 3 3
Yy j_s d3p 3lnG(10) 2i A% G(p) [°

(27)® 6 G*(p) 2 J (27

(in the integral eontaining Gy, the contour can be shifted into the region
Im ¢ = oo, after which the integral vanishes).

(1) The proof is the same as for the absence of zeros of the complex dielectric
constant £(w) in the upper half-plane of the variable « (see [47], § 62).
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If we denote the phase of the G-funetion by ¢, we have

N 2 roa
7= | ap@® —o(—co)l.

We consider the variation of the phase ¢ on passing from ¢ =0 to
£ = —oo. We know from § 7 that Im G > 0 for & << 0, whilst ImG = 0
at ¢ = 0. As ¢ > —o0o, Im G decreases more rapidly than Re , and
Re G ~ 1/e < 0. Since Im @ has a definite sign, the point in the complex
G plane, corresponding to Im G and Re G for a given g, only moves in
the upper half-plane, i.e. the phase can only vary from 0 to w. Since
ImGReG@—> —0 when &> —o0, we have @(—oo) ==z. The value
of the phase at ¢ = 0 is determined by the sigh of Re G(0, p) = G(0, p).
If G(0, p) > 0, then @(0) = 0. If G(0, p) < 0, then ¢(0) ==.
We therefore obtain from (19.1b):
3
¥ p (19.16)

13
|4 G(0,p)>0 ( )

The region G(0, p) > 0 is bounded by a surface on which G either
vanishes or becomes infinite. Vanishing of G (0, p) (X' — co) would appear
to correspond to superconductivity (see § 34). As regards G(O0, p) be-
coming infinite, this is the case in an ordinary Fermi liquid and occurs
on the Fermi surface.

In the neighbourhood of the Fermi surface (in the present case | p| = 1,),
G(0, p) = —a/§, where a > 0, i.e. the G(0, p) > 0 region corresponds
to & < 0 (the interior of the Fermi sphere). On integrating in (19.16),
we get (2.1).

5. Specific heat

We have so far considered Fermi liquids at 7' = 0. The properties of
Fermi liquids at non-zero temperatures are also of interest. It seems
reasonable to expect that, in the case of low temperatures, all the func-
tions will be determined by the values of the fundamental charaeteris-
tics of the Fermi liquid at 7' = 0. This will be demonstrated by working
out the specific heat. The method to be employed for obtaining the tem-
perature correction may prove valuable for other calculations.

We shall start from expression (16.12) for the total number of particles
in the system as a function of y and T':

N(”’T?_2TZ f(2 5 O le ). (19.17)

A knowledge of this function enables us to determine the entropy from
the thermodynamic relation

oN oS
- ).
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Let us consider the @-function appearing in the expression for N. If
we recall that this is the complete @-function, obtained as a result of
adding all the diagrams containing sums over the frequencies, it becomes
clear that @ (e, p) depends on the temperature not only through the
discrete variable e =77 (2% + 1). We shall therefore denote it here
by &(T'; &, p). As we know from Chap. ITI, & is connected with the self-
energy part 2 by the relation

G (T; & p) = 69V, p) —Z(T; &, p)- (19.19)

Notice that &O(e, p) depends only on the temperature through e. Now let
T —> 0, but at the same time ¢ = const. Equation (19.19) now becomes

G(0; &, p) = GO (e, p) — Z(0; ¢, p). (19.20)

We find from (19.19) and (19.20) that
G (T p) = G1(0;6,p) — [Z(T;6,p) — E(0;6,p)).  (19.21)
The quantity 2(0; ¢, p) differs from 2(T'; ¢, p) in that all the sums over

frequencies in it are replaced by integrals, in accordance with the for-
mula

1 (=)

At low temperatures, the difference 2'(f) — 2'(0) can be found as follows.
We consider two similar diagrams for 2(7') and 2'(0), say 2, (7) and
25(0). We shall regard these diagrams as composed of complete &-lines.
If we were to replace all the sums in 2\ (7) by integrals, this diagram
would still differ from 2 (0) by virtue of the difference of one of its
components & (7') from & (0). To a first approximation it is sufficient
to take into account the difference of one of the &(7') from @ (0), and
to regard the rest as equal to & (0). Another contribution to the difference
21(T) — 2,(0) is due to the presence of sums instead of integrals. If the
corresponding frequency is small, this difference is of the order 7. To a
first approximation these frequency regions will be significant, in which
one of the @-lines has a frequency of the order 7', whilst all the rest have
much higher frequencies. In view of this we can split off the -line
with low frequency, and in all the remaining places replace the sums
by integrals and all the &(7) by & (0).

We therefore need to vary the diagram for 2| over all the (-lines
appearing in it. The working here is precisely the same as in the previous
section. On applying this procedure to all the diagrams composing 2,
we obtain

2(T,e,p)—2(0,¢ p)

1 ~d3q d
=5/ (2 32T Beal0s & 25 21, [B(T, &1, 9) ~B (0, &1, 9))

1 1 ds
5 |7 2 g 16| [ T Best05 6 P55 @) B0, 1, 9).
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On applying formula (19.21) and solving this equation for X'(7') — 2'(0)
(to do this, it is sufficient to write the equation for 7, analogous to
(18.3)), we find that

(T e, p)——):(O'e P)

d*q e b :
—[ < 2 fd ] (A?—n)éyaﬁ,aﬁ(oie’l)’el’ q)®(0’61’q)'

&

(19.22)

This gives us, using (19.21), for the first approximation to &(T'):
1
G(T;e p) = G(0;¢ p) +§@52(0;6= P) [TZ—zifdsl]
& T

(F;qy (0;6,p5€1, Q) &(0; 8y, )

Gy T ctesViesPien Q0 0361, 9)-
We substitute this expression into (19.17) and subtract (1/V)N (u, 0)

from the result. We can obviously write, up to first order terms:

%[N(,u, Ty — N (u, 0)) :2[11 }_‘——-l—fde] ®(0; ¢, p)

&ép .0 1
f @2( oe,p)['_rf\:—%z dsl]

(27)®
ds

Xf(z %3‘7043043(0;6»1’;61» q) (0 ¢, q)

1
=2[T§—g de]f(z  6(0:6, 2
~ d3
{1 +5 9 f @ %35‘04”5(0;6,1); &, q)@Z(O; £, q)],
(19.23)

We have used in this last equation the symmetry property
jaﬁ,aﬁ(ei P&y Q) = yaﬂ,aﬁ(els q;é&, P) .

This expression can be modified to some extent. By proceeding as in
deriving (19.4), we can obtain a formula for the finite temperature case
which is analogous to (19.4):

o0& (T;e, p) 1
73[/‘__21—'——2—1’2'/‘(2 )3<?~o‘.3043 T & P, €1 q)@ (T €y q)

We obtain in the limit as 7 — 0 when &€ = const:

de,  d3q 2.
—@5 1(056,p) =1+ 2[ [ oy T opa 032 B3 21 DG O3 1, 9)-

On substituting in (19.23), we get

1 1
I, T)—N(u,0)1=2[T2——fde] S P G0ie,p)
9 1. _ 1 &Bp 9
X 'a—'u@ (O,E,P)— I:TZ Fy. dE] (2 )38 ln@(O &, P).
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Differentiating this with respect to the temperature with y = const,
and comparing it with (19.18), we have
8 0 p
—=—2 T In & (0; . 19.24
b= 2|73 [ i 602, )] (19.2)
The rest of the calculations proceeds as follows. We use the connection
between the temperature-dependent function & and the retarded and
advanced Green functions, and write (19.24) for the entropy as the sum
of two contour integrals:

s 0 d3p
ol Sl

ftanh InG (e, p) ds]]i
J
- dp 1 onp(¢)
— szn)3——2niT[Cfe( pe )mGR(e p)de

n f (——)lnGA(e p)ds]

where ngy is the Fermi function, and the contours C,, C, are given in
Fig. 9 a. The function Gy has no zeros in the upper half-plane, and G,
none in the lower half-plane(f). Using this property, and also the ana-
Iyticity of Gp, G4 in the appropriate half-planes and the rapid decreases
of énploe as € > - co, we can arrange (), C, along the real axis (see
Fig. 59b); this gives us

& 1 °°6 anF (e)
(2n)32nzT

)[1 nG e, p) — InGy(e, p)lde.

On applying the usual rule for finding integrals containing Fermi
functions (%), we find that
8 2m2T 1 d3p - 9GR 9GA
—__ = _- G 1 G—l
4 3 2:m'f (27‘5)3[ e A e Je—o
2n2T 1 d3p _1 0GR
— 2Im (G5 —— .
3 271:.[(271:)3 [ B 9 |e—o
The last equality is connected with the fact that Gf == G4 on the real
axis. It is easily seen that the integration over p is performed close to
the Fermi surface. On substituting G =~ a/(e — & | i6), we get

S pym*
== 7. 19.25
vV 3 (19.25)

The specific heat is obviously equal to the entropy.

(1) See the footnote on p. 165.

&f

) _of° f(S)%(e)ds=—-.f(O)—-%T2 @L=o+'"'



170 FERMI LIQUID THEORY

Notice that our derivation of the temperature correction only made use
of the neighbourhood of the point £ = 0, § = 0, i.e. the real poles of G g(or G)
P at T'= 0. This situation would seem

to hold for any first order tempera.-
ture corrections. In other words, to
L 5 a first approximation the tempera-
q —~ , ture corrections must always be
determined by the poles of the func-
tion GorI') at T'=0, i.e. they
& ®) are determined by the spectrum of

Fig. 59 the elementary excitations.

\,‘5

6. Damping of quasi-particles in a Fermi liquid ()

The basic parameters characterising the energy spectrum of a Fermi
liquid, i.e. the constants @ and v, vary weakly as functions of the tempera-
ture. It is clear from general considerations that the corrections must
be proportional to (7'/ex)?. It is not possible to say this about the damping.
The example of a rarefied gas discussedin § 2 (the footnote on p. 17) showed
that the damping must be proportional to &% for ¢ > 7 and proportional
to T2 for ¢ € T. In view of this, it is of interest to consider the case of
finite temperatures when evaluating the damping.

The damping of the quasi-particles is due to various collision processes
in which two or more quasi-particles can participate. Degeneration
Limits the domains of phase space accessible to the quasi-particles
on scattering, and it can therefore be assumed that the most probable
processes are those in which two quasi-particles participate.

The quasi-particle damping is determined by the imaginary part of
the retarded Green function Gg(e, p) at small frequencies € and momenta
P, close to the limiting Fermi momentum. In the previous section the
first term of the temperature expansion of Gp was evaluated. It was
obtained by the replacement, in each diagram for the temperature-
depeudent self-energy part X'(g, p), of all the summations over the dis-
crete frequencies &, except one, by integration. In other words, we
extracted one line from each diagram for X and assumed that this line
correspond to a low frequency. The remaining frequencies were assumed
large and the corresponding sums were replaced by integrals.

However, the temperature correction to Gy thus obtained turns out
to be purely real. This means that we must evaluate the next term in
the expansion in ¢ and 7. To do this, we have to suppose that there are
two low frequencies instead of one in each diagram, and in view of this
there must be two summations of discrete frequencies instead of one.
This corresponds to splitting off three &-lines in the diagrams for the

() This section is based on G. M. ELIASHBERG’s paper [74].
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temperature-dependent self-energy part. A diagram now has the form
illustrated in Fig. 60. As earlier, there are several possible methods of
carrying out this splitting off. We shall assume that the remaining fre-

quencies are high, so that we can put 7'=0 and ¢, =g, =& =0 1in
the vertex parts represented by shaded squares in Fig. 60. We thus
obtain

72
~ P, > [ &3p,a3p, Iy (P, Po; P1s P + Py — P1)
X Iy(p + Py — P1> P1s Po P) B(D)B(p)E(p + P2 — Py), (19.26)

where I} and I', correspond to a definite diagram and a definite method
of splitting off the three lines (summation over the spins is also under-
stood here).

We now pass from summation over the imaginary parts to integration
over the real parts. We shall first do this for &, In accordance with the
analytic properties of ¢4 and the G-functions, we can replace the sum
over & Py a contour integral:

2(2T 7 i [d3p, &3p, T 21_ ®(s,) [dsztanh(ez/.‘ZT)
X Gpa(e)Opyles + e —ig) —I— : & (&) fde tanh (g,/2 T)
& <& Ied
X Gpy(es)Gpy(egtie—ig) 4 G(e) c"'[ ds, tanh (&,/2T) Gy (62)}-

The contour C is illustrated in Fig. 61. The contour C’ differs from C
in that the line Im &, = & — ¢ lies below the line Im &, = 0. The contour
C"” contains one horizontal piece. Gp,(e) denotes Gp(e) if Im () > 0
and Gy (¢) if Im (&) << 0. The integral over the large circle vanishes, so
that there only remain the integrals over the horizontal lines. This gives

T o
)" [d3pydip, I, T, {.:_‘ G(ey) [ de,tanh (e5/27) [Im Gp(e)

XG (e + ie —ig) + Im Gp(ey)Grlep + tey—ie)] + E%‘E@(El) f de,
X tanh (g5/27) [Im G (e,)Gr(ey + i€ —ig) +ImGp(e)Q (&5 + 18 —ig)]
+ G () foodsz tanh (g/27) Re Gg(gy) Im Gy (62)1. (19.27)

J
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We have made use here of the relationship G, (e) = G(e), so that
Gr(e) —G, () = 27 Im Gp(e), and also of the periodicity tanh (z + izn)
= tanh z.

We now perform the same replacement of the sum by a contour inte-
gral for . In this case we obtain (¢ > 0):

1 (o] (o]
~ ) / d3p1d3p2F1F21 § de; coth (&,/27) Gp(ey+ic) [ deytanh(e,/2T)
X [Im Gg(e,) Im Gyle, + &) — Im Gp(ey) Im Gy(e; — &)]

+ [ de, tanh (g/27) Im Gy(s) f de, tanh (g,/27)

—0
X [Im Gp(ey) Grle, + te — &) + Im Gpley) Gy(en + & — zs)]} (19.28)

We remark here that the circuit round the pole of coth(g/2T) ate; =10
cancels with the last term in (19.27).

In order to find the contribution to Im Xp(g p) it is sufficient to
replace ¢ by &€ 4 70 and take the imaginary part. The result can be
written in the form

(2 )de P 3p. 111 fde de, Im Gr(e;, py) Im Grle,, P,)

X ImGp(es+e—&, P+ P— Py) (tanh (&/2T) — coth [(g, — €)/2 T])
X (tanh (e/2T) — tanh [(g, + &£ —&)/2 T]) . (19.29)

Since we are interested in small ¢, small & and &, and momenta close
to p, are important in the integrals. Now, Im Gy (¢, p) ~ —and [ — &E(p)].
This method thus actually enables us to take account of the binary
quasi-particle interactions. On summing over all different ways of splitting
off three lines, then over all the diagrams, we obtain an expression that
differs from (19.29) by the factor

1
;F(pl: P2 Py P+ Po— P L'(P + Py— Py> P15 Pos P)
1
=5 |T(P: Py Py P+ P2 — Pf

1
instead of I} I,. The factor 5 owes its origin to the fact that two of the

three lines split off are equivalent. As we shall see in & moment, expression
(19.29) is of the order £2[pyv or T2[pyv. We mention without offering a
proof that the splitting off of more than three real lines in the diagrams
for X leads to higher order terms.

On substituting a d-function for Im Gy (e, p) and noting that the inte-
gration over the momenta proceeds close to the Fermi surface. i.e.
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dp -> (pafv) dEdQ, we obtain from (1Y.29):

dQ,dQ,
almXy( e)———cosh 8/2T)f (4:71)2 0;21)0 (P1: P2: Py, P+ Py— Pl)l
X del d-fz 6(6 +i—%, (19.30)
cosh =L cosh 2 cosh =22

o7 Q7T 2T
where & = &(p + Py — P1)-

The d-function appearing in the integral merely has the practical
effect of imposing the condition on the momenta: |p + p, — py| =1,
In view of this, (19.30) can be integrated over & and &,. As a result we
finally obtain:

3 2
aIm Zp(e) — ——%Api [1 T (;—T)z]

I'(p, ps; P1» P+ P2 — P1)| é(|n + n, “'”1] —1),
(19.31)

where the n, are unit vectors in the directions of the p,.

It is clear from this expression that (a®pi[n%v) I'(pP, Py, Pr- P + P2 — P1)
plays the role of the quasi-particle mutual scattering amplitude. It
depends only on the angles and can be evaluated at 7' = 0. As already
mentioned above, summation over the spins is understood in the ex-
pression (19.31) for A.

The function Xy possesses the same analytic properties as Gp, and
hence the imaginary additional term to the time function has the form

Im X(g) = Im Xp(¢) tanh (g2 7). (19.32)

§ 20. SPECIAL PROPERTIES OF THE VERTEX PART IN THE
CASE WHERE THE TOTAL MOMENTUM OF THE COLLIDING
PARTICLES IS SMALL({)

The vertex part has another special property, apart from those occurr-
ing for small energy and momentum transfers; this will be seen later
to be of interest in the theory of superconductivity (Chap. VII). The
cage to be considered is the one where the sum p, + p, is small, whilst
the energies &, & and the sum of the momenta p; + p, = s are small.

We consider the diagrams of Fig. 57. It may easily be seen that dia-
gram b7a is the singular one in the present case. In this diagram the
poles of the two G-functions under the integral approach one another.

We proceed with this vertex part as in § 18. We use the notation

aﬁyé(pls Py 8) = aﬁyé(_pl’ P+ 85 P35 — Pz + 9)-

(1) This section is based on unpublished results of A. A. ABrikosSOv, L. P. Gor’-
kov, L. D. Lanpavu, and I. M. KEALATNIKOV.
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Further, we denote by I'® the sum of all the “non-singular” diagrams.
We can put s = 0 in I'®. To obtain the total I', we have to sum “ladder”
diagrams such as Fig. 58. Before doing this, we differentiate I" with
respect to the fourth component of s, which we denote by 4. Each ladder
diagram now yields a sum of terms, in each of which one of the “rungs”
is differentiated. If we fix the differentiated rung, it is easily seen that
all the diagrams split up into two independent ladders from the left and
the right, the sum of the ladders to either side being the total vertex
part. We therefore get the equation

2
51-11 s (P1> Ps3 S)

; 0 dig
= %fﬂxﬁ,éﬂ(f’l, 75 8) G(q) B G(—q + 8) Iy, 5(q, Dg; 8) o)’ (20.1)

The expression G(¢) 8]/0AG(—q + s) under the integral has close to
e=0, |q| =p, the form:
a?

[e —o(lq] —po) + i sign (| g —po)]

1
X — .
[e—24+v(|qg—s|—p)—idsign(|qg—s|—po)
It is clear from this that the integration with respect to dig/(2m)* —
pod|q| d2de/(27)? is mainly over the neighbourhood of |q|= p,,
e = 0. If we assume that the I" in the integral do not vary rapidly in
this region, they can be regarded as constant when integrating with

respect to d|g| and de, and only expression (20.2) has to be integrated.
We obtain as a result:

(20.2)

0
ﬁraﬁ,ya(PvP:a; s)

a?pg Y
= o] Tooen @09 Teno 0P 8) 35— =) 42 (209)
We now find the gradient of I" with respect to s. It must not be for-
gotten, when differentiating the second of the G-functions, that (v - s),
as well as appearing directly in the denominator, determines the sign
of the imaginary part. In view of this, close to ¢ =0, [g| = p,, the
expression @ (q) 0G(—q - s8)/@s has the form

. a?v
e —o(|q| — po) + i6 sign (|q| —py)]
1
* . (v-s)\]?
[8 — A+ (g —p) —(v-5) —idsign (IQI —Po——v—)]

2miatd(e — ) 6((v-5)—v(|q]—py)) v

+ A—(v-58)+idsign(v-s)
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The integral of this expression with respect to ded|q]| leads to the
following relation for I':
0
el aﬁ,y,s(pp P3; 9)
v(v-s)
= T 9930 f aBtn pl,q,S)Fgwg(q,p;},,s) W—l‘—iﬁ

Combmmg equations (20.3) and (20.4), we get

4
}' F ﬁyé(_pl’ Pss S) _'_ ( aﬁyﬁ(p17p378))

a
2(—23:—;’3” J Tes a1 €5 9) T (@ P33 £)42. (20.5)
If magnetic interactions are not considered, the forces between the
particles depend only on the mutual orientation of the spins. If we take
into account the fact that the total spin is unchanged when the particles
interact, (20.5) splits into two independent equations. One of them cor-
responds to the interaction of two particles with opposite spins (i.e. for
instance, « = 1/2, f# = — 1/2), and the other to the interaction of par-
ticles with parallel spins. These equations look completely identical.
The difference lies in the initial conditions (i.e. in I'®). In view of this,
we shall simply write I” in future, understanding by this either one of
the two different components.
We shall make the assumptlon ‘no be Justlfled later, that I'(p;, ps; 8)

aQ. (20.4)

does not depend on the angles (p;, s) ( P, s) It can then be expanded
in Legendre polynomials, dependent on cos 6, where 6 is the angle be-
tween p, and py:

I'(py, P33 8) = %‘FlPl(cos 0). (20.6)

Notice that Iss,(py, P53 s) is  antisymmetric in the spins when
these are antiparallel and symmetric when they are parallel. Interchang-
ing the momenta of the initial particles corresponds to replacing cos 6
by — cos 6. In view of the fact that I'.z., (9, Ps; s, ) must be anti-
symmetric with respect to the interchange p,oc <2 p,f, the expansion
(20.6) contains only odd harmonics in the case of parallel spins, and ounly
even ones in the antiparallel case. We get separate equations for the
individual I} from (20.5) of the form

ol ol Amgalpy I
— — 0.
a2 +(s as) (@n)fv 2l I 1 (20.7)
(the factor 2 results from summing over the spins in (20.5)).
The solution of (20.7) is
3
Iy, |s)) = _(2_71)225122;;F h_ 1t , (20.8)
0 lnﬂ.lsl—l—fl(m)

where f, is an arbitrary function.
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Equations (20.3) and (20.4) enable us to obtain limiting expressions
for f,(x) as x> 0 and z— co. Let us consider equation (20.3) in the
limit as |s|— 0. On expanding I" in spherical harmonics, we get

dr; dma? pE o
= 0 72 20.
di ~ (2#Pv(2l + 1)F ! (20.9)

The solution of this equation is

(En)3v (2]l 4+ 1) 1
47a?p lni’

1
cl

Iy(4,0) = — (20.10)

where ¢, is constant. Hence, as z — oo, f,(z) = In [z[(c})2). We similarly
obtain from (20.4), as 41— 0:

Bv(2l +1 1
10, 1sh = —CAFeCLED

; 20.11
dma®ps In ( )

|s]"
¢

Hence f,(z) = In [*/z(c})?] as = — 0.

The constants ¢t and ¢} have the dimensions of energies and may be
complex. If, for example, the constant ¢} has the order of the Fermi ener-
gy, it follows from (20.10) that, as 2 — 0, I';(4, 0) vanishes as 1/In(c}/4).
But a singular case is possible, when ¢} is small: I, (4, 0) now has a pole
for some (in general, complex) value of A. The meaning of this fact,
which is closely connected with the phenomenon of superconductivity,
will be explained in Chap. VIL

* *
*

So far we have considered an isotropic Fermi liquid. Ounly one iso-
tropic Fermi liquid is known at the present time, namely liquid He3.The
class of anisotropic Fermi liquids, namely electrons in metals, is much
wider. However, apart from anisotropy, an electron liquid in metals has
specific features such as the long-range Coulomb forces, interactions with
lattice vibrations, and so on. Some of these features will be discussed
in the next two sections, taking as examples the isotropic model of
electrons interacting with phonons and a degenerate plasma.

A general consideration of an electron Fermi liquid in & metal un-
doubtedly represents one of those subjects that should be capable of
being treated by the methods of quantum field theory. In particular,
it should be possible to make a deeper study of the phenomenon of super-

conductivity, which has so far only been treated by using an elementary
model (see Chap. VII).
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§ 21. ELECTRON-PHONON INTERACTIONS(Y)

Electron-phonon interactions in a metal will be considered in this
section by using an isotropic model. We shall assume that the temperature
of the metal is in the range

T, &T< wp, (21.1)

where 7', is the superconductivity transition temperature, and wyp, is the
Debye frequency of the phonons. The first of these inequalities is con-
nected with the fact that, in the model in question, superconductivity
occurs at fairly low temperatures (see Chap. VII).

Naturally our model differs substantially from a normal metal. This
is because a real metal is anisotropic, and in addition, Coulomb inter-
actions occur between the electrons. We shall mention at the end of this
section the qualitative changes that result from the Coulomb interaction
of the electrons.

1. The vertex part

Dyson’s equations were obtained for electrons and phonons in the
temperature tecchnique in § 16. We shall start by considering the vertex
part 5 that appears in these equations. We shall show that 7 differs
from its zero value, equal to g, by small quantities of the order VW ,
where m is the mass of an electron, and M the mass of the nucleus.
Let us evaluate the first approximation correction to s, illustrated in
Fig. 55. We shall assume here that the electron momenta are of the order
g and the phonon momentum and energy restricted by the conditions
k| < kp, o S w(k)/|k]|=2py~ wp (since kp~p,). It is precisely these
values of the cnergies and momenta that will be of most importance
below.

In accordance with §14, the first order diagram is equal to

T+ ¢,0;9) =—g T [D®—p) 6 (p, + 9) 67 (). A3py/(27)%,

g = (k, @) (%), (21.2)
where, in accordance with § 14, D@ and &® are given by
GO (p) — ! (21.3)

te —g(P) —I—,u’
e=aT@n+ 1), gl(p)=p%2m, p=pi2m,

_ oi(k)
o? +-wi(k)

(1) This section is based on papers by A.B. Miepar [88] and G. M. ErLiass-
BERG [75].

(¥) In this section we shall denote the 4-momentum of the phonons in the tem-
perature technique by the letter ¢ = (B, w). We denote | k| by &.

Q.F.T. 12

DO (g) = — (21.4)
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We shall assume that the phonon spectrum is bounded, i.e. k << kp << p,.
For large momenta D@ vanishes. This restriction implies physically the
abscnce of vibrations with wavelength less than the interatomic spacings.

The function ®® appcaring in (21.2) can be replaced by a constant
DO~ —1for |p—p,|~p,and |e—& | € wp. In the region |6 —¢, | € mp,
D@ decreases according to the law (e —g )2 This cnables us to estimate
the integral for .7 :

_ d3p

TV 8T N GBO(p, + q) B (p,) - 7L (21.5)
le—al<wp Ip—p,fl<ku At 1 (2m)?

The summation over & yiclds a factor wp/2n ~ upy~ u ]/n—L/IlI , where

w is the velocity of sound. Thus, 7® is of the order (sce §9):

<‘f‘”~q3&2'l/£l—~gCl m
v! M M
(¢ ~ 1), provided the integration over p; docs not introduce factors of
the order 1ljwp.

The only case which is dubious in this scnse is that of small transfers
k € p, and @ € wp. In this case the poles of the two (-functions in
the intcgral for 7V approach one another. It may easily be verified that
the mtegration over the momenta will be carried out over a region
closc to |p,;| = P, and the summation over energics for which & < pu.
In this case & can be rcplaced by

1
ie —v(lp, —p)’
where ©» = pg/m. The situation recalls that considered in § 18: yet there
is an essential difference. As in § 18, the product of the two $@-functions
has a sharp maximumn close to |p,| = p, for small g. The sum and the
integral of the two (3-functions, taken between infinite limits, arc formally
divergent and, by virtue of this, depend essentially on the order of the
integration. In §18 we first performed the integration over the fre-
quencies, and then over & = v(|p| —p,). This was connected with the
fact that the intcgral over ¢ is actually taken betwcen infinite limits,
whilst the integration over £ is essentially restricted by the limits |£] <€ p.
In the present case the presence of the D-function in the integral makes
it convergent, in accordance with (21.5). Hence the order in which the
summation over the frequencies and the integration over & are carried
out is of no consequence. and we shall in faet first integrate over &,
then sum overg;. As a result we obtain (the condition 7' € wp is essential):
—p> tw
(27)3v ./ - k) —iw de.

This quantity is always small, except when o 2, vk, and as we shall
see, this particular case is of no interest for what follows.

GV = (21.6)
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The above estimate is unaffected if we take into account higher order
diagrams. Hence

\7=g[1—|— 0(] .%H (21.7)

2. The phonon Green function

Let us now find the phonon Green function. The Dyson equation is
given by (16.8). We counsider the irreducible sclf-energy part appearing
in this equation:

T(g)=29"T X [ G(p) B(p —0) (21.8)

RE
(mp”
We carry out an analytic continuation of S in the region of real fre-
quencies. To do this, we proceed as when cvaluating Iim X'y at the and
of §19. Let the phonon frequency w = 2na T be positive. We can now
write the sum over ¢ in (21.8) as the contour integral
g € . d3p
I (g) = i Cfds tanh o1 fG’RA(s, P)CGpyle —iw, p—k) (2)*"
where the contour of integration C is the same as in Fig. 61. The function
G4 (€) appearing in the integral must be understood as Gr(e) if Ime > 0
and as G4 (¢) if Im & << 0. Since the integral over the outer circumference
vanishes, we arc left only with the integrals over the lines Ime = 0
and Im ¢ = w. In the Jatter integral we carry out the change of variables
£ —iw —> ¢, whilst making use of the fact that tanh [(g/27) + inn]
= tanh [¢/2 7. In addition. we obscrve that Gp(e) = @ (g). We obtain
then:
. 9 7

F -
S = n(?n)3_'£° defd3p t,anhgT [Im Gp(p, e) G (P — ke — i)

+ ImGp(p—k, &) Gp(D, e + iw)]. (21.9)

We can now quite easily perform the analytic continuation to real w.
A retarded function Iy is then obtained. On separating real and imagi-
nary parts in this function, we find that

2 2
Re [T, = (2;?:)4f d% tanh ;T [Im Gy(p, &) Re Gp(p —k, & — )
+ Im G (p —k, €) Re Gg(p, e + w)] (21.10)

—2g2 £ £ —w)\ .,
Im I, = (2—7)4]‘ d4p (t.anh o™ tanh o7 ) Im G (p, €)
X ImGp(p —k, ¢ — o).
It will be shown below that the function Gy has the form
1
Gp, = -,
" e—&(p)—Trie)

-

(21.11)

12*
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where 2 depends only on &. When ¢ << wp, 2'(¢) ~ —be, where b is a
constant of the order of unity, whilst when ¢ > wp, 2'(g) &~ const ~ wyp,.
We first take the case of long-wave phonons ¥ < p,. In this case we can
write approximately &(Pp —k) ~ &(P) — (v - k) and inasmuch as the
region &~ vk is important in the integral, we can assume that &£(p)
= ¢g,(p) —p ~ v(|P| — py)- We shall make no use of this approximation
for phonons with k-~ p,, which we shall discuss below.

After substituting for @ in (21.10), these equations can be integrated
over £. The integral for Re ITy is formally divergent, so that we take
account of the fact that the integration over £ is carried out between
finite limits, which we denote by —L,, L,. These limits are of the order
M~ Dy¥, 1.€. are substautially greater than 2. In view of this we have

(L, —¢)0(e+ Ly)
oFv-k)—ZE—o)+2@)

o — (v-k)—¢) 0(e + Ly + (v- k)
w—(v-k)—2(+ w)+ 2() ’

Re Il = (2 )3 fdQ fdstanh {

: L0

1, >0,

where 0 (x) 2{0 z< 0

Since 2'(¢) < wp, the principal regions in the integral over ¢ are the
neighbourhoods ¢ =~ — L;, L,, and X'(¢ 4- w) =~ 2'(¢) in these regions. On
taking account of this, and assuming w ~ uk € vk, we obtain

2927(,] (v-k)  gPmp,

Re [Ty = T (2npe @-k)—ow a?

(21.12)

Integral (21.10) for Im /7y is convergent. In view of this, the limits
of integration over £ can be assumed infinite. We therefore obtain

wg? P2 ® ( —w
= v d. —
Im 7, (@m0 fd.Q_{o e | tanh — 2T tanh & v )

X 6[(v-k) + o + Z(e) —Z(e — o).

In the case w <€ 7T, the region e~ 7 is important in the integral, whilst
in the case w > 7, the region e~ w is important. In the present case
o~ uk € wp(k € py~ kp), so that we always have ¢ € wp. In view of
this, 2'(e) == — be in the argument of the §-function, where b is a constant
{see below); consequently this argument is equal to 6[(v - k) — w(1 4+ )]
The integration over ¢ yields 2. We thus have

g Do @
v 4 21.
Im Il = 5 k" (21.13)
Notice that both Re 1T and Im ITj are the same as in the first approxi-
mation of perturbation theory, i.e. when & is substituted for & in
(21.8). In the case of Re Iy, this circumstance is explained by the fact
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that the region of integration corresponds to high frequencies, where the
self-energy is independent of frequency, whilst in the case of Im [T, it
is due to the linearity of X'(e) for ¢ € wp.

We now take the case k~ kp ~ p,. We now always have vk > wp.
Since X < wp, the G-function in (21.10) can be replaced by the free
functions G'9. In view of the fact that w ~ wp > 7, we can substitute
sign € for tanh ¢/27. We can put @ = 0 in the integral for Re /7. Here,
however, it is not possible to make the substitution & = p2/2m —pZ[2m
—> v(|p| —pp).- We find as a result:

29275 3 (0) :

Rellp = ~(amys P [Re (p —k, £(p)) sign &(p)

+ Re 9 p, £(p — k)) sign £(p — k)]
4g? 3 1 _gPmp,
= 3 f d’p k K\~ on? ( )
R e
h t(o—5) <o (21.14)
where
. 1+ =
R _x|)

We now consider Im I7p. If we only retain the o originating from
tanh [(e — w)/2 T], we obtain

Im I, =

© [ aps(Em) —&(p—k) = L1 P L gap, 1.

(21.15)

(2 )2 27'5

These expressions include as particular cases (21.12) and (21.13), valid
for k < p,, and they can therefore be regarded as universal. On using the
analytic continuation of the Dyson temperature equation, we find that

Dy(k, 0) = Dy — Iy,
~_ 1! 2 k immao
T wi(k) {wz — wy (k) [1 —Ch (2?0) —{— ok 75— 0(2py — k)]} (21.16)

where the constant { == g2pym/2a2 ~ 1 is introduced instead of g2.
The pole of the function Dy determines the true energy of the phonons
and their damping:

w(k) = wok) /1 — A (l“ ) , (21.17)
2P,

gﬂm

nik) =3 0(2p, — k). (21.18)

According to (21.17), when £ < py, w(k) = wy(k)})/1 — 2.
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Close to k = 2p, the derivative dw (k)/dk has a logarithmie singularity:

dw(k):L(ZPO) ¢ In 4p,
dk dpy, 1—C |2p, —k|°

The damping vanishes discontinuously at this point. It is worth remarking
that this behaviour of w(k) and y; is the result of the approximation
made when deriving the formulae for I7,. If, for example, we do not
neglect @ in the G‘Q-functions appearing in (21.10), these singularities
fall out. In particular,

(21.19)

y ~ arctan [wm[p,(k — 2p)]1 (k> 2p,),

i.e. it vanishes gradually, and not with a jump (}). Obviously, the correc-
tions to the formulae obtained become important in the region |k — 2|
~ ofv~ wplv < Py

An accurate evaluation of the behaviour of w(k) and y; in this region
requires not only that we take into account w in (21.10), but also that
we cannot replace G by G©@. Notice also that the difference betwecn 7~
and ¢ becomes significant here. In view of all this, the working becomes
extremely complicated. Since the region of which we are speaking is
very small, the results that can be obtained along these lines do not
justify the effort.

It is clear from (21.18) and (21.17) that, in the case when { is not too
close to 1/2, the damping y, (k) is relatively weak. In fact,

yik) wlwik)ym =x k1 ’:/7,& }
B~ T rboly ™~ 2t o~ | (207 (2120

The phonon Green function Dg(k, ) can be written in the following
form:

D(k, w) (k) ( ! ! ) 21.21
, W) = — . N . .

2 (k) \o— () £ ip® o+ o) Finw) 2D
It is clear from this that the function Dy (k, w) differs from D (k, )
by a change in eigenfreqency and a constant factor.

3. The electron Green function

We now turn to the electron Green function. The Dyson equation
(16.3) for & contains the self-energy X, which satisfies the equation

@ T
X(p.e) = (2 = ] PG en P) Die —ei P — Py (21.22)

As in the previous section, We carry out an analytic continuation into
the region of real frequencies. To do this, we write (21.22) as a contour

(1) The maximum attained by dw/dk is of the order v.
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integral:

Z(p,e) = 27(2 )4f dép, f dey taﬂh Gra(&1, P1) Dpylic—&, P—Py)

—(92?)3] d3*p, G (e, p)D(0, p — py). (21.23)

The contour of integration is the same as in Fig. 61 (¢ > 0). Gy, and
Dg4 have the same meaning as before. The second term is due to the
fact that the contour integral does not include a term corresponding
to & = ¢ in (21.22). Remember that the frequencies in the ®-function
are even (2nnT).

The integral over the outer circumference vanishes as before and we
are only left with the integrals over the horizontal lines g = 0 and
& = ie. On observing that Gy = G, and tanh [(¢ + in T (2n + 1))/2T]
=coth (¢/27), we can transform expression (21.23) in the same way as
above for JZ. The circuit round the point & = 7€ here yields a term which
cancels the second term in (21.23). After this, it is easy to carry out a
continuation into the upper half-plane of the variable e. We obtain thus:

2r(p, &) = — f dép, f dg; tanh (5/27) Im Gg(g, Py)

g
(2m)*

X Dple—&, p—P1)— [ @p, f dg, coth (£,/2 T)

(271)4
X Grle —&, py) Im Dyg(e, p— py). (21.24)
In accordance with formulae (17.14), (17.18):

Grle, P)Z% an—GRMd (21.25)

5 —€e—1id

and the same holds for Dy. We substitute (21.25) in (21.24) and obtain
after carrying out a change of variables:

Im Gr(e, p) Im Dg(w, p—
2p(p, &) = @ )47'5-[ 0y fdw fd m Gg(g, p) Im Dg(w, p—py)

o+g—e—id
& L
X (tanh Vi -+ coth 2T) . (21.26)

We find first of all the integral over p,. We introduce for this purpose
the new variables & = (p§/2m) — (P2[2m), k= |p —p,|:

o 1 m ko E(|pl+k)
[P Pdp, [de—=-—— [RdE [ dE. (21.27)
0 -1 Pl ¢ £(lpl—#)
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We shall seck G in the form (21.11). The imaginary part of this expres-
sion has the form:
Im Xp(g)
T e &) = o g TR S (e P + [ Zae
If we regard the external momentum as close to p,, the region of variation
of & depends on k, by (21.27). In the case when the region bk~ kp is
important in the integral, we can assume in practice that &, varies be-
tween the limits — oo, 0co. We shall also encouurter later the case when
momenta k € pgare important in the integral; here, however, the scale of
all the encrgies appearing in the integral will be of the order w(k) € wp.
In both cases Im Xp(e) € &, so that

Im Gh(Py, &) ~ wd[g — Re Zp(g) — &1sign Im Xy, (&)
= —ndle, —Re Xp(g) — &).
On substituting this in (21.4), we obtain

g? e’ ImDR(w k)

X [tanh (31/2 T) + coth (w/2T)], (21.29)

where &' —Re Xg(£'") —E([p;—l—k) & —Re Zp(e') = &(|p| —Fk). We shall
see below that the main role is playcd by the region & < wp. In order
for these small values to fall within the region of variation of ¢, it is
necessary for k to be less than 2p,. The actual upper limit of the integral
over k is therefore min (kp, 2p,).

Let us consider Re Xz, on the assumption, which will be justified later,
that the region k~ kp~ p, is important in the integral over k. In this
case the integration over 6‘1 can be performed between infinite limits. We

(21.28)

transform from f dw to f dow:

—o0

ReZ,= 7 jkdk fdslfdwx

(2n)*
Im Dp(w, k) Im Dp(w, k)
[ w "|‘ & — (t + coth 2T) — ot ;1 —b(t anh 7~—00th QT)]
%, Im Dg(w, k) et¢
("n)3 f kdk f de, fd © j_ 81—— tanh ( 1-|_ tar hTT_)

(ky =min (2py, kp). The antisymmetry of Im Dg(w) =—Im Dp(—w)
has been used here. In view of the connection between Im Dy and Re Dy,
(see (21.20)) and the antisymmetry of Im Dp, the formula for Re X'p
can be rewritten in the form (21.30)

b o)

167

—oa

2
ReZp= "7 f kdk Jf dw Re Dy (w, k) (tanh
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On substituting (21 21), we obtain

(03 (k)
w§ (k)

Tt follows at once from this that the region k ~ k; is important, which
supports our above assumption. As regards w, in the case £ > 7', the
region @~ ¢ or o~ wp are important: whereas if ¢ € 7', the region
w~ T € wp is important. In all these cases we can writc

wg (k)

2
Re X 8 25 dek fdn———wz(k). (21.31)

ReER_lbnzpodf kdk f do

(t 1h"i—Ij - tanh ZT)

On integrating over w, we obta.m

RelXy =

—g? 'mf bd kmO(k) le—l— w (k) (21.32)

8n? Po 6 o (k) In g — wl(k)

In this integral the region k~ k;is important, i.e. w{k) ~ wp. If ¢ € wp,
then

k
RelXpn —"— — [ kdk = — be, 1.32
e Xy f de £ be (21.32")

where b is a positive constant of order 1. When ¢ > wp,

g2 m [ o, 1 w%
Re I, ~ i s f kdbeg(k) —~ ==L 0.

Let us now cousider the imaginary part of Xp. It is obviously obtained
from a circuit round the pole in the donomlnator of (21.29):

&’

Im Z,(p, &) = (gz o f Lk j de, T D (e —g;, k)
X (ta.nh + co th © ——T 1). (21.33)
If we gubstitute here for Im Dg, which, by (21.21), is equal to
Im D (w, k) = — 20§ (k) wyy (k) (21.34)

[w! — @2(k) P + 4 wPyi(k)’
therc are in essence two possible cases. In the case when @ varies in
an interval which is large compared with y,(k), we have

Im Dp(w, k) ~ — mewg (k) (w? — w? (k) sign . (21.35)

On the other hand, if the interval of variation of w is much less than
y1(k), we can neglect  in the denominator of (21.83) by comparison
with the remaining terms, and we now have

2w0(k)wyl(k)

Im Dy, k) v — =22 5o (21.36)
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We substitute (21.35) in (21.33), after carrying out the change of
variables & — & = w. In view of the factor in front of tanh and coth,
the important values here are w~ max (g, 7). On the other hand, the
é-function requires |w|~ w{k)~ uk. Consequently the important
values are k ~ gfu, i.e. vk > &. This means that the limits of the integral
can be taken as infinite in the present case. We therefore obtain

P#m  BEdk of (k) w(k) +&
16np00f o) | a7
£E—ow (k) w(k)

ImX,(p,e) =

— tanh o7 thA J (21.37)
In the case when max (¢, T) € wp, we obtain
- o nl T8
ImXy(e) = ————4(1 50 PR f1 (21.38)

where % = dw (k)/dk is the{velocity of sound,

_ RS LIS S bl
filx) = Of zdz[coth 5 — 5 tanh = 5 tanh . (21.39)

We find from this, when ¢ € T' € wp:

Im X)) = —waar (21.40)
(]

(here {(3) is the Riemann zeta function).
When 7 < & € w;, we have

wllef
ImZX =—-— . 21.41
m Zg(#) 12(1—20) pie (21.41)
In the case when ¢ » wp (7 » wp by hypothesis), we obtain

Im X (g) = const ~ wy,. (21.42)

The important values in this derivation have been w ~ max (g, T).
Therefore, according to the above, the replacement of (21.34) by (21.35)
is only valid for max (g, 7') > max y, (k) ~ wp }/m/M. In the opposite
limiting case we have to use formula (21.36). Here, the important values
in the integral are k~ k;, so that

g2m . wWolk (k)yl(k)
3 —_ Y
Im X, (e) = 2-7?21’00'[ kdk b () Of wdo| coth T
1 w-+te 1 w—E
—_ Etanh —W -——-E tanh —217—] . (21.43)

The integral over the frequencies can be found. We obtain as a result,
when max (g, T) <€ wp}/m/M:

ImZ2p(e) = —

d@ (2T + ). (21.44)
0
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where

Zpt B w3 (k) y (k
d:%o kdk 06(04)(;:—;(—): const ~ 1.

Formulae (21.38) and (21.44) correspond to different damping mecha-
nisms. The first determines the damping due to radiation and absorption
of phonons by electrons. However, when the energy of the quasi-particles
is very close to the Fermi surface: ¢ € wD/[/ﬂW . the electron inter-
actions due to exchange with phonons become important, and damping
(21.44) becomes operative.

It follows from what was said earlier (see §19) that this is precisely
the form that the damping due to the interactions of the Fermi particles
must have.

The energy of the electron excitations can be determined from the
real part of the pole of the function Gp. We have by (21.11):

e —Xp(e) =&.
In the case ¢ € w;, we obtain with the aid of (21.32):
v
=13

The velocity of the quasi-particles thus decreases on the Fermi surface
(6 > 0). In addition, the G-function acquires the form (18.1) close to its
pole, where a = (1 4 )™ < 1. It follows from (21.41) that the quasi-
particle damping is equal to their energy when |¢| ~ wp. However, it
may easily be seen that (see 21.42) on further increase of the excitation
energy the damping ceases to increase and again becomes less than the
quasi-particle energy. There are consequently two regions in which the
concept of quasi-particles has a meaning: |¢| € wp and |¢| > wp. In
both regions the electron energy has the form v(|p| — p,), but the velo-
cities v are different.

We now observe qualitatively what the result would be if we took
into account the direct Coulomb interactions of the electrons. As a result
of the screening of the Coulomb forces at distances of the order of the
lattice period (i.e. of the order 1f/p;), these can still be regarded as short-
range in the present case. If we take account of these forces we obtain
a different velocity at the Fermi surface and a different coefficient a in
the G-function close to the pole.

A qualitative difference arises in the magnitude of the damping. The
Coulomb interaction yields a damping expressed by (19.30). In the
region (g, 7)< wp }/m| M it will be added to damping (21.44), which has
the same structure and the same order of magnitude, whereas, in the
region (s, 7) > wp)/m/M the phonon damping becomes predominant.
As already remarked above, when ¢ > @ the damping becomes constant,

e 3 (Pl — o). (21.45)
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of the order wy. Coulomb damping is also present in this region and starts
to become predominant when

—— 4, — -
le] > Vpovo p ~ VMm > wy.
It follows from this that, whilst the excitation spectrum in the region
le] > wp is determined by the Coulomb interaction of the electrons,
the phonon damping continues for some time to dominate over the elec-
tron damping.

4. A correction to the linear term in the electronic specific heat

We can draw an interesting conclusion from the results of the preceding
sections, concerning the electronic specific heat. It appears at first sight
that the correction to the linear term (19.25) (linear in the temperature)
must be of the relative order (7'[u)2. In fact, the electron-phonon inter-
action leads to the appearance of a substantially greater correction of
the order b.

Let us consider the general formula (21.32) for Re 2. When & € wp,
we obtain to a first approximation expression (21.32"). It may easily be
seen that an expansion of the logarithm in the integrand of (21.32) up
to terms of order £3 leads to the appearance of a logarithmically divergent
integral over k. If we confine ourselves to a term of the order of the log-
arithmic one, we have(})

1 ¢ 1 .. op

_E.—l—ch—%uze nm.
We took this correction into account when obtaining the entropy (§ 19.5).
We find that

S rdp 1 (—dmg(e)
8 V_zf(2n)37_f (T & Im Gp,d Re Ty (¢)de.

dRe Yy =

On substituting Im Gy = — 76 (£ — & — Xg(e)) and taking the integral
with the Fermi function, we obtain

S Tx® ¢ m oy OD

7=m1—25p%u2 T
On differentiating with respect to 7', we have

¢ T U Iy 2

0= 60 1 —2¢ p3u? T

(21.46)

() Notice that 6 Re X, and the damping (21.41) are the real and imaginary
parts of the same analytic function

1 ¢t & . o

=TT _or g P (et i)
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The correction to the linear term in the specific heat thus proves to be
of the order [¢[(1 — 20)] (7% w}) In (wp]T).

It is interesting to compare this correction with the cubic term coming
from the lattice vibrations. The order of magnitude of the specific heat
of the lattice is 73[u3. It follows from this that the correction obtained
amounts to [{[(1—28)](ufv)In(wp/T) of the specific heat of the lattice,
i.e. as a rule it must be regarded as small. Since, however, we are talking
about one order of magnitude at most, this does not exclude the possibility
that, in individual metals, the term may make a substantial contribution
to the specific heat (7).

§ 22. SOME PROPERTIES OF A DEGENERATE PLASMA

1. Statement of the problem

We shall consider a plasma, i.e. a mixture of electron and ion gases,
as an example of a system with Coulomb interactions. The interaction
Hamiltonian is

H f ya (Nyy (')l lwﬁ(rm(r)d3rd3'
. 1
—Zezj YOS [ @Iy &
f<l>+(r)d>+(r)| 1 l@(r)@(r)d3rd3' (22.1)

where y,(r) is the operator of the electron field, and @ of the ionic field.
We shall assume the electron gas to be degenerate, and the ion gas to
be a Boltzmann gas. This requires that the temperature satisfy the ine-

qualities
1 [N\ 1 [N\2s
(7)) (#22)

We can arbitrarily regard the ions as a Fermi gas for our calculations,
since the Boltzmann limit is the same for both statistics.

Suppose, further, that the effect of the Coulomb interaction is small.
This requires that

ez<1
—K
Exr

(1) The presence of this term can easily be discovered if the metal passes to the
superconducting state (see Chap. VII). This transition does not affect the lattice
specific heat, but it leads to an exponential drop in the electronic specific heat as
T — 0. If we compare the cubic term in the specific heat at a temperature above
the superconducting transition temperature 7', and at 7' — 0, it can be observed
that the electronic term (21.46) is added to the cubic term above T'.
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where E is a mean energy, and r the mean distance between the particles.
For the ions, E ~ 7', whilst for the electrons, E ~ pi[2m. Our condition
is therefore equivalent to the following requirements:

§> (%)”3 > ém. (22.3)

It may easily be seen that conditions (22.3) do not contradict the assump-
tion of the degeneracy of the electron gas.

When conditions (22.3) are satisfied, the Coulomb interaction will
almost always have little effect on the properties of the plasma. An
exception is provided by the case when collisions of the particles with
small momentum transfer are important. Due to the fact that the Fou-
rier component of the Coulomb potential has the form(f)
4me?

k )
the role of collisions with small transfer becomes extremely important.

We must first of all look at an apparent difficulty connected with
Coulomb interactions. The diagrams of G-functions of § 8 include dia-
grams such as Fig. 56, containing U (0). Similar diagrams are also ob-
tained for the temperature-dependent &-functions. According to (22.4),
such diagrams diverge. Let us change from a given chemical potential
to a given number of particles and replace the Coulomb potential by the
potential U(r) = €2 (¢ ™"[r). We shall regard &« as small, and in the end
put it equal to zero. In order to avoid the difficulties that arise in speci-
fying the number of particles, we shall carry out our discussion in 7, z-
space.

Let us take, for instance, the electron line @,. We sum all the irre-
ducible self-energy parts of the type illustrated in Figs. 4@ and 8e, f,
which are joined to the fundamental @-line by a single wavy line. It is
easily seen that all these diagrams together yield

2r—r,r—1)= 2€2f d3r [, (0, —0) — Z®,(0, —0)]
o P |r—nl)
jr — r1|
N —ZN;4

- ,Ji Sr—r)d(z—7)=0  (22.5)

by virtue of the condition for electric nentrality: N, = ZN,.
The analogous corrections for the ¢,-lines similarly vanish. This means
that all the diagrams containing the integral of the Coulomb potential

over the volume (the zero Fourier component) should simply be put
equal to zero.

Uk) = (22.4)

S(r—r)o(z—7')

(f) We do not use 4-vectors in this section, so that ordinary type will denote
the absolute values of the three-dimensional vectors.
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After this, the following formal method can be used for returning to
the representation with a given u. We write all the &(®-functions in the
diagrams in the form

&Y = 6 exp[—u(n — ). (22.6)

It can easily be proved that the resultant &-function will be represented
simply by the diagrams with &, multiplied by the same factor
exp [—u(ry — 7p)]. On dividing by this factor, we transform to @,.

It is clear from this that the scheme for operating with the Coulomb
potential amounts simply to throwing away all the diagrams containing
U (0). However, it must be borne in mind here that the results thus ob-
tained will only be correct when the chemical potential is chosen in such
a way that N, (u. p;) = ZN,;(u,, y;), or what amounts to the same
thing,

0L P o2

— = . 22.7
Opte Ou; ( )

2. Vertex part for small momentum transfer

Let us first of all consider the vertex part with small momentum trans-
fer. In view of the fact that the ions are extremely important here, we
apply the temperature method. The first order correction to expression
(22.4) is illustrated by two diagrams such as Fig. 62a. In the first of
these diagrams we have an electron loop and in the second an ion loop.

A A OO

@ (b
Fig. 62

Although this correction contains the extra factor e2, a factor (1/k%)2
also appears in it. It can therefore become important at small transfer,
and we have to sum a chain of diagrams as illustrated in Fig. 626, with
any number of electron and ion loops(}). As a result, it turns out that
all the vertices — electron-electron, ion-ion and ion-electron — are multi-
plied by the same factor, i.e. by

dme2Z, Z
L7dlz(k’ Op) = — — d7e =2
kZ [1 - kz [‘%e(kﬂ wm) + Zz‘%z(k7 O)m)]]
dne?Z,Z,

T Al 0,) + BT o]

here, w,, = 27 Tm, where m is an integer, J(, corresponds to an elec-
tron loop, and J¢; to an ion loop.

() Such a summation for a system with Coulomb interactions was first carried
out by GELL-MANN and BRUECKNER [39].
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As already mentioned, the ions can arbitrarily be regarded as a Fermi
gas. The evaluation of J7, and JC, is therefore identical in the first stage:

F=or3 [P !
T T < J (2 [ie,—g(p) + p lie, + i, —go(p + B) + p]
d3p 1 l 1
=27 .
f (zn)gio)m_eo(P+k)+80(P)sz‘ ie, —&(P) + p

1
e+ 0,) — &P+ k) u]

[_‘131’ 1
J (2nPio,, —&(p + k) + &(p)

XZ[ 2(20(P) — 1) _ 2ep+R)—p) ]
o 2 T22n 412+ (g (p)—p) 72 T2(2n + 1P+ (g (p + k) — p)?
__ (% 1 gP)—p 1 &(P +E):ﬁ]

=~ oot B Fa [m“h o M T
d®p n(p + k) —n(p)
— 9 I , 99.9
-[ (27'5)3 L0, — 80(1’ + k) + 5,(p) ( )

where n(p) = {exp[g(p) —p]/T + 1} for the electrons, and 2n(p) =
explu — &(p)]/7 for the ions. Use has been made here of the formula

=—27

1 T

T
@nt 1P+ 5 - 92.10
o @2n + 12+ a2 4z tanh 5 ( )

We shall assume that |k| < p,. The average momentum of an ion is
of the order VW, and by (22.2), is much greater than p,. In view of
this, we can expand (22.9) in powers of k and write it in the simplified
form

d3p on (v- k)
(27)3 Ge iw,, — (v- k)

I (k, ) = — 2 j (22.11)

The vertex part in question depends only on k and «,,. It can there-
fore be associated with a ©-function, transmitting the electromagnetic
interaction between the particles. Indeed, let us consider, for instance,
the following quantity:

D(ry — 177 —Tg) = <T(1/:)a(r171)@ﬂ(72T2)¢a(7171)@ﬁ(7272))>,

where (- - -) indicates here an ordinary statistical average. It may easily
be verified that the Fouriertransform of this quantity with respect to
the variables 7; — 7, and r; — r, has all the properties of the Bose tem-
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perature-dependent Green function. On the other hand, this Fourier
transform is obviously equal to

Dk, w,) = I, (k, 0,) T ,(k, ©,) I (k, ©2,).

The same applies to the other vertices with small transfer.

The method of changing from the temperature-dependent to the time-
dependent functions becomes clear from this. We know that, in the
case of the Green function, all that is required for this is to find the func-
tion which is analytic in the upper half-plane of the variable v and is
the same as the temperature-dependent Green function at the points
iw,, =1 .27 Tm. The retarded function Dy is determined in this way.
The present Green function is equal to Dy when o > 0 and to D} when
w < 0.

This procedure can easily be carried out for the functions J7, and
I ;- (We denote the functions thus obtained by I1,, IT..) It follows from
integral (22.11) that this requires the change of variable iw,, > o +
49 sign . Since only the factors J(™ are dependent on w,, in the diagrams
forming the function ®(k, w,,), We can obtain the function D(k, w) by
the same method. The same is obviously true for the functions I'(k, o) ().
The time-dependent vertex parts I'(k, o) are therefore expressible by
the same formulae (22.8), (22.10), except for the obvious substitution
1w, —> o + t0sign w. The appearance of a term additional to %% in
the denominator of I is precisely the Debye screening of the Coulomb
interaction. It makes the interaction retarded in the general case (i.e.
I' depends on o).

Let us now consider the behaviour of I', depending on the relation
between « and k. When o < vk, (22.11) gives

1 0N, 1 0N,

H,y=I,=—— -2 -t
e =1L, V op,’ V ou

We have (1/V) (0N|6u) ~ N|Vu in order of magnitude. For electrons

Feo~ p3m, and for ions y; ~ Tln T. Hence IT;>> II,.
We obtain from (22.8) and (22.11):

dmerZ, 7,

k24’

where , :[/4nZ2e2Ni/ VT is the reciprocal of the Debye radius of

the ions.

I, =T, = — (22.12)

i

Iy,= (22.13)

The next region is v,k > |w| > vg. In this region
B® N 16N, pym

Li=—Gwv: "=y 4 = -

(22.14)

(1) A procedure that is correct for individual terms of a series may not be correct
for its sum. However, it can be shown to lead to the correct result in the present case.

Q.F.T. 13
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On substituting in (22.13), we have
dme?Zy Zy?
(k2 + 22 0? — Roz1’

T12=

(22.15)

where %, =J/4p,me?[n is the inverse Debye radius of the electrons, and

wy, is eqnal to

4 N, Z* €2
gy = Vi i (22.16)
The function I3, has a pole when
k
w(k) = 27 (22.17)
Ve ¥

When k £ 2, the function (k) is linear. This is the so-called *‘ionie
sound”. The velocity of the sound is

ok) opn V4
k= x _pon. (22.18)

When k > %,, o approaches a constant value o =~ . The pole of I3,
remains real as far as k~ w,[v, so that (k) attains the value «,,; in
the case when w,; > v;%,. This condition is observed by virtue of the
first of inequalities (22.2).

The damping of these vibrations is determined by the imaginary parts
of IT, and II,. On substituting in (22.11) (with {w,, - o + ©J sign w)
the equilibrium distributions for the electrons and ions, we obtain

ImIT, = | kl v Zn il exp (—M w?/2k2T),
22.19
ImlIl, = Lo m? ( !
¢ k 2n’

The index of the exponential in Im I7, is of the order pifm7T or less,
whilst the ratio of the factors in front of the exponentials in Im J7;

and Im [T, is of the order (py/m T)*/*|/M[m. In view of this, any of these
quantities may prove to be the main one. On determining the imaginary
part of the pole of I}, we obtain the damping of the vibrations:

oA [1/7 (M3
:Ic'"““/ -8_(7) exp (—Mw

where o is determined by (22.19).
When kv, > o > w,, we obtain by (22.15):

dnerZ, 7,
B2 52

2
L (22.20)
4

I, = (22.21)
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In the case w ~ kv, the electron loop predominates over the jonic.
By (22.11), the total value of I1, is equal to

e [1 o o+ kv, 4

int|o|
HG—JT T 2kw, |_w—kv¢

2kwv,

0(kv, — | [)] (22.29)

We obtain from this, in the region w > kv,:

Py K2 3 v2k?
SR < N A
UE mem 3w? b w?

On substituting this in (22.8), we have

Ik, ) = -, o . (22.23)

This expression has a pole at the point

2 3
o =l + —gvsz, (22.24)
where
4me? N
why = fn % %, vk <L g (22.25)

The pole corresponds to the so-called plasma vibrations of the electrons.
The dispersion of the vibrations is expressed by a small additional term.
The damping of the oscillations may be obtained as in the previous case,
if we take into account the exponentially small contribution of the circuit
round the pole in the transformed integral (22.11). It proves to be pro-
portional to exp[—mZs/2k2T]. This expression proves to be incorrect
at very low temperatures, since the damping contains larger terms that
come from the subsequent approximations in 2.

It follows from (22.23) that, in the limit as kfow — 0, @ = 0, ['—> — oo,
It is therefore clear from this example that I'® contains an infinite con-
stant in the case of Coulomb interaction.

3. The electron spectrum

We shall now find the electron Green function (}). The first order term
added to the self-energy part is illustrated in Fig. 63. The analytic ex-
pression for this term is of the form:

d3p ie
G 0 O (6 1)

2= —4nerT D]

( (22.26)

S
(P —p)?

(1) This section is based on ref. [77], and also on a calculation for 7' = 0 made
by A. KOCHKIN.

13*
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On taking the sum over g in accordance with rules (17.33) and (22.10),
we obtain
e [ ! ConrD
21 = —dme f @y P (o —pp° _
i . . Fig. 63
where np is the Fermi function.

We add and subtract the same expression, but with #p (7 = 0), and
use the fact that the difference ny (p, 7) — np(p, 0) tends to zero rapidly
on moving away from the Fermi boundary. This enables us to replace
& = (p3[/2m) — (p3/2m) in the relevant integral by v(p; — p,). We thus
obtain, after integration over the angles():

pﬂ (-]
2 =—%u{ pldpllnlpl_—'_f)_l_ﬁ { dg in & +¢
6

1 |P1_P| 7“’5’ eE‘IT—{-—]_ lfl—fl.

On carrying out the first integration, we obtain after minor transforma-

tions:
__em (P + po)? 3 2Py

where & = (p?/2m) — (p§/2m),
f(x) :%Idz In 2 [tanh % (z+ =) —-tanh—%— (z ——x)] .

In view of the fact that this expression does not depend on g, it repre-
sents the correction to the energy of the quasi-particles. Since the Fermi
limiting momentum is not affected by interactions and at the same time
is connected with the chemical potential by the relationship £(py) = u,
the expression for X at p = p, must be regarded as the variation of the
chemical potential

Ap = —epyfn. (22.28)

The remaining part X; — Ay is for |p —p,| <€ po equal to

Zy —Ap = (@[wv) {€ (In Qupy/T) — 11— TfET)}.  (22.29)
We obtain from this:
2y —Ap = (¥mv) Eln 2pyofE) for E>T,
2 —Au = (Elnv) & [In (4yvpynT) —1] for ELT,
where y = ¢¥ = 1-78 (C is Euler’s constant).

It follows from (22.30) that expression (22.27) is not entirely correct
for the case of small & and 7'; the correction to the velocity of the quasi-
particles ¢2,/0p close to the Fermi boundary as 7 — 0, £ - 0 tends to
infinity proportionally to In (vpy/T) or In (vpp/£). This result is connected
with the fact that, as p — p,, small transfers of momentum at the
vertex become important in integral (22.26). It is necessary here to take

(22.30)

() In this section we use v to denote the electron velocity on the Fermi boundary
Do/ m.
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account of all the loops threaded on the basic dotted loop, in other words
to replace 4ze?[(p — p;)? by the expression for I, (p; — P, & — &), corre-
sponding to (22.8).

Instead of evaluating the whole of ), it will be more convenient for
us to evaluate the difference between 2’ and 2, which latter has already
been found. We denote this difference by 2. It is represented by ex-
pression (22.26),in which 4z e2[(p — p;)?is replaced byl,, —4meE[(p —p,)>
It may be mentioned that no substantial corrections are introduced if
we take into account higher order approximations to the @-function
appearing in this integral, since in the corrected &-function pg corresponds
as before to the Fermi boundary.

It was pointed out above that I',, possesses, as a function of frequency,
all the properties of the boson Green function. The same applies to the
difference between I',, and its zero-order approximation. Hence it follows
that the problem has a great similarity to the evaluation of the self-
energy of an electron interacting with phonons, which was discussed in
the previous section. However, in the present case small momenta k are
important. Let us denote [, (w, k) — 47e®[k? by D (w, k). Formula (21.29)
of the previous section is now entirely applicable to our present case
(with ¢ replaced by 1). On recalling that >'(g) <€ ¢, and the fact that the
important values are k < p, we obtain:

1 .7 b ke ImDR(n, k)

E—vk—e

(tanh + coth 7 ) (22.31)

w+e

2T 27T

Since we are interested in the spectrum, which is expressed to a first
approximation by the formula ¢ = &, we can assume that the integration
over w is between the limits —vk and »k.

The real part of X5 is equal to the principal value of integral (22.31).
On carrying out a number of transformations, and taking account of
the antisymmetry of Im Dy (#, k) and the connection between Im Dy, (1,k)
and Re Dg (17, k), we obtain

et w E—w
Re X,p = om )3 f dww_/; kdk Re Dyp(w, k) (tanh -+ ta hﬁ _)

(22.52)
Similarly, a circuit round the pole in (22.31) yields

I Sy = o )3 [ o [ kakTIm Do, #)

wfv
o+ e w—e
(2 cothﬁ tanh CV tanh 5T ) . (22.38)

The brackets containing coth and tanh show that, as earlier, only the
greater of the two variables ¢ and T is important (except for the case
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when the pole of Dy is important (sec below)). The value of Dy, is deter-
mined by the region in which o lies: in v € kv,, v;k € 0w € v,k or
v,k ~ w. It may easily be scen that there are correspondingly thrce
regions of values of max (g, 7) : (a) less than ey, (b) between w,; and wyy,
(c) greater than wp,. In accordance with inequalities (22.2) and (22.3),
T > wp- In view of this it is sufficient for us to consider only regions
(b) and (c).

Let us take the case w, <€ max (s, T) < wpq We split the integral
over k for Re Zop into the regions wfv, S kS ofv;, and ofv;, < k < oo.
On substituting

D.—_— (4me?)® (2311, + 11))
BRI 4 dmet (22 + I1)]
we find that the contribution from the region wfv; < k < oo is of the
order (€%[v)wy, tanh (g/2T), ie. it is small compared with X;. On the
contrary, the region ofv, <k < ofv; yields an important contribution.
If we notice that the significant valucs are w ~ max (¢, T) > w,;, we
can assume [T, € I1,, 4me® IT, = »2. 1t follows from this that

~ x2dk 4 o )
v
Re Zon = 2mfd“f R+ ) ( anb —7- 4 tankh zT)

(,2

(22.34)

(ta 1h i— -+ tanh 2Tw)

62 £
=—— [s In — 7t (T)] (22.35)

The regions of k can be split in the same way when finding Im 2yp.
In the region wfv, S k< ofv; the function Dy has a pole corresponding
to the ionic sound. A cireuit round the pole gives the following contri-
bution to Im Xop(w, k):

Copm . U 1Rk k
——Jlf dw f - = O [ — S
w2 et Ty
n 2 (22.36)
w+¢ w—¢ e *;
(2cothﬁ—, tanh o tanh 5T ) A — - ln;‘3

(this result holds to logarithmic accuracy).
In addition to this, the imaginary extra terms in I7; and 17, may prove
to be important. Substitution yiclds

e °°1 fkdk4~zezIm (1, + 72IT)
f @ ) e Ane(Il, - Z2IT)P

v+ & w—¢E
(2coth——ta1h vl — tanh o )
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In view of the exponential nature of Im I7;, the region k2 o /v, is important
in the corresponding integral. An estimate shows that the contribution of
this integral to Im X, is of the order €2 T'fv, i.e. to logarithmic accuracy
it is small compared to (22.36).

The second imaginary correction to Imn I7, yields an integral over the
region @ ~ max (g, T), k ~ %, The lower limit of the integral over k
can therefore be put equal to zero:

& w o+ ¢ w—¢ dk 2
_4’02J wdo [ZLoth 2‘T——tanh2—T-—— tanh 5T J @ T 27

= 1()1;2 [+ (= T)]. (22.37)
The second term of this expression is small compared with (22.36), but
the term containing €2 may in fact be greater than the ionic damping.
We now turn to the region wye <€ max (g, T'). On considcring the integral
(22.35) for Rc 255, it may casily be seen that it yields an insignificant
contribution of the order (e2/v) wy, tanh (¢/2 7). Hence the real part of
2'p is essentially equal to Xp;. As regards the imaginary part, the ionie
acoustic pole of Dy, yields in this case the same contribution (22.36). The
same applies to the term from Im I7,, which is again insignificant.
The electronic, damping, which comes from Im fJ,, yields an intcgral
in which the most important values are ke~ x,, @~ vx,~ @p. If
T > wp, it is of the order 2Ty, i.e. it can be neglected. Whercas if
T <€ wye. we can take T = 0 in the integral. In view of the fact that
o ~ vk here, the entire expression (22.22) has to be substituted for 77,.
The simplest thing here is to use the fact that the temperature brackets
are the same in (22.32) and (22.38) for 7 = 0, and are equal to 2. On
combining thesc two formulae, we obtain

RSN d dk Dg(w,
k2 7—0 (27_[)2 f wwlj;) kdk R(w k)
&P g

On substituting in this (22.34) and (22.22), we arrive at the expression

—e %, (B 1 i 6a), (22.38)

where B, and B, are constants, equal to the real and imaginary parts of
the integral

11 1 1/2
36[ du [1 —u (artanh U — E—zn)] (22.39)

(the value of the square root with the positive imaginary part is taken
here). The imaginary part of (22.38) is the rcquired part of the damping.
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We can find from the cquation ¢ —& — 2" 4 Ay = 0 the cnergy spee-
trum and the damping of the elcctronic excitations in the various regions:

(a) Wy L max (€, T) KL wp,
2
o(0) = )| 14 5 (02— 1) |
y(p) = %‘[Th +’;i(ﬁ) (22.40)

(b) Wy L max (&, T),
_ Emf prp?_\|_enT ED)
e(p) =&(p) l1+ np( am T l)]_ ap f(iT),
}’(P)z%len;i-i- €® %, Bo.

In particular,
. e 1y pov
e(p) = £(@) [1 + = (ln B2 —1)]

for p/2m > T > max [£(p), wyel, (22.41)

e(p) = &E(p) ll +G:ZZL In I%%;z)l] for  E&(p) > max (T, w,y).

4. Thermodynamic functions

Let us end by considering the thermodynamic functions for a degenerate
plasma (). We have, in accordance with (10.22):

A0 =00, =—fd(e)fd3 d4'%(L—T—I’[<wa(x)wﬁ(x)wp(x)wa(w)>
— 22, (@) D) D), ()4 22 (D@D (') D) D(x)y]. (22.42)

The expression in the brackets {-.-) ecan be expresscd in terms of the
functions ¢ and 7 ; for example:

~ ~ N,, 2
Wel2) Pp (@) P5 (@) P 2)) = —2 6P (z — 2") P (" — ) + (—V—)
— [ A2, ', Az die, B (z — ) B (2 —2,)
X GO (x;—x) B (z, — 2') T opop (X1 %25 T3%y) -

The term (N,/V)2 can be thrown away, since it cancels in (22.42) with
analogous terms from the electron-ion and ionic interactions as a conse-
quence of the electrical neutrality of the plasma. When writing down
the averages of the four field operators that come from the electron-ion

(1) A. A. Veprnov [40] has found the thermodynamic functions for a degen-
erate plasma.
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and ion-ion interaections, it is not necessary to write the term with two
G§-functions as well. The fact is that this term has an exchange origin.
Exchange of ions with electrons is impossible, while exchange between
ions can produce a very small cffect, since the ions form a Boltzmann gas.

The resulting expression therefore consists of two terms. One of them
comes from the product of the two electron ®-functions (it corresponds
to exchange of elcctrons with electrons), whilst the other is the sum of
terms with different G.

We start by considering the first term. It is equal in the momentum
representation to

) s . 13p, 43 1
2 gpere S f‘ Py Py .
I o (27)® (P — P2)
T, 7>+ 0
exp(ign, ;)  cxp(ienTy)

Pen, — & (P1) - ten, — & (P2) + 1

The factors cxp ig,r take into account the order of the operators yp in
the Hamiltonian (18.1). The summations over #, and #, are independent.
On recalling the definition of the Fourier component of the function ¢,
we get

S exr}(isnf) = GO(— —an
T P A e DD
->+0

Henee we find that

AL, 2 ((Bp; Bpyn(p)n(p,)
v 4mfmﬁm—m2'

This term is small for a Boltzmann gas, since occupation numbers n € 1
appear in it. This justifies our neglecting the ion exchange.

We now consider the remaining terms. We obtain in the momentum
representation:

(22.43)

v —

@en)P 12

10 4 [ e e d3RASP, dBp, 1

- 2:——272‘[(1(6‘)713:](‘ _pl( p..
o 81690

X {4 G (Py, &) O (py + k, &, + ©) B°(Ps, &) B (Ps + k, 80 + ©0) T o, (E, ©0,,)

_SZGji(Pl’ &) @i(Pl + k&) 4 0) B°(Ps, £2) Qie(P:z + ke w) (Tei(k’ Op)

+ 422G (py,81) P, + k, &) 4 ©) B (Po, £2) B Py -k, 854 0) T (k, m,,)}-

Since the vertex parts J are themselves of order €2, this expression is
formally of fourth order in 2. What is important here, however, is that
small £ and @ matter in the integral over k and the sum over w. Com-
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paring with (22.9), we can write

2
4 =——2nfd(e2)TZ'f(g’§3]:2{ (0, B) T (e, k)

+ 22 JZ (0, B) T (0, B) T i(w, k) + Z° T E (w0, k) T (o, k)}
1 2+ 222 T, T, + 2 I3
K — 47[62(17[e + VA ‘7[;)

(T, + 22 T )2
R —dne(J,+ 229

The important values of k2 here are of order 4me®( ,+ Z2 J;). We
want to find the relationship between the values vk, v,k and v = 2m = T.
It is easily seen that the integral over k in (22.44) increases as 4me?(J , +
Z2 J[,) inereases. Let us consider (22.11) for JC. If we assume vk < 7T,
the maximum value of J(w, k) is obtained when « = 0. The most
important ion loop in this case is that for which J(; ~ N,[TV, so that
dmet (S, + 22 J;) ~ (e2]V) (N,Z3|T). Hence it follows that (v,k)? ~
(TIM)(N,/V)(]T) ~eN,/VM L T? Our assumption is therefore
justified. We need only take the term with @ = 0 in (22.44) and put
S+ 22 I ; ~ — (Z3]V) (N ,[ou). After this, integration over k? gives

42, _ 21/— B2 ?f (N, V)32
Ze = s\ . A5
- ( )T(Va) (Zef i~ (2245)
Given our assumptions (22.2), (22.3), this term is small compared with
(22.43). But this is the only term of order €3, since the correction to the
term A0, must be of order e
If the condition of strong degeneracy is not imposed on the electron
gas, AQ, may become of order AQ,. Now, however, we must also take
into account the electron loop. We thus get
49, o fd3p1d3p2 n(p)n(ps) _ 21/263T(gi oN; 1 g)'
Vo 2m)® (p—p? 3 Vou' 'V ou)
This formula is suitable when the following conditions are fulfilled:

it
Zm (%) <1, T>max {ez (1_1\/7)1/3 . -J:ll? (%)2 3} . (22.46)

——8n2f e*d(e®) T “fd3k

- = f 2d ()T )‘fdk (22.44)




CHAPTER V

SYSTEM OF INTERACTING BOSONS

§ 23. APPLICATION OF FIELD THEORY METHODS TO A SYSTEM
OF BOSONS AT ABSOLUTE ZERO

CoNsIDERABLE difficulties are involved in extending the methods of
quantum field theory to the case of a system of bosons at temperatures
below the <“Bose-condensation” temperature. Nevertheless a suitable
formalism has been developed (Belyaev [41]), and the present chapter
will be devoted to it. As usual, we start from a consideration of the
absolute zero case.

Throughout the foregoing treatment our development of the diagram
technique has been based on the fact that the average of the product
of several non-interacting y-operators can be reduced to the product
of Wick’s averages of pairs of averages ypy*. This was a consequence of
theorem, according to which the average of the time-ordered product of
any number of field operators splits up into the sum of the products
of normal products of pairs. The ground state for a system of fermions —
the “vacuum” (we are at present only considering the case at absolute
zero) — is such that, by varying the definition of the creation and anni-
hilation operators, we can arrange for the average of the normal products
to be equal to zero. The situation is quite different for a system of bosons.
Because of the statistics in a Bose gas, any number of particles may be
concentrated in the zero momentum state at absolute zero. In an ideal
gas, at T' = 0, the number of particles in the lowest level is simply equal
to the total number of particles in the system. The state of Bose-conden-
sation is therefore characterized by the fact that the density of the num-
ber of particles at the lowest level, with zero momentum, tends to a finite
limit when the total number of particles N and the volume of the system
tend to infinity. Hence the averages of the normal product of operators
ag and ay, of the form (af )*aj, are not only non-zero, but can be made
arbitrarily large.

Let us suppose for a start that the system is at absolute zero. As we
have just said, in an ideal Bose gas all the particles are at the zero mo-
mentum level. We separate out, from the operators y(z) and y* () in the

203
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interaction representation, operators which correspond to the creation
and annihilation of particles in the state with p = 0:

p@) =bt v @)y @ =& v @ (23.1)

(we shall use the notation &, = ao/]/V, & =agd| [[V).

The total number of particles N = V& & becomes arbitrarily large as
V — co. Hence, if we neglect the right-hand side in the commutation
relation

"Sof(-)+ —ESLEO :%

the operators &, and &, can be regarded as c-numbers to a first approxi-
mation, as was done in Chap. II. It will be seen, however, that this is
only meaningful when the interaction is sufficiently weak.

We shall write the total Hamiltonian of the system as

H= Hy,+ H,,,
where

1
H,= 2Tnf Pyt (2)Pp(x)d®r,

and H,,, is an interaction Hamiltonian, the form of which will be left
unspecified for the present. All the familiar relations of field theory,
connecting the operators in the Heisenberg representation with those
in the interaction representation by means of the S-matrix, remain valid,
as does the actual definition of the S-matrix:

S = T exp{—i [ Hy(x)d%s}. (23.2)

The single-particle Green function G(z, ') is given in terms of the opera-
tors in the Heisenberg representation by

G —a') = —i{T(p@)yp ) (23.3)

and in the interaction representation by

Glo ) — — I <TEYE)S)
<8

(taking the average in the formulae with respect to the ground state of N
interacting particles in (23.3), and with respect to the ground state of
N non-interacting particles in (28.3")). It proves more convenient to
consider, instead of (23.8), the following two parts of the Green function
G(x —z'):

@ o —a) = —iCT( @), 7+ @)y = =T EERIE R (es)

(23.3")

and

Gyle—t) =— i< Eo(0), B )y = —LEOE O, (55
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@' (x — ") is the Green function for particles “above the condensate”,
Gy (t — ') is the Green function for particles in the condensate. Obviously,
Gy (t —t) does not depend on the difference of the positional coordinates
and can therefore be defined as the zero momentum Fourier component
of the complete Green function

Go(t —t) = [Q(r —r', t —1)d%r".
The density of the number of particles in the condensate is
ng = iGy(t — ),
' =t+4 0.

As regards the density of the total number of particles, it is always equal
to
n=mn 4+ n=1i[F0,t )} Gt —t)], ¥ =¢-4 0. (23.6)

Notice again that, in accord with § 4, the number of particles in the
condensate is different from the total number of particles when inter-
actions are present.

Let us now turn our attention directly to the development of a diagram
technique of perturbation theory for interacting particles. In accord
with the special role played by the condensate particles, we shall assume
that the substitution (23.1) has been carried out in the Hamiltonian
H,,, and that H, , has been reduced to the form in which the operators
& and &F, " and y't figure separately. We shall similarly assume that
H, , has this form in the definition of the S-matrix (23.2). Our subsequent
treatment is applicable for a Hamiltonian H,,,(x) which is the product
of any number of operators y and gt with any law of interaction between
the particles.

After the division indicated, between the operation of time ordering
T and the averaging over the ground state of non-interacting particles,
each can be represented as a sequence of two operations, acting separately
on the particles in the condensate and on the particles “above the conden-
sate” (“uncondensed” particles)

T=T°.1T, (-=L-d (23.7)

where T and - - -»%are applied to the opcrators &; and £7. The expansion
of the S-matrix in powers of the interaction contains a set of different
products of operators &y, &f, ' and ™t in each term. As regards the in-
dependent operators y’ and y™+, Wick’s general theorem can be applied
in regard to them, since the means of the normal products of the un-
condensed particles vanish. The time-ordered pair averages of yp'v't,
which we denote by G (x — 2’), differ from zero and are equal to

0z — ') = —i{T" [y @)™+ (@)Y = — KT (¥ (2)y'* (). (23.8)
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The corresponding Fourier components are
0Oz — ') = 2n) ™t [ GO (p)eP %,

1
— - (23.9)
w—2—m+ 20

O (p) =

If, therefore, we consider the operators &, and £F as (numerical) para-
meters, they will play the role of an external field in the different ver-
tices of the diagrams.

Let us consider the question of finding the Green function for any
number of uncondensed particles. The Green function is
Gy - - - T3 zll s .’E;)

_ T )y ) ) -y S 0y,
)

We split up the operations 7T and (- - -> into operations 7", T%and ¢- - -)’,
{-+->%in accordance with (23.7), and first investigate the perturbation
theory series for

Gy 2y 2y 2) = (— )T (y(xy) -9 () 9 T (@) - 9" T (@) ).
(23.11)

Since the operations 7" and (- - -}’ do not touch the operators & and &f,
the latter are parameters with respect to these operations and have no
effect on the time-ordering and averaging of the different products of
operators of uncondensed particles. The corresponding matrix ele-
ment can therefore be written in accordance with the usual rules of
constructing Feynman diagrams and contains products of time-ordered
averages (23.8) and powers of the operators & and &;. The number of
the latter in a given order of the expansion of the S-matrix in powers of
H,, ., depends on the form of the interaction Hamiltonian H,,, and on
the choice of the terms in H,,, after the substitution (23.1). For example,
the interaction (see § 25)

1 , , ,
H,, = Ef pH)pH (@) U@r — r)p() p(x)Prd®r  (28.12)
splits up, after the substitution
v>E vyt &yt

into eight terms, starting with a term of the fourth order in &jand &; :
1/2(E3 2 (&) [ U(r)d®r, and ending with

1
S ST @y @) U — 1)y @) p(@)a®rdr.

As an example, Fig. 64 shows one of the second order diagrams for
the function G (x —z'). The continuous line in the diagram corresponds
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to the function G© (x —=z') (23.9), whilst the wavy line between the two
points is the interaction potential U(r — r’); the free jagged lines re-
present here the operators &;and 53‘ , the line to the vertex being E(',* , and
from the vertex &,. The matrix element of this diagram is

Gy —2g) = i [ GO (w; — 25) GO (g — 5) & (85) U (15 — 1)

X & (1) GO (xy — wg) U (rg — 15) G (wg — xg) Az - - - dizg.  (23.13)

In the general case (23.10), the mth order matrix element in
G, (%> - - -5 Ty T2y - - -, Ty) contains the product of an arbitrary number
of operators &, and £F. We shall only remark that the powers of &, and
& are necessarily the same. This is connected with the fact that the
interaction H,,, preserves the total number of particles. Hence, if the
numbers of operators &, E[{ are not the
same, the numbers of operators y and 't
in the average ¢- - ->' are not the same, and
the latter is consequently zero.

Let M, (- - ,; %1- - - %) be the connect-
ed diagram in (23.11), having 2 m verti-
ces corresponding to m operators & and &;.
As usual, we understand by a connected Fig. 64
diagram one which does not break down
into several parts with no joining lines. Let us consider, along with M,
all the diagrams that differ from it by the presence of “vacuum” loops,
i.e. different disconnected diagrams. It is well known from field theory
that the total set of such diagrams amounts to the multiplication of each
matrix element by the mean value of the S-matrix. In our case, M, is
multiplied by {8)'. It is sufficient, therefore, when forming the pertur-
bation theory series for the functions (23.11), to take only connected
diagrams into account, and to multiply the corresponding matrix element

by {S)'.

We now pass from evaluating G, (z; - - - %,; ] - - %) to finding
’ ’ <T0—é(x1---x;xi...x')>0
Gy - -y 2y v - - 2,) = n n nL
n\*"1 1 <S>

It becomes important at this stage to know the character of the ope-
rators &, &¢. This has so far been ignored, since the operations 7" and
{:+->" do not touch &, and &}, which commute with ¢’ and ¢'+. Every
matrix element M, in G,, like (23.13), contains under the integral a
definite number of operators &, and &7, multiplied by averages such as
(28.8). Suppose that M, contains

Eoltr) - - - Eoltn)Ed (81) - - - & (E)-

In order finally to obtain G(z; - - - x,; %] - - - 2,,), We have to find an

average {--->? of the form

KT%o(t) - - - &oltm), & (t1) - - & (£,) <SY'))°
8> )
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Since in turn the operations 7 and (- -.>° do not touch the uncon-
densed particles, the required averages are seen to be m-particle Green
functions for condensate particles:

Gy - m,t,l.“t:n)z(T(fo(tl)...Eo(tm)(fg",;(i;)-..EJ(t;")S)_Z (23.14)

Consequently, to find the Green functions for the uncondensed particles
via the perturbation theory series, we have to know the exact m-particle
Green function for condensate particles.

These functions can be found directly from formulae such as (23.14),
in terms of the value of the density » of the number of particles in the
condensate without interaction. This approach involves difficulties,
however: the Wick thcorem expansion into normal products of the
product of operators &, &F has no meaning, because the average over the
ground state of such normal products of the type N{at,..., a,...)
is not mercly non-vanishing. but is in fact extremcly large. At the same
time, it is not possible to neglect the non-commutativeness of the opera-
tors & and &F in (23.14). For we can write (8)’ as(})

(8Y = ¢, (23.15)

where ¢ is the sum of all the singly-connected ““vacuum’ loops (i.e. those
that do not break down into independent parts) and a functional of &,
&F. This sum is proportional to the volume (the density of the number
of condensate particles n, = £F&, is a finite quantity). Arbitrary powers
of V arc obtained in the formal expansiou of {S)' into a series in powers
of ¢ in (23.15), so that, although the right-hand side in the commutation
relations
BT — i =

is of order 1}V, we still cannot neglect it, because its smallness can be
compensated by a suitable power of V' in expansion (23.15).

Hence it is more satisfactory to look for another approach. It may be
observed that expressions (23.14) can be written dircetly in terms of
the Heisenberg operators:

Gomlty -+~ w3 £y -+~ ) = <T{Eg(tr) -~ Eolta)ES (1) -+~ E (), (23.16)
where the mean of the product is taken over the ground state of the inter-
acting particles. We first consider the mean V{E; &>, which is the exact
number of particles with zero momentum. In an ideal gas, this number

() In field theory, the possibility of writing (8> in the form (23.15) is proved
on the assumption that &, & are external parameters with no operator properties.
We shall see, however, that tho ‘S5 in (23.14) stands after the time-ordering sign
with respect to operators &), &'. The Bose operators under the sign of the 7'-pro-
duct can be mtcrchanced in accordance with the actual meaning of this operation.

~+iam of field theory is fulfilled here.
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is simply cqual, at 7' = 0, to the total number of particles ¥ — all the
particles are at the level with p = 0. Interaction between the particles
(2 repulsion at sufficiently small distances — an attraction everywhere
would make the system unstable) leads to a decrease in the number of
particles with momentum p = 0. This does not mcan, however (we
emphasized this in Chap.I), that the condensate vanishes, i.e. the mean
number of particles with zero momentum remains arbitrarily large for
an arbitrarily large total number of particles in the system (the density #,
of the number of particles in the condensate remains finite for any inter-
action of the particles, if ¥V — oo). This fact is fairly obvious physically,
though we cannot logically exclude the possibility that =, vanishes for
a certain interaction. We shall not dwell herc on a proof of our assertion,
all the more, because the only substance occurring in nature of this
kind is hclium. The reader will find the proof in Belyacv’s article [41].

The change in the total number of particles in the condensate as a
result of interactions is in fact the reason why we could not simply re-
gard the independent operators &, E(‘J* as c-numbers.

The perturbation theory series obtained for the uncondensed Green
functions contains the averages of the exact Heisenberg operators & and &} .
If the condensate does not disappear, the operators Z—‘o, E; are in turn, to
a first approximation, simply c-numbers, as regards their effect on the
ground state of the interacting particles. We can usc this fact to sim-
plify the expressions for the Green functions for the condensate particles.

It must not be forgotten, of course, that the opcrator Eo annihilates
one particle, whilst £} creates one. Strictly speaking, then, importance
will only attach throughout what follows to the matrix elements &, &F
for a transitions from the ground state of the system with NV particles
(N — o0) to the ground state of the system with N +4 1 particles: from
the physical point of view, if we take a particle from an infinite number
of them in the Bose condensate, or if we add a particle, we do not in
practice change the ground state of the system, except for increasing its
energy by the amount of the chemical potential 1. When speaking of the
operators & and & as c-numbcers, we shall always bear this last point
in mind.

Let us discuss this in more detail, using as an example the single-
particle Green function

Golt — ') = — KT (E(ET (1)) ~ —ilE (DES ().

We write this last expression as a sum of products of matrix elcments
with respect to intermediatc states:

(B [EoFS ()| Dy = (B [Eo(t)] Prvr1d P s [EoE)] 0
+ I @Y o) By 1> Py [E ().

QF.T. 14



210 SYSTEM OF INTERACTING BOSONS

where @y and @y, are the ground states of systems of N and N J- 1
interacting particles, and @% . are states other than ground states of
the system of IV - 1 particles. The sum occurring in this expression is
small, since, for example, 56* Dy =~ Dy, whilst Oy, and Dy, are
orthogonal. As regards the matrix elements for passing from a ground
state to a ground state, their dependence on time can be found from
the usual formula of quantum mechanics:

. 0 ® % x |r i E
— @”a?«p ¥ 608} Py 1> = Py |LH, &()]| Py v

or
Z0 )= EO(O)e_iz(EN+1—E_N).

Using the definition of the chemical potential y = JE[ON, and replacing
&,(0) by n}/%, we tind that

WGyt — t') = mge M), (28.17)

In other words, the function Gy(f — ') has split up into a product of two
independent factors; &;(t) corresponds to the factor Vn_oe_""“, and &} ()
to V;oei”t'. Obviously, the same situation holds for any Green function
for a condensate particle: when replacing the operators &,(t), &5 (f) by
c-numbers, a factor of the type indicated has to be associated with each
operator. The diagram method for finding the Green functions for uncon-
densed particles thus reduces to the usual diagram technique, in which
the operators & and & play the role of an external field:

Eo(t) = Vg e ¥, Ex ity =V ng €. (23.18)

As usual, only the connected diagrams have to be taken into account
when writing down the perturbation theory series. As we have shown,
taking the unconnected diagrams into account amounts to replacing
the density of the number of particles in the condensate of an ideal gas
by the exact value of the density of the number of particles in the con-
densate of a gas with interacting particles, whilst it also leads to the
appearance of frequeney factors in (23.18). For the rest, all the diagrams
are the same as though, after substituting in the interaction Hamiltonian
H,, . the operators in the form (23.1), we were to regard the operators
& and &1 in the interaction representation as external parameters and,
when evaluating expressions (23.10), carry out the averaging (- --)’
and the time-ordering 7" only with respect to the uncondensed particles
(in the commected diagrams). In order to obtain the final expressions, we
have to perform substitutions for & and &; in accordance with (23.18).
Let us remark once more that the density of the number of condensate
particles n, in a gas of interacting particles differs from its value for an
ideal gas. .
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Evaluation of the Green function for uncondensed particles by
means of the Feynman diagram method developed above leads to ex-
pressions for the diagrams that feature two parameters, the number 7,
and the value of the chemical potential g. Instead of directly evaluating
the dependence of the chemical potential on the density of the total
number of particles in the system using perturbation theory, we can
apply general relations. First of all, the density n,of the total number of
particles in the system is connected with x by the obvious relationship

n=mny+id@®—a), r=r;t' =1t 0. (23.19)

The second relation follows from the condition that the ground state
energy be a minimum with respect to n,. Evaluation of the ground state
energy B = (H) using the approach described above leads to an expres-
sion for I as a function of the parameters n, and p. On varying E with
respect to n,, with the total number of particles constant (n constant),
we find the second condition as

(ﬁ) = 0. (23.20)

3710

In principle the two conditions (23.19) and (23.20) solve the problem.
It proves more convenient for practical calculations to use (24.17) in-
stead of (23.20).

We shall end this section with a brief discussion of the choice of thermo-
dynamic variables. To date, we have used the total number of particles
in the system as the independent variable. This was connected with the
fact that, when applying perturbation theory, we started out from the
characteristic of an ideal Bose gas, in which there is no Bose condensation
when the chemical potential is finite: as we know, the chemical potential
of an ideal Bose gas is identically zero throughout the temperature in-
terval from zero to the condensation temperature 7. The chemical
potential y is not zero for a system of interacting particles and is there-
fore just as much a thermodynamic variable as the total number of par-
ticles. As usual, the value of u can be found from the condition that the
average number of particles in the system be equal to a given real num-
ber of particles. In essence, it is precisely this condition that is expressed
by (23.19). Changing to the chemical potential u as the independent
variable enables us formally to avoid auxiliary time dependences in
formulae (23.18), arising in the matrix elements from the vertices with
Et) and B} ().

For, as we have seen more than once, a change from the variable IV
to the variable p is achieved by replacing the complete Hamiltonian of
the system H by H — uN. Since the operators  and ¢+ commute with
the total number of particles NV in accordance with

Ny —ypN = —y; Nyt —ytN = yt,

14%
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the change of Hamiltonian amounts to an extra time dependence of
the operators y and y+:

w__)_eillfti'u; 1/J+——>e_".m'tp+ (23.21)
The Green function is changed at the same time, e.g. we have for the
complete single-particle Green function,

Qx — ') — Gz — 2'). (23.22)

In the Fourier components this transformation implies a change of all
the frequencies @ in the old expressions to « -+ u. Hence, the Green
functions for condensate particles are also independent of time in the
new thermodynamic variables after the transformation (23.21). In view
of this, the time factors (23.18) can be omitted at the corresponding
vertices of the diagrams. The reader can obtain this result by redefining
the Green function in accordance with (23.22) and investigating directly
the perturbation theory series in connection with tranformations (23.21)
and (23.22). It will be assumed everywhere in future that u has been
chosen as the independent thermodynamic variable.

§ 24. GREEN FUNCTIONS

1. Structure of the equalions

Let us dwell in rather more detail on the structure of the perturbation
theory series for a single-particle Green function for uncondensed
particles. A diagram of any order can be split up into several irreducible
parts, joined by a single line, corresponding to the function GOz — z).
Any diagram for a Green function is thercfore a chain of self-energy dia-
grams, connected by zero order Green functions. Fig. 65 shows a few

examples, where the
@ circles denote schema-
tically irreducible self-

energy parts of any
required structure. The
presence of the conden-
sate amounts to the
appearance among the
self-energy diagrams of
new diagrams which
have never been featured in the problems considered in earlier chapters.
These diagrams result from the interaction of uncondensed particles
with condensate particles and contain the operators &, and &; at several
vertices; in accordance with the results of the previous section, these
latter make their appearance in the role of an external field: &, & — Vn_o
It may easily be observed from Fig. 65 that the total number of lines

Fig. 65
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entering any irreducible self-energy diagram is always the same as the
total number of lines leaving it (the total number includes all the jagged
lines, corresponding to the operators of creation and annihilation of
particles of condensate). Since all the self-energy parts are connected
by straight lines, i.e. contain two uncondensed particles either entering
or leaving, the fact just mentioned enables us to classify all the irredu-
cible self-energy diagrams as follows:

A. Diagrams with one straight line entering and one leaving, corres-
ponding to uncondensed particles. The numbers of jagged lines that
enter and leave these diagrams (the powers of the operators &, and Eh)
must be the same. We shall denote the sum of all the matrix elements of
these diagrams in the coordinate representation by 2j;(x —z’) and
illustrate it by a shaded circle, as in Fig. 66a.

B. Diagrams from which two uncondensed lines leave. In these dia-
grams there are two more jagged lines entering than there are leaving.
We shall denote the corresponding sum of matrix elements by 2, (x — z')
and represent it by a shaded circle with two entrant jagged lines, as in
Fig. 66b.

C. Diagrams in which there are two entrant uncondensed particle
lines. In these diagrams, on the contrary, the number of jagged lines
leaving is two greater than the number entering. We shall denote the
sum of these matrix elements by 2, (x —z'); in Fig. 66¢, the sum of
such self-energy diagrams is represented by a circle with two jagged
lines leaving it. All three types of
irreducible self-energy parts can
be combined in any order into dia- . C} )
grams for the Green functions

G'(x — z'). The only obvious re- & 2oz %0
striction is that the number of (@) {b) (©
times that the matrix elements 2, Fig. 66

enter into a diagram be equal to

the corresponding number of matrix elements of type X,,. Fig. 67 illus-
trates some examples of diagrams for the Green functions for uncon-
densed particles.

We can now write an analogue of Dyson’s equation for the Green
function for an uncondensed particle. We shall first derive it diagramma-
tically. We scparate out the first irreducible self-energy part from the
diagram, reading from left to right. As distinct from the cases considered
in previous chapters, the irreducible part can be of two types: Xj; or
Zy- The vertical dotted lines in Fig. 67 illustrate schematically the divi-
sion of the diagram into two parts. To the right of the dotted line in
Fig. 67a we have a chain of lines and self-energy parts, the sum of which
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is again a complete Green function G'(x — z’). On the other hand, the
right-hand sides of the dotted lines in Figs. 67b, c. d, following the self-
energy part 2, represent, when summed over all the diagrams, a new

function, which we shall denote by é(x —z'). From the diagrammatic

OO ~

i
I (@)
!

=N

(@
Fig. 67

point of view, it is distinguished by the fact that there are two departing
uncondensed lines in the diagrams representing it. For the sake of
convenience, we now introduce into the diagram arrows for each line
corresponding to the two points x and z’, indicating whether the line is
entering or leaving at each of these points. The Green function for a

-~ - V78
. > = + { ;<—>
Giz-z) + o
- -z"

Y Glz-z)
;,?'—7—"[))_”- ~lpm———- = -4—40“ +
Fig. 68 Fig. 69

non-interacting particle G (x — ') is by definition the average of the
T-product of operators o' (z)yt(z’) in the interaction representation.
We shall put an arrow along the line at the point  in the direction from
% (the operator ¢'(x)), and at the point =’ an arrow in the direction to
z’ (the operator 't (z')). The Green function G'(x — z’) is obviously a
heavy line with two arrows such as in the zero order Green function
(Green function without interaction, Fig. G8a). As regards the function
Glx — z'), it is clear from Figs. 67b, ¢, d that it will be a heavy line on
the diagram with two ends leaving it (Fig. 68b). The equations connecting
the Green functions G'(x — ') and G(x — ') are illustrated in Fig. 69.
The structure of these equations is clear without further explanations;
we shall remark here once again that the funetion ¢'(z — z') appears in
the theory as a result of the interaction of uncondensed particles
with condensate particles and therefore has no analogue for non-inter-
acting particles. As regards the self-energy parts X, 2, and X, as
usual, the last cannot be written in the closed form in terms of the func-
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tions G and G. The Feynman diagrain method yields expansions for

them into series, cach term of which can be associated with a definite

diagram. Several lower order diagrams for X}, and X, are illustrated

in Fig. 70 for the interaction Hamiltonian (23.12).
P Rl .Z}:.{

£

Fig. 70
We write down the equations of Fig. 69(1):
Gr—a)=60% —z)+ [ [ Oz —y) [Zn(y — 26z — )
+ Zpoly — 2)G(z — 2)]d%d%y, (24.1)
G —) = [ [ Oy —2)[Zn(z — )@z — @)
+ Ly — 2)F (z — ') ]d 2.
Fourier transforming these cquations, we get
¢ () = 6(p) + GOP)Ey(P)E (p) + GO (P) Zon() G (P),
G(p) = G (—p) 21 (—p) G(p) + CO(—p) Z0n(p)E ()-

Using expression (23.9) for the Green function G (p) for non-interacting
particles, we can write (24.2) in the more convenient form

(0 —&(P) + p — Zu(D)F () — En(@)C(p) = 1,
(—o —e(P) + p — Zu(—p))G(P) — Zpa(#)G (P) = 0
(here g,(p) = p%/2m). On introducing the notation
2 2ul— 2 — 25 (—
and expressing G (p) and é(p) in terms of 2, X5, Xy, via equations (24.3)
we get for G'(p) and é(p)'

(24.2)

(24.3)

¢ o + &(P) + S(p) + A (p) — "
) = (0 —4 (P — (&0 (P) + S(p) —!‘)2 ‘l‘uzo (p) Z‘02(1’) ( )
Gp) = —,— - Ze®) (24.5)

(w—4 (1’))2 (GO(P) + S(P) H)z'l' 200 (P)Zoz (p)

(1) The choice of coefficients in the equations implies a suitable definition of the
self-energy parts X, (sec § 25).
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These formulae generalise the usual expression for the single-particle
function in terms of its self-energy part.

2. Analytic properties of the Green functions

The function é’(p) has appeared up till now as the result of summation
of definite diagrams. We shall next give a definition of it in terms of
the operators y'*. To do this, we consider

— KT E &P (@)F ()

and verify that its expansion into a perturbation theory series is the same
as the expansion of é(x — z'). We shall assume, as we did at the end of
the previous section, that all the operators are defined with factors
e or ¢ as in (28.21), and change to the interaction representation

_7:<T(5050‘/J'+(‘”)"/"+(x'))‘82

8> )
We split the operations 7' and (- --) into 7' = T and {({ - )0
On regarding & and & as external parameters, i.e. carrying out the avera-
ging over the uncondensed particles, we find that the diagrams for

this quantity are the same as the diagrams for the function é(x — "),
whereas the matrix elements differ by the presence of two extra opera-
tors &,. It has been shown, that averaging over the condensate particles
amounts to replacing the operators & and &} in the interaction represen-
tation by the Heisenberg operators & and £}, and in turn replacing
these latter by numbers: Eo——>]/n_0 and & — Vn_o Two equivalent defini-
tions can therefore be used for é(x —z'):

: —i EFE o~ ~r 7
G —=z) :n—<T(§0§0¢ Hax)P () (24.6)
()
or
Gz — ') = —idN + 2| T (P +H@)§ ()| Ny, (24.7)
where é(x — ') in the latter formula is expressed in terms of the matrix
element of 7'(y/*+(x)y'+(2')) between the ground states of the systems
with N 4+ 2 and N particles.

Let us investigate the properties of the Green functions G'(x — z')
and G(x —z'). On using the definition (23.4) of G'(x — z'), we can re-
present it, precisely as we did in Chap. II, as the sum of mafrix elements
over the intermediate states when ¢ > and & << ¢':
when ¢t > ¥/,

GFlx—a') = —i N [P’ (@) m) {m [+ ()| N,
when ¢t < ¢,
G —a') = —i TN [§Ha)| n) <n [§ @) V).
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On separating the positional and time dependences in the matrix elements
in the usual way, we get

— i %‘ l"/’lezexp{i(Pm' f—f') “'ime(t_tl) + i/,t(t——t’)},

t>r,
G’ (x - x,) = - 2 - . - 4 o ’
—3 %‘ |Yan|” expEp,(r — 1) — i,y —8) —iu(t—t')},
F< b (24.8)

here, p,, and p, are the momenta of the system in the intermediate
states, w,,y = E,, — Eyg, 0,5y = E, — Epy, where E, E, are the ener-
gies of the system in states » and m, Ey, is the ground state energy of
the system with N particles. By the properties of the operators ¢’ and
y't, the system has N -+ 1 particles in state m, and N — 1 particles in
state n. The appearance of the factors e+ in (24.8) is connected with
this. On using the definition y =~ Ey 19— Eyo, we can write (24.8) in

the form
[— i % ‘Wlez eXP{i(Pm' r— rl) _z(Em _EN+1,0)(t - t’)}

¢ N t>r),
x —z)=
—i ¥ I"/’Nn'z exp{—ip,(r—r')+i(E,—Ey ) (t—1t)}
(t < t). (24.9)

The energy differences E,, — Ey, 0 and E, —Ey ;. are the specira,
or excitation energies, of systems with N 4+ 1 and N —1 particles.
Given a large number of particles, the spectra of these systems are the
same up to terms of order 1/N. Fouricr transforming (24.9) both with
respect to the coordinate differences and to the time, we get in the mo-
mentum representation for the Green function:

L 8(P —Py) |pavm[?
G (p) = (2m) l;w-—(Em—EN+l,0) +9
B (P + Pa) [wwnl? ] 2
= o+ (B, — Ey1,0) —id]" (419

The poles of the function G’ (p) correspond to the values w = + (&,, — E),
i.e. they determine, as usual, apart from the sign, the spectrum of the
system; their position relative to the real o axis is clear from (24.10).

We now carry out a similar expansion with respect to the intermediate
states for the function é(w — '), making use of its representation in the
form (24.7):

Pt (x)| my (m |@'+ @) N> Et>1t),
—i XN +2 |9/ * (@) | m> (m |9 (=) | N (¢ < £)

— i1 XN+ 2
G —=z')= "
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or

—1 -7:- w;+2,m yryexpli(p,,-r—1') —i(E, — Eyioot )t
+ By = Eyo—p)t'] > 1),

—i ;:-‘ YhromPmx €XPLi(Py ¥ —1) — (B, — By 0+ p)t’
+ (B, — Eyy—p)t] (<t). (24.11)

The states distinguished by the index m correspond to states of the system

with N 4 1 particles. On introducing Ey,q,, the ground state of the

system with IV 4 1 particles, into (24.11) and again using the definition
of the chemical potential, we can transform (24.11) to the form

G(x—=z') =

— 7\;: ’(pi\t+2,m’(p7-lt\7 exp [i (Pm r— f,) —i(Em—EN+1,0) (t _t,)]

B —a t>t),
(x —=') = - oo li(D et —i(E. T v
z;WA'»FE,MWmL\«e)‘p[z(Pm r f) 7‘( m N+1,0)( )]
| t<t).

The Fourier component of é(w — z') is equal to
G(p) = (27’ X 9fiom¥Pmn
X[ O(p —Pn) . o(p + Pn)
w— (B, —Eyxi10)+20 o+ (B, —Eyir0)—id
Comparing expressions (24.10) and (24.12), we can conclude that the poles
of the Green functions G’(z — z") and é’(w — z') are the same. In parti-

. (24.12)

cular, on returning to the representation of G'(p) and é(p) in terms of
the irreducible self-energy parts (24.4) and (24.5), we sce that the spec-
trum of the system o = ¢(p) is given by the equation

(e(P) — A (D)2 — (eo(P) + S(p) — u)? + Zp(P) o) =0

(o= {e(p), P}
Along with the functions G(z — z') of (24.6) and (24.7), it is useful to
introduce the function

£ / i ~r ~ri. NE+F ' ~r S f
G — o) = — (T @7 @& E ) = (V| T (7 @7 @) N + 2.
0
(24.13)
On expanding this last expression over the intermediatc states, along the

same lines as above for é’(x— z'), we can find expressions analogous
to (24.12) for the Fourier components of G(p):

G’(Z)) = (2”)‘3 ;:—"‘/’4\'m'(pm.l\' +2

{__ op—r.) 0P+ Pum)
@ _(Em _E'N ' 1.0) +ié ) + (E",—E.\' |—l.0) —id

. (24.14)
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The function é(p) therefore has poles (and contours round the poles),
which are the same as the poles of é(p) and G'(p). As regards the coeffi-
cients, i.e. the residues at the poles, they are rcal in the case of G'(p),
whereas they are the complex conjugate of each other at the identical
poles of G(p), G(p).

The function Cv%’(w — ') is represented pictorially by a line, with two
arrows directed towards each other. The equations conneeting é(w- z')
with the ordinary Green function are represented schematically in Fig. 71.
These equations contain the
Green function G/(z' —x), repre-  s—t = >l o + ——éaq
sented with an opposite direction
of the arrows. The equations of
Fig. 71 may be written as fol- o e- « <4 ,_@« +

lows in Fourier componcnts of
all the functions: Fie. 71

G(p) = CO(P) X1 (p) G(p) + GO (9) Z3o(p) G’ (—P),
¢ (—p) = GO (=p) + Go(—p) [Z0(—0)F (—p) + Zoe(p) G(p)]-
We find on solving thesc cquations for G(p):

% 2o (P)
Ap)= , - -, - - - R ~ (24.15
(® ((’) —4 (Z’))z - (Eo(P) + S(p) '—H)z + X (0) e (p) )
Expressions (24.5) and (24.15) for G{p) and G(p) differ from one another
in replacing the 2, (p) in the numerator by 2y,(p).

3. DBehaviour of the Green functions for small momenta

We shall conclude the present section by making some general remarks
concerning the results obtained. Because of spatial uniformity, all the
functions depend on the absolute value of the veetor p. Tt is clear from

(24.12) and (24.14), that é(p) and é(p) arc even functions of the fre-
quency w. It is casily seen from this that Xy (p) = Zyy(p). For, inasmuch
ag the interaction Hamiltonian preserves the total number of particles,
it is symmetric with respect to the operators y and yt. Hence we can
associate with any diagram for 2, precisely the same diagram for X,
obtained by replacing all the lines that are entering in Xy, by lines that
are leaving, and vice versa; and correspondingly, the direction of the cir-
cuit round all the interior lines is reversed. But the circuit direction
round all the interior lines can be changed by changing p to — p in the
matrix element for a given diagram 2, (p). Since X, is an cven function,
by (24.15), we have
Zoo(P) = Zge (@) and G(p) = G(p).
We consider the cquation for the poles of the Green functions:

(@ — A(D))* — (eo(P) + S(P) — ) + X5(p) = 0. (24.16)
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It is clear from physical considerations that this equation must have a
solution, no matter how small w and p. In fact, the possible solutions
for the excitatioy energy spectrum with small p must include the acoustic
spectrum w = ¢ |p|, i.e. the spectrum corresponding to long wavelength
density oscillations. We therefore put @ and p equal to zero in (24.16).
As a result, we get conditions connecting the chemical potential y with
21(0), Z5(0) and 25(0):

(H - 211(0)) = H02(0)

It will be clear from the results of the next section, that of the two roots
of this equation we have to choose

1 = Z(0) — Zpp(0). (24.17)
In order to find the form of the Green functions in the neighbourhood
of small w and p, we carry out expansions in the denominators of (24.4),

(24.5) and (24.15), confining ourselves everywhere to second order terms
in @ and p. We find then using (24.17):

G(p)= 2u(0) — 2wl
2 |2 2_c2|pl?)’
B(w?—¢ lPl) f;gw <|pf) (24.18)
~ A ____20—
G(p) =G(p) = B(?—c[pP)’
where
4 2Zu(0)\2 2%, (0) 2
B_<1—_aw—) e ool )+ 2 20 )

[1 62140) 025, }
B =220 50 2 pp ~2|pP
Obviously, ¢ is the velocity of sound. As must be the case, it vanishes if
250(0) is zero, since the velocity of sound is zero for an ideal Bose gas.
On comparing the results (24.18) with the general expansions of the
Green functions (24.10), (24.12) and (24.14), we find that the ratio
20(0)/B is real and positive. Thus the form of all the Green functions

& (p), G(p) G(p) is the same for small w and p (v ~ ¢ p):

G(p) =

const

et (24.19)

§ 26. DILUTE NON-IDEAL BOSE GAS

1. Diagram technique

We shall now illustrate the methods described by considering in more
detail the particular case when the interactions between the particles
are binary forces (Belyaev [42]). The interaction Hamiltonian is

1
H,,= Eff pH(E)yr (YU (r — r')p(r)yp(r)dBrddr. (25.1)
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We separate out in H,,, in the explicit form the operators of the conden-
sate particles &; and £§ in accordance with (23.1). As a result, we get eight
distinet terms in a sum that can be used to represent H

H, =3 [ [4/ 't () Ul — 1)y () (0 &ra’e,

int*

H, =% V(S8 [ U(R)APR,

H, = %f JES () + 9T (NES I (n)y' (1)U (r — 1) drd’r,

Hy =5 [ [ w1 () + &t (01T (r — ) Prr,

H,= % [ [ Edv' (e (1) + ES v T (D&Y (11U (r — 1')APrd®r,
Hy = [ [ 5™ (&' (1) + £ (M) (11T (r — 1) Prdy,
H,= & [ [ &350 0y (1) UG — r) 0,

H, :%ff Euforw' T (N T (1)U (r —r")BPrd3r. (25.2)

The elementary processes corresponding to each of these terms are
shown in Fig. 72. Any matrix element can be formed by the usual
method, Wick’s theorem being applied to the operators of the uncon-
densed particles. In accordance with the results of the previous sections,

MWMM
MMM

Fig. 72

it is only necessary to take the connected diagrams for the process, the
operators &, & being everywhere regarded as external parameters, which
have to be replaced in accordance with &, EF— ]/770 (if the frequencies
of all the particles concerned in the process are measured from the value
of the chemical potential). We shall confine ourselves to formulating
the correspondence rules in the momentum representation between
the matrix elements and the diagrams for the single-particle Green func-
tions. Let us take any diagram of the mth order of perturbation theory
for one of the Green functions, say G'(x — =), containing s condensate
lines entering and s leaving (as we have remarked several times, the total
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numbers of the lines entering and leaving any diagram must be the same).
The diagram in question is contained in the expression

(=

m!

(—i) (T (9 (@) [ Hyy(ty) - - - Hog(b)y'™ (@)t - - - dt,,)>.
The number of possible permutations of the m Hamiltonians H,(t,),
that do not destroy the order of pairings determined by the given dia-
gram, is equal to m! The number of operators ¢’ (equal to the number of
operators y't) is obviously equal to 2m —s 4 1.

In accordance with the definition of the Green function G@, a factor

—i appears with each pairing ¢'y'*. We shall associate G with each
straight line and infroduce a wavy line corresponding to the potential

Vix—=z')=U(r —r)o(t — ).

The total number of ternary vertices (i.e. vertices from which a wavy
line departs) is, by (25.1) and Fig. 72, twice the order of perturbation
theory. It may easily be shown that, if we introduce Fourier components
of all the quantities:

1

Gz —z') = (2t

[ € (@) a'p,

1 : ,
Vie—2z)= (254_[ U(q)e 1™ ) d%, etc.,

the matrix element of any diagram of the mth order of perturbation
theory for a Green function can be formed according to the following
rules:

(1) every straight line proceeding from left to right corresponds in
G'(p) to the function GO (p) =[w —&(p) + u + 61" (a line in the
opposite direction corresponds to G9(—p));

(2) each wavy line with momentum g corresponds to a Fourier com-
ponent of the interaction potential U(q);

(3) an entering or departing condensate line corresponds to the factor
Vg3

(4) at every ternary vertex the momentum ¢ of the wavy line is equal
to the difference between the momenta of the particle lines. Integrations
are performed over the momenta not determined by the laws of conser-
vation; each integration implies a corresponding factor (27)~%;

(5) the entire matrix element must be multiplied by A4,,(—¢)*™,
where 4, depends on what sort of terms of (25.2) figure in the diagram.

These rules remain unchanged for the Green functions G and @, provided
we understand by s the power of the factors n, figuring in the given dia-
gram of order m. If, for instance, the number of entering condensate
lines in one of the diagrams for @ is equal to I, the number of departing
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lines is I + 2 because of the definition (24.7) of &. The number of pair-
ings of the operators ¢’ and ¢t (the number of functions G'9) is obviously
equal to

2m —1.

Since the factor —¢ appears in each Green function, in accordance with
its definition, the factor by which the matrix element must be multi-
plied is equal to

(_i)l‘l—l'—m.
However, I + 1 is just the power s of the factors #, arising from the
condensate lines.

2. Connection. between the chemical potential and the self-energy parts
of the single-particle Green functions

We now turn to the proof of (24.17) for the chemical potential u. Let
us consider the operator &y() in the Heisenberg representation (we assume
that the term —u N is included in the complete Hamiltonian). As regards
its dependence on time, &,(t) satisfies the usual operator equation of
quantum mechanics:

.ah ~ ~ =
2 Ea"t(t) = [& (), H] = — p& () — [H,,p & ()]

We find with the aid of this equation, for the Green function Gyt —&')
for condensate particles:

“ (att_t_) = i pGy(t — )T (o (8), HonslEd (¢))>-

However, it follows from the results of the previous sections, that
G, (t —¢t') does not depend on time and is simply equal to n,. Hence it
follows that

png = — (T ([Hy,- E(1ES () (25.3)

Let us evaluate the average on the right-hand side of this equation. Chang-
ing to the interaction representation
+ oy
T,y B ) — F e &O1E OIS
S

we can briefly reproduce the arguments of § 23. We first carry out the
averaging and time-ordering over the uncondensed particles in the
operations 7' and (- - ->. In accordance with the general method, we only
need to take here the connected diagrams into account, whilst regarding
the operators &, and & as external parameters. In the present instance
the connected diagrams are different vacuum loops; we denote the result
of the averaging, which only affects the operators of the uncondensed
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particles in Hgyy, by HgP. The function HEP depends on &, EF as
parameters. To obtain the final result, we have to replace all the opera-
t01s &y, £ appearing in HE by the exact Heisenberg operators &, and
after which we get for (25.3):

qoe H‘f;l)n’ 0 S 0 con E
g = — 220 té?)]ff SV S, EED. (25.4)

The commutator [Hiy, & ] contains the commutations of &, with

different products of operators &, & in the vacuum averages Hiy-

When evaluating H%, the usual averaging in accordance with Wick’s
method of the uncondensed particle operators has been carried out.
Since this averaging consists in pairwise averaging of the operators ¢’
and y't, the numbers of operators &), & are also equal.

Let us consider, for example, the vacuum loop of the mth order of
perturbation theory, containing s operators &, and s operators £F. The
result of the commutation of & with one of the operators &} is [£F,&,]=
—1/V; although &; can commute with all s operators &}. Hence, if the
correction to the ground state energy corresponding to the given mth
order vacuum loop with 78 is denoted by (Hyydms (this latter is obtained
from Hy by replacing the operators &, £ by }/ng), it may easily be
seen that (25.4) is

K7y _‘_\:7<H ot
or
con ‘H.
u = N\ 0 (H1'nt int/sm __ 0 Hﬂt_z (25'5)

— 87?0 V on, V

(The vacuum average (H,,,>is a function of the parameters y and n,.
Hence the partial derivative with respect to n, at constant y is secn on
the right-hand side of (25.5).) The idea of the rest of the proof (Hugen-
holtz and Pines [43]) is bascd on the fact that the operators &, £ appcear
symmetrically with the operators v’ and "t in the interaction Hamil-
tonian. Each vacuum loop (H, > with a number of condensate lines on
the diagram can therefore be formally associated with diagrams for the
irreducible self-energy parts 23;(0), 25 (0), the necessary number of in-
coming and outgoing condensate lines (opcrators &5 and &) being replaced
in the loop by cntering and departing straight lines (operators o't and
p"). Fig. 73 shows some simple examples of lower order diagrams(¥).
Since the entering and departing condensate particle lines carry the 4-
momentum p = 0, the correspondence in question will also hold for the
matrix elements 23, (p), 2y(p) = Ze(p) when p = 0.

(1) Some of these diagrams are zero (see below), but this is of no importance
for illustrating our arguments.
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The matrix element of an arbitrary irreducible diagram J(Hg,»<0
is formed in accordance with the same correspondence rules as were for-
mulated above for the Green functions; it is easily seen, that the only
difference lies in the numerical factor, by which the entire integral has
to be multiplied, which is
equal to e

@ 3
L]
NNy

gram. The corresponding w7
factor in the matrix ele- 5=2
ed by one when differen-
diagrams for 23, (0) of thc (
mth order of pcrturbation +
departing condensate par- Fig. 73
i.e. these diagrams can be obtained by 2 methods:
it Jm—1,6 by replacing two entrant condensate lines by two entrant

(_ i)s—m—E
ment for the self-energy
tiating the vacuum loop
theory, containing s — 1
ticle lines). All these dia-
Sz con
(211 (0))m,8—1 = n, 14 <Him>m—1,s'
straight lines. There are altogether s(s — 1) such diagrams, as follows

’ m=7
where m is the order of per- §=7 + ?\A/QL
parts has the form ri@/
+
(—iy .
with respect to ng. Let us
factors n, (and the same
grams can be got from the vacuum loop (Hiy' >, 1, by replacing one of
As regards the diagrams for 2,,(0), these latter are obtained from
from the number of methods by which this replacement can be made.

turbation theory, and s is
the power of n; in the dja- M"’ % ,§
The power of n, is reduc- - ﬁ
consider all the possible ~
i m=2
number of entering and o ’m
the s operators £F by an entrant, and a &; by a departing straight line,
F7con
Therefore,

2
=5 < H con
int/m—1,8"
nyV

(220 (0))771,3—1 =

On comparing the differcnce Xj;(0) — 2,,(0) with expression (25.5), we
obtain at once:

p= 25 (0) — 25 (0). (25.6)
Q.F.T. 15
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Ag already remarked in the previous section, the validity of this relation
extends beyond the case of binary forces between the particles.
Equation (25.6), in conjunction with (23.19), connecting the chemical
potential with the density of the total number of particles in the system,
gives us a set of two conditions from which the values of the parameters
p and 7 can be determined. We shall not dwell here on the proof of the
equivalence of conditions (23.20) and (25.6); we shall only remark that,
for perturbation theory calculations (i.e. for the case of a gas of weakly
interacting particles), condition (25.6) is more convenient, since it ex-
Ppresses u directly in terms of the familiar functions of an ideal Bose gas.

3. Low density approximation

Let us apply the method developed above to a gas of interacting bosons
with the Hamiltonian (25.1). We have already considered this example
in Chap.I, where it was assumed that the interaction forces between
the particles were small. Thus expression (4.11) for the excitation spec-

z ;;” -—)&—» +

Fig. 74

2’
s

Fig. Fig. 76

trum contained the Fourier components of the potential, proportional,
in the Born approximation, to the scattering amplitude of the particles
with one another. We shall soon show that this result is in fact valid in
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the more general case when the gas density, but not the interaction, is
assumed small, i.e. when the dimensions of the particles are small com-
pared with the average distance apart of the particles in the gas (if the
particle dimensions are characterized by the amplitude f, of the S-
scattering with one another, the condition is f,n'/3<1). Let us consider
the diagrams of the first order of perturbation theory for Xy, (), 2y (p)
(Fig. 74). Of the three 2|, diagrams, the first is due to the averaging of
the term H, of (25.2) of the interaction Hamiltonian (25.1). This diagram
is zero, since the interior line in it is the average —i{y™*(r')y'(r)) =0
(remember that the wavy line corresponds to the interaction potential
V(w—2x")y=U(r —r') 6(t —1'), whilst the order of the operators o'+
and v’ in H, is given by (25.1)). The remaining terms yield:

ZQ(p) = o (U(0) + U(p)), 2R (@) = ZR(p) = n, U (p),

where the U(p) are the Fourier components of the interaction potential.
By (25.6),
p=mn,U(0).

The only diagrams of the second order of perturbation theory that are
non-zero are shown in Fig. 75. For instance, the diagrams X% (p) of
Fig. 76 are zero, since each of them contains products of Green functions
of the form GO(r — ¢, t; —£,)GO (" — """, t, — ;) (in the coordinate
representation). Incidentally, we know that GO (r; —r,, {, —t,) = 0 for
t <ty

To estimate the diagrams of Fig. 75, we assume for simplicity that the
Fourier component of the interaction potential has the form:

1

I U, for |p[<7,

vup) = 1
0 for |p|>—a—,

where a ~ f, is of the order of magnitude of the particle radius. The
estimate of any diagram may involve the following parameters of the
problem: U, and a, characterising the interaction, the mass m, and the
density m, of the number of condensate particles. T'wo dimensionless
quantities can be formed from these parameters:

U.
cNmaO’ ﬂ=l/noa3-

The quantity { is the perturbation theory parameter (expansion into
a Born series), whilst § is the ‘‘gas’ parameter. Formally, the perturba-
tion theory series is an expansion in powers of £ < 1; however, we shall
below only assume g < 1.

15+
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For greater simplicity, let us consider the diagram for X&) (p) in Fig. 75.
For this,

Z () ~no [ (P (@E(—9)U(q) U(p — @ d*qdw
or, on substituting valucs (23.9) for the Green functions @@ and inte-
grating over w, we get
d3q

(2)(
p) ~noUs f .
00 p—s(9)
Of importance in the last integral are the larger values of ||~ 1/a,
for which p/e§ ~ mn,Uja? = {2 << 1, so that

@ ™M noU 1
230 ~ a ~ZQL.

A similar estimate for the X2 diagrams shows that X® ~ V¢
Let us now consider the third order diagram for 23 in Fig. 77a. We
obtain for this:

IR ~nf [ (O(—q) [P [U(TU(p + ¢d’qdw

n2U3 f 1*q
? [ — e @)®’
As distinet from the previous case, our integral here is convergent at
the upper limit, and the chief role is played in it by the region |q|~

Ymp o~ JnyUym, so that
ng U m®?

20 U ~ s, @

At the same time, the third order diagram of Fig. 77b has the value
T8 (1)c~ (25.8)

It is clear from (25.7) and (25.8) that ZEP ~ AL H2XE, This result is

a consequence of the fact that X8 contains two integrals of the product
of two G9, each formally divergent at the upper limit, whereas three
GO functions are integrated in X$¥; the

b integral is convergent without cutting it off
and is determined by the values of the inte-

grand in the region of momenta |q|~ m

This distinction is shown on the diagrams

-{a) (b by the number of continuous lines in a

Fig. 77 closed loop (formed by straight and wavy
lines).

Hence every loop in 2; with more than two straight lines contributes
the small parameter 8, whereas the loops with two lines do not contain §.
Only diagrams of the second type need be considered for lower approxi-
mations. This means formally that. of all the diagrams for X}, and X,
we need ounly select those in which there are two condensate lincs,
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entering or leaving, i.e. the diagrams of the first degree in #,. For it is
clear from dimensional considerations that all the diagrams that con-
tain a higher power of n, will include an extra order of smallness in f.
All the necessary diagrams are of the ladder

type (Fig. 78). Let us denote by I'O(p,, p:

P3» Pa) the set of diagrams of Fig. 79 in the +
momentum representation. The first approx- z,

imation in B differs, therefore, from the
first approximation of perturbation theory
in replacing the Fourier components of the
potential U (q) (the first “rung” of the ladder)
by I'Opy, po; p1 — ¢, P2+ q). Naturally, in
all the more complicated diagrams, summa-
tion of the ‘“ladder’ loops contained in them
also leads to the appearance of I'? (for our

purposes, however, discussion of thesc dia- 5 4
grams is superfluous, since, as already men-
tioned, they yicld terms of higher order in ). 2 P <
The potential U(q) is therefore eliminated M+m....+ 4o
from the problem; the role of effective po- 2 g
A 4
A 4

Zu z

02

Fig. 78

tential is played by I'®.
The integral cquation for 'O (p,, pe; Pa, D)
follows at once from the structure of the

diagrams of Fig, 79:
i
L0y, 033 25 ) = U= P1) + o0 [ V(P2 — BIEOR)

X G(O)(Zh + pe— k) F(O)(k: P1+ P2 —k; p3, p4)d4k.
(25.9)

r
Fig. 79

4. Effective interaction potential

Let us now stop to examine (25.9). We introduce the total and relative
momenta :

D1+ P =03+ Dy = P; Py — Py = 2k; Py —py = 2k'.
Equation (25.9) for I'O(p,, pa; ps, po) = 'Ok, k'; P) now transforms to
I'%, b'; P) =1 (k—F) (25.10)

+ (2;? [ U —p)a® (% + p) o (é—p) I'® (p, k'; Pydp.

The interaction potential ¥ (x — z’) docs not contain retardation effccts:
Vie—a"y=U(r —+') §(t —¢'). We have thus for the Fourier compo-
nents: V(q) = U(q), i.e. it does not depend on the fourth component
of the 4-vector ¢q. As a result, I'®(p,, py; Ps, ) only depends on
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one combination of the fourth components w; + w, = ws + w, =0,
where P = {P,Q2}. Thus I'"O(k, k’; P) does not depend on the fourth
ecomponents of the first two arguments, and this enables us to perform
the integration over dw in the integral of equation (25.10):

[ dwG® (é + p) GO (é—p) =— P2 2ms 5 .
2 P .

After substituting in (25.10), the equation for I'?(k, k’; P) becomes
Uk —p) IO (p, k'; P)

1
(0) ‘. — _ 3 r
I'O%, k¥, P)=U(k—F)4 (2n)3fd P 2 Pt ' » {25.11)
— === 416
m m
where
22 p2
w2t

This equation cannot be solved in a general form for any arbitrary type
of interaction; however, its solution can be expressed in terms of the
scattering amplitude of two particles with one another in vacuo.

Let us remind the reader of the statement of the problem of the scat-
tering of particles in a potential U (r). The Schrodinger equation of a par-
ticle in a field U(r) can be written as

(V2 + By (1) = 2m U (1) (1),
where k2/2m is the eigenvalue of the particle energy and w,(r) is its

wave function. This equation may be conveniently written in terms of
the solution of the Poisson equation:

m  elklir—]

V() =——5 - F=v] U(r )y (r') 430" + po (1), (25.12)

where g, is the wave function of a free particle with the same energy.
The scattering amplitude is determined from the condition that, at large
distances from the scattering centre, the wave function is the sum of a
plane wave (free particle) and an outgoing wave(1):

’e”:]k”ﬂ

")Uk(r) = ei(k-r) - f(@)' Irl >
where 6 is the scattering angle relative to the direction of the vector k.
On comparing the behaviour of (25.12) at large |r| with this definition,
we get
n

F(O) =5 [ e EIU )y (r') &3,

(t) Our definiticn of the scattering amplitude differs in sign from the generally
accepted one (see e.g. [16]).
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where the vector k' is directed along r. On changing to the momentum
representation for the wave function:

V(1) = (27) 2 [ (p) P,
we get

fO) =fk, k) = (%4- [ U —p)p(p)dp (25.13)

(the particle is incident along the direction of k). By the scattering am-
plitude, we usually understand (25.13) with |k| = [Ek’|; we shall make
use of a generalised scattering amplitude f(k, k'), defined in accordance
with (25.13) with any vectors k, k’. Equation (25.12) becomes in the
momentum representation:

4 f(k, P)
— 3 _
After substituting (25.14) in (25.13), we get
27
f— —f(k

U(k P)[mf( ,P)]
2m)3 R L
(27) L S

- 2m  2m (25.15)
We now return to equation (25.11). We know that the scattering by
one another of particles interacting with the potential energy U(r — )
reduces to the scattering of one particle with a reduced mass m* =
my Maf(my -+ My) in the potential U(r). On carrying out the substitution
m — m* = 1/2m everywhere in (25.15), the latter can be written as

Utk — k) =| 2% |

(25.14)

2
“Thk, k) = UK — k) + &p.

4z .,
— G BT p EZ‘,(%,‘), (25.16)
(27 = F s
m m

where L denotes the operator on the right-hand side of (25.16). By sub-
tracting the same expression from both sides of (25.11), we can reduce
this to the following:

. 1 Uk —p)I'Op, k'; P) 5
IO, k'; P) — —— 5 B a°p

m m

1
=U(k—F) +Wf Uk —p)

1 1 .
|2 p . FT_p* . I'%%p, ¥';P)d%.
|~ T —m T
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The left-hand side here is L(I'®). On acting on it by the operator L1,
we finally get the equation for I'®:

4
Iroe, x; P)= ——f(k' k) +(2 )3f [an(P- k)} (25.17)
X{ 2 12 pz 12 — ', k'; P)A%p.
l:@ i W"p_Jr 0

It is clear from this that, to a first approximation, /@ (%, k’'; P) is equal
to (4z/m)f(K’, k). The integral on the right-hand side of (25.17) is con-
vergent, even if we assume f and I'® constant, so that it is of order
~ (| k|/m) 2. It will be clear from what follows that the important region
of momenta |k|is |k) ~ [/ mu~ V;z;, ie. 'k|f< 1, and it is sufficient
to confine ourselves to the first term for I'®(k, k' ; P). Notice, furthermore,
that we can now ueglect the dependence on k, k' in the expression for
f(k, B'). At small energies this dependence is an expansion in powers
of the ratio of the particle dimensions a to the wavelength A ~ 1/|k]|.
Since a is of the order of the scattering amplitude f, and (k| f < 1, we
can finally write

TO®, k3 P) = 7 f(0,0)= -fo (25.18)

5. Green functions of a Bose gas in the low density approximation.
Spectrum

We have on the basis of the above:

8z iz 47
Zu(p) = 77]‘0”0': 290(p) = Zoa(P) = foros # =’77fo”o- (25.19)

Substitution of these cxpressions in (24.4) and (24.5) gives

P? _4_7_'5_'"'0f0
G(p) = i + 2w * m G(p) = 47_7”0f0 1
P —2(p)+ 148 (#)=—- m  w?—e(p)Fid’
where
1/ p? dszm,fo 167> ?lgfo Pt —lejc_no_fn—z -
&(p) —] (277% +- m ) m2 4mz + m2 p (25.20)

is the spectrum of the system for small momenta. The difference between
(25.20) and expression (4.11) of Chap. I for the spectrum lies in replacing
the Born amplitude by the exact S-scattering amplitude. It follows from
(25.20) that the quasi-particles with |p|<” W’ofo have the acoustic
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dispersion &(p) = |p | V4znyfolm?, whilst for [p|>> |/nefy they become
“almost free” particles &(p) = g5(p) + (dmnyfy/m) (this form of the
spectrum corresponds to a particle moving in a continuous medium that
has an index of refraction). The transition in the formula for the disper-
sion from the phonon rvegion to the “frce particle” region occurs when
Ip| ~ ]/no—f0<< 1/f,» so that both regions can be validly considered in
the constant amplitude approximation.

Notice in conclusion that the model investigated can never be asso-
ciated with the propertics of recal heliwm. Apart from the fact that the low
density approximation does not correspond to liquid He I, it has to
be emphasized that the form (25.20) of the spectrum for small p is ac-
tually unstable. For, when p £ 0, 8¢/8 |p| — the cxcitation velocity —
is greater than the velocity of sound V-Lyz nofo/m?, 1.e. the excitation can
create phonons (sce the next section). This leads to the appearance of
damping in the speetrum with an excitation life inverscly proportional
to |p|® at small p. The speetrum of helium at small p does not possess
sueh an instability.

§ 26. PROPERTIES OF THE SINGLE-PARTICLE EXCITATION
SPECTRUM CLOSE TO ITS END-POINT

1. Statement of the problem

The spectrum of the single-particle excitations in a real Bose liquid,
i.e. in helium, can evidently not be caleculated theoretically. The depen-
dence of the energy on the momentum (the phonon part of the spectrum)
is only lincar for very small momenta; it ceases to be linear at larger
momenta and its form becomes dependent on the actual properties of
the interaction between the particles of liquid.

The characteristics of the excitation speetrum in a Bose as compared
with a Fermi liquid is that undamped Bose excitations can exist. This
means from the mathematical point of view that the solutions of equa-
tion (24.16) are rea At finite temperatures, the damping of the excita-
tions is due to the possibility of their colliding with onc another. There
are no actual excitations at absolute zeru. Hence the only possible me-
chanism leading to a finite life of the excitation is its breakdown into
excitations of lower energy, provided such a process is admissible by
virtue of the laws of conscrvation of momentum and energy. In a Fermi
liquid, breakdown accompanied by the formation of particles and holes
is always possible; this leads to a finite life of the quasi-particles, inverselv
proportional to (|p| — pg)%. Given sufficiently small momenta, the exci-
tations in a Bose lignid can be undamped. It is only when the momentum
incrcases that the excitation energy finally reaches a threshold value,
above which the excitations are unstable from the point of view of
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breakdown into two or more excitations with lowcer energies. We shall
call this threshold the end-point of the spectrum. It is a singular point
of the spectral curve. We shall try below to explain the nature of this
singularity; as will be clear from what follows, the entire investigation
can be carried out in a general way, without any assumptions whatever
regarding the weakness of the interaction (Pitaevskii [44]). Our only
restriction (which still leaves plenty of physical generality, one would
think) will be to assume that the end-point of the spectrum corresponds
to the threshold of a breakdown into two (and not more than two) exci-
tations.

The energy and momentum conservation laws must be satisfied during
the decay of the excitation into two. This fact can be expressed by the
equation

£(p)=¢e(q) +¢(p—9q). (26.1)

Here, p and £(p) are the momentum and energy of the decaying excita-
tion, g and £(q) the momentum and energy of one of the resultant exci-
tations, and p — q, ¢(p — q) the momentum and energy of the other.
If, given p, (26.1) has no solutions for g, this implies that decay is im-
possible. The decay threshold (we denote the excitation momentum at
the threshold point by p., and the energy by ¢, = ¢(p,)) is characterised
by the fact that (26.1) has no solutions for ¢ when £ < ¢, and has solu-
tions when ¢ = g,. It is necessary, for this, that the right-hand side of
(26.1), regarded as a function of the vector g, have a minimum for cer-
tain values of ¢ when |p| = p,. When |p| = p,, the right-hand side of
(26.1) depends on two variables; on the absolute value of g, and on cos 0,
where 0 is the angle between the vectors p and q. The expression in
question can have a minimum for both zero and finite 0.

Let the right-hand side of (26.1) have a minimum at some momentum
g. We write an expansion up to second order terms in the increment

Aq:

0
(b =) g, 1 L Feld) 1zep—g
__*api -4q; §5qi—bq;£‘qiﬂqk+ 5~ ap,op, A4q;Aq,.

The linear terms must fall out at the minimum, There are obviously two
possibilities:

(1) de(q)/éq = ée(p — q)|op # 0. This case corresponds to decay into
two excitations moving in the direction of the vector p with the same
velocity v = 9¢/6q. Two cases are possible here. Firstly, one of the exci-
tations can have a momentum arbitrarily close to zero. This corresponds
to the case when the excitation velocity is equal, at the point p,, to the
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sound velocity ¢ and the excitation can create a phonon (case a). Se-
condly, both the excitations can have a finite momentum (case b).

(2) ée(q)]eq =0; ée(p —q)Jép = 0. It is necessary for this that
each of the excitations be created with momentum equal to p,, at which
the excitation energy &(p) is @ minimum. For liquid helium, such a point
on the spectrum corresponds to p, = 2x10-1% g cm/sec. The spectrum
£(p) has a so-called roton form in the neighbourhood of this point:

_ 2
ep) =4+ PP 5 g <) (26.2

If g, = 24, the excitation decays into two rotons with momenta ¢ and
gy, where |q|, |¢;| = p, and &(q), e(q,) = 4. The angle 0 at which the
two rotons depart is determined by the condition that the sum of their
momenta be equal to p, (case c). The three cases described cover all the
types of threshold of decay into two excitations.

2. System of equations

For our investigation of the form of the spectrum close to the threshold
point, we make use of the methods of quantum field theory described
above, i.e. we seek the form of the Green function close to the end-point
of the spectrum, since the spectrum is itself determined by the poles of
the Green function. It is obvious physically that the singularities of
the Green function are connected with those diagrams in which one
line forks into two, which represents pictorially the decay of an exci-

tation into two. Let us consider
say the diagrams of Fig. 80. The *—*@V\—' »—»@v\—»
different Green functions G,
and @ figure in these diagrams.
Each of the loops is a self-energy P@z—» %

part, characterised by the fact .
. . Fig. 80
that it consists of two ternary

vertices (counting only the number of uncondensed ends), joined by
two continuous lines. The corresponding integral for such a loop is

[ do’ @q6(q)6(p — ) Iy T, (26.3)

where G may denote any of the three Green functions G’, G and @, whilst
I, I'; are the vertices on the right and left-hand sides of the diagrams.
Suppose that the values of w and p for the outer ends lie close to the pole
w = g(p) (we have shown above that the poles of all three Green func-
tions are the same). The singularity of the integral (26.3), if it exists,
is connected with the domain of integration over w’ and g, in which the
functions G(g) and G(p — q) are close to their pole. In accordance with
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(24.10), (24.12) and (24.14), the two functions have the following forms
close to their pole:

. A,y 4y
G(Q)_w'_g(q) 41-;‘6 o w' +e(g)—id’ 5 (26.4)
Gle—9 w—w —e(p—qQ +id  w—o te(p—gq)—id

depending on whether the function is being considered near the positive
or the negative pole. On substituting these expressions into (26.3), it
will be seen that our interest is in the terms such as 4, B,. The integration
over w’' in these terms can be performed between the Limits — oo to
-+ oo, after which the remaining integral over g has the form, in a cer-
tain domain of values of q:
I\ I',A Bd3q

£(q) +e(p—q)—w
The singularities of the last integral are determined by the possible
vanishing of the denominator of the integrand at certain values of q.
By our previous analysis, the denominator is always greater than zero
when @ << €(pc); when w = &(p.) the integrand becomes infinite, i.e.
w = g(p,) is a singular point (in the mathematical sense of the word)
of (26.5). The nature of the singularity is therefore determined purely
by the analytic properties of the Green functions and does not depend
on which of the diagrams of Fig. 80 we have actually chosen for the self-
energy part. This last fact enables our future discussion to be considerably
simplified. For, as we have just shown, to determine the nature of the
singularity, we only need the expressions for the Green functions close
to the pole. All three functions have the same form close to the pole. Pro-
vided, therefore, we are not interested in the actual size of the regular
terms and in various unimportant coefficients, and inasmuch as the dia-
grams for all three functions have the same structure, we need not make
any distinction between G’, ¢ and @ close to the poles. We form, for in-
stance, equation (24.2) and introduce a new function G4 (p) = 6" (p) + G (p).
We get the following equation for G(p):

G1(p) = G (p) + G (p) [ 21, (p) + Lo (p)1G, (p)-

We split the set of all self-energy parts X' = 2, | X, into diagrams
that have no singularities at the point w = ¢,(2;), and diagrams 2

(26.5)

o o Gy that have singularities, which
L + £ v E%77_  take the pictorial form shown
o) in TFig. 80. We introduce a
Fig. 81 function G (p) as follows:
7 1
GONp) = o —— .
GO (p) — 2 (p)
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The remaining equation can now be written as Dyson’s equation, illus-
trated schematically in Fig. 81. Since the nature of the singularity is
determined by the form of all the Green functions at the pole, where they
only differ from each other as regards their coefficients, we can replace
all the interior lines G', @ or G by G;. To the left of the loop there is a
“bare” vertex I'®, which, from the point of view of the general method,
is the result of the interaction of three uncondensed particles with
condensate particles (as for instance in the diagrams of Fig. 80); to the
right we have the ternary vertex I, which is obtained from I'® as a result
of the interaction of the lines leaving it.

The diagrams expressing I'(p, p — ¢, q) in terms of I'®(p,p —g, q)
are illustrated in Fig. 82a. We use a square here to denote the complete
irreducible vertex part for the scattering of two uncondensed particles
by one another I'(py, D5, D, 4)- Summation of these diagrams is carried
out by the simple equation illustrated in Fig. 825. This is the set of all

=2 = ¢ 2SO+ s O+
7 /'/ﬂ/ /'Iﬂ/ /-(F
(b)—< =< + -O(

Fig. 82

the four-particle diagrams that cannot be split up between the ends
P15 Py and g, P, into two parts, joined only by one or two lines. On now
omitting the index of G; everywhere, we can write the equations in the
analytic form:

?

—1 (0)—1 _
G (p) — G (10)—(%)4

[T, p —q,9)G(g)

XG(p —Q) F(p’p —q Q)d4 > (266)

I'e,p—4.9=TI""%p,p—4,9 +(2*7)4fr(p,p —k k)

XG (k)G (p — k) (k,p — k; p —q, ¢)d*k. (26.7)

The properties of equations (26.6) and (26.7) are entirely different close
to the three types of threshold described at the start of this section, so
that we have to consider the three cases separately.

3. Properties of the spectrum close to the phonon creation threshold

We consider the properties of the excitation spectrum close to the point
where the excitation velocity becomes equal to the velocity of sound.
As from this point, the excitation can crcate a phonon. The laws of con-
servation (26.1) becomes in this case

e(p) =e(p— @) + «(q), (26.1°)
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where (g) is the phonon frequency, ¢ is its wave vector. At small g,
the frequency w(g) has the form

w(q) =clq| —o|gqf. (26.8)
We shall assume that o« > 0, i.e. the phonon spectrum is stable, although
the third order terms in (g) will not be required below. The function
e(p) has a singularity at | p| = p,. We shall assume (this will be supported
by the final result) that the singularity makes itself felt in terms of a

higher order of smallness than the second in powers of Ap = |p| — 2.,
i.e. that close to p,,

&(p) = & + c¢Ap + B(4p)*. (26.9)
(By hypothesis, the excitation velocity v = 8¢/d|p| is equal to the sound
velocity at |p| = p,-)
At |p| = p, and cos 6 = 1 (0 is the angle between g and p), the right-
hand side of (26.1") becomes, taking (26.8) and (26.9) into account:

&+ Blal’. (26.10)

The point |p| = p, is actually the threshold only on condition that ex-
pression (26.10) has a minimum at ¢ = 0 for which it is necessary that
the condition

>0
be fulfilled.

Since, at |p| = p, the excitation can create in our present case a
phonon with ¢ arbitrarily close to zero, the important region as regards
finding the singularity in integral (26.6) will be that of small values of
the argument of one of the Green functions, say G(q). The Green function
is given by (24.19) for small » and q:

G = — (26.11)

a
—a?(q) +id
and is proportional to the phonon propagation function. (It is impossible
to use form (26.4) for the function G(g), since both poles are almost the
same at small q.)

Close to |p| = p, and & = ¢,, the Green function has a singularity.
We assume, however, that, in accordance with (26.9), G—1(p) has the
following form close to zero (i.e. close to the pole of G(p)):

G1(p) = A 1[de — cAp — B(Ap)? + i8] (26.12)

(dp = |p| — 1 de = w —¢,).
We also have to determine the higher order terms in G—1(p) that contain
the singularity.
We consider the properties of the vertex part I'(p, » — ¢, g). At small
¢, this vertex represents a process in which a particle with momentum
P emits a long-wave excitation or phonon. Such a vertex must necessarily
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be proportional to the magnitude of the momentum |g| of the emitted
phonon, since, from the macroscopic point of view, the process is the
scattering of the excitation by density oscillations (sound). In the limit
of infinite wavelengths of the acoustic oscillations, this interaction must
vanish, since the excitation is not scattered in a homogeneous medium.
We shall therefore use the expression

I'(p,p —q, Q)zglql (26.13)

for I'(p, p — ¢, g) in the region of small |q].
We now consider the integral on the right-hand side of (26.6). Because
of the definition of I' and I (Fig. 82), this integral is in every order of I”
a chain consisting of loops joined by four-particle vertex functions (Fig. 83).

Each of these loops yields a contribu-

tion to the singularity of the Green

function, the contribution of each loop —OO(
being only countable once because of

our assumption that the non-regular Fig. 83
terms are small.

If we take a given loop, the set of diagrams to the left and right of it
can be summed independently, and, by the definition of the exact three-
vertex function I'(p, p — ¢, g), form at both vertices of the loop a three-
particle function I'(p, 2 — ¢, g). The small non-regular additive correction
to the inverse Green function G-1(p) can therefore be found from a con-
sideration of the non-regular part of the expression

[0, p— ¢, 00@)C(» —g)d%.

We consider the regions of small g in the expression and substitute
in it the values (26.11)—(26.13) for I'(p, p — ¢, ¢), G{(g) and G(p — ¢q).
We get

lg|*dlq|dQda’
Aﬂf/@ﬂﬁ—§¢+4&[d—ﬂu+eur—m—4ﬂ'

The integration over o’ can be performed from — oo to + oo and amounts
to taking the residues at the point o’ = ¢|g|. On omitting from now
on the coefficients of no interest to us, we can write our expression, after
integrating over o', as

f |q|3d|q|dcosﬂi
clg|+ep—q)—o’

Although the integral itself is convergent at the upper limit, its singu-
larity is determined by the behaviour of the integrand in the region of
small |g|. We use (26.10) to expand the denominator. Small angles
0 <1 are important for finding the singularity, so that we can put
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cos 0 = 1 to the required accuracy in the quadratic terms. We have as a
result :

f o l_q]‘*_d|q;_d cos
x+c|ql(1—cosO) —284p |q|+ B |q]?

~[laPin@—2p1q|4p +plaP dg|.

We have put herc x = c¢Ap — Ae + f(Ap)%. Factorising the cxpression
under the logarithm and integrating, we get

k)2 K\
o (”5) In k, 4 a (—2%) In ky, (26.14)

where
ko = BAp £ V(B Ap)* — Pz .

It is clear from (20.14) that G-1(p) has in fact a singularity in terms
of a higher order than those which were used in deriving the last expres-
sion. This fact justified all the assumptions that have becn made regarding
the smallness of the non-regular terms.

We determine the latter terms in the immediate neighbourhood of
the pole of G(p), i.c. for x satsifying

=] < B(dp)°.
In this case we can neglect the term containing k. We now get from
(26.14):

(Ap)3 In (—Ap). (26.15)
By (26.12) and (26.15), G(p) has the form

y: |
G ot

@) w —& —cAp — B(Ap)? — a(Ap)? In (—Ap)
in the neighbourhood of its pole. This function determines the energy of

an elementary excitation close to the threshold. Damping is absent below
the threshold:

e(p) =& +c(|p| —2) + (P, — 2 + allp| — 2)* In(|p| — 2.)-

Above the threshold |p| > p, the excitation energy has a ncgative ima-
ginary part, equal to —am(4p)3:

+a(|p), —2)* In |p, — |p|| —azi(|p| — P’

Hence it follows, in particular, that we must have a > 0. There are
thus no wndamped excitations for {p| > p,: the life of an cxcitation is
inversely proportional to (|p| — p.)®. The smallness of the damping close
to the threshold is conneeted with the fact that the interaction with long-
wave phonons is always weak, due to the presence of the factor |g|

in 1.
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4. Properties of the spectrum close to the threshold of break-up into
two excitations with parallel non-vanishing momenta

When integrating over ¢ in (26.6), it follows from physical considera-
tions that the important values of g and the frequency o’ are those for
which excitations are crcated close to the threshold. But these values of
the momentum and encrgy are not singular for the Green functions of
the created excitations. The only singular feature of such a point is that
in its neighbourhood, the given excitation could ‘stick” to another —
a process which is impossible at absolute zero because of the absence
of actual excitations. The Green functions under the integral sign in
(26.6) thercfore have the simple form (26.4) close to the pole:

N
o —e(g) 198’
where £(q) is real and has no singularities in the vicinity of those values
of the vector ¢ which we consider. This fact greatly simplifies an investi-
gation of the subject.

Let us consider one of the loops in the set of chains corresponding,
in accordance with Fig. 83 or equation (26.7), to the right-hand side of
equation (26.6). The functions I'(p;2,; p32,) or I'®(p, p — g, ¢) appearing
at the vertices of the loop obviously have no singularities. We shall in
future always omit them from our calculations, as they lead only to
inesscntial coefficients or to regular additive corrections to the Green func-
tions. Let us confine ourselves in our loop to the domain of integration
over ¢, close to the values of the momentum ¢, and energy & at which
excitations are crcated. On substituting expressions (26.4) for the Green
functions and integrating over «’, we find that the part of the integral
in the loop, which contains the singularity, can be written in the form

G(g) =

[

e(q) +elp—q)—o’

Since £(q) + e(p — q) must have a minimum at [p| = p,, for |p| close
to p. it will have the form

Blg— 90" PJ* pc)

G

e(q) +e(p—q) ~2e, + v dp + a(qg — qo)* +——

where v, is the velocity of cach of the excitations forming at the thres-
hold point, g, is the momentum of one of the excitations (remember
that excitations leaving after the decay have their momentum directed
along the vector p.). The coefficients « and §in this expansion are deter-
mined by the form of the functions &(p — q) and £(q):

_ Ve Pe [}:-1-{(625:) n (62€) _ Ve }
24y (Pe — G)” 2 \¢®/q—q, 0% ) q=p—a.  90(Pc — %)

Q.F.T. 18
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On imtroducing the new variable # = q — q,, (©- p;) = 4 p, cos p, we
get:
u?dud cos

veldp — Ae + au? 4 Bu? cos2
Summation of all the loops does not alter the nature of the singularity,
since, as distinet from the phonon case, the complete three-particle func-
tion I'(p, p — ¢, q) must neither vanish nor become infinite at the values
|g| ~ gy of interest to us. The non-regular part of the inverse Green
function therefore has the form, close to p, and g:

a [/chp — e .

By hypothesis, |p| = p, and ¢ = g, is a point of the spectrum, so that
G1(p) must vanish for 4p = 0 and Ae = 0, i.e. the regular part of
G—1(p) must be of the form a,Ap + b de for small Ae and Ap. Finally,

“Hp) = 47 adp + de + b )/v,Ap —Ae] .
The excitation energy is determined by the equation
G(p) = 0. (26.16)

The formal solution of this equation yields two roots:

~ v Ap —Ae .

b 2 bt .o
Aeyp = —alp —'2—:5: ab*dp +71—+ b v dp ,

where we have to choose the de; with the “plus” sign in front of the radi-
cal, in order for de— 0 as 4Ap — 0. On expanding the expression under
the radical close to the threshold at small Ap, we get

£ g+ 0, (|p| —po) — (““L”C) (Ap)?.

On substituting this expression in (26.16), we see that the necessary
condition for (26.16) to have a solution for small negative Ap (before
the threshold) is

a + v
- — > 0.
3 >
Given |p| > ., if adp + Ae and b ]/v—cAp — e are both positive, the
equation has no roots at all, either real or complex. In this case, there-
fore, the curve of the energy spectrum cannot be continued beyond the
threshold point and terminates at it with a slope equal to o,

8. Break-up inlo two excitations at an angle to each other

In this case also, the important domain for the integrations includes
the |g]| at which excitations are created close to the threshold point.
The Green functions have their nsual form (26.4) in this domain, for the
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same reasons as in the previous section. We cannot now assert, however,
that the vertex I' is terminated at & — g,.

For a start, let us consider, as above, one of the loops in Fig. 83. By
definition the functions at the vertices of the loop do not contain harm-
ful integrations. It is therefore natural to assume with regard to them
that they remain finite at the threshold point. We consider, as usual,
integration over the domain of w’ and ¢ close to the values at which
excitations are created near the threshold. The singularities of the loop
amount to singularities of the integral

Ere=rs

e(@) +e(p—9q —o’

in which we can use for £(q) and £(p — q) the expansion (26.2) of £(q)
close to the roton part of the spectrum (remember that case b corres-
ponds to decay into two rotons with momenta equal in magnitude to
Py and directed at some finite angle 0, to each other, cos 6,/2 = p.[2p,).
After substituting (26.2), the above expression transforms to

d3gq
) (26.17)
/ (Iql o)’ | (|9 —P|—pp)*
J 2d—w 2 m* + 2m*

We change to cylindrical polars g, qe, @ in accordance with the formula
(the z axis is along the vector p):

0, ,
9. = Po CO8 —20‘ +¢., 9, = (po sin —* —I— qe> cos @,

. 0 N\ .
Q= (po sin EO -+ qg> sin @. (26.18)

On substituting (26.18) in (26.17) and neglecting higher powers of ¢, and
q'e, we get

. dg,dg; -
1/..6, , 0 o\°
_/ 24 — o —|—7—n;(sm2 ;qg + cos2—29q22>

It is convenient to introduce polar coordinates 7, ¢ into this last ex-
Ppression:

1, . 6
V_,n,T;quIHE:TCOSw’

We find as a result that

COS—'—TSIH’(/)

V- 7.

~ In(24 —

f 24 — + R~ nEd—o).

Each loop thus reduces to a large term In (24 — w), dependent only on
the frequency of the outer end w. Let us take a given loop; the set of
all the loops to the left and right of it represents, in accordance with

16*
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TFig. 80a and equation (26.7), an exact three-particle vertex I. The
principal term in the right-hand side of (26.6) at small 24 — w is there-

fore of the form I (p, p — g4, o) In (24 — w), (26.19)

where ¢, is the critical value of the vector ¢ — the momentum of a roton
formed on decay at the threshold point.

We can determine I'(p,» —gq, q) in the neighbourhood g ~ g, by
solving equation (26.7). It is simpler, however, to sum directly the prin-
cipal terms of the series to which this equation corresponds, using the
above-mentioned fact that the principal term in each loop depends only
on the frequency w of the outer end and is the same for each loop. For-
mally, the series in question is a geometric progression, the sum of which

is P
F(P:P_%:QO)N ZA—CU .
1+ (270 )

Substituting this expression for I'(p, p — g, ¢,) in (26.19), we see that,
by (26.6), the main non-regular term in G—1(p) close to the threshold is

a

In (ZA — w)
&
We have finally, on recalling that G1(p,) = 0 by hypothesis:

a
Gp) = A7 pl —pe——5 70— |-
ln(ZA —w)
(29

yields in this case the following expression for the curve of the energy
spectrum when |p| << p,:

e(p) = 9/ _(xe—al(pv—ll’l)

(the exponential smallness of £(p) — 24 has enabled us to neglect powers
of de in expansion (26.20) of the regular part of G-1(p)). In this case also,
therefore, the curve £(p) ends at the point |p| = p,, where it has a hori-
zontal tangent of infinite order.

Notice that, in all the cases considered, the Green function has a
branch-point at w = &, |p| = p,.

We must again emphasise the fact that the foregoing analysis is not
based on the actual form of the particle interactions with one another,
nor on the weakness of this interaction. We have made use only of general
fundamental relations between the exact functions determined by the
diagram technique ().

(26.20)

The equation G-1(p) =0

(1) Recent experimental data [45, 46] would seem to indicate that decay into
two rotons actually occurs in He4,
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§ 27. APPLICATION OF FIELD THEORY METHODS TO A SYSTEM
OF INTERACTING BOSONS AT FINITE TEMPERATURES

We shall conclude this chapter by considering the possibility of gene-
ralising the above approach to the case of a system of bosons, interacting
at a finite temperature. It seems naturalto try to construct the generali-
sation on the basis of the general method. With this aim, we shall return
straight away to the thermodynamic description of the system, in which
the role of independent variable is played by the chemical potential u
instead of by the total number of particles N in the system. We have
already indicated above that, in an ideal Bose gas, at temperatures
below the point of Bose condensation, such a description is impossible,
because the chemical potential of the gas, determined from the condition
that the mean number of particles in the system be constant, proves
to be identically zero in this temperature region.

As we know, in an ideal gas the distribution of the Bose particles over
the states with momentum p has the form

1
v exp{leo(p) —pl/T} —1°

This distribution only has a meaning for negative u. Given sufficiently
high temperatures, p < 0; the point where the chemical potential va-
nishes in fact determines the temperature of the Bose condensation.
At lower temperatures we have to put g identically zero. The condition
that the mean number of particles in the system be constant is fulfilled
by virtue of the particles ‘“‘eondensing’ into the lowest level. As we have
mentioned more than once, the number of the latter is comparable with
the total number of particles in the system, i.e. is proportional to the
volume of the system.

The thermodynamic method formally features the Green function for
the non-interacting particles, the Fourier component of which is equal to

1
iw—g(p) +p
The temperature at which Bose condensation of the system occurs is
characterized by the fact that a pole first appears for

1
#—&(P)

when the momentum p = 0. If we were to try to continue this quantity
into the region p > 0, we should have to deal with a function which
changes sign and becomes infinite at entirely arbitrary values of p.
At the same time, if u << 0, the system of non-interacting particles finds

itself above the temperature of Bose condensation, as is clear from our
above discussions.

GO (p) =
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These difficulties are actually imaginary. This is because, for a gas of
interacting Bose particles, there is no region below the temperature of
Bose condensation in which perturbation theory is applicable. For in-
stance, we saw in § 25 that, in the region of small momenta, the individual
terms of the perturbation theory lead to divergent expressions. To obtain
a physical result, we had to carry out a summation of the entire series
of principal terms of perturbation theory. In all similar cases, the general
equations and relations between the different quantities of the theory
have a wider meaning and are applicable beyond the limits within which
perturbation theory is applicable. The exact quantities, such as the Green
functions when the interactions are taken into account, have sensible
properties even at temperatures below the point of Bose condensation.

As regards the chemical potential, it is determined from the condition
that the mean number of particles in the system be equal to a given num-
ber. In the presence of interactions between the particles, g is never
identically zero and can therefore be chosen as the independent variable
right from the start, the value of this variable being determined for a
given system from the condition mentioned that the number of particles
in the system be constant. It is not possible to establish from general
considerations what sign the chemical potential will have for interacting
Bose particles below the point of condensation (¥).

We have already seen in § 23 that the exact number of condensate
particles appears in the perturbation theory formula at 7 = 0; the num-
ber of particles of condensate in an ideal gas, from which the derivation
starts, never actually appears in the theory. The same situation exists,
as we shall shortly see, at finite temperatures. This fact is extremely
important. In particular, it enables us to make precise what is actu-
ally meant by the temperature of the Bose condensation of a system
of interacting particles. It is quite clear that this temperature, which
might be called the A-transition temperature, does not necessarily
coincide with the Bose condensation temperature of an ideal gas. A phy-
sical definition of the A-transition temperature is provided by the condi-
tion that the density of the number of particles in the condensate va-
nishes. We cannot predict from general considerations to which side
the transition temperature will shift with interaction. There is thus the
possibility in principle both of a situation such that the physical conden-

() In the model considered in § 25, s is positive by (26.19) (f > 0; a choice of
f < 0 would correspond to attraction between particles, and such a system would
be unstable in this approximation). For real helium, x4 << 0 at temperatures below
the A-point, since otherwise there would be no temperature at which helium could
be in equilibrium with its vapour. As we know, the chemical potential of both
phases must be equal at equilibrium. Helium vapour is a dilute Boltzmann gas,
the chemical potential of which is negative.
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sate exists at a temperature above the condensation temperature of an
ideal gas, and conversely, a situation when the appearance of inter-
action at lower temperatures leads to the disappearance of the conden-
sate that would exist in the ideal Bose gas.

It is pertinent to emphasize here that, in essence, the treatment of
§ 23 in the statement of the diagram technique at 7' = 0 nowhere makes
use of the fact that the number of particles with zero momentum is
equal to infinity in an ideal gas. The special feature of the perturbation
theory treated there consists in the fact that, since the particles with
zero momentum play a special role, we tried to carry out the deriva-
tion in such a way that the operators &, &5 were taken into account
exactly. In other words, we did not make the usual statistical assump-
tions in this case, that the contribution of these particles is relatively
small. As regards the remaining particles, they could be treated in the
usual way.

The approach indicated is also possible at finite temperatures. In our
construction of perturbation theory, we shall start out from the repre-
sentations of the Green functions in the form

T Yo+ - Y1 - - 5 G)
&> '
The averaging sign {- - -> denotes in this representation the operation of
taking the trace of the averaged expression over the states of the Hamil-
tonian of the non-interacting particles Hy —ulV:
Ty [eWN—HIT...]
o) =y —EyT

(27.1)

Since the total number of particles is not preserved in the variables g,
the thermodynamic averaging in (27.1) occurs independently for all the
particles, including those with zero momentum. Hence, precisely as in
§ 23, the operations 7 and {- - -) can each be written in the form of two
successive operations: 7 = 707" and (- -.) == {{ - )9, relating to
particles with zero momentum and to other particles, respectively. The
meaning of this subdivision is the same: the particles in the states with
zero momentum play a special role, so that we consider them exactly.
The possibility of subdividing the operations 7" and ¢- - -) into two has
Played an essential role in our arguments at absolute zero.

On repeating almost word for word the arguments that led to (23.14),
we find that, in the Matsubara method also, an evaluation of any Green
function for uncondensed particles requires a knowledge of all the
“exact” m-particle Green functions for particles in zero momentum
states. As in (23.14), the Green functions for condensate particles are
determined by the relations

(T () - &) E5(T) - - - B B
& '

’

’
®0n(11 - . -TQL;T]‘ . e -Tn)
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where the 7 are the time parameters of the method for 7' s~ 0. The last
expression can be written in a form analogous to (23.16), i.e. in terms
of the ‘“Heisenberg” operators:

Gpn(Tr T3 71~ Tn) 3 o _(@12)
_ Tr{exp[(uN —H)|T]1T(&(r1) - - - & ()5 E4 (7)) - - - €5 (w))}
- Tr {exp(uN — H)|T} ’

where the “Heisenberg” operators & (r) and £ (r) satisfy the equations

0 ~ ~
5 Eole) = [H —ul, @),

0 ~ -
gsé(r) =[H —uN, &(1)]

and are connected with the usual Schrédinger operators by the relations

Eo(r) = BT E e HTINT El (r) = HTES g HRT

The Green functions & are therefore ensemble averages of the time-
ordered product of the operators &, &;.

It may be recalled in this connection that, in quantum statistics, the
averaging of quantities can be carried out in two equivalent ways: on
the one hand, the averaging can be regarded as a quantum mechanical
averaging over the actual state in which the system finds itself. This state
is characterised by the values of the energy and the number of particles.
On the other hand, the averaging can be performed with the aid of a
grand ensemble, for which the system is regarded as open; this enables
it, at a given temperature, to find itself with a definite probability in
different quantum mechanical states with different values of energy and
number of particles. The equivalence of the two methods has its basis
in the fact that a grand ensemble has an extraordinarily narrow maxi-
mum about the mean values of the energy and number of particles, so
that, for instance, the relative energy fluctuation }/(B — E)2[E ~ l/ﬁ
and tends to zero when the dimensions of the system tend to infinity.
Given quantum mechanical averaging, the state energy and number of
particles in a closed system are obviously the same as the corresponding
averages in a grand ensemble. From the thermodynamic point of view,
the difference between the two averaging methods amounts to the fact
that, in the first case, the value of the averaged quantity is expressed
in terms of the energy as the thermodynamic variable, whereas in the
case of an ensemble average the same value will be expressed as a func-
tion of temperature. The introduction of the chemical potential has the
same meaning in statistics. Noting what has been said, we shall regard
(27.2) as the average over the quantum mechanical state of the system:

Gon(y -+~ Tps 7y -+~ To)) = D* | T (Ep(my) -+ - Bo ()5 EG (27) - - Ef (1)) | DD
'(27.3)
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Hence, in accordance with (27.2), the perturbation theory series for
any Green function for uncondensed particles contains the exact
Green functions for particles in states with zero momentum, which,
on being written in the form (27.3), depend only on the properties of the
operators & and &F with respect to the state @ for the interacting par-
ticles. If, therefore, a condensate exists in this state, the operators &, &F
can be regarded as numbers, and, in accordance with this, all the Green
functions of form (27.2) must be replaced by the products of factors

nO(T): ’ ’
Com(Tr -~ T3 71 -« Td = [ (1T (27.4)

This last can be verified in precisely the same way as when deriving the
analogous formula for absolute zero in § 23.

In (27.4) ny(T) is the density of the number of particles at a given
temperature. The condition 74(7;) = 0 determines the transition tem-
perature 7. As already mentioned, this temperature can be either higher
or lower than the “Bose condensation’ temperature 7, of an ideal gas.
In the latter case the perturbation theory expansion for Ty, > 7' > T,
has just the usual form, in spite of the fact that, in the interaction repre-
sentation, the condensate exists and the operators &, E('," are extremely
large. Let us emphasise once more that this fact is connected with the
appearance of the exact Green functions for condensate particles in the
perturbation theory expansion.



CHAPTER VI

ELECTROMAGNETIC RADIATION IN AN
ABSORBING MEDIUM

§ 28. RADIATION GREEN FUNCTIONS IN AN ABSORBING
MEDIUM

TeE electromagnetic ficld plays a fundamental role in the range of
phenomena with which statistical physics is concerned. In essence, all
the forces acting between the particles of condensed media — solids and
liquids — are of an electromagnetic type. The distinctive feature of these
forces is their short-range nature ; they fall off at distances of interatomic
order and determine the adhesion between the particles.

We shall not touch on short-range forces in this chapter: we confine
oursclves to the range of problems connected with clectromagnetic radia-
tion whose wavelength exceeds the interatomic spacings. The problems
cover both phenomena relating to the passage of electromagnetic waves
through a substance and to the various effects connected with long-
range elcctromagnetic forces (so-called van der Waals forces).

The interaction of long-wave clectromagnetic radiation with a sub-
stance is wcll known to be deseribable in a purely macroscopic way by
the introduction of a complex dielectric constant g(w) = &' (w) + i&" (w)
(sec [47]), dependent on the frequency w of the radiation (1). We shall
find in this section expressions for the Green functions of the electro-
magnetic radiation i an absorbing medium in terms of the dielectric
constant of the latter.

An clectromagnetic field is usually described in quantum mechanics by
the Schrodinger operators of a vector potential A (r) and a scalar potential
@(r). We shall use a ‘“four-dimensional” mnotation (}) A, = (A, ¢);

(1) We shall assume that the magnetic permeability p(w) is equal to unity.

since it only differs from unity in narrow frequency bands that, as a rule, will be
of no interest to us.

(1) The Greek indices in this ehapter number the components of the four-dimen-
sional veetor potential. lts spatinl components will occasionally be denoted by
Latin indices i, k, . . . Summation is assumed oy cr all twice repeated indices, whether
Latiu or Greek.

250
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o =1,2, 3,0, for these operators. Together with the opcrators in the
Schrodinger representation, we shall use the Heisenberg operators 4, (r, £),
defined as usual by

A (r.t) =T 4 (r)eH (28.1)
The operators 4,(r,!) are connected with the operators of the electric

and magnetic field-strengths E(r, t), H(r, t) by the usual relations (we
have put herc ¢ = 1):

E(r,t) = _ﬁ_atA(r’ t) —grad p(r, 1),

H(r,t)=-curl A(r,t). (28.2)

The vector potential of the electromagnetic field (as also the operators
representing it in the second quantisation representation) is not uniquely
defined. An arbitrariness always remains, connccted with the so-called
gauge invariance of the theory, amounting to the fact that A4 (r, ¢) can
be subjected to the transformation:

A(r,t)—> A(r,t) + grad y(r, ¢),

0
<P(r; t)‘*‘l’(r» t)_'é?X(r’ t):

where g is an arbitrary operator. It is casily verified that E, H, which
have a direct physical meaning, are unchanged under this so-called
gauge transformation.

The large wavelength of the electromagnetic field is indicated by the
fact that a closed system of equations — the Maxwell equations — exists
for the mean(f) values of the electric and magnetic fields (E>, \H):

curll H(r, t)) = gt_ (5 KE(r, t)),

curlE(r, t)) = — a—at (H(r, £)>. (28.3)

The dielectric constant £ occurring in (28.3) depends only on the properties
of the medium and, in the easc of absorbing media, is an operator acting
on functions of the time in accordance with the rule

t
ECE(r, 1)) = E(r,)) + [ f(r,t — ) <E(r,t))adr. (28.4)

In Fourier components, the action of the operator £ amounts simply to
multiplying (E(r, w)> by the dielectric constant £(w) of the medium:

e(r, w) =14 fm &°f(r, t)dt, (28.5)
0

(1) We understand the averaging to mean the statistical a\veraging
<E(r1 [)> = Tr {eXP [(F—H)/T] E(r: t)}‘
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whilst the system (28.3) transforms into
curl(H(r, w)) = —iwe(r. ) {E(r, w)),
curl(E(r, w)) = tw{H(r, )). (28.6)

It can be shown (see Landau and Lifshitz [47]) that the ¢(w) defined by
means of (28.5) is an analytic function in the upper half-plane of the
complex variable @, with no zeros in this half-plane.

The properties of the electromagnetic radiation at finite temperatures
are determined by the temperature-dependent Green functions(})
Dag (7> Ty; To Ta): o A

—Tr {e(F—H)ITGH(II_r’)44a(rl)e_H(rl_r')Aﬂ(rz)}
forz; > 7,

_ TI' {G(F_H)ITG—H(II—1’)44ﬂ (r2) eH("l—Tz)A o (rl)}
for 7; < 7,.

Dy (s 125 Ty — To) = (28.7)

To express ®,p in terms of the dielectric constant &(w), we use the
connexion established in Chap. ITI between the temperature-dependent
Green function and the retarded function, defined in our case as

'Dfﬂ(rly ro; by — 1)

[——i Tr{e™ T[4, (1), t))Ap(ro, by) — Ap(rs, t) A, (1y, 1)1}
= for t; > t,, (28.8)
10 for t; < t,.

Since we are concerned with a later application of the results obtained
to non-uniform bodies, we shall no longer make the assumption here that
® and D are functions of the differences of the positional coordinates.
Similarly, we assume that the dielectric constant varies at different
points of the body: ¢ = ¢(r, w).

If we repeat all the arguments of § 17, except for omitting the Fourier
transformation in the spatial coordinates, we easily arrive at the follow-
ing Lehmann-type representations for ® and DZ¥:

] 3 Qop (T, T3 T)
D51y, 135 ©,) = . —x—_Twn—— dz, (28.9)
DE(ry, 1y; 0) = 0ot (11> 19 %) g, (28.10)

x—w—16

—oco

where

o (T To3 @)

=—(2n)® =°%p [(F —E,) [T (Ao (r)rm (Ap (1) n (1 —€ D) 8 (00— 0)-
(1) Instead of the thermodynamic potential £, the free energy F is introduced

into (28.7) (ef. (11.1), (11.2)). This replacement can be made because the chemical
potential of an electromagnetic field is identically zero.
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It follows from (28.10) that D® is analytic in w in the upper half-plane.
Comparison of (28.10), (28.9) shows that, for w, > 0,

Dyp(ry, 15 0,) = DE(ry, 1550 0,). (28.11)
To find D for w, < 0, we observe that ® (z) is an even function of 7 (see
§ 11), because the electromagnetic field operators are real (4T = A4).

Its Fourier component ® (w,) is therefore even in w,, whence follows the
relation, valid for all w, (1):

D,p(ry 125 ) = Dfﬁ(rl, o5t |o,). (28.12)

We now turn to finding the retarded function. An important point
here is the gauge of the vector potential. The tensor DX has altogether
ten independent components (like every symmetric tensor of the second
rank). There remains a substantial degree of arbitrariness in our arrange-
ment, however, connected with the gauge invariance. In fact, a physical
meaning attaches, not to the Dfﬂ themselves, which are formed from
the components of the vector potential, but only to the six quantities,
formed from the operators E,(r,¢) in accordance with the same rules
as those by which DF is formed from A4,(r, t) (formula (28.8)). Hence
only six physical conditions are imposed on the ten functions DX, i.e.
there are four arbitrary functions in our arrangement. We can use this
arbitrariness in order to make the components DE and DE vanish. This
choice evidently corresponds to a zero scalar potential. The operators
E, H are connected with A in this case by the formulae

E=——, H=curl A. (28.27)

In order to express DE in terms of £(w), we proceed as follows. Ima-
gine that our system, consisting of a body and equilibrium electro-
magnetic radiation, is situated in an external field, produced by imposed
currents j™P(r, t). The Maxwell equations for the average fields become
in this case

curl(H(r. )> = 47j™(r, w) —iwe(r, 0) <E(r, 0)),
curl (E(r, )) = tw{H(r, w)>.

In the case of the gauge (28.2'), the average potential (4™ (r, f)) will
satisfy the equation

(28.6")

fe(r, 0) 0?8, — curl,,, curl,;] {4;(r, )y = — 47ji™(r, w). (28.18)
The solution of equation (28.13) is
AT (r, w)) = — [ Dy(r, r'; 0) ™ (r', 0) &%, (28.14)

(1) Remember that, like every boson Green function, D (w,) only has non-zero
components for *“even’ frequencies w, = 2nnT.
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where D is the so-called Green function of equation (28.13). It is a solu-
tion of the equation

[e(r, ) w® 8y — curly, curl, 1Dy (r, ¥'; ©) = 478, 8 (r —1').  (28.15)

In view of the analyticity of ¢(w) in the upper half-plane, D is also ana-
Iytic in the upper half-plane.

On the other hand, (AP} can be evaluated, in the presence of imposed
currents, directly from the definition (28.1). The Hamiltonian of the

system has the form H + E™P in this case, where H is the Hamiltonian
of the body and radiation, whilst

amr = — [j™(r, ) A(r)d®r.

On denoting the operators in the presence of an imposed field by the
index ““imp”, we have (retaining the indexless notation for the operators
without an imposed field)

AR (. gy — AHETD) g (g —iH 0P
Next, as in Chap. IT, we write exp {-it(I;I + flimp,)} in the form
cHMEETR) _ ] Simp (f) -
If the imposed currents satisfy the condition j™P (¢ — — c0) = 0, Siyp(f)
has the form (cf. Chap. II)
¢
Simp () = T, exp I—i [ A" (t’)dt’]

J [

The mean value of the vector potential operator in the presence of im-
posed currents now becomes

<Aimp(r, t)> = <S;np (t)A (1‘, t) Slmp(t)>‘

On expanding Si,, into a series in H™P and retaining terms of the first
order in j™P, we get

AP (r, 1)) = —1i ftdt’ [ & G2, ¢)
X A (r, ) Ay(r, 6) — Ay(r, ) A (', 1)}, (28.16)

This function can be expressed in terms of the retarded electromagnetic
field function DE which we have introduced. We have, from the definition
(28.8):

CAPR(r,0)y=— [ ar' [ &SrDfi(r, v'5t — 1)+, 1).
Fourier transforming in this relation, we finally get

KAFP(r, )y = — [ A% DE(r, 1'; w)jP°(r', o). (28.17)
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Comparisou of (28.14), (28.17) shows that, by virtue of the arbitrariness
of j® DX is the same as the Green function Dy of equation (28.13)
introduced above. We thus arrive at the conclusion that DFE also satis-
fies equation (28.15) (Dzyaloshinskii and Pitaevskii [48]). The analyti-
city of DE is, of course, fully in accord with the analytic properties of
&(w).

The equation for D, (w,) is obtained from (28.13) by replacing © in
the latter by i |w,|:

[e(r, i |w, ) w28, + curly, curl, 1Dy (r, ¥'; 0,) = — 47 (r — 1) §;,. (28.18)

The dielectric constant, with an imaginary frequency, that appears
here is simply connected with the imaginary part &' (w) of ¢(w) at real
frequencies (see e.g. [47], § D8):

we' (w)

o 28.
o? + o (28.19)

: 2 [
e(i|o,]) =1 —|—;f
)
Since always &' > 0, it is clear from (28.19) that &(i |w,|) is a real,
positive, monotonically decreasing function.

By solving (28.14) or (28.18), we can thus express the Green functions
of the electromagnetic field in terms of the imaginary part of the dielectric
constant. This is usually a very difficult problem in the case of non-
uniform media. We consider in later sections the particular case of layer-
type media, for which a complete solution of the problem can be given.

Let us return to the case of a uniform medium, in which ¢ is independent
of the coordinates. Since DF and ® now depend only on the difference
r —1’, we have, on Fourier transforming in (28.15):

[(w®e () — ¥7) 8y + k) Dij (k, @) = 4oy, (28.20)

This equation determines DE in the gauge where the scalar potential
is zero. In order to find D for any gauge, we use (28.20) to find the func-
tion DE = w2DJ, where DE is the retarded function for the gauge
@ = 0. The function thus defined is already gauge invariant, since it
differs by the constant term from the retarded function formed from
the components of the electric field strength operators. The function DE

satisfies the equation

[{w?e(0) — ¥7) 8y + k;k) D (k, ©) = dnw’dy (28.21)
and is connected with the function Dfﬂ in an arbitrary gauge by the
obvious relation (cf. (28.2))

DE = ?’DE — 0k, DE — wk, DE 4+ k1, DY (28.22)

(bere and in what follows, D&, DE DE denote the time, displacement
and positional components of DE; in any given gauge). By symmetry
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considerations, the vector Df must be directed along k — the only vector
appearing in (28.21) and (28.22):

D = D = ky; (28.23)
for the same reason,

DE = aédy, + bl;ky. (28.24)

On substituting (28.22)—(28.24) in (28.21), we get two equations for
DE, a, b, and d:

a (s((o)cu2 — kg) = 4m,

28.25
a + &(w) (a)zb—l—D&——Za)d):O. ( ")

We thus see that, in the uniform case, DE is defined up to only two
arbitrary functions, instead of four as in the case of a non-uniform me-
dium.

Let us now obtain the formulae for some particular cases. We put
d =1b = 0. Then

n 47d,, r ix

W= e(@) o —k 0T T ) (o) w? — 1)’

The case ¢ = 0 corresponds to

DE=0. (28.26a)

4m L.k
D= —(a— ), DE=DE=0. (s
* e (w) wz—k‘ﬂ‘(a”‘ e(w) 0)2) Dy = Dyg=0. (28.26b)

Finally, we have in the case of the so-called transverse (or radiation)
gauge (div 4 = 0):
4 k. k i
DE=- - = - 8y —-5F —=———, DE=0. (28.2
® 7 e (w) 0 — k2 (6”" k2 )’ Dao e(w) k2’ 0 (28.26¢)

The formulae for the temperature-dependent Green function ® follow
from (28.26) by the substitution »—>i|w,]|:

S 7
e(ilo,)) i + k2 (258.272)
in .
@ = ” . E] ’ 0 — 0,
O o) GG [on) ok £ 1) D0
476, k%,
e =——m— s Bt o 5 ) Doo=Dip=10, (28.27h
Da e(i|w, |) o + #2 (6‘1‘ + i [w,)) U)%) Doo = Dio ( )
= 47“)"’2 o kilck
P = e, D o T 8 (6"“ ’~2) ’ (28.27¢)
= - - _475_ — D.n = 0.
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The ordinary time-dependent Green function of the electromagnetic

field, defined as
D g(ry — 1o, 8 —t;) = — i Tr {exp[(F — H)|T] T,[A,(ry, t;), Ag(rs, £)1}
(28.28)

can prove uscful in a number of problems. As we saw in § 17, its Fouricr
components are connected with DF(k, w) by the relations

Re D(k, w) = Re D% (k, w),

(28.29
Im D(k, w) = coth Z‘i’T Im DE(k, w). )

We shall not derive the resulting unwieldy formulae for D.

The function D is of special interest at absolute zero, where it can be
evaluated by using the ordinary method of quantum ficld theory. On
passing to the limit 7' = 0 in (28.29), we get:

Re D(k, w) = Re D*(k, w),

(28.30)
Im D(k, w) = sign o Im D¥(k, w).

Using the fact that the real part of &(w) is an even function of w, and
that the imaginary part an odd function (see e.g. [47]), we can easily
show that we get D at 7 = 0 from D¥ by replaciug w everywhere in
(28.26) by |w]|. In particular, we obtain for the gauge (28.26a):
. 470,
* = (oo — ke’
45
D=~ - o E . Dy=
0o e(|o) (e (o)wt—k)" 7%
Formulae (28.31) are a generalisation of the ordinary formulac for the
photon QGreen function in quantum electrodynamics (sce e.g. [25]).

They were obtained by another method by Ryazanov [49] for the par-
ticular case of a transparent medinum (" (w) = 0).

(28.31)
0.

§29. CALCULATION OF THE DIELECTRIC CONSTANT

A different approach can be used for finding the temperature-depen-
dent Green function of the clectromagnetic field ® in absorbing media,
namely the application of the diagram technique developed in Chap. III.
Since we are only interested in the electromagnetic ficld with long wave-
lengths, substantially greater than the interatomic spacings, we write
the interaction Hamiltonian of the particles and field as a sum of two

terms: 1 7(2,
A = BG + A,
the energy of the non-interacting particles and free photons being re-

ferred to as the zero-order Hamiltonian _iio. We include in ﬁg}& that part
Q.F.T. 17
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of the interaction which leads to the short-range forces mentioned at

the beginning of the previous section, whilst H is the Hamiltonian of

the interaction of the long-wave electromagnetic field and the particles.
In the case of the gauge with zcro scalar potential,

A = — [(A(n)-jn)d*r, (29.1)
where j(r) is the operator of the particle current density. The large
value of the wavelength in (29.1) means that the Fourier expansion of
A(r) only contains momenta k which do not excecd some limiting mo-
mentum k,, much less than the reciprocal of the interatomic spacing 1/a.
In view of this, all the integrals arising in the diagram technique over
k need to be cut off for ky < 1/a.

At non-relativistic particle velocities (a condition which is fulfilled
in all macroscopic systems), the current density operator has the form

(see e.g. [16])
3 = i v —pvd (v — e AORYO.

a
The summation is over the different types of particle.

We shall distinguish the diagrams for corrections to the long-wavelength
radiation the Green function according to the number of long-wavelength
photon lines. The parts of the diagrams not containing such lines will

be denoted for brevity

byshadedpolygons. Ob-
'_""'@'"" ""@“”@_—_— viously, we can under-
z stand by such polygons

; the sum of all possible
_____ SRS 7/ %y S ———
W @ parts posscssing the pro-

perty in question, the

Y ' perturbation theory se-

i rics in the charge e being
-“—@-T—_ T T thus reduced to a series
\._," ! 3 in the number of long-

4 § T e wavelength photon li-

N ’ nes. The differcnt types

D of diagram of this scries
"""““‘ ““““ areillustrated in Fig. 84
Thefunctionscorrespon-
ding to the polygons arc
S __._._ ___________ wholly determined by

[:1 the properties of the con-
densed body, which has
~~ 7 . been formed as a result
ofthe actionof theshort-
Fig. 84 range forces.

il N
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It is fairly obvious, at once, from physical considerations, that dia-
grams 4—7 of Fig. 84 yield a negligibly small contribution. since they
correspond to different non-linear processes such as the scattering of
light by light. We can also prove this assertion as follows. As already
remarked, all the integrals over the momenta of long-wave photon lines
have to be cut off at some k, < 1/a. It follows from dimensional consi-
derations that a small factor of order kye corresponds to every photon
line, over the momentum of which an integration is performed. The
only diagrams in which no integrations over momenta of long-wavelength
phonon lines make an appearance are diagrams such as 1, 2 or 3 of Fig. 84.

We carried out the summation of a sequence of diagrams of this kind
in § 10 when deriving Dyson’s equation. We can therefore write down
the equation for ®, at once(}):

Dig(r1, 123 @) = DR (r, — 135 @,) (29.2)

+ f Prod®r, P (1) — 15 0,) Ty (ra, T35 0,) D (s 735 ,).

The function JZ, representing the contribution of the shaded loop in
Fig. 82, is called the polarisation operator. It is clear from the foregoing
arguments, that it is completely dctermined by the properties of the
medium.

Let us express the polarisation operator J in terms of the dielectric
constant of the system. We observe that the long-wavelength radiation
Green function 9, (in the gauge where ¢ = 0) satisfies equation (28.18).
On acting on equation (29.2) from the left by the operator

028y, + curly curly,

and remarking that D© satisfies equation (28.18) with £ =1, we get
easily:
&(ry, ilwn_[) —1

fd3" Ty, 15 0,) Dy (1, 15 ©,) = .

2 .
Wy Dy (11 To3 @),

whenece the required formula follows:
[+ 1 - A} 2]
I (1, To3 @) = in (e(ry, i |w,]) — 1 wpdyd(r, — ).  (29.3)

The fact that the polarisation operator has turned out to be proportional
to 8(r; —r,) is connected with our neglect in the macroscopic theory
of the effects of spatial correlations. The latter only become important
in the frequeney range where the so-called anomalous skin-effect occurs.
The properties of S in this frequency range will be discussed in Chap. VII.

(T) Since we have in mind the case of non-uniform media, we have written
equation (29.2) in the coordinate representation, retaining only the Fourier trans-
form in <.

17+
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For the rest of the present chapter we shail be concerned with the much
greater frequencies at which the anomalous skin-effect is absent.

If we take the case of a uniform body, JC is a function of r; — r, only,
and ¢ is independent of r. On carrying out the Fourier transformation
in r; — 7, in (29.4), we arrive at a simple equation connecting the pola-
risation operator of the system, J7 (k, w,), with its dielectric constant:

) 2
I (R, ©,) =E(_£(z |, |) — 1) w2 8 (29.4)

Formula (29.4) enables us to find the dielectric constant of a medium
at T # 0 using the methods of quantum field theory. For, if we can find
the polarisation operator of the system, we automatically find the value
of (w) at a discrete set of points of the imaginary axis: w, = 2nn T'.
On recalling that £(w) is an analytic function with no singularities in
the upper half-plane of w, and repeating word for word as applied to ¢ ali
the arguments of § 17 relating to & and G, we arrive at the conclusion
that £(w) can be found simply by the analytic continuation of

47

3 wg jzii(wn)

from a discrete set of points on the positive imaginary semi-axis to the
whole of the upper half-plane. Although this problem has no solution
in a general form, the analytic eontinuation in question can be performed
in a number of particular cases.

The problem of finding &(w) is greatly simplified at absolute zero. In
this case, the polarisation operator can be found by using the time-
dependent method of field theory described in Chap. II. On repeating
all the calculations carried out in this section for the case of the time-
dependent diagram technique, and noting what was said in § 28 regarding
the functions D, (k, ), we get the formula (for the gauge in which

@ = 0):
I (w) = ﬁ (ee(o]) — 1) w8y (29.5)

On further recalling that &' (w) = &' (—w), and &' (w) = — &' (—w), we
can express € in terms of II:

gw)=1+ %Re Il (w),
(29.6)
") = - T Im T, (o)
s(w)—gwlwlm i (w).
The evaluation of £(w) at T = 0 therefore reduces to finding the pola-
risation operator of the system.
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§ 30. VAN DER WAALS FORCES IN A NON-UNIFORM DIELECTRIC

The long-wavelength electromagnetic field is a source of specific
long-range forees, which may be called van der Waals forces, since their
nature is similar to that of the attraction between molecules at large
distances. Although the contribution of these forces to the free energy
of the system is extremely small by comparison with the contribution
of the short-range adhesive forces, they lead to a qualitatively new effect —
non-additiveness of the free energy. It is this non-additiveness, connected
with the long-range nature of the van der Waals foreces, that enables
their contribution to be distinguished in the thermodynamic functions.

This non-additiveness is easily understood if we return to the connexion
between the van der Waals forees and the long-wavelength electromag-
netic field. Indeed, every change in the density, and with this, in the
electrical properties of the medium, in a certain region leads, by virtue
of Maxwell’s equations, to a change in the field outside this region as
well. Hence, that part of the free energy which is connected with the
long-wavelength radiation is not determined by the properties of the
substance at a given point only, i.e. it is non-additive.

This leads to the fact that the chemical potential of a thin layer of
liquid on the surface of a solid depends on the thickness of the layer.
On the other hand, the van der Waals forces are a soprce of interaction
foreces between solids, i.e. the free energy depends on the distanees be-
tween them. It is obvious that an important role in these phenomena is
played by the electromagnetic field with wavelengths of the order of
the thickness of the layer or the distance between the solids, which
enables us to express the quantities of interest in terms of the dielectric
constants £(w) of the bodies.

To find the correction to the ground state energy due to the long-
wavelength electromagnetic field, we use the diagram method developed

in § 15 for the thermodynamic poten-

tial Q (it is the same as the ground "%\
state energy F in the case of pho- ',@\‘
tons). On repeating the relevant argu- \_/ +
ments of the previous section, we N\ 4
can show that only the sequence of \'
diagrams of Fig. 85 will contribute to i ™

F. One might have thought that ac- / h

1

cording to what was said in §15 about + ' +
the coefficients in front of the dia-
grams for F, we can no longer under- )

stand, by the shaded blocks in Fig. 85, e 85

the sum of all possible parts of dia- =

grams not containing long-wavelength photon lines. It is easy to show
that this is not the case. It turns out that the cocfficient in front of the

.
/

o
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diagrams is equal to 1jm, where m is the number of photon lines(%}).
This circumstance enables us to carry out a summation of the shaded
bloeks and to associate the shaded loops in Fig. 85 with the polarisation
operator J{ calculated in § 29.

The sequence of diagrams of Fig. 85 corresponds to the following series
for the ground state energy F':

T
Byt 3 T i 00900~ 115 ) e

2 =

+ f‘yztk(rl’ Ty @ )Q(O) (1', — 13 n) ‘-%lp(r& Ty w-n)SD;%)(f‘; —1‘1)
1
X @%rydryd®ryd®r, + m f T (1 125 0,) D (ry — 155 @,)

) (%QT(TZm—l’ Toms wn)SDS?(rZM - 1'1) d31‘1 e d3r2m + - } ? (301)

where Fy is the ground state energy of the medium (¥ includes all the
corrections due to the short-range forces).

Series (30.1) is not summed directly. Instead of the ground state
energy we determine the extra pressure (more precisely, the extra stress
tensor), arising as a result of the interaction of the substance with the
long-wavelength electromagnetic field. For this, we imagine that the body
is subjected to a small deformation with the displacement vector u(r).
The ehange in the ground state energy 6F is nowequal to — f (f-u)dV,
where fis the force acting per unit volume of the body during deformation.
The corresponding change in F is

8 Fy= [ (u- grad py)dV,

where p,(¢, T') is the pressure when no account is taken of the correc-
tions at the given density ¢ and temperature.

Given this displacement, only the polarisation operator will change
in series (30.1), since it alone depends on the properties of the medium.
In fact (see (29.3)).

1 .
6‘-%%(’1’ Ty ) - 0) 6@]0(’1 1'2) 68(r1’ 1 |wnl)'

(1) We saw in § 15 that the number of topologically equivalent diagrams of the
ath order is equal to (n—1)!, which led to the appearance of the factor 1/n

(1/n=(n—1)!/n!). In our case, when Hm,—H W —|—H(2) (see §29), the coefficient
produced by the expansion of the exponent is equal to 1/11(2m)!, where m is the

number of photon lines, and I the number of vertices connected with I?S,’t A cal-
culation analogous to that carried out in § 15 shows that the number of topologi-
cally equivalent diagrams is equal to I!(2m — 1)!, whence the assertion of the text

follows.
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The coefficients 1/m cancel on variation of (30.1) and we get
OF = 6F0—-8%;— néw w? [ @rée(r, i |w,|) {DP(r — 15 0,)
+ [ DR (r— 115 0,) Ty, 135 @) DY (1 — 15 0,)&r, &ry
+ f@gg-) (r—r1y; 0,) Ty, 125 w,) 59%3’ (ro—15; @,) Sy (135 145 W)
X DD(ry —r;0,)A% - - By + -
The series in the curly brackets is none other than the series for the

long-wavelength photon Green function ®, corresponding to the sequence
of diagrams 1, 2, 3 of Fig. 82. Hence

T = .
0F =o0F—¢— X o [ Dylr, 15 0,)0¢(r, i |, )A%r .
Recalling that ® is an even function of w,, we finally get
T (=~}
OF = aFO—Z; X Wl [ Dylr, 15 w,)0e(r, iw,)dP . (30.2)

The prime on the summation sign indicates that the term with n = 0
is taken with half its weight. Remember that w, = 2nn7.
The variation d¢ is connected with the displacement ¢ by the formula (1)

b7
de = —ugrads——@——s-div u.
de
On substituting this in (30.2) and integrating by parts, we get the follow-
ing expression for f:

T = .
Jf= —grad p, ™ né‘o’ w;‘)LSDm-(r, r;w,) grad g(r, cw,)

T =, o ) Oe(r, tw,)
+ En‘——%) w,, grad [Sbii(r, r;w,) QT] . (30.3)

This formula enables us to find the correction to the chemical potential
of the body. We notice first that, in mechanical equilibrium, f= 0. On
equating (30.3) to zero and noting that the relations

e
grad e(p, T) = %grad e, dpgle, T) = edpe(e, T)

(1) The variation of ¢ at a given point consists of two parts. The first part is
connected with the change in £ due to the fact that different parts of the material
are at a given point when displacements occurs:

S e=¢(r —u)—e(r) =—ugrade,
and the second with the change in the density on deformation:
e e .
dpe=—080p=——pdivu.

B0 do
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hold at constant temperature, where y, is the undisturbed chemical po-
tential per unit mass, we obtain after a simple transformation

2] T v 2 38
— o md {jile, ) — 5 N 0IDulr i w) 5o = 0. (30.)

We know that the condition for mechanical equilibrium of any non-
uniform body is that the chemical potential be constant in the body.
Henee it is immediately clear from (30.4) that

(0, T) = pig( T)——T— N Wi, (r, T )Ia—8 (30.5)
IU’Q’ _I/'O 0, 47_57 Wy, i'l:(’ 7wn ae' .

We now evalnate the stress tensor. We first need to reduce the expres-
sion (30.3) for the force f to the form

](_ — qo‘ik

g (30.6)

As a prelimmary, we introduce, in addition to the Green function
Di(r, 1'; w,), two further functions:

DE(r, 1 0,) = — WEDy(r, '; w,), 501
SDin(r, 75 w,) = curly curly, D, (r, 7'; »,) - )
We rewrite the expression for the force as follows:
32’0 11 a » E .
fi= + = n\o s e(t, 2,)) D (r, 15 w,) (30.8)

0£(rézwn) DE (r, 1; iwn)] _ T
(4

—e(7) o

‘=-0 g(r,1w,) a_xi (T o).

It now only remains for us to transform the last term in (30.8). We write
it (omitting the summation and the factor T'/47) as

£(r') o SDLL(ff)+€(f) @ﬂ(r,r'), (30.9)

where we put r = r’ after the differentiations.
On further carrying out obvious transformations, we obtain for (30.9):

2 ——s(r)ED (r, r) —

+e(r) (—_ SEr, 1) — - Dh0 r'>)

+s(r)(a,a‘9 (r, ') — P%sb,ﬁ(r,r')). (30.10)
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We can obtain from equation (28.18) for the Green function D the
identities

i.s(r) DE@.r)=— 4:13—3—6(1' —1),

’ 3 s a ’
Ska(r,r)=—§E®{'k(r,r)=—4ﬂé?6(r—r),

i

’ a e ’ a ' ’
e(r') (%%fic(f: r) — g—x—Ska(", r ))
k i

— 0 b4 ’ 0 ~H ’ 8(3(1'—1")
__rﬁc®ki(r,r)+?:'®kk(r,r) + 87—5 317‘- “
0 .z , 0 g ,
e (1) (5 D8 (r. ¥) — 5 Dt 7))
— — i Sl 1) + 5 Dt ) - 8z 01,

1

On substituting thesc in (30.10) and putting r-r', we get
H 9 on
g(r) —ED“(r r) = 2—s(r)SD t(r, 1) 2 SDik(r, 1) —%Sbkk(r, r).

On substituting this expression in turn in (30.8), we find finally that
the force f can be written in the form (30.6) with the stress tensor given

by
T oo .
0 = — OgPole, T) — E‘En%o -5 Oy (1, i), —

oe(r, iu)n_)
e a0

1
X DE(r, 13 w,) —géik@g(r, r;,)

4e(r, iw ) DE(r, r: w,) + DE(r. 1; w)} (30.11)

Formula (30.11) has no direct physical meaning, since the DF(r, r)
and ®F (r, r') appearing in it become infinite at r = . This is connected
with the fact that the short wavclength electromagnetic oscillations
yield an infinite contribution in o, unless a snitable cut-off is introduced.
However, the short-wavelength oscillations have no relation with the
effects due to the non-uniformities of the body, since their contribution
is the same in a uniform body as in non-uniform bodics having the same
value of £ at the point considered.

The long-wavelength contribution of interest. which does not depend
in fact on the nature of the cut-off, is obtained from (30.11) by means
of a suitable subtraction. In fact, we have to understand by the Green
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function DE(r, r) (and similarly by DE(r, r)) in this formula the limit
of the difference: B
lim [Dfi(r, r') — D (r, )],

where DF is the Green function for a uniform unbounded medium, the
dielectric constant of which is the same as that of a non-uniform body
at the point at which the stress tensor is caleulated. To avoid unnecessary
unwieldiness, we shall in future write (30.11) in the earlier form, on the
assumption that the subtraction in question has already been made.

The same remark applies to (30.5) for the chemical potential, which
can be written, in view of (30.7), as

T = oe(r, i,
plo, T) = uole, T) + Enﬁ’-(——)

> DE(r, r; 0,).  (30.12)

Notice that we also include in the category of non-uniform media
systems consisting of several bodies, each of which is uniform. In this
case, when solving (28.18), the components of D, must satisfy certain
conditions on the boundaries between the bodies. The independent
variables in (28.18) are the coordinates r, whilst the coordinates r’ play
the role of parameters. We are therefore talking about the boundary
conditions relative to the variables r. These conditions amount to the
continuity of the tangential components of the electric and magnetic
fields. Since a point r corresponds to one of the indices (¢) of the tensor
D,z the tangential components of tensors DE, DX in this index must be
continuous.

Formulae (30.11) and (30.12), which were obtained by Dzyaloshinkii
and Pitaevskii [48], solve in principle the problem of finding the van der
Waals part of the thermodynamic functions of a body. This problem
amounts to the solution of equations (28.18) for the Green function D,

§ 31. MOLECULAR INTERACTION FORCES BETWEEN
SOLIDS

1. Interaction forces between solids

Let us apply the general theory developed above to the calculation of
the van der Waals forces acting between solids, the surfaces of which are
a very small distance apart. The gap separating the bodies may be filled
with a liquid. We shall use the indices 1, 2 below to distinguish funetions
relating to the two bodies, and the index 3 for functions relating to the
medium filling the gap.

Although we shall assume that the gap is plane-parallel, it must be
borne in mind that in reality a correct statement of the problem of the
interaction force between two bodies requires that we regard at least
one of them as possessing finite dimensions and being surrounded on all
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sides by the medium 3, and that we find the total forces acting on it; in
view of the very rapid decrease in the molecular forces with distance, this
resultant force can in fact be entirely referred to the forces acting through
the narrow gap separating the bodies.

The total force acting on body 2 can be calculated as the total flux of
momentum flowing into the body from the surrounding medium 3, which
is equal to the mtegral of the flux density over an arbitrary surface en-
closing the body. It has to be borne in mind here that medium 3 is in
thermodynamic equilibrium, one of the conditions for which is that
its chemical potential be constant: y = const, where g is given by (30.12).

Since the corrections to the density of the medium, connected with the
long-wavelength fluctuations of the field, are small, the density ¢ can
be regarded as constant in medium 3; the change in the chemical potential
to(@, T') is here the same (by virture of (30.4)) as the change in pg(p, T')/p.
The condition y = const can therefore be rewritten as

T >, 383(7:(1),")
pole, T) + y Xo———

= 2 Dp(r, r; w,) = const. (81.1)

By virtue of this condition, part of the complete stress tensor (30.11)
turns out to be a uniform pressure which is constant over the liquid and
gives no contribution to the total force acting on the body; to determine
the force, we in fact only need to write the stress tensor in medium 3 as

!

T == 1
Oy = o {83(7/(1),n) [ z,c(r, r;m,) —Eéik@l’f(r, r; a)n)]

—l—‘iDz,c(r r;w,) — t,c‘;'D (r,r,w,n)} (31.2)

We choose the z-axis to be perpendicular to the plane of the gap, the
width of which we denote by I (so that the surfaces of bodies 1, 2 are the
z = 0, = I planes). The force F per unit area of surface 2 is now equal
to

’ T
F) =)= _

—DEL L o)+ DAL w,) + DEWLL o) — Dl 0,)}; (81.3)

j'{ga(iwn) D (1, 1; »,) + DEWLI; w,)

a positive force corresponds to an attraction between the bodies, and a
negative one to a repulsion.

Since the problem is uniform in the 7, z directions, the Green function
Dulr, r'; w,) depends only on the differences y — ', z —2. We carry
out a Fourier transformation in these variables:

Dip(®, @5 ¢ 0,) = [ e BGNHED P (1,1 0,) d(y —y')d(z —2)
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and take the y axis along the vector q. Equations (28.18) for the Green
function become

2 d2 'D N 4 6 ’
w — 32 D, (r,2') = —4nd(x — ),

. d . d , )
(Ew;—dzg)@yy(x’ x) +Zqza®zy(x¥x) = - 4736(3: —x )9

_d ,
wz‘-ﬂ”(x, ') 4 zqa‘@w(x, z)=0,
o , . d ,
w~@:tz(x! z ) + 195;@11,(37, [ ) = - 47t6(x _y)r

5  d? , .od ,
(awn ~ D, (x, z') —I—zqd—x@u(x: ') =0,

where w = ]/a—of,Tq‘, whilst ' plays the role of a parameter (the
components D, ¥,, of the Green function vanish, since the equations
for them prove to bhe homogceneous).

Solving this system amounts to solving altogether two equations:

. df
(10— —a‘rg) @zz(x, x’) = - 4736(37 - x’)’
(31.4)
dz , 477 u? ,
(wz ——axz)ﬁw(x, ) =— ot é(x — '),
after which ®,, and ®,, are obtained as
g d 47
w2 dx " R

ig d ,
@w = ——Eé —d—x'ﬁyy, ED:M = ox —x'). (315)

The boundary conditions, corresponding to the continuity of the tan-
gential components of the electric and magnetic field strengths, amount
to the requirement of continuity of ‘SD;‘}L., @55, DE, DE, or what amounts
to the same thing, to continuity of D, D4, curly, Dy curly, By On using

the first of equations (31.5), we find that
dd,, & 4D,

de > W 2 dx

[g9Y
2z?

(31.6)
must be continuous on the dividing boundary.

Since we are ouly interested in the Green function in the gap region,
we can confine ourselves at once to the case 0 <<z’ < I. In domain 3
(0 <z <) the functions D,,, D,, are given by equations (31.4) with
£E=1¢3 W= Wy = Veawgiqé. In domaius 1 (¢ < 0) and 2 (z > 1) they
satisfy the same equations with vanishing right-hand sides (since we
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always have x 7= z’ here), and with &, w, and ¢,, w, rcspectively instead
of g, w.

The subtraction mentioned at the end of § 30 amounts to subtracting
from all the ®© functions in the gap region their values for ¢, = ¢, = ¢,
w, = w, = wy. A particular consequence of this is that we can at once
omit the term containing the é-functions in the second of relations
(81.5), so that B,,, D,, are given in the gap region by
_u PN , ks 4

widx "V w3 dx

Before proceceding to the solution of the cquations, one remark should
be made. The general solution of equations (31.4) has the form f, (x — z) +
f2(@ 4 x’). On using equations (31.4), (31.7) and the dcfinition of DE, L,
we can show that the parts of the Green functions that depend on = + &’
provide no contribution to cxpression (31.3) for the force. We shall not
dwell here on this, since the result is obvious @ priori from physical con-
siderations: if we were to put £ = z' in a solution of the form f,(x 4 '),
we should get the flux of momentum in the gap, which would depend
on the coordinates, in contradiction to its law of conservation. In future,
therefore, we shall as a rule only give the expressions for the parts of
the Green functions ®t which depend only on x — &',

Lot us evaluate D,,. It satisfics the equations

D, = Dy = — D (81.7)

2y *

d2
(1~ ) D= — dm0le —2) for 0<a<,

o U2 ~ ., d?
wl—dxz)mzzzo for =< 0; W= 2 D,=0 for z=>1.

We obtain from this:
D, = A" for x < 0, B, = Be ¥ for z > I,

. 2x ,
D,, = ;""" + Che™° —;—e‘”"’”—” tfor 0 <z < 1.
3
Having dctermined the constants 4, B, €}, C, from the boundary con-
ditions for the continuity of ®,, and dD,,[/dz, we get for D} :

—_ in 2 _, .
T = “coshuyw —z') —=e ™" for 0 <z < 1,
1wy wy

P (,wl —I;u‘:;) (wz + ‘lL':;)

(w; —wy) (w, ;_14*3)

1=1— (31 8)

On subtracting the value of D} for w; = w, = wy (A becomes infinite
here), we finally get

4
ot == cosh wy(x —'). (31.9)

‘2z 3
wyAd
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Similarly, the solution of the equation for ®,, gives us (after subtrac-
tion):
45
D, = %5 cosh wy(x — '), (31.10)

2

wp&

A = 1 — e2ud (8 w3 1 £5) (63 + £3%05)
(eywg — &3wy) (a5 — £510p)

(31.11)

and, on using (31.7), we get

Ao
‘i\);;,z—— Tig

sinh wg(x — z'),

wrex A

(31.12)
" 4z q?
Dgg = — ——

. - cosh wy(x — z').
Wnégwz
2 I we now work out DE(z, «'; ¢, w,) and Di(x, z’; ¢, w,,)
and substitute them in (31.3), we get

Z
%
Z T =, = 11
Fl=—— X' d — 4+ =}.

0=—5, 5 [ qw3(A +7)

On changing to a new integration variable, ¢ = ]/a,, w, ]/2—)2— —1, and
returning to the usual system of units, we arrive at the final expression
(Dzyaloshinskii, Lifshitz, Pitaevskii [60]) for the force F, per unit area of

each of two bodies, separated by a gap of width I, filled with liquid (Fig. 86):

o

F(l) = = 2’83’2 o fmpzdp {[(81 + 2) (52 + 7) exp (22):0"”/%) —1]_1
= i

7 =0 (8 — D) (82 — D)

n [(s1 + P&/33) (3, + Peyfes) exp (22)6601, ] Vg)—l]_l} ,  (81.18)

(61 — P& fe3) (82 — Peyfey)

where
_ 2anT
& =Vefeys— 1+ p?, 85 = esfeg— 1 + p?, WO = "% >

and g, &, & are functions of the imaginary frequency i w, (¢ = e(i @,,))-
This formula was first obtained by Lifshitz [51] for the case g5 =1,
i.e. for bodies separated by a vacuum gap, by means of a method that
made no use of quantum field theory.

The general formula (31.13) is extremely complicated. However, it
can be considerably simplified because of the fact that the effect of
temperature on the interaction force between the bodies is usually quite
insignificant(}).

The fact is that, owing to the presence of the exponential functions
in the integrands in (31.13), the main role in the sum is played by those

() When speaking of temperature effects, we are not thinking of the result of
the direct dependence of the diclectric constant on temperature.
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terms for which w,~ ¢fl, or ® ~ ch[lT. Thus, in the case IT[ck < 1,
large values of #» will be important, and we can change in (4.13) the
summation to an integration over dn = (£/27T)dw. The temperature
does not now appear explicitly in the formula, and we get the following

result (¢ = e(iw)):
7 o [| (61 4 P) (82 + 2)
F(Q) _W f de f dppe’es® {[((811—2’) (8:—2’)

(81 + pefes) (5, 1 Peales)
;l —1 A T Feyes) e T £ Calts)
Xexp( f) ] [ (‘91 P& feg) (o — PéEsfes)

X exp (?? l]/g) —1]_1}. (31.14)

Formula (81.14) is still complicated. It admits of considerable further
simplicifation in two important limiting cases.

We shall dwell first on the limiting case of “small” distances, by which
we understand distances which are small compared with the wave-
lengths 4, that are characteristic for the absorption spectra of certain
bodies. The temperatures which may be under discussion here for con-
densed solids are always small compared to the Zw that play a role here
(for instance, in the visual part of the spectrum), so that the inequality
Tlfic < 1 is most certainly satisfied.

Owing to the presence of the exponential factor

exp (2pwl |/esfc)
in the denominators of the integrand, the main role in the integration
over p is played by the values of p such that pwl/c ~ 1. In this case,
P > 1, so that we can put §; & §, & p when finding the principal terms.
The first term in the curly brackets in (31.14) vanishes in this approxi-
mation. We get from the second term, after using as integration variable

x=21pw]/%/c:
EorF Gt e)ta) |
= 167—52l30f0f xzdxdw[ T | (31.15)

(&1 — &) (82 — &)

(the lower limit of the integration over x is replaced by zero in this approxi-
mation). The force in this case proves to be inversely proportional to
the cube of the distance, which is what we might in fact expect from the
usual laws of van der Waals forces between two atoms. The functions
&(iw) — 1 are monotonically decreasing as @ increases, and tend to zero.
Consequently, as from some value w ~ wy, the values of w cease to pro-
vide a significant contribution to the integral; the condition that 1 is
small implies that we must have I < ¢jw,.

Let us turn to the opposite limiting case of “large” distances I 3> 4,.
Here, however, we shall assume that the distances are not so great that
the condition I7T]kic < 1 is destroyed. We introduce a new variable of
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integration * = 2plw/c into the general formula (31.14); whilst we take
p instead of w (as before) as the second variable:

h 2 e f[+) G+ p) -
~ 32m2l f fd _2 8 {[(81 —P) (8, — p) 1]

(81+Z’31/83) (82+Z’80/63) Vo ] -1 . (:c_c)
[(51 — P& fes) (S5 — Peales) ¢ }’ e=ey

2pl

Owing to the presence of exp(z }/e;), in the denominators in the integral
over z, the important region is the one where x ~ 1/}/e, < 1, and since
p = 1, the argument of the functions ¢is close to zero at large I throughout
the important range of values of the variables. We can accordingly re-

place g, &, & simply by their values at @ = 0, i.e. by the electrostatic
dlelectnc constants. On substituting after this x — x/}e,,, we get the
final result:

307

(810 1 ) (559 + D) & ]—1
d dp — =g — 1
32'12l4l/830 f * f {[ (810 = P) (53 — P)

+ l(sm + Péu/eg0) (520 + Pa0/Ex0) & 1]_1} , (31.16)

(S10 — PE10/€30) (820 — PE2p/€30)

810—1’_—14‘2’: '5'20——1/ — 1497,

€30

where &, &5, €3, are the electrostatic values of the dielectric constant.

Let us now dwell on the high temperature case. When [T[kc > 1,
we only need retain the first term in the sum (31.13). However, we cannot
put » =0 directly in it, because of the resulting indeterminacy (the
factor w3 vanishes, but the integral over p is divergent). We can get
round this difficulty by first replacing p by the new variable of integra-
tion = = 2pw,l Vey/c (as a result of which the factor wj goes out). On

then putting @, = 0, we get

__T (er0 + &30) (Eag + €30) -~ -1
T 16als Of [ 1] dz.  (31.17)

(e1p — &30) (€29 &30)

Thus, at sufficiently large distances the decrease of the interaction force
slows down and once more proceeds in accordance with an I8 law with
a coefficient dependent on the temperature and the electrostatic dielec-
tric constant.

2. Interaction forces between atoms in solutions

We shall now show how we can pass from the macroscopic formula (31.14)
to the interaction of individual atoms in a vacuum. To do this, we shall
make a formal assumption that both bodies are sufficiently “rarefied”.
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This means, from the point of view of macroscopic electrodynamics,
that their dielectric constants are close to unity, i.e. the differences
g —1 and e, — 1 are small.

We start with the case of “small” distances. Formula (31.15) with
g5 = 1 gives us to the requisite accuracy:

h 0 -
:Wof Of w*e~(e; — 1) (e — 1) dwde
k © )
= Wof [e1(20) —1] [e5(iw) — 1]dew. (81.18)

On expressing e(iw) in terms of &'’(w) on the real axis in accordance
with (28.19), we get

oo

| s i) =11 [ (i) —1]do>

0
4 0, 0,y (wy) &y ()
:-12 271 2+ o) dw,dw,dw
—— f f 8 (wl)s) (wZ)d d
0y 4 Wy
whence we find for the force F':
1(w1)8 (wz)d 4 31.19
16n313ff wy+ g 1002 (81.19)

This force corresponds to an inter-atomic interaction with an energy(})

U(R f f S (@) @) g0, g0, (3120

(F) = 8n4R5NN o+ (@180 G120)

where R is the inter-atomic distance, N;, V, are the numbers of atoms per
unit volume in the first and second bodies respectively. The imaginary
part of the dielectric constant is connected with the spectral density of
the “oscillator strengths” f(w), familiar from spectroscopy by the rela-

tionship 9.72e?

we(w) = Nf(w)

(1) If the potential energy of the interaction of molecules 1 and 2 is U =—a/RS,
the total energy of the binary interactions of all the molecules in two half-spaces
separated by a gap ! is

U anN,N,
Y
The force F, on the other hand, is
AU  anl,N,
Fe 102
dl 63

This gives us the correspondence of (81.19) and (31.20).
Q.F.T. 18
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(see e.g. [47], §62). On substituting it in (31.20), we get

8hiet [ fi(on)fa(9)
U(R) 2m2_R6f -—a)—;_l_—a)zzd dwo. (31.21)

This expression is exactly the same as the familiar formula of London
[52], obtained by means of ordinary perturbation theory, applied to
the dipole interaction of two atoms. Suppose, for example, that we are
discussing the interaction of two hydrogen atoms. On using the familiar
expression

m
fOn = —27{2— (En - EO) |‘750nl2
for the oscillator strength for a transition between states E, and E,
(%o, 18 the corresponding matrix element of the coordinate of an electron
in the atom) and passing in (81.19) from integration over the frequency
to a summation over the energy levels of the atom, we get the London
formula for hydrogen atoms:

_ |0n [* | %0 |2
UR) = — ZE —E,+E, —E

At “great” distances the formula for the attraction between two “‘rare-
fied” bodies has the form

Bic r 1— 2%+ 2p?
F = ETET (10— 1) (659 — 1) f e Fdx f —82)5—d
0 1
ﬁc 23
= sa052 ©0 — D (e — 1) (31.22)

This force corresponds to the interaction of two atoms with an energy

U(R) = X109, (31.23)

" 4x R
where o, o, are the static polarisabilities of the two atoms (g, =1— 4z Nx).
Formula (31.23) is the same as the result obtained by quantum mechani-
cal methods by Casimir and Polder [53] for the attraction between two
atoms at a fairly large distance, when the retardation effects become
important.

We now consider the interaction of two atoms located in a liquid
(Pitaevskii [54]). Suppose we have weak solutions of atoms of different
kinds with concentrations (the number of particles per cm3) N;, N,
respectively in the same solvent. Suppose further that the gap is filled
with pure solvent. The dielectric constants &, &, of solutions in which the
concentrations of the dissolved atoms are small only differ slightly from
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the dielectric constant of the pure solvent, which we denote by ¢, = &.
Up to the first order in the concentrations,

08y gy
g =¢+ N, <8N1)N1=0’ 82_8+N9(8N

If we retain only terms of the same order in (31.15) for the force at
“small” distances, we get (in the same way as when deriving (31.18)):

& r (28 (i) 2e, (i ) do
Fo = 32m2 P N1N20f( oN, )N1=0( N, )N,=062(iw)'

This force corresponds to an interaction energy between the dissolved
atoms equal to

_ 3k ~ 0g, (2 ) O, (f w) dw
U(R)——_lfin"'Raof( oN, )N1 ( oN, )N,=0 e(iw) (81.24)

We similarly find for the energy at “great’ distances:

23Fc 0y Oy
U(R) = 64nTs57"_137 (BN )N1=0 (81\72 [ (31.25)

We see that, when the molecules of the dissolved substance interact
strongly with the solvent, the forces of interaction between them are no
longer determined by their polarisabilities.

3. Thin films on a solid surface

The general theory of van der Waals forces described above can also
be used for finding the thermodynamic functions of a thin liquid film
on the surface of a solid; the thickness I of the film, is of course assumed
large compared with the inter-atomic distances.

We obtained formula (30.12) for the chemical potential of the liquid
per unit mass in terms of the Green functions of the long-wavelength
electromagnetic field existing in it. This formula is inconvenient for two
reasons, however: firstly, it contains de[0p, which has never been investi-
gated experimentally throughout the whole frequency interval; secondly,
it yields the chemical potential 4 as a function of the den-
sity o, whereas we generally want to know g as a func-
tion of the pressure p.

We consider a layer 3, on the surface of a solid 1 and
in equilibrium with its vapour 2 (Fig. 87). We shall regard
the vapour as a vacuum as far asits electromagnetic pro-
perties are concerned, i.e. we shall put its dielectric con-
stant equal to unity everywhere: ¢, = 1.

18*
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By the condition for mechanical equilibrium, the normal component
0, of the stress tensor must be continuous on the surface of the layer.
This gives us the equation

P :Z)O(@’ T) —Cpz>
where p is the vapour pressure, p, (g, T) is the liquid pressure for the given
density and temperature, and o,, denotes the set of all terms except
the first in expression (30.11) for the stress tensor in the layer. Solving
this equation for g gives us the density as a function of the pressure(t)

0 = 0o(P + Gppy 7)-
On substituting this expression in (30.12) for the chemical potential, we get

oo

~ T S oelio,
t=po(® 4+ G T) + — 2 ( )@g(r’r;wn)’
47[ n=0 8@

where y,(p, T) is the chemical potential of the liquid. On expanding y,
in powers of the small quantity ¢,, and taking into account the thermo-
dynamic equation (Ou/ép)r = 1]p. the last equation reduces to

1_ T &, e(iw,)
s T) = po(P, D)+ 8+ g 25 DR 15 ).

Finally, on substituting in this the expression for o,, from (30.11), we
find that the term with &de/dp falls out and there remains

1,
w(@ T) = po(p, T) +?%'

Here o), is the component of the ““contracted” stress tensor (31.2). This
quantity is constant along the thickness of the layer (because the flux
of momentum is constant), and it in fact determines the force F(l), in
accordance with (31.3).

We introduce the notation { for the “van der Waals part” of the che-
mical potential of the film, per unit volume of the liquid,

u=m+%- (31.26)
By what has been said above,
{=od,=F(. (81.27)

Asltends to oo, i.e. when the liquid stretches to infinity, { tends to zero.

Thus there is no need for new calculations to find the quantity £
which is of interest to us. It is determined by the formulae for F(I) ob-
tained above (general formula (31.13) and the subsequent limiting for-
mulae), in which we only have to put & = 1.

The reader specially interested in the problems outlined in §§ 38, 4,
can turn to the more detailed articles by Lifshitz [61] and by Dzyalo-
shinskii, Lifshitz and Pitaevskii [50].

(T) o, is also a function of g, but since it represents a small correction to the pres-
sure, we can put ¢ = go(p, 7).



CHAPTER VII

THEORY OF SUPERCONDUCTIVITY

§ 32. GENERAL INTRODUCTION. CHOICE OF MODEL

1. Superconductivity

The problem of superconductivity is one of the most important and
difficult presented to quantum statistics. It is well known that many
metals undergo a phase change to a new ‘“superconducting” state at
sufficiently low temperatures. In this state the metal has thermodyna-
mic and electromagnetic properties that are quite different from those
in the normal state. Perhaps the most striking way in which the transi-
tion manifests itself experimentally is that the metal, on cooling to a
critical temperature, suddenly ceases to present a resistance to electric
current. In other words, there is no dissipation of energy when a current
flows in a superconductor.

Experimental investigations have shown that the properties of a super-
conductor in a magnetic field are very different from the relatively
simple properties of the normal metal. The magnetic field does not
penetrate into the body of the superconductor (the Meissner—Ochsenfeld
effect). The effective depth, measured from the surface of a superconduec-
tor located in a constant magnetic field, at which the field is still different
from zero (the so-called penetration depth) is extremely small, of the
order of 10-5 to 108 cm. The thermodynamic transition from the normal
to the superconducting state is a phase transition of the second kind and
is characterized by a discontinuity in the specific heat at the transition
temperature.

A substantial advance in the understanding of this phenomenon has
been achieved in recent years. It has been found that the development
of a theory of superconductivity requires a wide use of the methods of
quantum field theory. These methods will be treated in subsequent
sections; in the present section, we shall dwell mainly on the physical
side of the subject.

It has been clear for a long time that superconductivity is somewhat
akin to superfluidity. This is evident, first of all, from the fact that the
maintainance of an electric current in a superconductor does not require
an external potential difference, i.e. does not require work from external
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sources. The current carriers in a metal are electrons; we are therefore
coucerned with none other than superfluidity of the electron liquid.
In Chap.I, in reference to the superfluidity of helium, we dwelt in
detail on the properties of the energy spectrum of the excitations required
for producing superfluidity. It must be remarked right away, however,
that, at small momenta, the spectrum for a superconductor cannot be
of the same type as that which we have to associate with liquid helium.
For helium has a phonon acoustic branch as the initial part of its spec-
trum. As is well known, the propagation of sound is connected with
long-wavelength density oscillations. But, for an electron liquid in a
metal, a change in density involves a fairly substantial amount of
energy, since it is hindered by the Coulomb forces acting between the
electrons and the lattice, and between the electrons themselves. A change
in the density of the elcctron liquid destroys the condition of electric
neutrality, so that the corresponding spectrum of the long-wavelength
oscillations starts at some finite frequency, just as in the case of a plasma.
This frequency is in fact extremely high in a metal (~1eV ~ 10*°K).
Our remarks naturally do not apply to the short-wavelength excitations,
with a wave vector of the order of the reciprocal of an inter-atomic dis-
tance. We know that it is precisely thcse electron excitations that play
the main role in a normal metal. In accordance with the results of Chap. I,
a sufficient condition for the existence of superfluidity is that such exci-
tations be separated by a gap from the ground state, i.e. that the spec-
trum has the shape illustrated in Fig. 88. It

1577
may be remarked that, apart from the argu-
ments adduced above, the presence of a spcce-
y, _____X/ trum of this type in superconductors has been
indicated by experimental data on the electro-
A p nic specific heat at low temperatures; these
Fig. 88 data lead to a tempcerature dependence of the

specific heat of the form e=4/7.

We shall not dwell here on a treatment of various phenomenological
theories; though they often give an adequate description of experimen-
tal data. they cannot provide an explanation of the microscopic mechan-
ism involved.

The isotopic cffect discovered in 1950 [55] provided a key to an under-
standing of the relative roles of the different intcractions in a metal
when it becomes superconducting. The critical temperature 7, (the
temperature at which the transition from the normal to the supercon-
ducting state oceurs) was found to be a function of the mass of an iso-
tope, of the form 7', ~ (M)~"2. Fréhlich [56] proposed indcpendently
that the main interaction corresponding to superconductivity must be of
electrons with phouons. This interaction involves a strong dependence on
the mass of the ions.
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2. Model. Interaction Hamiltonian

The interaction Hamiltonian has already becn discussed in Chap. IT,

and we know that its form is
H,,,(x) = gyt (@)y () p(). (32.1)

Let us find the matrix clement of the scattering of two electrons by
one another, in the process of which the electrons exchange one phonon.
This process is iHustrated schematically in Fig. 89, The dotted line re-
presents the exchange of a phonon, which corresponds in the matrix
element to the phonon D-function,
wPs—p)
(63 — &) —u?(py — P1)?’
where g5 —¢;, p3 — Py arc respectively the changes in the cnergy and
momentum of one of the electrons on collision. Close to the Fermi sur-
face the momentum change on collision is in general of the order p,
(i.e. w | p3 — Py | is of the order of the Debye fre-

2
quency wp, since P, ~ a~1), so that the change 5_______/ ‘

in the cnergy of the electrons may be fairly i

small. In this region, i.e. when |g5—¢, | € wp, H

the effective interaction, which is determined ﬂ/\.\ 4
by the foregoing cxpression, simply reduces to Fig. 89

the constant —g?, i.e. therc is an attraction.

L. Cooper [57] discovered in 1957 that the effective attraction between
electrons close to the Fermi surface, resulting from an arbitrarily weak
electron-phonon interaction, necessarily leads to the formation of bound
electron pairs. Since binding involves an increase in energy, a readjust-
ment of the ground state of the system must result when interaction
takes place. Exeitation of such a system requires the expenditure of a
finite energy, cqual to the binding cnergy of the pair, which will in fact
play the role of a gap in the excitation spectrum. It proved possible,
on the basis of this idea, to construct a complete theory of supercon-
ductivity, explaining the vast mass of facts accumulated in several
decades of intensive study of the phenomenon.

The basis chosen for our statement of the theory is not the same as
in the original statements (Bardeen, Cooper and Schrieffer [58], Bogol-
yubov [59](F)), since it secns to us that the methods of quantum field
theory offer substantial advantages. Apart from its simplicity and har-
mony, the approach deseribed below enables a number of important
new results to be obtained.

Before procecding further, let us remark that the clectron-phonon
interaction is not the only one for electrons in a metal. Repulsive Coulomb
forces also operate between the electrons. The effective interaction between
them will therefore be either an attraction or & repulsion, depending on

(1) See also [60].

P D(eg — &5 p3 — Py) = §°
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the ratio of the magnitudes of the electron-phonon attraction and the
Coulomb repulsion of the electrons. In general, the problem of taking
into account both interactions for actual metals is extremely difficult.
In addition to this, actual superconductors are anisotropic. A proviso
must therefore be made regarding the present-day theory of supercon-
ductivity, that in essence it considers a simple model with a quadratic
dispersion law for the clectrons, in which it is postulated in advance that
the interaction of the electrons hag the naturc of an attraction in a narrow
band of their energies close to the Fermi surface. This energy region is
obviously of the order of the maximum energy of the emitted phonons,
i.e. ~wp, where wp is the Debyc frequency. In addition, we shall
assume below, for simplicity, that the interaction is constant in this region
and is fairly small.

To date, no theory of superconductivity has been developed on the
basis of the Fermi liquid concept and whieh also takes the anisotropic pro-
perties into account. Nevertheless, it is interesting to note that, i spite
of the crudity of the model, the theory not only explains the phenomena
qualitatively, but also lcads to good quantitative agreement with the
available experimental data.

We write down the effective intcraction Hamiltonian of the electrons
with one another in the second quantization representation as follows:

A + ,t
Hi’n.t - 2 (27!)5 Dx‘l’l’n‘:El‘)rl'Da aplulapzan a‘p,o', al)aﬂ'l 01’1 01’! 01’! 01" ’ (32' 2)

where 1 < 0, and 0, arc the cut-off factors:
0 = 1, IE(P) —eFl < wp,
=

0, |e(P) —ep| > wp.

The presence of these factors denotes that the only electrons taking part
in the interaction are those with energies in a narrow band of width
2wp close to the Fermi surface (wp < ef). This Hamiltonian will often
be written below in terms of the operators v,(r) and yF () in the coor-
dinate representation

A
Hyy =5 [9d (pg (yp(n)pa(r)d’r. (32.3)

It should be understood, of course, that the values of the four arguments
of the y-operators in (32.3) are in fact somewhat different. This last is
connected with the presence of the factors 0, in expression (32.2) for the
Hamiltonian. It would be more exact to write, instead of (32.3):

Hoy= 5[ [ [ [ 00 —£00(r — &) 0r — &) 0(r —£)

X'l/J: (51)1/1;. (52)"/’5(53)'4’4(54) dard—3§1 T d3§4: (32.4)
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where 0(x) is the Fourier transform of 0:
1
(2}

It is easily verified by Fourier transforming that the functions 0(x)
have J-function characteristics:

[0(x — ) {(3)d®y = f(#),

if the function f(#) has non-zero Fourier components f, only for momenta
p close to the Fermi surface. It is precisely with these functions that we
shall be concerned in the theory described below. Expression (32.3) is
to be understood in this sense.

0(x) =

[e*®0,a%. (82.5)

§ 33. COOPER PHENOMENON. INSTABILITY OF THE GROUND

STATE OF A SYSTEM OF NON-INTERACTING FERMIONS WITH

RESPECT TO ARBITRARILY WEAK ATTRACTIONS BETWEEN
THE PARTICLES

1. Equation for the verfex part

We consider the properties of the system with the interaction (32.3).
For this, we return to a study of the vertex part I'us,s(0y, Do Pa» Pa) atb
absolute zero. Let us write down the perturbation theory series for this
quantity. The vertex part is, to a first approximation:

284,850 — 6000,5)- (33.1)

The diagrams corresponding to the first terms of the perturbation theory
scries are illustrated in Fig. 90. As we know, singularities in the vertex
part of “zero sound” type are connected with diagrams (a)and (c), i.e.
these singularities are important for small momeutum transfer. The dia-
grams of type (b) are connected with singularities in I.g,s(Py, Do Pa» Pa)
at small values of the total 4-momentum ¢ = p, 4 p,. Let us investigate
the last case in more de-
tail. By using the con- % A fo% /
crete properties of the >O< ><>< >©<
model in question, we # 4 4 4 4 %
canobtain more detailed fol (b) (e
information on the ver-
tex part in the region of small ¢ in comparison with the general results
of (20.8).

The matrix element for the diagram of Fig. 90b is equal to

Fig. 90

A@ (8850 — Basrg) [ ARG (R)G (g — ),
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where ¢ = {wg, ¢} = {®; + w,, Py + Po}. On substituting in this the
expressions for the Green functions and integrating over the frequencies,
we gct
A2 d3k
PP (R S
(2,1)3( 7988 — 0220p,) o — &o(B) —&o(q — k) + 2u + §6
(eo(R) > i, €0(q — k) > p),
A2 d3k
— (8,055 — f -
(27;)3( o090 0u00p,) wy — &o(k) —&g(q — k) + 2 — i

(eo(R) < i, £9(q — k) < p).

In the model which we arc discussing, the only electrons that interact
are those in a narrow region of energies close to the Fermi cnergy ex ~ u.
Theintegration over k in integrals (33.2) is therefore limited by the con-
ditions |ey(k) — |, |6(g — k) — | < wp. On putting @y, |qlv < wp,
we change in the ordinary way to an integration over & = v(|k| — p,).
If we also neglect in the integrals a change in the upper limit of the order
wg, or |q|v, we can transform (33.2) as follows:

(33.2)

@p
l ’mP{) (5 6ﬁ6 Gaﬁv) f d&
0

1 1
X of [wo—l— 28 + v|q[a;—i6_+_2§—|—vlqlx—wo—iéldx

(where z = cos 0, 0 is the angle between the directions of the vectors g
and k). The remaining integrations are performed by elementary methods.
Having chosen the branches of the logarithms from the condition that
the integral of the first term in the square brackets be positive for wy > 0,
and of the second, for wy < 0, we get the following expression for the
diagram:
_ Rmp, 1 2w, — 46
92 (0,085 — 0050p,) [1 + Eln m_ 05
1 2w, — 16

Ty +ola— 0

wp Wy~ 18 v|q|—wy— id
In — . (83.3
+2v]q|( wo—l—v|q|—i6+ln —wy— id (33.5)

The principal term in this expression becomes, for small w, and v|q|:

Wp
max{wy, v|q|}’
Thus, when wp > wg, v1q|, the smallness of the interaction constant 4
can be compensated by the large value of the logarithm, as a result of
which this term becomes of the same order as the first term of the per-
turbation theory (33.1). In order to find the vertex part in the neighbour-

L ”’Po(awap,, 8,505,) In
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hood of small wyand v|q |, when A1n wp/max{ew,, »| g} ~ 1, we must there-
fore sum the set of principal terms of the perturbation theory series, as
in Chap.IV.

For this purpose, we write the equation for the vertex part in a form
in which the terms leading to singularities of I'.p,e(Py, Po; P, 24) for
small ¢ = p, + p, are distinguished.:

Lps5(P1s Do; 3 Do) = L\p6 (P1 Do3 Dsr ) (33.4)

+ v [ Topen(pr, P23 b, ¢ — B)G(K)G (g — k) Teypo(ks @ — K3 Py ) A%

)
2(2n
In this equation Iag,6(py, Dy; Pa, P4) is the sum of all the matrix elements
whose diagrams are irreducible in the sense that interests us, i.e. can-
not be split into two parts, one containing only incoming and the other
only outgoing exterior ends and connected by two electron lines. The

kernel of integral equation (33.4) contains a large logarithmic term from
the integration of the two Green funections. In view of the smallness of

the interaction constant, it is sufficient for us to take for I its expression
in terms of the first terms of the perturbation theory, since the corres-
ponding expressions for I" do not contain large quantities. We have
made it our aim, however, to calculate the ker-
nel of equation (33.4) without confining our-
selves to terms of order 11n wp/wy~1; we try
to find an expression for it up to and including ~ 4{ |g# /| |84~
terms of order 4. It would therefore seem at first

VA ” A x

sight that we need to know I'up to terms of
order A2 in the perturbation theory, since the ‘@
logarithmic integration in (33.4) can compen-
sate one of the orders of A. Let us consider terms
of the second order of perturbation theory for I
The relevant diagrams are illustrated in Fig. 91.
Let us find the order of the matrix element
corresponding to, say, diagram (e). Omitting
numerical coefficients, we get

2Z[aHGI—k+ p)adil.

On substituting the expressions for the Green functions, we can integrate
over the frequency:
22 f ds
w, — o+ gl —k + py) — & (1)
T f L dsl
W o+ g — k4 p)) —£)

(50(1) > p; go(l —k 4+ py) <I4),

(oD < 3 gl —k + py) > ).
(33.5)
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The domain of integration over I is in fact much narrower than if it
were determined only by the last conditions. This is connected with the
properties of the model, in which only electrons with momenta in the
neighbourhood of the Fermi momentum |v(lp|—p,)| < wp can inter-
act. The actual domain of integration is shaded in Fig. 92 for the first
condition in (33.5) and shown in black for the second In both cases the
expression (I —k + p;) —&(l) in the denominator of the integrand is
equal to wp in order of magnitude in the domain in question, whereas
the volume of the domain over which the integration is carried out is
~ m2wh[py The matrix element for the diagrams of Fig. 91 is therefore
of order 22m®wp|p,, i-e. their relative order compared with the simple ver-
tex is (Ampy) wpler. (Asis clear from (33.8), the quantity Amp, < 1is a
small dimensionless parameter in our model.) Since, by its physical mea-
ning, wy < ep, this extra order of smallness cannot be compensated in
the domain considered by the large value of the logarithm. In view of
this, we can confine ourselves in equation (83.4) for I" to the simple
first order vertex of perturbation theory (33.1).

The equation obtained for the vertex part can now be solved easily.
We notice that, as is clear from (33.3), I'y5.,6(0y, Ps; s> 24) depends only
on the sum of the variables ¢ = p, + p,. Hence the integral on the right-
hand side of (33.4) reduces to the integral already calculated by us for
the matrix element of the second order of perturbation theory (33.3).
We obtain as a result (wy > v |q|):

Faﬁ'yﬁ(pl’ P2’ Pss p4) = (Q) (6ay6ﬁ6 - 6a66ﬁy) ’

L I A Po |2wD | w§
AE@__ wo——vtgl_]}-l 33.6
T oalq ae ofal [l 0 0

2. Properties of the vertex part
Let us first consider for simplicity (33.6) with ¢ = 0. We have for real
and positive w,:
Y
ano) [ln |20,

| wWo

r (wo) =

T

We shall now regard I'(ew,) as a function of the complex variable g,
defining it as the analytic continuation of (33.7) in the upper half-plane
Im oy > 0. We now get

F(wo) =

1+( zq' (38.7)

Y
1+(;%) [1 |2wD|+7%i__i¢].

2n® l(o|
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Hence, if the interaction is an attraction (4 << 0), I'(w,) has a pole at
the point w, = ¢£2, where

Q = 2wy, exp [—2n2[|A|mp,]. (33.8)
In the neighbourhood of the pole I'(wy) has the form
an? Q2
INwg) = ——

mpy wy — Q"

This result has to be connected with the above-mentioned idea of
Cooper about the formation of bound-electron pairs. The vertex part
Logs(P1> Poi D3, py) is defined in terms of the Fourier components of
the two-particle Green function by the relation (10.17).Thus the fact
that I" has a pole means that the two-particle Green function has the
same pole. The formation of bound pairs implies the instability of the
ground state of the gas of interacting fermions from which we started
out. The imposition of arbitrarily weak forces of attraction between the
particles implies a readjustment of the entire system. The existence of
an instability finds its reflexion in the appearance of poles in the vertex
function with respect to the variable wy = w; + w, in the upper half-
plane. This pole, being pure imaginary, determines the relaxation time
of the unstable ground state. By the principle of indeterminacy, this time
corresponds to the binding energy of the actual pair. In the new ground
state the pairs behave as Bose formations and, as is the case for bosons,
are capable of any degree of accumulation at the level of least energy.
In the superconducting state these pairs are at the zero momentum level
of the motion of the pair as a whole, in complete analogy with what
occurs on the “Bose condensation” of ordinary bosons.

When v|q| is non-zero, (33.6) can be written as (w, > v|q]):

2wp

)' -
F(q,wo)=z{1+(;’j§’)[1+m' o2ty

1 v?| q |? w, w, —v|q| }—1
—=In{1— In (-2 .
2 ( wj + 2vlq| w +v|q|
After continuation into the half-plane Im wy, > 0 and use of definition
(33.8) for £, we get

27 [ @, 1 02| q 2

wg w, — 1;] ql )}—1
— In . 33.9
20|q] (a)o—l—v|q| (33.9)

I'(q, wy) =

With small »|q| <€ @,
2m 0
mpy wo— L2 + (2| q[2/60)"

I'(q, wp) = —
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Equating to zero the denominator of (33.9) determines the pole of
I'(q, w,) as a functions of |q|. At small |g|,

2 2
wozi!)(l—v g )

602

i.e. the absolute value of w, has decreased. At some value, v|q|max,
the pole @, becomes zero, after which for greater v|q| there is no pole
of I We can easily find the value of v|q |max for which w, = 0:

9| q | max = €02. (33.10)

Since q is the momentum of the system of two particles as a whole, this
result means that only those electrons which are moving almost towards
one another reveal a tendency to the formation of bound pairs.

3. Determination of the transition temperature

Let us remark once more that the arguments adduced throw light on
the instability of the ordinary ground state of a system of ‘“‘attracting”
particles at low temperatures. This instability amounts to an ability
of two particles whose centre of mass is almost at rest to form bound
pairs, i.e. a type of bosons, which “condense’ in the lowest level.

The temperature at which such an instability first appears will be the
transition temperature of the metal from the normal to the supercon-
ducting state.

To determine this, we ean make use of the above-mentioned analogy
with a boson gas. In the approximation in which we neglect the scattering
of particles by one another (the weak interaction model), the bound
pairs form an ideal gas. We know that the temperature-dependent Green
function of an ideal boson gas is

2 1
@(q, iwn) = [an _% +I'L:I
and represents the values at the points w = {w,, = 12n2x 7 of a function
G%(q, »), analytic in the upper half-plane of w. This function is equal
to [u — (¢%/2m)]! at w,, = 0. The latter first becomes infinite at the point
q = 0 at some temperature 7' = T, called the temperature of the “Bose
condensation”. The temperature 7, is determined by the condition

= 0.

The analogue of the boson Green function is, for a bound pair, the two-
particle fermion Green function (16.5). At the transition point, this latter
must have analogous properties in the sense of its dependence on the
variables w,,, = (w; + wy), and ¢ = p, + P,, corresponding to the centre
of mass of the pair. The fermion Green functions in (16.5) have no sin-
gularities with respect to these variables. We therefore consider the ver-
tex part I'r(q, wy) (we shall omit the spin indices everywhere; the
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meaning of ¢ and w, is indicated above) and define it as an analytic
function in the upper half-plane of «,, coinciding at the points wy ==
t(w; + wy), with the vertex part in the thermodynamic method. In
other words, the function I'p(q, ©) is the analytic continuation of
the thermodynamic vertex part & ,5,6(010, DeWs; P3Ws, Pgvg) ==
TG, wp) (0,y0ps — 0,50p,) (We shall show below that, in the approxima-
tion of interest to us, this function, like (33.9), actually depends only on
the variables ¢ and w,). We assume at the basis of the above that, at
temperatures below the transition temperature, I'g(q, w,) has poles
Im > 0. At the transition temperature, a pole ¢y = 0 first makes
its appearance in the function I'r(q, wg).

The necessary equation for the thermodynamic vertex part has the
same structure as (33.4):

o y6(P101 P20g; Py, Pycog) = 4p.,5(P10y, Pos; P30y, Pyeoy)
2(2n)3 i fjtxﬁ 5,7(171601, pZCOZ’ kow'; g4 — k Wog— W )

XG(kYB(g — k)T 4,5k, § — k, 0y — & ; P3wg, P400,) d3k, (33.11)
where 7 again is the sum of the matrix elements for all the diagrams
which cannot be split by a vertical line into two parts, joined by two
lines in the same direction. For the same reasons as above, we can con-
fine ourselves to the first approximation of perturbation theory for

I apys (DL, Poy; P3ws, Pgoyg). The problem of finding the vertex part
now reduces to finding the sum and the integral in the matrix element:

(2’1 E TX f & (k) @ (g — k) B3k. (33.12)
On substituting (14.6) for the Green functions in this, we can easily
perform the elementary summation over the frequencies.

We shall not evaluate (33.12) for arbitrary values of «w, and |q|. It is
clear from uniformity considerations that, as in a Bose gas, a pole first
makes an appearance in I'g(q, w,) for values w,=|gq| = 0. It is therefore
sufficient to find the solution of equation (33.11) for |q|= w,= 0.
The instant at which this quantity becomes infinite determines the
transition temperature from the normal to the superconducting state.
When |q| = coo = 0, integral (33.12) can be transformed to

2 £ \dé _  ampf, ©p ~ lnzdx
— 9,5 MPo [ tanh (ZT) F = — A G2 IHZT ) cosh? (33.13)

(after 1ntegrat10n by parts, since the remaining integral is convergent,
the limit * = wp/2T can be replaced by infinity. The integral is equal
to —In(2y/n), where lny = € = 0-577). Hence

TR(0,0) =T (0,0) = — - — 0 — .
L4 };'n%) In (%C:;TV)
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Close to the transition temperature, this expression can be written as

2n2 T
0,0) = — c _, 33.14
TO0=— " (33.14)
where the transition temperature 7', is equal to
T, = % 2w pexp [—(27%|A|mpg)]. (33.15)

The value of the frequency £, introduced above and characterising the
instability of the system at absolute zero, is equal to

Q= % T,. (33.16)

§ 34. SYSTEM OF FUNDAMENTAL EQUATIONS FOR A SUPER-
CONDUCTOR

1. Superconductor at absolute zero

We now proceed to the derivation of a system of equations for the Green
functions describing the properties of a metal in the superconducting
state (Gor'kov [61]). We shall confine ourselves for a start to the case of
absolute zero. In our model, the complete Hamiltonian of the system of
electrons in the second quantisation representation has the form

= f{~ (w* 2%@0) + % (w“(w*w)w)} &’r,

where (y"y) =y}l y, and the operators y(r), yt(r) in the Schrodinger
representation satisfy the usual commutation relations

f (1), vi ()} = 0,,0(r — 1),
{wa(r), ws(r)} = {wi (1), vf (v')} = 0.

We change to the Heisenberg representation, in which the operators
v, y+ depend on the time and obey the following operator equations:

1= ~ ~ ~
{igt— + Z} w“(x) _l ("‘U-’_ (x)"l)(x))".”a(x) = 09

2m

(34.1)

PR (34.2)
-0 Vil~+ ~+ = (N _
(i =g 9 )+ 452 @) (3 @5 (0) = 0.
The equation for the Green function of the system
Goplz, @) = — KT (9, (=) 95 (@)

can be obtained in an obvious way from equations (34.2):

.0 b2 ) ~ . e -
{7' 5 -+ %} Gp(x, @) + i AT y* () (), (), gt (@) =d(x —=').
(34.3)
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This equation contains the mean of the product of four y-operators
for a system of non-interacting electrons, which can be expanded by
Wick’s theorem into averages of pairs of operators p, yt. The product
of four g-operators for interacting particles is already expressible in
terms of the vertex part, i.e. includes the contribution of the different
scattering processes. In our weak interaction model, the scattering of
different particles by one another can be neglected. At the same time
we have to take into account that the ground state of the system differs
from the ordinary state with a filled Fermi sphere by the presence of
bound electron pairs. As already mentioned in the previous section,
such pairs are Bose formations and therefore possess the ability to accu-
mulate in any amount at the level with the lowest energy. In the absence
of an external field, and neglecting scattering processes, the pairs ob-
viously ‘‘condense” in the state in which they are at rest as a whole.
Let us consider the product of operators pyp or yptyt. The first annihi-
lates, whilst the second creates, two electrons. In particular, these two
electrons may find themselves in a bound state, in other words, the
operators py and yphy' contain terms corresponding to the annihilation
and creation of bound pairs, including pairs at the lowest level. Since
there are many such pairs (the number of them is proportional to the
total number of particles), the corresponding contribution to the opera-
tors pyp and ptyt can be regarded as a c-number, just as in the case of
a system of bosons. Notice that there are special reasons, in a metal,
why we do not consider pairs which are not at the lowest level: a bound
pair of electrons, when the motion as a whole has finite momentum,
is a Bose excitation with zero spin. As we have already remarked, the
condition for electric neutrality in a metal actually implies that a sub-
stantial energy (~1 V) is required for the excitation of such a “Bose
condensate’ pair, this being much greater than the characteristic ener-
gies which we encounter when developing the theory of superconduc-
tivity.

Returning to equation (34.3) for the Green function, in the light of
what has been said, the average of the product of four yp-operators can
be written as follows, e.g.

<T(T'Pva(x1) "Iv’p(xz) ﬁ: (3) ’P~¢s+ (%))) = — <T(T;a(x1)’;’v;_ (%)))
X T (9p(2) 93 (20))> + T (9o (21) 92 (@)D <T (905 (22) 957 ()

+ N | T (o (@) Pp(@e)) | N + 25 KN + 2 | T (95 (=a)pa (2} | VD,
(34.4)

where |N) and [V + 2) are the ground states of the systems with N and
N -+ 2 particles. This way of writing the average implies that we have
neglected all the effects of scattering of particles by one another. The
Q.F.T. 19
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existence of interactions is only taken into account in so far as it leads
to the formation of bound pairs. The third term on the right-hand side
of (34.4) is written in complete analogy with the case of a Bose gas, in
accordance with the fact that a large number of bound pairs has “con-
densed” into the lowest levcl. The quantity

N |T(pp)| N+ 25<KN + 2 | Tty | N
is obviously of the order of the density of the number of pairs.
It is easily vorified that the functions thus introduced can be written
as
(N | T (9, (@) (@) | N + 2) = e 2 F p(x — '),
N+ 2| T @ @) Ny = L@ —).

For the uniform problem (in the absence of an external field), the
Green function G(x —=x') depends only on the coordinate difference
x — z'. The source of the extra dependence on ¢ in expressions (34.5) is
clear from the general formulae of quantum mechanics for the time
derivative of an arbitrary opcrator E(t):

(34.5)

0 o ) ~
5<N|A(t)|N+ 2 =i(By — Ey o) KN [A(0) [N+ 2.

By decfinition, the chemical potential p = dE[ON, so that the cnergy
difference Ey.,3 — Ey is equal to 2u.

When substituting expression (34.4) into equation (34.3) for the Green
function, we shall always omit the first two terms on the right-hand
side of (84.4), since they may easily be shown to lead, in the equations
for functions G, F, F'*, to an additive correction to the chemical potential,

and are of no intercst. As a result, we get the following equation connec-
ting G and F*:

{£+ o — oy —idb (0 ) P — o) = b(e — ). (34.6)
om/

(Here, G, F, F+ denote the matrix forms of the functions Gops Fog, F,,p
in the spin indices, their products being the matrix products.)
The function F(0 +4) is defined as follows:

Fo5(0 +) = ¥ (N | p, () pg(a) | N + 2> = F @ —a). (34.7)

im
ror’ >t +0

The equation for P (x — ') can be obtained in the same way by using
the second of equations (34.2):

{i%___z_2ﬂ}j’+(x—x’) + A0 ) Gz — ) = 0. (34.8)
In accordance with (34.7),
F504) = e (N + 2 |[pF (@) pg (x)] ND. (34.9)
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In the absence of spin-dependent interactions, the Green function
G(x — z') is proportional to the unit matrix J,p in the spin variables:
Gl —a') = 6,46z —2).

The functions ﬁ’, F+ are proportional to the matrix I , anti-symmetric
with respect to its indices. For, since the operators p,(x) and yp(x’)

anticommute at the same instant, F,z(r — 1, 0) = — Fg,(r' —r, 0). It
follows from this that
{Flr—r, 0 = —F g(r —1,0). (34.10)

In particular,
{FLO )} =—F(04). (34.11)

It is convenient to write ﬁ:, F+ as
@ —a) = IF+t@z —2),

- 34.12
Fe—a')=—I1F(@x—z), ¢ )
where (iz)aﬁ = — 6txﬁ‘
It is clear from (34.10) that Ft*(x — ') and F(x —z') satisfy the
relationship

{(Ft(r—71,0)}* =F(r —1,0).

The anti-symmetry of F, F+ with respect to the spin indices corresponds
to the fact that the bound pairs are at a displaced level. The function
F,5(r — 1, 0) can obviously, apart from a factor, be regarded as the wave
function of a pair of particles in a bound state (the centre of mass of
the pair is at rest).

Let us write down the system of equations for these functions, omit-
ting everywhere the dependence on the spin variables:

{‘%‘F l'72164(:75——:15’) — AP0 4) FH(x —2') = 6(x — &),

2m [
PR (34.13)
.0 1E (e P oy —
{'at S 2,u}F (x—2) + sAF+(0 )Gz —a') =0,
where (F(0 +))* = F+(0 ).
Fourier transforming everywhere (f) we obtain:
2
( - f:n) G(p) —i2F (0 +) F+(p) = 1,
- (34.14)

2
(w n 51:7;‘2") Fr(p) + iAF*(0 +) G(p) = 0.

(1) This system of equations has a great similarity to the system for the func-

tions ¢ and ¢ in the Bose system. It must be borne in mind, however, that the
analogues of the functions F and F+* arc in this case the operators &, & of the
condensate particles. We therefore use the notations @ and F+ as distinet from

@ and G for bosons.

19+
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The foregoing discussion has been carried through in the thermodyna-
mic variables, where the number of particles is given. It is much more
convenient to use the chemical potential y as the independent variable.
As usual, the transformation to this variable can be accomplished for-
mally by substituting w = «’ 4 g. Omitting the primes from the fre-
quency, (34.14) can be rewritten as

(w0 —&)G(p) —iAF(0+)F+(p) =1,
(w + E)F+(p) 4 iAF+(0+)G(p) = 0,

where & = v(|p| — 1) pozl/Zmu is the Fermi limiting momentum,
and v = pg/m.
The solution is

(34.15)

o+E . FHO+)
G@)ZJZ__EZTZE’ F+(P)=_Mm

where
A2 = 72 |F+(0+) 2. (34.16)
The determinant of the left-hand side of system (34.15) vanishes at
the points © = - &(p), where &(p) = |/&* + A2. The solution of (34.15)

is therefore obtained up to arbitrary terms of the form

4,(P)6(w —&(p)) + A5(P)6(w + 2(p)).
The boundary condition, determining the choice of the arbitrary A4,
and A, in the functions G and F*, is supplied by Landau’s theorem
(Chap. II), in accordance with which the sign of the imaginary part of
the Green function G is opposite to the sign of w, whilst the function

Grlw, p) = ReG(w, p) + ¢ sign (w) ImG(w, p)

must be apalytic and cannot have singularities in the upper half-plane.
It may easily be verified that the solution satisfying these requirements

(1)

2

_ Up 5
G(p)—w_a(p)+i5+w+£(P)_i5, (34.17)
Iy F(0+)
Frip) = _M(co —&(p) + ) (w + £(p) — 29)’ (34.18)

where the functions «5 and v2 are equal to

e L &), p_1f__¢
u"_2<1+a(p))’ v"_-‘%(l a(p))' (8419

() We have chosen F+(0+) to be real. This is always possible in the absence
of an external field, since equations (84.13) admit of the transformations
{Flz—2z), F(0+)} = {F(x — 2') e¥¢, F(0+) 29} and {F+(zx—2z), F+(0+)} —
{F+{z — z') e 29, F+(04) 2%} with constant phase. For more details about this,
see subsection 2 below.




FUNDAMENTAL EQUATIONS FOR A SUPERCONDUCTOR 293

The positive pole w = g(p) in Green function (34.17) determines the
excitation spectrum e(p) = Vém This spectrum has a gap A4,
which we find by starting from the relation

F+(0) = (27) [ F+(p)dewd®p. (34.20)
On substituting (34.18) in this, we get the equation

A d3p
= — . 34.21
2(271)3] Ve 1 A2 ( )
The divergence is cut out of this integral due to the condition that,
in our model, the only electrons taking part in the interaction are those
with energies in a layer of width 2wy about the Fermi surface. We find
on performing the integration that

}. 2(01)
1= —ﬁ'ﬂlpolﬂ '—Af
We get as a result:
A= 2wye M, (34.22)
where 7 = |1| mpy/2n2. On comparing this expression with the result

of the previous subsection, we find that the size of the gap in the energy
spectrum at absolute zero has the following relation with the transition
temperature:
A="m, (34.23)
14

2. The equations in the presence of an external electromagnetic field.
Gauge-invariance
If a superconductor is located in an external field, say in an electro-
magnetic field, system (34.13) becomes rather more complicated. Notice,
first of all, that in an external field the functions are no longer functions
of the coordinate difference only. The electromagnetic field can be
brought into (34.13) in the usual way by the following substitution:
VsV —ieA or V—V } ieA, (34.24)
depending on whether the differentiation refers to the operator g or
pt. (It is generally convenient to use the gauge in which the scalar poten-
tial ¢ is zero.) The equations for G and Ft in the case of a field are

{i 6_at + 2—}7; (air — z'eA(r))2-|— ,u}G(x, ') —ilF (x,2)Ft(z,2') = 6(:03—90';,

{i o_ 1 (i +ieA(r))2 —‘ul Fr(z,z') ;- iAF+(z,2)G(x,2') = 0(. )
o 2m \or | ’ ’ ’

Notice the obvious gauge-invariance of these equations. A gauge trans-

formation of the vector potential,

A A4+ %, (34.26)
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leads to different transformations of the functions G, F and Ft:
G(z, o) — G(z, ') ele—et)l
F(x, #') - F(x, z') o eI, (34.27)
F+ (x, x') — Ft (x, xr)e—'ie[w(r)+¢(r’)]’

whilst the “gap” |A]| F(x, x) or |A| F*(x, «), which, in an external field,
is generally speaking a function of #, transforms in accordance with

F(z, x) - F (x, x) 2™ Ft(z, z) - Ft(z, ) 290 (34.28)

The gauge-invariance of the equations enables us to study now the
properties of a superconductor in a magnetic field. It must be emphasized,
as regards the gauge-invariance of (34.25), that it is connected with
the use of the form (32.3) for writing the interaction Hamiltonian.
Strictly speaking, Hamiltonian (32.2) is not gauge-invariant, this being,
of course, a property of the model. It may easily be shown that, in this
model, equation (34.13) contains, instead of F(0+) and F+(0+) —
the values of the functions F and F* at coincident points — the functions

F(x,2) = [ 6(r — y)0(r —2) F (y, 2)d%d%

and F+(x, x) respectively. As the wave function of a pair, F(y, z;t=1")
has a correlation radius of the order of the pair dimensions & ~ hv/T,,
and falls off rapidly when |y — 2| > &. The functions 0 are of the é-
function type, as mentioned in § 32, with a half-width of the order v/wy).
Hence replacing of F (x, x) by F (x, ) involves an error of the order Ty,
which is always small in real superconductors.

3. Superconductor at finite temperatures

We shall end the present section by considering the question of ex-
tending the above approach to the case of non-zero temperatures. This
extension is obviously possible on the basis of the method described in
Chap. IIT for 7 5 0. A system is characterised in the superconducting
state by the non-zero averages

(T:(yp (=) p () &)
)

(T @)%() )
(&>

%(x’ z') = H %+ (=, ') =
(the meaning of the averaging and the definition of operators (%),
¥ (%) being the same as in Chap. III. Remember that the chemical po-
tential is chosen as the independent thermodynamic variable). If we
regard the ensemble averages in the definitions of § (x, ') and §t(z, z’)
as quantum mechanical averages over the state with energy equal to
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the mean energy E, and with a number of particles equal to the average
number of particles, this means that the creation or annihilation of a pair
of electrons leaves the state virtually unchanged. It is necessary for this
that the pair of electrons in question belong to those bound pairs that
find themselves in the “Bose condensate” state. Since the number of
these pairs is very large (proportional to the total number of particles
in the total volume of the system), the addition or annihilation of one
such pair makes no difference to the total state of the system. In other
words, as in the case of absolute zero, in the system the superconducting
state possesses termms in the operator products pyp and yty* that can be
regarded as c-numbers. We assume that the (thermodynamic) average
of the product of four y-operators can be written in terms of the Green
function & (x, ') = — (T (p(x)p(z')&))/{(S> and the functions & (z, z'),
&1 (x, =), just as was done in expression (34.4) at absolute zero. As above,
this implies neglecting the effects of scattering of particles by one an-
other. We have:

Te(ya y 7
(T (pa(®)ys (iz)@v;y (@) s (24) ©)> =—0,, (21, T3) Gy (7, 7,)

+ G5 (21, 7)) Gp, (X, T3) + Fop (%, ) % 5 (%3, ) . (34.29)

We shall not repeat here the derivation of the equations for the functions
® and §*. It is very similar to the derivation of (34.13); we shall just
quote the final form of these equations:

-2+ 2m+u}@5(x—x)+A%+(x—x)—6(x—x),

5 72 (34.30)
[+ g, 1} 8w —2) — 446w —a) =0,
where
A =|A] §(0+), A* = |2 FT(0+). (34.31)

It sometimes proves necessary to determine the function F(x —z').
The corresponding equation is easily obtained:

L2t 4§ —o) — 46w —a = 0.

This contains the function & with arguments interchanged.

Tt is easily shown that the set of four equations for ® (x —=z'), F+(x—z'),
F(x —z') and @(x" —=x) can be written symbolically in the matrix
form

P P2
{_% %“} . (@(x—x’) %(x—x'))_
8 b2 FHo — o) — G’ —x))
— 4 {37 + om +”} (34.32)
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In other words, the four functions form one Green function matrix for
the operator on the left-hand side of (34.30).

In the temperature-dependent method, as we know, all the functions
are expanded into Fourier series, rather than into a Fourier integral
over the frequency. It is clear from these equations that. if we Fourier
transform the functions § and §, in the same way as we Fourier trans-
formed the Green function in Chap. II1:

FHe—a)=(@m°TX e [ BpePIFE (p),
Fle—a)=Q@2n)°T 2 e [ EPpe PG, (p),

where @ = (2n 4 1)n7, equations (34.15) now correspond to the set

(34.33)

. 34.34
(o+EFL(P) + 46, (p) =0, (34.54)
which is satisfied by
___ to+& +p) — A*
@w(p) - C()2 + §2 +A2’ %w (P)—COZ + 52 +A2- (34.35)

Notice also that, in the absence of a field, § and F+ are equal to one
another, and A is real. This solution is single-valued, as distinct from the
situation holding for the system (34.15). This is connected with the fact
that the analytic properties of the thermodynamic functions are uniquely
defined. The size of the gap is determined from the condition

|A\T dsp
(2n)32fw e (34.36)

The series over the frequencies is easily summed. Instead of condition
(34.21) at 7 = 0, a new relation is obtained, from which we can find the
size of the gap at finite temperatures:

e GRS {C]
_Ampy gy 2T (34.37)
2 GEEY

At the point of the phase transition, i.e. at the temperature 7 = T,
the gap A(T) vanishes and, as must be the case, condition (34.37) turns
into (33.15), from which the transition temperature 7, can be determined.

§ 35. DEDUCTION OF THE SUPERCONDUCTIVITY EQUATIONS
IN THE PHONON MODEL

Let us dwell on the derivation of the superconductivity equations in
the model in which the electrons interact with one another through the
electron-phonon interaction. Of course, such a model suffers from the
same defect as the approach described above, inasmuch as no account
is taken in it of the Coulomb forces acting in the metal. Nevertheless
it evidently has a more direct physical significance than the model
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with a four-fermion interaction, even though the latter is more useful
when it comes to obtaining practical results. The basic advantage of the
phonon model lies, first of all, in the electron-phonon interaction Hamil-
tonian (32.1) being gauge-invariant right from the start, as distinct from
the method with the four-fermion interaction Hamiltonian (32.2), which
is only approximately gauge-invariant, by virtue of the relation 7', < wp.
As regards this relation, it is in general fulfilled only in the weak binding
approximation(j). We shall show below that the restriction to weak
binding is not essential in the theory of superconductors and that only
the ratio wplep € 1 is actually a small parameter of the theory
(oplep ~ ufv ~ 1072 — 1073, where u is the sound velocity in the body,
and v is the electron velocity on the Fermi surface(%)). We shall confine
ourselves to deriving the equations at absolute zero.

Suppose, then, that the interaction Hamiltonian of the system of
electrons and phonons is

H (%) = 9 (9 (@)9(2)) 9 (2).

If the system is in the superconducting state, its properties are charac-
terised by two functions F, F*, in addition to the Green function G.
Hence, instead of the usual Dyson equation (§ 21), it is generally neces-
sary to investigate three equations, connecting the three functions

Gople, ') = — T (P, (=), P (2'))) = 8,6 (x — '),

Fliz, o'y = <Tpf (@), pf (&))) = LzF*(x —2'), (85.1)

F 5@, @) = T (pa(2), p(a")> = — Lz F(x —&').
As regards the equation for the phonon Green function

Dy — ) = — il Llp(xy), 9 (),
it remains almost unchanged, as we shall see.
The equation for the Green function can be obtained from the diagram

technique of perturbation theory. Just as in the case of a boson system
below the “Bose condensation” point,

the set of possible diagrams of per- »Z7, : Ly ez .
turbation theory is widened due to z z IF' 93$ z ud
the appearance in them of lmes corre- 6
’ ’ N 4 i
~- D~
Z, 7T 2. LN Zzn PR
g Ll S

Fig. 94

(1) We always have, however, T, € w, for actual superconductors.

(}) Electron-phonon interactions in the theory of superconductors were investi-
gated in [59], [60].
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sponding to the functions F and F+, Let us agree to represent on the
diagram the functions G, F+ and F by heavy lines with two arrows,
the dircctions of which at the points 2, 2" are chosen in accordance with
(85.1) in such a way that the operator ¢ at the point in question corre-
sponds to an arrow directed away from the point, whereas ¢t corresponds
to an arrow directed towards the point. All three lines are illustrated in
Fig. 93. It may easily be seen now that, in complete analogy with a
boson gas, there are three types of irreducible self-energy parts, which
we denote by 2y (x, 2), Zyy(z, 2') and Loz, ). In Fig. 94, illustrating
the X, diagrams, the dotted line corresponds to the phonon D-funetions,

= the point to a simple vertex, or factor ¢, and the
/, \\ heavy point or rectangle denotes the modification
Fig. 95 to the simple vertex as a result of the different elec-

tron-phonon interactions.

Let us Fouricr transform all the functions and consider one of the self-
energy diagrams, say X, (p). It will easily be scen that, up to terms of order
wplep, we can ncglect all the phonon corrections to the electron-phonon
vertex part in the simplest diagram for 2);(p) of Fig. 95. In fact, as we
proved in § 21, the values of the D-function (and phonon vertex) of
importance in the relevant integrand are those for phonons with momenta
of the order of the Fermi momentum of the electrons. For this reason,
the estimate obtained in § 21 for the corrections to the phonon vertex
resnlting from the eleetron-phonon interaction still remains valid in the
present case. since the size of thesc corrections is determined by the
values of the Green functions in the energy and momentum region remote
from the Fermi surface. It is quite clear that the Fourier components
of the electron Green function for a metal in the superconducting state
differ from their values in the normal metal only in a narrow region close
to the Fermi surface, with cxcitation cnergies not greater than the order
of the maximum phonon energies, i.c. of order wy. To the same degree,
the functions F+(p), F(p), which are characteristic of the superconducting
state, also differ from zero only in the region mentioned. Fig. 94 illus-
trates the two possible types of sclf-cnergy diagram, for each of the
parts 2y;, 2o, and X, depending on the choice of the modification to
the phonon vertex. On the basis of what has just been said, we can im-
mediately omit the diagrams of the second type. where the phonon
vertex is marked by a heavy rectangle, since the diagrams of this kind
can be formed only by using the superconductor Green functions ¥ and
F,

We can therefore confine ourselves to the zero order approximation
of perturbation theory for the phonon vertex in the irreducible parts
of 2}, oy and 2,

For the same reagons, the phonon Green function D(x,—x,) will
remain unchanged, and we can usc (21.14) directly for its Fourier compo-
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nent. The structure of the equations for @ and Ft is illustrated in Fig. 96
and is clear without further explanation. Let us write these equations
in analytic form. In the coordinate representation.

2

.0 % .
{zéi—}— 9m +‘u}G(x —z')=6(x—2') + g%fG(x—z)
X D(x —2)G(z —z')d% + g2ifF(x——z)D(x—z)F+(z—x')d4z,

7 P2
— — + — Y — 2, . 2 — nES R
{ zat—{—Qm—{—‘u}F (x —2) ngG(z 2)D(z —x)F+(z —a')d%

+ g% [ Fr(x —2) D(x —2)G(z —2')d%. (35.2)
An electromagnetic field can be included in these equations in the usual

way, precisely as was done above in § 34. Let us emphasisc that the
resulting system is completely gauge-invariant, as distinct from system

e -

7 ~ 4 .
- = 4+ > - + Dt
o -
tr—m—— b e + A ;‘ —
Fig. 96

(34.13), in which the gauge-invariance was only approximate, up to
terms 7';Jwy. Unfortunately, as is clear from (85.2), this system has a
much more complicated form, with a non-linear integral term, which
makes it less suitable for solution in the coordinate representation, as
is required in a number of problems in which a non-uniform magnetic
field exists. On the other hand, the practical results obtained are as a
rule equivalent for the two models.

In the absence of a magnetic ficld, on transforming to the momentum
representation in equations (35.2), we easily get equations for the Fourier
components of all the functions:

(0 —&—g*iG,)G(p) —g*iF ,F*(p) =1,

9 7y + 2.t (35‘3)
(—o—&—giG_)F"(p) —giF;G(p) = 0.
Here, we have written

— 1 — 1 N\ 47
Co= oup /O —BD®AE,  Fy=, [ Flp— kD)%,

J— ‘I_ —
F+_—_f - + — 43 7 = —). 35.4
w (Zﬂ)4fF (p — k) D(k)dk, G_,=G,(—p) (35.4)

This system is completely analogous to the system (34.15) obtained
above. The only differcnce is this: whereas, in equations (34.15),
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G,, F, and F} are constant in the region |v(|p! —p,)] < wp about the
Fermi surface and vanish outside this region, the functions (35.4) are
in general functions of w and p, smoothly decreasing to zero when w,
l”(lp: "“po)l > wp.

Let us express G and F* in terms of G, F, and F3:

—?iQ,
G(p) = o At —
[w —& — Rith,] [0 + & + g2iG_u] — ¢* | FLJ?

FH(p) = —igle

[0 — & — PiGu) [0 + & + Pi6_0) — gt |[FEP

After substituting these expressions into the definitions (35.4) of @, and
F%, we get two integral equations for these functions instead of the one
equation (21.16) of § 21. The solution of these equations was obtained
by Eliashberg [62]. We shall give the final result, without dwelling on
the details. It turns out that, at small encrgies, the excitation spectrum

has the form
e(p) = V&2 4+ 42,

where, however, & = v(p —p,) contains, in accordance with § 21,
the renormaligsed velocity on the Fermi surface v;. The gap at absolute
zero is connected with F't_g by the relation

R
J zgzgl"lFL‘ol-
0

In the weak interaction limit, g2 € 1, these formulae are the same as
the results of the previous section.

§36.' THERMODYNAMICS OF SUPERCONDUCTORS

1. Temperature-dependence of the gap

Let us investigate in greater detail the temperature-dependence of
the gap. We first take the case of low temperatures T & 7', and carry
out a suitable expansion of condition (34.37). We have identically:

l=fmb__d§___—_2f e L
noJ Vera ) Vere oplyE4an) +1

(36.1)

where 7 = |1| mp,/2n? (the sccond integral is convergent, so that its
upper limit can be put equal to infinity). On cxpanding with respect to
the exponent in the second integrand, changing to an integration over &,
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and using the definitions of the corresponding Bessel functions, we can
write (36.1) as a series in zero order Bessel functions:

4y < n+1 nd
1117—-2 S (—1)""K, (T) (36.2)

(here 4, = A(T = 0)).
At low temperatures A > T, we obtain on using the asymptotic ex-
pansions of the Bessel functions:

A=A,—V2aT4, (1 ——T—) e M7, (36.3)

84,

The behaviour of the gap at temperatures close to the transition tem-
perature 7', is most conveniently determined by starting from (34.36).
The gap is small close to 7', so that we can expand in powers of A2[7T?
in (34.36):

i TY fdf{——t————f— + _]4 _|_}
n o w_d 2L (0?82 (8P )

On interchanging the order of summation over the frequency and inte-
gration over & in the convergent terms on the right-hand side we get

1 ldE £ 1
?‘f ftahzT (nT)22’(2n+1)3

3 A4 1
4 (T 4= (2n + 1

gt (36.4)

The series that appear here can be expressed in terms of the Riemann
{-functions:

x 1 2° —1
\ ="T_= 36.5
< on 1y £(2)- (36.5) 4
We find on substituting this into the previous
expression :
W I e o 93 s 7E
T, 8 (mT " 128 (aT)* ) Fig. 97

We obtain to a first approximation for the size of the gap close to T',:

4= lf T 3-067, ' 1— (36.6)

1] sz

Fig. 97 illustrates the graph of the temperature-dependence of the
gap throughout the tempcrature interval.
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2. Specific heat

To find the different thermodynamic functions, we use the relation
derived above for the derivative of the thermodynamic potential with
respect to the interaction constant:

2 1
—=—=(H_,)D.
In our case H,, is given by (32.3). If we retain in this average terms
which differ from zero only in the superconducting phase, we obtain,
since 1 < 0,
o0 1
= A2
The connection between 1/ |Z l and A at a given temperature is determined
by the relation (36.1). Hence the difference between the potentials Q
for the metal in the superconducting and normal phases is
4

QS—Q,":O TL’— AHdA.

By a general rule of statistical physics, this added correction, when ex-
pressed in suitable variables, is the same for all the thermodynamie
potentials. Using (86.2), according to which

1 mPg {ln 2£Q_ 9 g (__1)n+1K0 (ﬂ)} ,
n=1

m ~ on? 4 T
and using the familiar formula of Bessel function theory: Kj(z) = — K, (x)
we get
mp, A2 oo T2 »nA[T 2
F,—F,—— (272) {-2 —2 3 (—1)"“;2 Of K, (z) x*dzy .
nAlT

At low temperatures AfT >1. In this case f K (x) 22dx =
0

2 — f K, (z)2z®dz. The latter integral only needs to be found for » = 1.
nalT

the asymptotic expansion of K, (z) being used for this purpose.
The remaining series over = is easily summed. We get as a result:

mp, T2  mp,[A2 15 7T\ _ -
F,—F,= pg —2—520[2—}—]/23:A3T(1+?/T)e Av/T]. (86.7)

0

The first term on the right-hand side is equal to the main term (with
reversed sign) in the expansion of the free energy of the normal metal
in powers of 7. We know that this latter term leads to a linear law for
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the electron part of the specific heat in the normal phase:
mp, T
n— 8
On substituting (36.3), we find that the entropy in the superconducting
phase at low temperatures is equal to

S, = 1 Po ]/2”43 ¢ 4IT,

n? T

mpo l/2nA§ AT
s i

This gives us, with the aid of (34.23), for the ratio of the specifie heats
of the superconducting phase in the region 7' T, and of the normal
phase at T'= T,:

C(T 2 [A,\32 A
C ((-Tc)) V% (q[')) exp (— _TQ) . (36.8)

In order to obtain asymptotic formulae in the temperature region
close to T,, we start from expansion (36.4):
1 mpy\ 7£(3)
6!1] <2n2) (2nT)2A6A'
We find with the aid of (36.6) for the difference between the free
energies :

F—F,—— (mpo) 7£(3) A _2mp0T;(1_T

2
om2 ) 6@ TR ~ () E)' (36.9)

Hence the entropy in the superconducting phase is
dmp, T, (. T
S, =— 0 1—— .
== (=) + s
On differentiating a second time and retaining the main terms, we get
the following expression for the specific heat of the superconductor at
the transition point:

whilst the specifie heat is

4mp,
e
Thus the specific heat of a metal has a jump of 4mp,T,[7((8) at the

point of the phase transition to the superconducting state. If we take
into account higher order terms in 7, — 7' in expansion (36.9), we can
find the ratio of the specific heat C,(T) to the specific heat C,(7T,) in
the normal phase close to T',:

c.(T) ) [T

T~ 2:43 + 3-77 (Tc—l).
This behaviour of the electron part of the specific heat of a metal close
to T, is illustrated in Fig. 98 on p. 304.

Cs ( Tc) = On( Tc)
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3. Critical field

The so-called critical magnetic field H, is an important thermodynamic
quantity in the theory of superconductivity. At a given temperature
a7 T < T, a metal in a magnetic field may find
itself both in the superconducting and in the

. normal state.
/ If a superconductor is situated in a magnetic

field, the surface currents screening the field pro-

I 7 duce a magnetic moment, which interacts with the

Fig. 98 external field. The additional energy arising from

this interaction is — (H.M)/2 (per unit volume).

Let us consider a superconducting cylinder located in a field parallel to

the cylinder axis. Having found the surface current from the condition

that the magnetic field be equal to zero in the body of the supercon-

ductor, and having determined the magnetic moment produced by these

currents, we discover that the extra magnetic energy is H2[8x, i.e. the

free energy of the superconductor in the magnetic field is Fog = F,+ (H2[8 7).

Thus a transition from the superconducting to the normal phase occurs

when the magnetic field is increased at a given temperature; this transi-
tion is a first order transition. The critical ficld is

H2

8n_F —Fs.

We shall again eonfine ourselves to limiting cases. At low temperatures
(T L T,), we obtain from (36.3) and (36.7), neglecting exponentially
small terms:

H,(0) = V 2””’04 =72 V 2”;1’0 (36.10)
and .
HA(T)= Hc(O)( ’; T~) (36.11)

On using (36.9) and expressing H, (7' close to the transition point in
terms of H,(0) with the aid of (86.10), the temperature dependenee
H (T) in the region close to T, is found to be

H,(T) = H,(0)y VM(?’)( %)g1-73118(0)<1——;7). (36.12)

3
Notiece that the experimental data usually correspond to the function

T2
H (T) = H,(0) (1 — -T2) . (36.13)

The theoretical formulae (36.11) and (36.12) are in fairly close agree-
ment with the experimental relationship (86.18) in both the limiting eascs
(see [58], [63]).



SUPERCONDUCTORS IN A WEAK ELECTROMAGNETIC FIELD 305

§ 37. SUPERCONDUCTORS IN A WEAK
ELECTROMAGNETIC FIELD

1. Constant weak magnetic field

Let us return to the question of the electromagnetic properties of super-
conductors. We shall confine ourselves in this section to the Lehaviour
of supcrconductors in fairly weak fields, which are small compared with
the critical magnetic field. Suppose that a superconductor with a plane
surface occupies the half-space z < 0 as illustrated in Fig. 99, and is
located in a constant magnetic field, directed
parallel to its surface. We introduce the vector
potential A:

H = curl A.
In vacuo H = const and we can take the vector TN, z
potential as, say, Fig. 99
A,=—Hz, A,=A=0, (37.1)

Current is produced in the superconductor under the action of the magnetie
field ; the field distribution in the superconductor is subject to Maxwell’s

equation V2A = — 4nj. (87.2)

Since the current density is in turn duec to the presence of the field, it
will be proportional to A in a linear approximation with respect to the
field. It follows from uniformity considerations that, in an infinite super-
conductor, the connection of the current density with the ficld must in
general be of the form

j@) =—[ Q= —y) A(y)d*y (37.3)
or in Fourier components:
jlky = —Q(k)A(k). (37.3")
We shall not dwell in detail below on the solution of the actual electro-
magnetic problem as defined by (87.2), (37.3) for the half-space, but
confine ourselves to deriving an exprcssion for the kernel @Q(z — ),
with a view to demonstrating the application of quantum field theory
methods to this case.
As usual, the current density j at a given point is the thermodynamic
average of the familiar quantum mechanical expression for the current
operator j(z) in sccond quantisation:

A()

. ie ~ L~ e? ~ o~ -
i@ = 5 (Ve — Pl (@9 = p@p(a). (37.4)

The current density j(z) can thus be written directly in terms of the
Green function of the system (we have put ¢=1):

) 2
j&) = 2{;_; Ty — 17, G (@, ) — Al © (x, x')} (37.5)

m ' >r,T =140
Q.F.T. 20
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We proceed to finding the Green function, or more precisely, the
correction to the Green function of first order in the field. In a constant
magnetic field all the Green functions &, &, and &+ depend only on the
difference of the “time” coordinates 7 =1, —7,. We change to the Fourier
components &, and &,. The system of equations for these latter reads
as follows in a constant magnetic field:

1 /o . 2
{iw + S (aT—zeA(r)) + ,u} G (r, Y ANGH () =6(r—1'),

{’iw+ 2%(3% + ieA(f))2+ u}%; (r, 1) —A*(1)@ (1, ') = 0.

(37.6)
We write the Green functions @& and Ft as

G =0+ 6" F=g,+F" §t=g5+§D,

where &, Jy» Fd are the Green funetions in the absence of a field, and
W, §MO, F+M are the added terms, linear in the field. We obtain on
linearising equations (37.6):

{i““ + él% + ﬂ} GD(r, ') + AF 5V (r, 1)

= — AT e — 1) + 5 (V- A) + (A V)] Gpu(r— 1),

[+ g, ]800 P~ 4000 (379

= 800 Ggulr — ) — 5 o (V- A) + (A- V)] Fhalr — 7).

Using these equations, we can very easily express @ (r, ') and FFW(r, 1)
in terms of the quantities on the right-hand sides of (37.7). This is best
done by using expression (34.32) for the inverse operator to the left-hand
sides of (37.7). Before writing down to result for M (r, '), however,
let us consider in more detail the structure of equations (37.7),

System (37.6) and hence (87.7) also are gauge-invariant, i.e. are in-
variant with respect to the transformations (34.26) and (34.27). Thus
when finding the current j(r), which is equal in the linear approximation
to

R ie e2A(r)N
= — b)) ,— , (1) Yy 717 .
Jn) =T X (pr—Pdrsr @' (1 1) P (37.8)

the final result can depend only on the transverse part of the vector
potential A. In other words, the addition to A of the gradient of any
scalar ¢: A— A 4 Op/or cannot change the current j(r).

As regards GV(r, 1), FLO(r, 1), by (34.27), they are by no means
invariant with respect to a change of the vector potential. The same
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applies to AM(r), A*¥MV(r), which appear on the right-hand sides of
(87.7) and must themselves be determined from the integral equation

A0 = A T X gD r, ).

Given any A(r), A(r) is in general an unknown function of the potential
A. It can nevertheless be asserted that, in the linear approximation with
respect to the field, by virtue of the uniformity of the problem, the func-
tion A*M) (), being a scalar, depends only on div A. Owing to this fact,
if we choose our gauge such that the vector potential A(r) satisfies the

equation div A =0,

it proves possible to simplify the problem considerably, inasmuch as,
with this choice of A(r), the function A*V(r) vanishes identically. The
result obtained below refers only to a purely “transverse’” vector poten-
tial A(r).

The method described for making A*®, A® vanish can be extended
in such a way as to make it usable in problems that do not have spatial
uniformity in the absence of a field (say superconductors of finite di-
mensions in a magnetic field). In these cases it is possible to form a scalar
from the field A(r) and the vector r or any other vector characterising
the problem. In the general case of the non-uniform problem, therefore,
the AM(r), A*V(r) in equations (37.7) (where we now have to under-
stand by &, and §, the Green functions of the body in question with
the relevant boundary conditions) depend both on the longitudinal and
on the transverse components of the vector A(r). It is always possible,
however, to choose the longitudinal part Ay, = grad ¢ in such a way
that AW, A*® vanish. As regards the function ¢, for which this condition
is fulfilled, it can be found from the condition divj = 0, i.e. from the
condition for charge conservation.

Let us now return to equations (87.7) for an infinite superconductor.
Putting AP (r) = 0 and using (34.32), we obtain the following expression
for the correction, linear in the field, to the Green function:

GO, 1) = 2 [ (Goulr — D) (AD) - V;) Goull — 1)
+ Soall — 1) (A()) - V) &, (" — D}’ (37.9)

We have already made use of the condition div A = 0 in this formula,
so that it can be assumed that the differentiation in brackets (A(I) - V)
refers only to the functions Gg, (I — ') and Fg,,(r' — I). By (37.8), the
current density j(r) is equal to

2
i =237 S(W,—V,) [ {Bou(r— D (AW - 1) Goull — 1)

+ Boull — 1) (AD) - V) S0 — D}, €% 2 A (). (37.10)

20*
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It is convenient here to change to the: Fourier transforms, introducing
the Fourier components for the current density j(r) and the potential
A(r) in the usual way:

: _ 1 : i(k-1) 131, . _ _1_ i(ker) 13
I = o] I €8Pk Alr) = 5o [ Ak) €57 d%.

The equation for the conncction between the components j(k) and A (k)
is as follows:

2T

. 2
) == g o = PP AE) {6.(p)Bu(p-)

Ne?

T E(PITE (PP AGk),  (37.11)

where p, = p 4 1/2 k. Let us emphasise again that our result vefers
only to the purely transverse gauge. (It can be shown, however, that
the formulae obtained remain in force for any gauge, i.c. the longitudinal
part falls out from the final result.)

The field A(r) and current §(r) in a superconductor vary at distances
of the order of the penetration depth §, which is usually of the order
~10-%t0 108 cm (i.e. at distances much greater than atomic distances).
Hence only the components j(k) and A (k) in the range k~1/0 < p, arc
important in (37.11). We shall see below that the integration in the kernel
(37.11) is performed essentially close to the Fermi surface over a narrow
range of values of |p| of the order ||p' — »,| ~ |k|. Further, only the
two vectors k and A(k) figure in (37.11), and (k - A) = 0. On choosing
the vector k as the polar axis of coordinates for the variable of integra-
tion p and carrying out the averaging over the angle in the azimuthal
plane, we find at once that the vector j(k) is directed along the vector
A(k). In view of what has bcen said above, on substituting expressions
(34.85) for the functions & and §, we get

. Ve
j) = —==Qk) A(k),

where

s — 1437 5 et (o + &) (i + &) + 42

QB =1y fem0a f Clr e+ P T &
(37.12)

1
(we have used here the fact that p3/3n2=N). For smallk,&, =&+ b} (v-k).

It must be borne in mind for future caleculations that, for large w
and &, the integrand on the right-hand sidc of (87.12) behaves like w—2
when o > £ and like £~2 when £ > . Strictly speaking, therefore, the
integral over £ and sum over the frequencics w are divergent. To under-
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stand the esscuce of the matter, we consider the singularities of the ex-
pression for a normal metal (i.e. when A = 0):

1
(tow —&y) G —E)

Notice, first of all, that an unusually important role is played in this
integral by the order in which we carry out the summation over the
frequencies and the integration over §. For, if we first integrate over &,
the poles of the integrand, whatever the sign of w, lic to one side of the
real axis, so that the result is equal to zcro. Suppose, now, that we first
sum over the frequencics w = (2n 4 1)n7T. It is easily shown that the
following is obtained as a result of summation of this simple serics:

3 T .
ZT%‘fdfdf sin36 d6 (87.13)

5 &r
3 -
2 f sin 0d0] [ta nh = 57 —tanh - 5 1. (37.14)

The reason why the final result changes on interchanging the order of
the summation and integration is to be traced to the formal divergence
of the entirc expression. The essence of the matter is clearly, however,
that the result when we first sum over the frequencies only differs from
zero in a very narrow range of energies close to the Fermi surface (this
region has a width ~ (v - k), as follows from (37.14)). In this region the
integral over the momentum proves to be rapidly convergent, and the
expression for the excitation energy, measured from the Fermi surface,
can be written approximately as & = (p2 — p5)/2m =~ v(|p| — p,). It is
for this reason that, in integrals of the type in question, we must first
sum over the frequencies and then carry out the integration over &:
otherwise, the integration over & embraces the domain ||p| — p,| ~ 2y,
where our expansion of the functions about the Fermi surface becomes
unsuitable.

However, it is possible to avoid the need for carrying out the fairly
complicated summation over the frequencies in (37.12). We have to
proceed as follows. We add to and subtract from the integrand of (87.12)
the corresponding expression (37.13) for a normal metal. The integral
and sum over the frequencies of the diffecrence of the integrands is now
rapidly convergent, as a result of which we can change the order of
integration and summation. The rclevant expression for the normal
metal was evaluated in (37.14); it cancels the unity in (37.12). Integration
over £ gives us

3nT (1 —p2ap
k
ek = Zfl/o)2+A2 0?4 A2 — v2|k|2ﬁ2

]2

(37.15)

Further transformation of this kernel is difficult unless some assumptions
are madc about |k|. It is clear from the structure of the integrand that
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it is only the ratio of v |k| to the transition temperature 7', that is im-
portant. For, when 7 < 7T, the gap A, is of the order 7,; close to T,
i.e. when |T — T',| < T, the gap is small, though now w = (22 - )27
~ T,. The quantity &, ~ v/T,, with the dimension of a length, plays the
part of a characteristic parameter in present-day superconductor theory,
and is in fact the radius of correlation of the bound electrons. The penetra-
tion depth § can be either greater or less than &,. In the former case the
important region | k| ~ 1/d satisfies the inequality v | k| < 7', whereas in
the latter case it is described by the reverse inequality v [k| > T,.

Let us start with the first case. Let v |k| < T,. We retain in (37.15)
only the first non-vanishing term of the expansion in v |k|:

Q(k) = —AzT Z f A =PV _ g > __r__. (37.16)
(0)2 +A2)3/2 < (wz +A2)3I2
Thus, when § 2> &, the kerncl @ (k) is independent of k and the connection
between the current and ficld is of a local kind, in the sense that the cur-
rent at a given point 7 is determined by the field A (r) at this point alone:
2

i) = ——enl:r"A(r). (37.17)

An equation of this type was first proposed by H. and F. London [64]. It
will therefore be natural to describe a superconductor in which § > §,as a
London type superconductor, The function N (7') plays the role of the num-
ber of “superconducting’ electrons. Formula (37.16) expresses the ratio
N (T)/N as a function of the temperature. Let us emphasise that the
gap A figuring here is the equilibrium gap in the absence of field at a
given temperature, determined by condition (34.37). When 7' = 0, the
summation over the frequencies can be replaced by integration:
27T én = dw. On evaluating the integral, we find that, at 7' = 0, the
number of superconducting electrons is equal to their total number N.

Close to T, 4(T) is small compared with 7', and w. Neglecting 42 in
the denominator, we get thc series

N (T) 2A2
Z (2n + 2n + 1)87

n>0

which has already been evaluated in § 36. Using expression (36.6) for
the gap close to 7', we find that in the present case

T
SV a1 ).
N (1 Tc)

Let us now consider the second limiting casc v|k| > T,. The integrand
has poles at the points v [k|f/2 = + i [Jw® + A2. Since v | k| is large,

this means that the integrand has a sharp maximum in the region of
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angles f = cos6 =~ T',/v | k| < 1. Hence the term containing £ in the nume-
rator can be neglected by comparison with unity. The remaining expression
is a rapidly convergent integral over f, since the integrand decreases
as 1/f2 in the domain T,/v |k| < < 1. On making the substitution
v |k| f =« and putting the limits of integration equal to infinity, the
integral can be found with the aid of theory of rcsidues:

3Tn? 42 _ 872
v |k| aj;'bw2+A2—4v|k|

- 4

Q(k) = A tanh o (37.18)
We see that the kernel @ (k) is in this case essentially dependent on k.
Hence, if the field penetration depth § < &,, relationship (37.3) is non-
local, in other words, the current density j(r) at a given point is deter-
mined by the values of the vector potential throughout a neighbourhood
of the point with linear dimensions of order &, The non-local conneetion
between the field and current for certain superconduectors was first
predicted by Pippard on the basis of an analysis of experimental data
[65]. Throughout what follows we shall describe the case when 6 < &,
as Pippard’s case.

There is an important fact that must be mentioned at once. As we have
already remarked, the only important factor for deciding which case
actually holds is the ratio of the penetration depth 6 to the parameter
&, ~ v/T,. If, therefore, the condition § < &, is fulfilled at low tempera-
tures, the increase in 6 as we approach 7', will mean that the reverse
situation arises at tempcratures sufficiently close to 7', 6 will become
much greater than §,. In other words, the London case will always hold in
the immediate neighbourhood of 7T',. A considerable number of the familiar
superconductors belongs to the Pippard type almost throughout the whole
temperature range and they only change over to the London type in an
extremely narrow neighbourhood 7', — T < T, The remaining pure
superconductors represent an intermediate case at low temperatures,
i.e. they have a fairly wide London range of temperatures close to 7.
We shall not touch here on the subject of alloys (see § 39).

Having expression (37.15) for the kernel (k) at our disposal, we can
use Maxwcll’s equations to solve the problem of the field penetration
into a superconductor with a plane surface. The solution is particularly
simple in the London case: on substituting (87.17) into (37.2) and taking
all the functions as functions of z only, we find that the vector potential
distribution in the superconductor is described by

A,(2) = — H, 6¢1°,
where § is the London penetration depth

/ md 2). (37.19)

s=1/=" (in ordinary units 5 —
= ' i ordimary units —]_: 47ZN86
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The solution of the problem in the Pippard case is much more difficult
and requires the use of special mathematical methods. We shall not dwell
on this, but refer the reader who is interested in the theory of supercon-
ductors as such to the original literature (see [58], and also [63]).

2. Superconductor in variable fields

We have confined ourselves so far to a discussion of the properties of
superconductors in constant magnetic fields. A problem of great physical
interest is also the behaviour of a superconductor in an alternating
electromagnetic field, or,in more concrete terms, the nature of the absorp-
tion andreflection of electromagnetic radiation incident on the surface of a
superconductor. The thermodynamic, equilibrium approach on which the
previous treatment has been based, is not immediately applicable in
the case of an alternating field. We shall find extremely useful in these
circumstances the analytic expressions obtained in Chap. III, connect-
ing the various time-dependent functions with the corresponding func-
tions determined by the thermodynamic method. Suppose that an
alternating field A (as above, we shall assume that ¢ = 0) of frequency
o exists inside an infinite superconductor. The current in the supercon-
ductor resulting from the action of the field is obviously connected, as
before, with the field by a relationship of the type (37.8). The difference
here is that, with an alternating field, we have to know the Fourier
component Q(k, w) at non-zero w. (The kernel @Q(k) defined above is
evidently Q(k) = Q(k, 0).) We shall again start from the quantum
mechanical expression for the current operator:

F ) =2 (g — @ o) — ot ()0
J®) =g (Vr = Vo™ (@) p(2) — - A@)y" (2)p(@)
2 e ~
=j1@) — - A(@)pT (X)p(x),
where the operators are written in the Heisenberg representation and

contain the field dependence. The connection with the corresponding
operators in the interaction representations is, by (6.28), given by

i=5810isw,

where

oo

i
8() =T exp {z [ i@ A@) d*x}-
In the approximation linear in the field:

2 2 2 LN 3
Ju @ = jiu@ — —A,@p* @ @ +i [ @), Fi@)]450)d.
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The current in the superconductor at a given point and given instant is
the average

i@ = G@)> = Texp (2 + pN,, — B T) m [ @) m).
Since (f,> =0,

. 2N
julw)y=—"_" A, @) + [ Pipz —y) Ay d'y, (37.20)
where we have introduced the notation

PE(x —y)= [i<[f'a(x),fﬁ (1 for t,>1¢,

1 0 for t, < t,. (87.21)

On Fourier transforming we get for the kernel of equation (37.3)

2N
k,w)=-—"10,— PE(k, w).
ngﬂ( U)) m aff aﬁ( ’ U))
We now consider the same problem in the technique at finite tem-
peratures, A(r,t) and j(r,7) being formally regarded as functions of

the “time” parameter 7. The following relation now occurs in place of
(31.20):

. 2N 8
jult ) = —= A, (r,71) + [ & [ Popw—y) Ap(y)dr,,
0
where

Pt — 1, T —7') = LT (Joq (1,7), Jrp(r', 7). (37.22)

On introducing the Fourier components of the thermodynamic functions,
we find that the role of the kernel Q,4(k, w,) is played by

N
Q,p(R, g) = . 0,5 — ﬂ’aﬁ(k, W) »

where the frequencies w, run over the discrete values wy,= 2nzT.

We shall shortly prove in a general form that the Fourier components
PE(k, w) and & ,4(k, ) are values of the same function of a complex
variable w, analytic in the upper half-plane, taken in the first case on
the real axis, and in the second at the points w = i@, The method
of proof is precisely the same as in previous chapters. We expand (37.21)
and (37.22) into sums over intermediate states. We now find for the
Fourier components, Pfﬁ, P suitably defined in this case:

1
R _ I
Pk, w) = ng: me(k) » — 0, 146’
1
P % v 37.28
aﬂ(k’ 0)0) np Cpm (k) iu)o — Wy ’ ( )
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where
Qp‘m (k) = e(!) N m Bl T (1 - e—wﬂmlT) (jexl)mp (jﬁl)pm (27Z)3(5 (k - kpm) -

It is clear from (37.23) that PE(k, ) is obtained from P4k, o) by
replacing w, by —iw, whilst the values of PE(k, ») on the real axis
must be chosen as the limits when o tends to the axis from above.

Thus, if we find &P s(k, wy) in the Matsubara technique and continue
it analytically onto real frequencies PE(k, w) = &P,5(k, —t ) in such a
way that the function obtained has no singularities in the upper half-
plane of ), we can in principle find the kernel @,5(k, @) which determines
the connection between j and A in an alternating electromagnetic field.

Whilst keeping this purpose in mind, let us consider formally the
equations for the thermodynamic functions & and t in a field alter-
nating in 7 of the form A(r,t) = A(k, v)e* . Instead of (37.11),
we now get for the Fourier components of the current j(k, wg):

2e?
(2m)3m?

§ (ke wg) = T3 [p(p- Atk wg) [Gr,) G@)

Ne2
+ F@)8 (p)1d% — " Ak, o)

(here py = {p + 1/2k; " 4+ 1/2mp}). On repeating the course of the
arguments that led us, in the case of a constant field, to expression
(37.15), we get after integration over &:

- 3nT +1

Qe 09 = =3 [ (1—p45

{i(w_,. + Vi + 29 [ilo_ + Vol T Iklﬁ] + A2
Vu)a. —I—Az[u)?_—{—dz—{—(vlklﬁ—iyuﬁ,_ —|—A2)2]

_l_i(w_—l—]/u)i—l—dz)[i(cm_ + Vo + 47 +’U|klﬁ]+A2]

Vol & B lof + 22+ (o k] p+ iVt + 207 |
(37.24)

X

As above, certain assumptions must be made in regard to » | k| in order
further to simplify this expression. We shall confine ourselves below to
the case of most practical interest. when v |k| > (T, o). In this case,
as before, the main contribution to the expression for @(k, w,) comes
from the range of angles where § ~ T,fv |k|, o'[v |k|, so that we can
neglect f* by comparison with unity in the numerator of the integrand.
The remaining expression in curly brackets decreases when > Tfv | k|,
w'[v | k| rather more slowly than in the 7' = 0 case, namely, as 1/§. It
is therefore advisable to carry out a rearrangement of (37.24), separating
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out the more slowly decreasing terms:
Q (k, wg)
37:T2 fld { w+—|—m)(w_—|—l/w_.+d2
| Vo& + 42 [o2 + 22 + (v |k|ﬁ—z|/w++A2)]
— u)_ + Vw“_ —I—Az (w+ —I—Vm) -
TVl a4 o k)5 Yol § 29
ot + ok + 42
Vw+ —|—A2[v|k|ﬁ—z(]/w+ + 42 4 ol + 22)]
o_ + Vu)_ -+ A2
Vm[v |k| B + z(]/w+ + A2 Yol + 42 2]}
On carrying out the integration and passing to the limit as v |k|— oo,
we get
A2 — o' (0" — ) .
Gk 00 = lkl P [ Vo + 42 (@ — g +z12]' )
When wy = 0 this result tranforms to (37.18).
_ Since o runs over the values (27 4 1) 7 in the summation of (37.25),
Q(k, v,) can be written as the contour integral:

— 3mi A% — o' (w’ — )
k’ = Ta. 1l —23d >
YLk wl 16w |k|0 2T{ + Var'z + 22 (0" — wg)? +A2} @
(37.26)

where the contour C consists of two pieces C, and C_, as illustrated in
Fig. 100. The choice of the analytic branches of the functions Vw'2 + 42
and ]/(w' — w)? + A2 is clear from the same figure: the values of these
functions on the cuts are purely imaginary, the imaginary part being
positive to the right of the upper cut and to the left of the lower cut.
We pass from an integration over the contours C.

and C_ to an integration over the four contours I I

0% and 0% (Fig. 101). It is easily seen that the %% 4 Nypd
integrals over C'® and C®, considered formally -
as functions of @, have singularities at o, =
(2n 4+ 1)z T, since the contour of integration pas- Fig. 100

ses in this case through the point w'= (224 )7 T',

where tan «’/2 T becomes infinite. Hence, in order to find the branch of the
function, analytic in the upper half-plane of the variable w = ¢ a,, we have
to transform expression (37.26) at particular points @ = 2a77'¢ in such
a way that, on later extending this expression to arbitrary values of w,
the contour of integration does not pass through the singularities of the
integrand. We observe for this, that if wyg=2nz T, by virtue of the

28 I—/’d— I{q,—/‘d
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periodicity of tan (27T, the integral over the contour 0@ is equal to
the integral over C{) (and the same for contours C® and CV). We can
easily verify what has been said by replacing the variable of integration,

say, in the integral over C® in accordance with o’ —wy=—u. We can
thus write (37.26) as
Q(ki wO)
3me f A% — o' (0" — wy)
= — — —I—- f tan [1 —I—- - dw
8v]k| (0‘1) 0(1)) Vo't + 22 (0" — w)? + 12

The expression obtained, regarded formally as a function of w =iy,
is analytic in the upper half-plane of w, since the contour of integration,
with Im w > 0, never passes through a singula-

( (b}
rity of the integrand. o
We can now write down directly the ¢ (k, w) for
Vi s w > 0 in which we are
’ * interested. Two cascs
. {-)
arise:(a) w<<24and(b) ., i e/
o> 24. The elemen- =11
4 aytid  tary calculation is per- _,,
. DN © formed in both' cases in W[\ iy
v ay~ld  accordance with TFig.
102, where we have in-
dicated in brackets the
o o choice of sign of the it
- Fig. 101 - imaginary part of the Fig. 102

functions on the differ-
ent sides of the cuts. Let us quote the results obtained [66, G7]:

4+ w

— 3n o (0 — o)+ A2 ,
- d
Q(k, w) { Af tanh * 5 T lez o

A2) A% — (0 — )2
y o' I o + (o} o' (0 + w) + A2 dw'],

—l—if [tanhzf——tan Vﬁzl/m

a
(b) w > 24
- ot o (v — w) + 42
k,w)=- —+ tanh ———do’
el { f 2 T l/(o’z A2 ]/,J" — (0w —w)?
w~—A4
. w’ o (0 —w) + A2 ,
+4 dw
y 2T Vw2 — A2 V—(Z” —w)2— A2

-+ f [tanh w,~—-tanh ci, + m] — 1’((0'_ +LAZ—— de't.
3 ' Ver2 — A2 (0 + w)t — A2
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§ 38. PROPERTIES OF SUPERCONDUCTORS CLOSE TO THE
TRANSITION TEMPERATURE IN AN ARBITRARY
MAGNETIC FIELD

The properties of supcrconductors close to the critical temperature
provide a special case. Here the size of the gap is fairly small, as a result
of which all the equations are greatly simplified. It is easily scen from
the results of § 36 (expression (36.4)) that it is now possible to expand
the equations in the quantity 1 — 7'/7, > 1. In addition, as we have
already remarked in the previous section, close to 7', the depth of pene-
tration of a weak magnetic field § < &;, i.e. all the functions in the field,
including the field itself, vary at distances which are much greater than
the parameters & ~ v/T', of the theory. This fact enables us to develop
a theory in this temperature range (Gor’kov [68]), which describes the
behaviour of superconductors in arbitrary magnetic fields (of the order
of the critical field).

With this aim, we again rewrite cquations (37.6):

2
fio + g (7 —iean) +ufBatr ) +amTI 0 1 = 00—,
2
o+ gm (4 ieam) + 4} 530 =508ty = 0
together with the equation that detcrmines the gap size:
A¥(r) = [A| T X Fh(r, ). (38.1)

Since |4 is small, we expand &} (7, r’) in powers of |4| and, on sub-
stituting this expansion in (38.1), find an equation for A*(r). It is useful
here to introduce the Fourier components of the Green function @ (r, r')
for the elcctrons in the normal metal (in the given field A (r)). The equa-
tion which @ (r, ') satisfies can be written in two ways:

{m + Zim (g—ieA(r)Y + y} GO, ry=6(r—r) (38.9)

{iw + §1;L (5— + ieA(r’))2 + ,u} &9 (r,r")y =8(r—r). (38.2)

Taking the second form of the Green funetion, we can use it to reduce

the system of equations for ¢ and §} to the integral form:

&, (r. 1) =8G9 (r,r)— [ BD (r, ) A (YT I (1, r)d¥,
Ft(r.r) =[G nNA* ()G, (L r)dL.

Before proceeding further, we find the value of §©@(r, #’). In the ab-

(38.3)

senee of a magnetic ficld, G (r — ') is equal to (R = |r —r'|):
_ ipyR—|w|Rjv f 0
. CyyS e or w>0,
G(R) = (38.4)
m

l ~ SR gTiPB—l@lRIV 00 0y - 0.
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This can be verified either by direct substitution of (38.4) in (38.2) in
the absence of field, or by using the now familiar expression for the
Fourier component B (p) = [t —&]:

1

O R) = 5, [ G0 (p)’pee™

m W R+iER[v __ o—ip, R—iERf
~ (2n)PiR f iw—¢
(we are of course interested in the form of G¥(R) at distances which are
larged compared with the atomie distances: Ep, > 1). On integrating
over £, we obtain (38.4) immediately.
The function G (R) oscillates rapidly. Since p,R>>1, this fact

enables us to find G@(r, #') in a magnetic field by making use of the
quasi-classical approximation. In fact, we look for G9(r, #’) in the form

FO(r, 1) = NGO (r — 1), (38.5)

where @(r, r) = 0. On substituting (38.5) into (38.2) and differentiating
only the principal terms, we obtain an equation for the extra term
@(r, r') in the action:

(n-Vp(r,r)) =e(n, A(r); (n = I_II:I)' (38.6)

We have thrown away the terms quadratic in A in this equation, since
the radius of curvature of the electrons epy/H in the fields of interest
is extremely large by comparison with the depth of penetration: py>>
Ae~eH§ (6 is the order of the depth of penetration).

We now return to equations (38.3) and carry out expansions in them
in powers of |4(r)|. As is clear from (38.4) and (38.6), it is sufficient to
carry out this expansion in §}(r, *') up to the third power in |4].
As regards the Green function &, (r, t’'), we only need to know it up to
second order terms in |4]:

& (r, 1) =G (r, ') — [ ED(r, A1) B (m, r') A% (M) FO, (1m, Iy dPm d®L.
(38.7)

On substituting this expression in the second of equations (38.3), we
obtain the expansion of F*(r, r’), with the aid of which the following
equation in A*(r) is obtained from (38.1):

A*(r) = M| T X [ 8D, na* ) B¢, r)ad®l

dé

— M TX [ [ [BOU m)A(m) BD (s, r)4* ()G, (s, m)

XA* (GO, (1, r)d1d*md3s. (38.8)

The important distances in the integrals in this equation are of order
&, since, as is clear from (38.4) and (38.5), the function &9 (r, r') de-
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creases exponentially for |r — r’| > &;. The change in the gap A (r) and
field A (r) occur at distances of the order of the penetration depth, which
is much greater than &; close to the critical temperature. For the same
reasons, the phase @(r, ¢') in (38.5) can be written as

@(r, 1) = e(A(r) - r —1).

Close to T,, A(r) ~H6~ [J1—(T[T.), so that the phase g(r, r') is
small and the exponent can be expanded in powers of ¢.
We start by considering the first term on the right-hand side. Let

K(l,r)=T X GO NGO, r) = Ko(l — r) exp[2ie(A(r) - I —1)].

Using the representation (38.4) for the Green function in coordinate
space and performing a summation over the frequencies, we get the
following expression for K, (R):

m2 T 1

27 R)? TR

Er Ry op 27T L
v

Ky(R) = (38.9)

As we have already remarked, all the functions change little over dis-
tances of the order of &), so that we can expand all the functions in the
integral

[ Ko(l —r)exp[2ie(A(r) - I — r)] A*(1)d*1

into series in powers of (I — r) about the point r. On confining ourselves
to second order terms in (I —r), we get

A%(r) [ Ko(R)d*R + %(a%Jr 2ieA(r))2A*(r) [ Ko(R)R?a*R

By (38.9), the function K, (R) tends to infinity as 1/R® at R = 0.
The first of these two integrals is therefore formally divergent. It is
more convenient to perform the cut-off of the divergent expression in
momentum space.We obtain as a result the familiar expression:

m ag
fKO(R)d?'R_-ﬁ’f tan < ) ;-
The second term contains no singularities on integrating close to R = 0.
On evaluating this integral directly in the coordinate representation, we
get:

_1L(3)® mp,

T 872 272

In the term of third order in |4|in equation (38.8), we can neglect the
dependence of A(r) on the coordinates. This term is therefore equal to

. 1 7E(3
(mp") A AW T3 [y = <’;‘£;) g(n(T))zd*(r) 14 2.

[R2K,(R)d*R
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On collecting the results obtained, we find that A* (r) satisfies the follow-
ing equation close to the critical temperature:

1 [T, —T  7¢(3) M rgon
{4m< +21,eA(r)) Q[ T, —S(nTc)2|A(r)|:|}A (=0,

(38.10)

where
(3
e T RT

In the absence of a field A is constant in space and equation (38.10)
is the same as the first terms of expansion (36.4).

We now turn to evaluating the current density j(r). Obviously (37.5)
of the previous section still holds in this case. If, however, we use the
fact that A is small by comparison with 7', we can also carry out here
an expansion in A and A up to the first non-vanishing terms. Notice
that the term in the current density (37.5)

2e2A(r)
m

&2
By o(r, )= - A(r)N.

Here N is the density of the total number of electrons, which is equal
to its value for a normal metal. Variation of IV would contradict the con-
dition for neutrality. (The solution of (38.7) satisfies this requirement,
ie. if

&, (r, ¥) = B(r, ') & 66 (1, 7), then T X 6@, (r, r) =0.)
On substituting (38.7) in (37.5), we find that

~ e ~ , €2
T % — (V.= &O (r, ) ——~NA(n=0,

r'—r

since the current in a normal metal is zero in a constant magnetic field.
Therefore

JO =2 V= V), T X 86, (r, 1),
where
86, (r, ') = — [ BD(r, nA M) BD (n, r') 4*(m)BO, (m, 1) $Pma’l,

On substituting (38.5) in this, expanding all the functions about the point
r up to first order terms and omitting terms which yield zero an integra-
tion over the angle, we get:
oA* o4\ 4eé (412
m

A _—
4 or 4 or

it =

m

A(r )] (38.11)

Where
c —_T = [[HPeQr —0n)6Pan —n — 6D -1

X (V, % (m — r)]-m} &2, (m — hd*md’l.
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The evaluation of C is best performed in Fourier components, after
making the usual substitution r-— ¢(d/dp). We shall omit the details
of this fairly simple calculation and give the final result:

ey

16(mw T)?

The system of equations (38.10) and (38.11) describes the properties of
a superconductor in a constant magnetic field close to 7',. We introduce
the wave function y(r), proportional to A(r):

7t (3) N
8 To)
On taking the complex conjugate of equation (38.10) and substituting
(38.12) throughout, we can derive these equations as follows:

1 (8 . 2 1[7,—T 1
{am (55— 20ea00) 4 g [P~ hob [fwn =0,
. 2% 2e)2
](r)z—%;(w* o —p ) — o A v ]2

2m

0:

w(r) = A(r). (38.12)

(38.13)

The point in introducing the wave function (r) now becomes clear:
the resulting equations are in a form similar to the quantum mechanical
equations for particles with mass 2m and charge 2e. This result is quite
obvious physically, since A(r) has the significance of a function which is
proportional to the wave function of a bound pair, or, more precisely,
the wave function in the centre of mass coordinates. It is of interest
that equations of a similar form where proposed in the phenomenological
Ginzburg—Landau theory [69], where, however, a single elementary
charge occurred. Apart from this essential difference, the new theory of
superconductivity, which supports the correctness of the Ginzburg—Lan-
dau theory close to T',, enables us to compute the constants featured in
the latter theory.

Let us again mention in conclusion the fact that our derivation em-
ployed the smallness of the variation of all the functions over distances
of the order &, Since, as may clearly be seen from (38.13) and (37.19),
all the functions are in the general case variable at distances of the order
of the London penetration depth close to 7', whilst this depth becomes
greater than &; only in the immediate neighbourhood of 7', in the case of
Pippard metals, the domain of applicability of these equations for metals
of the Pippard type is an extremly limited neighbourhood of temperatures
close to the critical transition temperature. For metals of the London
type, or intermediate metals, the equations are valid in a fairly wide
temperature range close to 7',. This is a range of the greatest interest
from the experimental point of view, and it must be remarked that equa-
tion (38.13) leads to a very good agreement between the theory and ex-
perimental results in this range.

QF.T. 21
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§ 39. THEORY OF SUPERCONDUCTING ALLOYS

1. Statement of the problem

One of the interesting problems in the theory of superconductors con-
cerns the properties of “alloys™ (or dirty superconductors), i.e. a supcr-
conductor containing an admixture of atoms of other elemeuts and other
lattice disruptions (Abrikosov and Gor'kov [70]).

In the normal state these lattice defects determine the so-called resi-
dual resistance of the metal. In the superconducting state the impurities
play a new role. As we have already indicated, in a superconductor the
interaction between the electrons leads to the establishment of a definite
spatial correlation between them. In particular, the dependence of certain
Green functions in the coordinatve representation on their spatial argu-
ments at distances of the order &; (the effective dimension of a pair)
changes substantially with the passage of the metal from the normal to
the superconducting state. The presence of atoms of different elements
or of other lattice defects leads to scattering of the electrons at the im-
purities. Since the scattering is random (over arbitrary angles), whilst
the scattered electrons possess an extremely small wavelength, the
correlations of the electrons will be very sensitive to the scattering
effects. In other words, the scattering of electrons at impurity atoms must
diminish the spatial correlation between them.

The role of the impurities is modest at extremely low concentra-
tions.

An increase in the concentration of the impurities will evidently lead
to a decrease in the radius of correlation of the electrons in the super-
conductor. In the case of a fairly concentrated alloy, the role of corre-
lation paramecter changes from &, to the mean free path of the electrons.
At such concentrations we are justified in expecting the appearance of
new characteristic properties of superconductors. Since we are not con-
cerned in this book with a logical treatment of the theory of supercon-
ductivity, we shall only touch here on one aspect — the properties of the
alloy in a constant weak magnetic field. This will nevertheless enable
us to give a full demonstration of the special technique of field theory,
which is extraordinarily useful in the investigation of this type of prob-
lem.

It has already been remarked in § 37 that the majority of actual
superconductors belong, as regards their electromagnctie properties in a
weak field, to the non-local (Pippard or intermediate) type. In other
words, the current produced at a given point of the superconductor,
when it is located in an electromagnetic field. is determined by the
values of the field throughout some neighbourhood of this point. This
nonlocal property can evidently be traced back to the theory based on
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Cooper’s idea of the formation of bound electron pairs. The pair dimen-
sions result in the existence of electron correlation at distances of the
order & ~ 1074 cm, which makes itself felt as a non-local connection
between the ficld and the current, provided the field is varying at dis-
tances considerably less than &, (thesc distances are of the order of the
depth of penetration of the field). In the London case, on the contrary,
the field is almost unchanged over distances of the order &, which are
important in the integral equation (37.3), and can be taken outside the
integral at the point r.

The above discussion on the role of impurities in superconductors
reveals that, given a sufficient impurity concentration, a superconducting
alloy must belong to the second type. Since, when the impurities increase,
the role of the correlation length starts to be played by the mean free
path, an instant must arrive when this path becomes less than the field
penetration depth, i.e. the London situation arises.

Before proceeding further, some explanation needs to be given of the
following fact. In actual superconductors &, is of the order 10~% cm. It
follows from the foregoing, however, that the new properties make their
appearance in the superconductor at concentrations where the mean
free path becomes comparable with the ficld penetration depth, the order
of which is ~105t0 10~8cm. It is of the greatest importance that these
concentrations are still small (~1 per cent). The fact is that, at large im-
purity concentrations, we are in essence dealing with a newsubstance, the
properties of which have nothing in common with the original supcrcon-
ductor. In particular, the properties of the electron-phonon interaction
change, and hence the transition temperature also changes. These chan-
ges in the basic properties of the lattice can be neglected at fairly small
concentrations.

But even small concentrations substantially change the behaviour
of the superconductor in a magnetic field. Experiment supports the
interesting point that its thermodynamic properties remain practically
the same as for the purc superconductor.

The ordinary methods, based on the transport equation, and used for
investigating, e.g. the residual resistance of a normal metal, prove to
be unsuitable for solving the problem posed above. We shall therefore
turn once again to the methods of quantum field theory.

2. Residual resistance of normal metals

In order to make the following trcatment clearer, we shall first for-
mulate our approach by taking thce example of finding the residual
resistance of a normal metal containing impurities at absolute zero
(Abrikosov and Gorkov [70], Edwards [71]). The results obtained in
this case are of course completely equivalent to the well-known recsults
obtained by the transport equation method.
21
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It is well known that the presence of impurities in a normal metal
leads to a finite conductivity o, so that the current density j when a
uniform electric field E of sufficiently low frequency is applied is given
by

j=okE.

On introducing the vector potential A (t) in the usual way, E = — 0A/ét,
we can write this equation as follows (for a monochromatic field compo-
nent):

Jo=twcA,.

In this form, the relation is the same as (37.3"). The kernel Q(k, w) is
in this case simply
Qk, w) = —iwa.

We shall determine Q(k, w) by the methods of quantum field theory
below.

If we take into account the difference in the definition of the Green
functions in the field technique at absolute zero and in the technique at
T # 0, we obtain instead of (37.5):

. Ne?
j@) = — 7y — PO ) —= = A@).

r'ort’'=t+0

On expanding G (z, z") as usual up to terms linear in the field, we get

2 02
i@ == 0, =7 [1AQ), Ty —P,16%y)

r'or Yy -y
2
X GOy, z')d* _N f A(x). (89.1)
n

The G©(x, ) in this relationship are the Green functions of a normal
metal in the absence of field. Notice that these functions no longer de-
pend only on the difference of the arguments x — ¥, as has been the case
throughout till now; we are assuming that the interaction of electrons
with impurity atoms is taken into account in the G (z, y). (In future,
we shall use G (z, y), ete. (without an index), to denote the Green functions
of the metal containing impurities, and G (x, ), etc., for the pure metal.)
The Hamiltonian of the interaction of electrons with impurity atoms is

—_
H‘int_—a-Ha’

H, = [u(r —r)yp* (r)yp(r)d®r.

We shall find the function G(z, x’) before carrying out further transfor-
mations of (39.1).



THEORY OF SUPERCONDUCTING ALLOYS 32b

The Green function is not the same as (7.7) when impurities are pre-
sent. We write it as

Gz, z') = (2n) " [ G(p, P'; w) £ONTHR T GBp d3p’ A3y . (39.2)

The funetion G(p, p’; w) is expressible by the usual rules of field theory
as the sum of the diagrams shown in Fig. 103. Each line corresponds to
GO (p). We shall denote the impurity vertex by a cross. It corresponds

L, B + > , + o » ¥ A + oo
V4 7 dpp P VA AV 4
Fig. 103

to the factor u(q) exp [i(q - 7,)] 6 (w — w'), where u(q) is the Fourier
component of the potential #(r), and g the transferred momentum.
Summation of the diagrams leads to the integral equation for G(p, p’; w):

G(p,P'; w) =6(p — PG (p)
1 . iy i(p—peTa o, "
+ (2'7!)5‘:_ G(o)(p)f u(p —p )e(P D )G(P D w)d3p . (39.8)

We are not interested in the exact solution of (39.3). Since the impurity
atoms are distributed randomly over the mctal, we have to average all
the expressions over the position of each impurity atom. An important
point here is that, by virtue of our assumption regarding the smallness
of the atomic concentration, the mean distances between the impurity
atoms are much greater than the atomic distances in the lattice of the
metal, the result being that the averaging can be carried out in volumes
with dimensions much greater than the interatomic distances. The Green
function G(p. p’; w) evidently becomes, after such averaging,

Gp,P'; w) =G(p)o(p —Pp’)- (39.4)

The magnitudes of the momenta p. p’ of interest are of the order of the
Fermi momentum p, which is in turn of the order of the reciprocal of
the interatomic distance. This fact immediately simplifies the averaging
process.

We carry out our calculations in the Born approximation, i.e. we
assumec pd f u(r)d3r € ex. It can be shown that the final results, ex-
pressed in terms of the collision time, will also hold in the general case.

The simplest diagram for G(p, p’; w) contains just one cross. The
value averaged over the positions of the impurity atoms is the constant

%(q) €2 = 7(0), which can be included in the ground state energy
and is assumed zero in what follows. The diagram next in complexity
contains two crosses (Fig. 104a). If these crosses refer to different
atoms, the matrix element contains the factor «(p” —p’) u(p —p")
expli(p —p'' - 13) + ¢(p” — P’ - 1p)], the mean of which is zero. If the
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scattering is on the same atoms and p = p’ at both crosses, the mean
valuc of this diagram (without external G (p)) is non-zero and equal to
dzp’

2 (39.5)

o [ e — PO PO
where V is the volume of the system. (In order to obtain this result, it
is useful to change the integrals over the momenta to discrcte sums in
(39.2) and (39.8), then carry out the reverse process after performing
the averaging.)

We shall be interested in futurc in values of p close to p, in absolute
value. As in § 21, the integral in (39.5) can be split into two parts: over

rd
(0) 4 r II\
roopop A,
-
-~ -~ ;- \\\ 277N
(b) ALY oy s * % L VI

N}
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PPy

()
7 7 7 7

Fig. 104

the p’ remote fromn the Fermi surface, and over the p’ close to the Fermi
surface (the limits of the second integral over |p’| can be taken as symme-
trical with respeet to |p’| = p,). The integral over the remote region
yields a real constant, which, together with #(0), is a renormalization
of the chemical potential and can be disregarded. We can regard «(p —p’)
as a slowly varying function in the second integral. On substituting
(7.7) for G (p) and summing over the impurity atoms (this means simply
multiplying by the number of atoms), we get the essential contribution
to the G-function:

1 8ign
2t
where
1 nmp, 2
—=2""F 39.
T = 2 [ |u(0)[?d2 (39.6)

(0 is the angle between the vectors p, p'. By (39.6), T is the time between
collisions in the Born approximation, and » is the number of impurity
atoms per unit volume). It is clear from this that the main role in the
integrals is plaved by the region close to the Fermi surface
(P —po) ~ /7).

Not all the diagrams arc equivalent from this point of view. Let us
compare, for instance, the three diagrams illustrated in Fig. 104b (the
dotted lines join crosses rcferring to one atom). It is easily scen that,
in the first two expressions, the integration over p’ and p’’ can be
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performed close to the Fermi surface when the momenta are at any angle
to one another. Conversely, in the third integral, the requirement that
all the arguments of the G-functions be close to the Fermi surface leads to
a restriction of the angles. As a rcsult, the contribution of this diagram
is 1/vpyG times less than in the case of the others. Since we shall require
in future values of w and & ~ 1/z, where 7 is the time between collisions,
the smallness of the “intersecting” diagrams can be estimated at 1/p/l,
where | = vz is thc mean free path.

It is easily shown that a small contribution is also given by the dia-
grams containing more than two crosses from the same impurity atom.
Let us compare. say, the total eontribution (from all the impurity atoms)
of the first typc of diagram in Fig. 104b with the contribution of the
diagrams of type 104¢. The first diagrams yield a function of the order

1 1
26O () ~
0@~
and the second: 1a(q) ,  1|[udrpf < 1
T 1}2 pO T EF T

(this is a consequence of the Born approximation). 1t is clear from this
that we should ounly consider thosc diagrams that contain two crosses
per impurity atom.

On summing all the significant diagrams (i.e. only the “paired” type,
and not those containing “intersections”, like the third of the diagrams
of Fig. 1041), we get the following equation for the G-function:

G(p) = G9(p) +

0@ [ 10— PG PP ER). (39
If we depart from the Born approximation, we have to take into account
the diagrams containing scveral crosses per impurity atom. It can be
shown that the resulting change is simply to replace the Born amplitude
u(6) by the total scattering amplitude. This will also be the case for all
our future calculations. In all the formulae, therefore, we can take w(0)
to mean the total scattcring amplitude.
The solution of equation (39.7) is

1
G(p) = — )
(») o E_C.

where G, satisfies the cquation

n
G,=,: . [letp—p) - d3p’.
p /WP =P =
On supposing @, to be purely imaginary: G, = — 4%, and finding the

integral on the right-hand side by the same method as in (39.5), we get
sign v
P = = N
27
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where 7 is defined by (39.6). On equating the G(p) thus obtained with
the rcsult obtained when the amount of impurity is small (G — G®),
we find that v = sign w/27 or

Glp) = !

—iw” (39.8)
— &4

2 |w| T
It may easily be seen by changing to the z-representation that the

change in G as comparcd with G amounts to multiplying by the expo-
nentially damped factor

Gz —a') = GOz — ') eI 12, (39.9)
Indeed, we have, after integration over the angle

sin p R e to(t—t)

(o f+2|w|r)

G(x —2') prdpd

, . @Bt EMR __ g—i(po+EVR
~m [ ddwe )
i
no—t+1,1%)
w| 2z

Integrating over & and taking the residue, we get (39.9).
Let us now find the kernel Q(k, w). Fourier transforming, we can
write the expression for @ obtained from (39.1) conveniently as

Ne? 2¢e?
Quplls ©) == " 8ep =10 o [ Pellp(p'y, )0 e, (39.10)

where p, = (p' &= k/2, " 4 w/2). One of the photon vertices is
distinguished in (39.10), the second vertex is contained in I g(p, p-),
which can be regarded, up to a coefficient, as the result of including
the photon vertex ppin the electron line. On inserting this vertex in the
electron Green function G(p, p’; w). we get

’ ’ 1 ’ ” , ’r 172 ’ ’ ’r
H(p,,p.) =(2—n)3f0(1>+,1’+;w —I—U—;)p G(p_, p_;o —%) d3p”.
(39.11)

The functions G (p, p’; w) appearing in this correspond to the sum of

the diagrams in Fig. 103 and satisfy equation (39.3). When averaging

over the distribution of the impurity atoms, we have to remember
that the average of the product of
two Green functions is not equal to
the product of their averages.

Pigs In the case of a pure metal, equa-
tion (89.11) corresponds to the dia-

1) gram illustrated in Fig. 105a. After
averaging over the position of the

)]
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impurity atoms. apart from the simple diagrams corresponding to ehang-
ing from the zero order Green functions G@(p) to thc functions G(p)
(39.8), the diagrams shown in Fig. 1055 prove to be important for the
function (39.11). The large contribution from these corrcctions is con-
nected with the fact that for the photon momentum at the vertex k< 7p,,
as & result of which the main contribution to the integral is provided by
the region of momenta closc to the Fermi surface. A diagram of another
type, say that in Fig. 105¢, contributes much less, since one of the inte-
grations is over the region of momenta remote from the Fermi surface.
The averaging of (39.11) therefore reduces to summation of the “ladders”
of the diagrams in Fig. 105b.
The integral equation for Il(py, p-) reads as follows:

Ip,,p_)
= G(p,)G(p.) lp + (ﬁ)gf |u(p —P") |2II(p;,p'_)d3p’] - (39.12)

Two limiting cases are possible:

(1) Anomalous skin effect (lk|v>> 1/7); it is easily shown that the
integral on the right-hand side of (39.12) is negligibly small in this case,
~1/|k|vr < 1;

(2) Normal skin effect (|k|v <€ 1/7); it is this casc that interests us.
We can now assume p; = p- in equation (39.12).

The vector resulting from the integral on the right-haud side of (39.12)
will obviously be directed along p. We introduce the notation

P, 0) = [ |ulp — PP I, 2L (30.19)

Sinee |p| = py, A(w', w) can be regarded as independent of |p|.- We
multiply (39.12) by [#/(27)*] |«(! —p)[* and integrate over d3p:

LA, 0) = g o [ [0 =P)PO(PIG (p-) 14 A, 0)] 0P (39.14

On substituting (39.8) for G(p), we easily find that A(w’, w) is only
non-zero for |o'| < /2, since otherwise, by (7.7), both the poles in
(39.14) will lie in the same half-plane when we integrate over £. In this
interval A (w’, w) is independent of o’. On integrating over & and using
the relation

cos f = cos 0" cos 0'' 4 sin 6 sin 6"’ cos(¢p” —¢""),  (39.15)

we get

2
_7__1* fOI' 12<(1)A’

7 + 7 4

w - —
Ao, w) = Tir (39.16)
2
0 for w? >
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where 1 1 1

1 nmpy

, = = (0)]2(1 — 0)dQ. 39.17
T T Ty Ter (2m)? f l’d( )I ( cos 0) ( )

After substituting (39.16) in (39.12) and (39.10) and integrating, on
the assumption that wr € 1 we get

Qup(0) = — it dy,.

As must be the case, the conductivity ¢ = Neé%r,.[m contains a “‘trans-
port” time between the collisions.

We have thus seen that it is possible to assign a form of field technique
of a special kind to the calculation of the various characteristics of a
metal, averaged over the position of the impurity atoms. The averaging
amounts in our case to a pair-wise averaging of the scattering on similar
atoms, each of which can be associated on the diagram with a dotted
line, joining two crosses. In the matrix elements aline carrying a momen-
tum ¢ corresponds to a factor n|u(q)|?, playing the role of D-function
for the dotted line. At the vertex from which the dotted line starts there
is no change in the frequency of the electron line. It is extremely im-
portant that a small contribution is yielded by a dotted line that em-
braces a vertex at which a large change of momentum of the electron
line oceurs (g ~ ;). In particular, it is for this reason that we can neglect
the diagrams with intcrsecting dotted lines. The order of relative small-
ness of such diagrams is 1fp,d < 1.

3. Electromagnetic properties of superconducting alloys

We now apply this method to an investigation of superconductors
containing impurities. We shall consider the case of arbitrary tempera-
tures right away. We write down the equations of the superconductor
in the field of the impurities:

2

{im—|— 217m +,u—;2 u(r ——ra)} G (r, ") AT L (r, ) =08(r —71'),

{—iw+ %w—.’ruv—ra)}%:(n r') — 4%(r) 8, (r, ') = 0.

As above, we are naturally only interested in & and §* averaged over
the impurities. In order to carry out the averaging, we need to expand
all the Green functions in scries in powers of the potential of the inter-
action with the impurities, similar to the equation (39.3) (see Fig. 103).
It has to be borne in mind that the gap 4 (r) and A*(r) also varies, gener-
ally speaking, on introducing the impurities. This could considerably
complicate the diagram technique, since, by virtuc of the condition
A(r) = |g]| & (z, ), the corrections to 1, must themselves be determined
from some integral equation. Nevertheless, it turns out that, as a result
of the averaging, A(r) = 4,, and all these corrections vanish. It would
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be possible to prove this directly, by investigating the structure of the
correction to A(r). We shall assume this fact in advance, however, and
take A(r) =4, Our assumption will be confirmed later by the final
result, in accordance with which all the quantities of the type & (z, )
remain unchanged on introducing non-magnetic impurities. Thus the only
difference as compared with the above treatment lies in the fact that
the supcrconductor is described by three Green functions — the fune-
. tions &, § and F*. This circum-

7, .. 7, L stance leads to some modification

AU SR of the diagram technique. This cir-
Sy 8 cumstance causes us to modify the
Fig. 106 diagram technique. It is easily seen

that, in the present case, the modi-
fieation is exactly similar to that of § 35 and amounts to the appearance
of - and Ft-lines in the diagrams for & and, similarly, of &-lines in
the diagrams for § and §*.

The Hamiltonian of the interaction with impurities contains the opera-
tor product 3. When an impurity vertex is included in an electron line,
therefore, there are two possibilities each for the &, & and §* lines.
These possibilities are illustrated in Fig. 106. The result can be written
as

Gz, 2') > Bz, y) Sy, 2') — F (=, 9T (% 2),
Ft(z, ') = F* (=, ) By, ') + G(y, 2)F (%, =),
F(x, 2') > Gz, )T, 2') +F(z, ) B (2, ).

Instead of (39.3), we have the following equations for the functions &
and §t:

G(p-p'; ©) = &O(p)d(p — p')

L

T

[6°@) [up —p") TETTTIG(P", ', @)%
—§00) [wlp —p) TG (P, p; w)d3p”} ,

(39.18)
TP, p's ) =F ) (p — )

+ 5 {57 ® [ulp—p) T EPTIG T, p; w)dp”

(2m)°
+ GO(—p) [w(p—p") T SPIOFE (P, p's ) AP
(39.19)
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In principle, it is necessary to look for an equation for & (p, p’; w) also.
For a pure superconductor, FO(z, ') = F+@ (x, 2') in the absence of
field. We shall not dwell on the proof, but merely remark that the same
will be true for alloys after the averaging of equations (39.18) and (39.19)
over the position of the impurity atoms.

Elementary methods can be used for cxtending the averaging technique
of the previous section to the case of finite temperatures in regard to
superconductors. When an electron is scattered at a static impurity,
only three components of its momentum vary. The dotted line is thus
associated as before with a factor n|u(g)[%, whilst the frequency of the
electron line at the impurity vertex is retained. All the estimates remain
in force, enabling us to neglect the intersection of dotted lmes, as also
diagrams in which a dotted line embraccs a vertex with a momentum
transfer of Fermi order. What are important for these cstimates arc the

PR Pty =~ "_-\

. e 4 e -} + >

Fig. 107

properties of the Green functions of the normal metal, for which the
superconducting transition temperatures are insignificantly small. The
equations for the averaged functions &(p) and F+(p) are illustrated
schematically in Fig. 107. Their structure is clear without further ex-
planation. Notice that,from the diagramatic point of view, the equations
of Fig. 107 are similar to the equations of § 35 (see Fig. 96) for a system
with electron-phonon interaction. The difference lies in the fact that,
in the diagrams of Fig. 107, there are “zero” lines of all kinds:

& (p), 3 (p) 2nd F(p).

The system of equations of Fig. 107 can be reduced to a very simple
form by using the explicit expressions for the functions G® and §+©
of a pure superconductor:

(o —E—B)G(@) + (4 +FHF @) =1,
(o + &+ G_)FH () + 4+ F2)G(p) =0,

where
8o = g/ 122 = PIFB @)D,
§i = gopf 14— PIE* @)D, (89.20)

G_.(») =6, (—p)
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(we have used the notation p’ = (p’; w)). The solution of the system is

(it is shown beclow that @, = — ®_,)
G(p) = — io—Gotbé
(o —Gu)? + 52 + A+ e so21)
&+ (p) = 448 o

Co— G2+ 8444 %+)2

Substitution of these expressions in (39.20) yields two equations for
®,, and FF. We see that, as before, 6, contains a constant term, denoting
the additive correction to the chemical potential. This term does not
depend on the temperature and is due to the integration over d3p’ re-
mote from the Fermi surface. The term is thereforc the same as for a
normal metal:

N d&
Sy =< - U —py|E S .
" (27t)3f [u(p —P)] £
After subtracting this term, we find that the remaining part of @, is

determincd to the same accuracy as §¥, as is clear from equations (39.20)
and (39.21). Hence
B _ 32,:
io  1°
We introduce the notation
A=A4+FE =4y, iv=io—0,=ion,.

We now obtain for the function 7, the equation

Nw
s [
the solution of which is
1

27 V(,,z:jz ’
Hence the functions @ (p) and §t(p), averaged over the positions of

the impurity atoms, can be obtained from the functions for the pure
superconductor by the substitution

{o, 4} > {01, An.}- (39.23)

It is easily shown that, as for the case of 2 normal metal, these functions
imply, in the coordinate representation, multiplication of the zero-order
functions by e~B2, Tt follows from this, in particular, that

= MI%-‘- (%, )
is the samc in an alloy as the A for a pure superconductor. Since, as we

saw in § 36, the thermodynamic functions depend only on 4 in a super-
conductor, we have now justified the assertion made above, that the

e =1+ (39.22)
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thermodynamic properties of a superconductor do not change when an
impurity is present, provided the concentration of the latter is suffi-
ciently small(}).

We return to the question of the temperature dependence of the depth
of penetration by a weak static magnetic field into a superconducting
alloy. In accordance with (37.10), the expression for the eurrent density
j(r) in the approximation linear in the field is

2
i) =25 T S (0= Voheor [ [Bulr, D (A, V) G, 1)

Ne2
+ Sl ) (AD, VTS (', DICT——— A(r),

where, however, the functions &, (r, r’) and §I (r, ') include the inter-
actions with impurity atoms. On averaging this equation over the posi-
tions of the impurities and Fourier transforming, we can write the kernel
Q.5(R) as follows:

Ne2 2e2T , P ,
Quplh) ==~ 0o + 5 s & | Po P (20, L) (3924

(o, =p' 4 k/2, k = (k, 0)), where ITV(p,, p_) is the Fourier com-
ponent of

H(l)(x —¥%Y— Z') = __;'(Vy - Vy’)y’—>y
X [6( ¥) 6 2) —§ 7, )T (@ 9)];
= (27l 6 w:%;_ffn(l) (p+= P_)

D% e’i(p +..x~—y)——im+(1x-—ty) ei(p_-y—xr)-aiw_(ry—rx:) d3p+ d3 .

n® (x —y,y —a')

As in the case of a normal metal, the average of the product of two
Green funetions is not equal to the product of the averages. When carry-
ing out the averaging over the positions of the impurity atoms, it is

(1) It can be shown that this deduction is only true up to terms of order
~1jowpt ~ 1078 cm/l (see (32.2), (84.37)). In the more realistic phonon model, a
frequency cut-off occurs, and such terms no longer arise. The remaining results are
the same in both models.

It should be noted that in an anisotropic superconductor the thermodynamic
properties depend in the impurity concentration. The variation of 7', has, for
instance, the form (see [78], [79])

T, 7 A2

Teo 8Tyt [Z*z“

where A and A2 denote the averages of A(p) and 42(p) over the directions of the
2

1—

N 1
—l], if Tm7< 1,

4
momentum. In all known cases T 1 is of the order of magnitude of 10-2
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again necessary tosum a set of diagrams. Since superconductivity only
distorts the Green functions close to the Fermi surface, the necessary
diagrams will be of the “ladder” type, as in the previous section. The
presence of three different Green functions in a superconductor implies,

Ak

however, that the equations are rather more complicated than (39.12),
which describes the summation of the diagrams of Fig. 105 in a normal
metal. It is clear from Fig. 108 that, to determine IIW(p,, p_), we have
toknow three further quantities, thatdiffer in the diagram from IT®(p,,p_)
by different directions of the arrows on the electron lme. Each of these
quantities corresponds to a special combination of & and Ft:

% (z —y,y —=)

Fig. 108

; (Vy - Vy’)y’—)y [%+(x’ y,) ®(y’ CIJ’) + ®(y7 Z) %+(y,1 xl)]’
o®(z —y,y —2)
= _% (Vy - Vy’)y’—)y [65@: 13 @T(xlr .7/') - %_F(x’ yi%(}/: x,)] »

%@ —y,y —a')

= — 5 = Pylysy [B@ 9T @ 2) + F (@ ) O, 1))

Hence, instead of the simple equation (39.12), it becomes necessary in
the present case to solve a system of four equations for the Fourier com-
ponents II(p,p_) (i=1,...,4).

We introduce the motation

Ay =-"_
(@) (27)3
The principle of construction of the equations in clear from Fig. 108.
For instance, we have:

P, ,p_) = p{G(p,)G(@_) + F@)F (p_)}
+ G(p,)G(p_) AV (o) — FH (2, )8 (p_) AP (w)
—F(@)F (@) AP (0) — G(p,)F(2_) AP (w).

The remaining four equations are similar. Substitution of them in (39.25)
leads to a system of equations for the A (w). We shall not write it down

[|uip —p) 2 OO, p)a% . (39.25)
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in full, since it can bec solved in the general form only in the case of
spherically symmetric scattering. We are not interested in the solution
for arbitrary relations between the functions. At small concentrations,
the properties of a supereonducting alloy are close to those of a pure metal.
We have already pointed out that the majority of the latter belong to
the Pippard or intermediate types. The introduction of impurities lessens
the corrclation radius and transforms the superconductor at sufficient
impurity concentrations to an alloy of the London type, for which the
electrodynamic properties are local. The criterion as to whether the
properties are local or not is given by the ratio betwecn the penctration
depth § and the mean free path for scattering of electrons at impurity
atoms [ (or, what amounts to the same thing, between the characteristic
magnitudes |k| ~ 1/ and 1/l). We shall assume below that the impurity
concentration is such that the alloy has become a London type (|k] 1 < 1).
In this situation the above-mentioncd system of equations is greatly

simplificd. We can neglect k(py= p_) in M (p,, p.); it turns out that
now:

AN () = — A% (w);
A®(w) = A (w)
and

AP(w) = p.1M(w);
A (w) = p AP (w).

Hence

% (p, p) = p{&*(®) + F2@NIL + AV ()] — 2P 6 (2) F*(p) AP (w),

(39.26)
and the system of equations for the A®(w) hecomes
AP (o) = [62 + T L + AP(@)] — 26,55 4% (),
AP(@) = 203, §5 [1+ A0 (@)] — [¢ + §5*1 4P (@),
where
o n o A%p
&2 = u(p —p)EG&(p)p'dPp = —— F — —,
PO, = g/ 18 —PIFE(@)P wrod TAT
PEE = S f |ulp—p)FE @) Py = B
(27) 17,70 () 0? + 42)
P tAwp

¥ ="ﬂr7 N 12t ’ ’d3 it SO
PEBu=(g s [ lu(P—PIFE )G (2P dmy0 (V? + A9
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The solution leads to the following expression for AY(w) and A® (w):

A(l)(w) = 4 [ 1\’
20t + 49 (Vo F 2+ )
=Y
A9 () = idw

21, (w? + 42) (Vw2+A2+ o )

Substitution of these latter into (39.26) and substitution of ITM(p, p)
into (39.24) yields the following expression for the kernel @(k):

m

2

Az 24% w21, 1
(1 st ) o+ el 6 T ]
(39.27)

(we have used the notation #,, =1 (27, Va:”?A_z)"l)- Here, as
in § 37, we again encounter a formally divergent integral. On the same
basis, in the first place we must carry out the summation over the fre-
quencies. After regrouping the terms in the curved brackets into the
form £ + (w? + 4% 75, — 2w27ﬁ,, we use Abel’s transformation, which
generalises for scries the principle of integration by parts. In fact,
k k-1
n‘;—-‘l (B, — B, _)u, = Byu, — Byu, —n‘;‘-:l (U y1 — u,) B,.

On applying this to the scries

mﬂ' 1
T /\ T 1 7 av 1 N 3
LSBT @ TR
where

B,=02n+1)aTl = w,
B,— B, ,=2=T,

we can formally cancel the divergent terms in (39.27). We get after
this:
Ne? i 1
Q = ConTAE N
m

7‘1:1 (wz +A2)(WA—2+ 1_)

(39.28)

2Tlr
Only the “transport” time between collisions enters into this formula.
We have for the penetration depth &:
1

l/4nQ.

6:

Q.F.T. 22
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When 1jz — 0, the formula transforms to the usual London formula:

m
o=V

where NV is the “number of superconducting electrons’.

In the opposite case I € &;, we can neglect the radical in the bracket
of (39.28). The remaining series is easily summed. We obtain as a result,
for the penetration depth of dirty alloys:

1 1
o)/ A
T Ao tanh 2—1—,"

where o is the conductivity of the normal metal.

d



CHAPTER VI

TRANSPORT EQUATION FOR EXCITATIONS
IN A FERMI LIQUID

§ 40. NON-EQUILIBRIUM PROPERTIES OF A FERMI LIQUID
1. Introduction

In the present chapter we shall show how one can apply the methods
described in this book to transport problems. It is clear from the foregoing
that a study of non-cquilibrium processes, at least in the approximation
which is linear in the external perturbation, requires in principle the ana-
Iytical continuation with discrete Matsubara frequencies on the real
axis. We gave a detajled example of this method in Chapter VII for the
case of the electrodynamics of superconductors. At the same time, the
procedure for the analytical continuation is not a well-defined one and in
each separate case, when we are dealing with viscosity, heat conductivity,
electrical conductivity, and so on, we must, generally speaking, start
afresh. Moreover, the determination of these quantities may require nu-
merical calculations which in a number of cases may be completely im-
possible, since one requires for the analytical continuation the knowledge
of the exact analytical behaviour.

For the reasons given a moment ago it would be useful to obtain in
those cases something like a transport equation for the excitations or
particles, in which this step — the analytical continuation — already had
been carried out. At the present time there exist rather many methods
leading to a solution of this problem for different physical applications.
It is not expedient, in our opinion, to give an exposition of all these me-
thods in the present book since the problem of writing down a transport
equation is, apparently, a very definite one. We shall consider hcre in
detail the derivation of a transport equation for a Fermi liquid, given by
Eliashberg [75], that is, the case of low temperatures and strongly inter-
acting particles.

Let us now turn to the derivation of a transport equation for a Fermi
liquid. We shall once again write down the transport equation (2.20) in the
phenomenological theory:

on (3_n 88) (3n os

7+ (o) +(opoa) = 10 (01

339
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where the collision integral I (n) has the usual form

_ d® p, d®p; d3py C1r onia
I(n) = ——Trd’Trd;f @) |4(1,2; 1, 2|

X [y 79 (1 — m7) (1— mg) — (1 — ny) (1 — mg) mymg]

X eyt 22— & — ) 0(py + Py — PL—Po)-  (40-2)
According to the basic assumption (2.7) in Landau’s theory of a Fermi
liquid, the energy of the excitations depends on the distribution function.
It is therefore very important to bear in mind that the energy conserva-
tion law in (40.2) is only satisfied for the true excitation energies which
correspond to the complete distribution function. This feature appears
particularly distinctly when we write (40.1) in a linearised form. The
linearisation of the total distribution function can be realised in two ways:

(8) m=mole)) + 8n;  (b) n = mgle) + &’ (40.3)
Here n, is the equilibrium distribution function in which we substitute in
the one case the unperturbed energy &, corresponding to total equilibrium,
and in the other case the true energy value corresponding to the distri-
bution function n. We applied the first method in § 2 when we considered
the problem of the existence of zero sound; this was convenient as long as
we neglected the term involving the collision integral. According to (2.7),
the following relation holds between éz and dn’:

’ anO d3p ' s
Onyy = O, — Ze Tra’f(?n)'sf(P"’ P'd’) dngye.
We now linearise the transport equation itself. Let V (7, f) be the potential
energy for the excitations in an external field. If we write
on, ,  Ong

6n=—é;'zp, =—é;<p,

we obtain for the left-hand side of (40.1) in the Fourier representa.tion

(&) —"’(w—(kv)) "Pp(k: w) ——’l:(k~’l7)-2 (2n)3f(P,P) oe I'lpp (k’ (D)

—i(k-v)V (E, w)]——

(b) (zw ——(k ’U)) (pp(k Cl)) —iw - 2f(2 )3g(P P) 3 g (pp (k! w)

—iw V(k, w)] o (40.4)

The functions g(p. p') and f(p, p’) are connected as follows:

Q'I .
0o, 2) = 10, 0) — 2 [ S 4, P 00" p). (409
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The right-hand side of (40.1), the collision integral, has only its usual and
convenient form, if it is expressed in terms of ¢, as we mentioned earlier:

1 d2p, d3 p; 43 p,, , o
I(n):TTrGETrG;/‘%__leA(L 2;1’2)12

X gy g (1 — ngy) (1 — nge) (¢1 + P2 — 1 — P2)

XO(e; + & — &1 — &) 8(py + P2 — Py — P2).  (40.6)

In what follows we shall derive the linearised transport equation (40.4b),
(40.6) from a microscopic theory. As far as a derivation of the complete
equation (40.1) is concerned, such a derivation is not yet known and it is
not clear whether such a derivation exists at all.

2. Statement of the problem

Let the equilibrium be violated under the influence of an external field,
corresponding to the following term in the Hamiltonian of the system:

H;\ () = p{-‘a Vo(k,t) a’;:—l/zk,c Up11/2k,0+

For the sake of simplicity we shall assume that the field does not act
upon the spin. If the field varies slowly both in space and in time, the
average of the quantity

Fy(k,t) = af 32 (1) Gpyjone ()
is the Fourier component of the quasi-classical momentum distribution
function F,,(r, t) of the particles.

According to (6.28), we can express the operator F~p (k, t) in the inter-
action representation:

F(k, t) = 871(t) F,(k, 1) S(0),

where in our case
S() = Teprl 'Z, -, Vy(k, 7)o, +1/2k Y —1/2k d'f}
In the approximation which is linear in ¥, we have
Fo(k, t) = (F,(k, 1)) = — f de vKRp (k,t —7) Vy(kr),  (40.7)

where
KRp (k,t —1)=i([a], o +172k (T)s O —1jon (T)] s “p 1726 (€) @y 1722 (£)) 6 (6 — )

is a retarded function. The derivation is completely analogous to the deri-
vation of the expression for the current in a superconductor given in
§ 37.2. We noted then that there is no direct method for calculating the
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components of KF . (k, w). The thermodynamic technique enables us to
study the quantity X, ,~ (k, ,) which through the relation
1 17T .
111,11’ (k, w,) = 2 _'£/T dz ¢ 111,11’ (k, 7)
is connected with the thermodynamic “causal” function

Kk, 7, — 1) = <Tr{a’11'+ll2k (72) ap’—l/Zk(T2) a’IJ—l/2k (7y) Ap 1172k (Tl)}>-
The relation between K, . (k, ) and X, - (k, ©,) is established through
the fact that they are both values of one and the same function which is
analytical in the upper half-plane of w; the first one in points on the real
axis and the second one in the points v = i w,,.

The expression

Koyl 0) = — T X (P + %k) G (P - -;‘ k) (40.8)

2
corresponds to the diagram for X, ,» (k, w,). Fig. 109 shows the notation
for the momenta in the vertex part. We need, according to (40.8), to
know the analytical properties of the vertex part of the analytical con-
p+k pak tinuation of X, . (k, ). Let us now turn to that
problem. First of all, we note merely that the funec-
tion F,(k,t) is non-vanishing in a wide range of mo-
menta, and not by any means just in the immediate
vicinity of p;. We cannot therefore interpret F, (k, ¢)
as the distribution function of the excitations, and it
is not possible to write down for it any equation simi-
lar to a transport equation. We shall, however, see
that at a certain point we can introduce a function
dny, (k, t) which is non-vanishing in the vicinity of the Fermi sphere and
which is connected with F,, (k, t) through an integral relation. The particle,
momentum, and energy currents are connected with dn,(k,t) through
the same relations as in the phenomenological theory. We can thus con-
sider dn, (k, t) as the non-equilibrium part of the distribution function of
the excitations.

X {(2n)3 b+ T 3T (0P 06+ k) 6(p — k)}

Fig. 109

§41. THE ANALYTICAL PROPERTIES OF THE VERTEX PART

The vertex part 7 (p, p'; k), defined in the temperature diagram
technique, is given on a discrete set, of its arguments ¢,, &, and w,. We
shall consider 7~ as a function of one of its arguments, say ¢,, while the
values of the other arguments are fixed. The problem then arises how to
define a set of functions of a complex argument z such that each of them is
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analytical in some region of the z-plane and that they are all equal to
J (g,) in the points z = ¢¢, which lie in that region. It is known that for
the Green functions such analytical functions are G®(z) and G4 (z).

It is convenient for a study of the vertex part to use equation (16.5).
which connects it with the Fourier components of the two-particle Green

function Gf,;(P1, Py; P3, Pa):

G(1,2 3,4 =<T{pM) p(2) ¥ (3) y' (4.
We use for it a spectral representation. To do this, we note that the
chronological product splits the function in twenty-four parts corres-
ponding to the different permutations of the y-operators. These permu-
tations fall into six cycles with four permutations in each of them. The
contribution from the cycle generated by the order (1 2 3 4) is equal to

BT (201202505) = X (m [y ()| m) <y (1) [ 25 <P [y ()|
X (s |yt (rg) | m)
X exp{l,,(v; — 7,) + B, (vy — 7)) + Bp(vy — 7o) + By (ry — 75)}
X[e™EmlT 6 () — 15) 0(zp — 73) O(75 — 7,)
— e BT G(z, — 1) O(75 — 74) O(z, — 7))
+ e BT O(ry — 74) O(y — 7y) O(r; — 73)
— e BT G(r, — 1)) O(r; — 7o) O(, — T5)]1- (41.1)
All energies E, are here reckoned from y N,. Of the four differences v, — 7
only three are independent, for instance, t; = 7, — 7y, §, = T, — 75, and

t; = 73 — 7,. If we expand therefore in Fourier series in all four 7;, we

obtain the expression

1
1 . _ 1 ’
@51 (81’ £a3 &35 84) - 7 6el+s.—e,—s, @51 (‘E’ £, Cl)) H

where we have chosen £ = g,, £’ = g, and w = ¢, — &, as independent
variables. In terms of these variables we have

Gl (e, ¢, 0) = 3 A(mnps)
mnps

| e FnlT
“\E, ZE, —c—w) (B, —B, —t—¢ —w) (B, —E, —¢)
e~ EnlT
(B —E, e+ ) (B, — BE,—¢&)(B,— E, + o)
e— ng
T @, B, et 0 B, —B,+) (B, — B, F ¢+
o~ T 41.2
—(ETm_Es_I"'E)(_E'n_Ee_w)(E:p—Es_'E’)}’ ( .)
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where we have written for the sake of simplicity: &', ¢ = (2n + 1) =i T,
w = 2mniT. The quantity 4(mnps) is the product of the matrix ele-
ments in (41.1). We get similar expressions for the contributions from the
other cycles. One easily obtains these expressions from (41.2) by simply
permuting the indices. We merely note that apart from the denominators
in (41.2) new denominators occur of the form B, — K, — &' + &.
Considering ®] (¢, ¢’; ) as a function of a complex argument z ~ ¢,,,
we see that the imaginary part of the energy denominators in (41.2) vani-
shes when Im z equals ¢,, 0, — w,,, or —¢&,» — w,,. We can divide the
z-plane into parts (see Fig. 110) such that none of the denominators

r |
| ——Im(z—€4)=0
-—E.—-}————-—-————————-——Im z2=0
._.III I —_ ——Im(z+e,)=0
__]Y__i_ ____________ Im(z+eytwFO
pra

Fig. 110

vanishes within the limits of each of them when zis varied. We note that
in I and V there is an infinite sequence of values z = i¢,. The analytical
continuation in those points is thus unique. We shall at the same time sce
in the following that the non-uniqueness of the analytical continuation
in a finite number of points in the regions 1I, ITI, and IV does in no way
affect the evaluation of physical quantities.

Turning now from the study of the study of the dependence of 7 on
one of its variables to the general case, we can easily write down the condi-
tions determining the boundarics of the regions of the analyticity of any
of its variables:

(@) Imz=0, Im(z+w) =0, Im2z' =0, Im(z' 4 w) =0,
) Imw=0, Im(z —2') =0; (41.3)
c¢)Im(z 42 +w) =0,

where z, 2’, and w correspond to the frequencies ¢, ¢,., and w,,. Conditions
(41.3a) determine at the same time the limits of the analyticity of the
Green functions occurring in the definition (16.5). We shall return to this
problem later on, but now we shall show only how one can by a direct
analysis of perturbation theory diagrams verify that the vertex part
possesses all the singularities of the two-particle Green function (41.2).
The information obtained about the analytical properties of the vertex
part is sufficient to change the summations over n and n' in (40.8) to
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integrals. The w,, remain here free arguments, and later we must lock
for the analytical continuation for them into the upper half-plane.

We can depict the regions of the analyticy of I'in z ~ ¢, and 2" ~ g,
for fixed values of w,, = 2maxT (m > 0) in the Im 2, Im 2’-plane, since

Imz'
B o (2, pas
I\N ’
\\ // Imz
\\ o 7/
7
N\ 7
\\ 7
(3,2) I )( m | o2
! N\
1 yd N
. I N
v N\
e ?\\ I
33 | (2,3) I ¢,3)
Fig. 111

the boundaries of these regions depend on the imaginary parts of the
arguments. In all there are sixteen regions (Fig. 111) each of which corres-
ponds to its own analytical function.

In (40.7) we consider / together with the Green functions corresponding
to its limits:

G(en + o) G(6)) T (e &5 wp) Bley + @) Gley).  (41.4)

(Here and henceforth we shall omit the dependence on the three-dimen-
sional momenta whenever this can not lead to confusion.) The vertical
and horizontal lines in Fig. 111 are at the same time branch cuts for the
Green functions of (41.4). Each of the nine regions formed by these lines
corresponds thus, after the analytical continuation to its own combination
of Green functions. As we assume that m > (, there are three pairs of
Ieft-hand limits:

(1) R le+w)GF(e);  (2) GFe+ )64 (e);  (3) G4(e+ w) G4 (e), (41.5)

and the same pairs of right-hand limits. Numbering these pairs asin (41.5),
we see that we can denote the above-mentioned nine analyticity regions
and the functions I corresponding to them by (s, k), where i, k = 1, 2, 3.
The diagonal lines in Fig. 111 determining the singularities in the trans-
ferred frequency z — 2’ and the total frequency z 4 2z’ 4 w, divides some
of the (i, k) regions into parts which arc distinguished by Roman numer-
als. For instance, I'}; corresponds to that method of analytical continua-
tion where all external lines are associated with retarded Green functions
and here Im (z — 2') > 0.
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We shall now obtain expressions for the jumps in /" on the diagonal cuts
in Fig. 111. Let

s&,0<pu; |p—mpl P —p| €P0; |P—P|~p
lP‘l“P'lNPO; lkl<po-

In that case we can for the evaluation of the jumps in I  use a method
similar to the one used in § 19 to evaluate Im X' () for small . Indeed,
p+k  p+k the main contribution to the magnitude of the discontinuity
will come from diagrams containing in the appropriate cuts
the minimum number of lines. Thus, the jump when the sign
of Im(z — 2') changes is first and foremost connected with
cuts such as those of Fig. 112. Let us consider one of such
L diagrams on Fig. 112. The vertices I and I can, in first
o o approximation, since the range of frequencies important for
Fig. 112 the discontinuity is small, be assumed to be independent of
the frequencies. Proceeding as in § 19, we can replace the
summation over the frequencies in the matrix element of Fig. 112 by an
integral over two Green functions:

(41.6)

L

F1F2T —},: @51 (En”) @52 (En" + Ep — 871.’)

f de’”’ tanh & 5T

—Im GR (8”) G2 (‘5” + En — ﬂ’)

I

+ tanh —G (e — &, + &) Im GR(s")] INr,. (4Lm

We sec that expression (41.7) has a discontinuity when Im (z — 2’) passes
through zero which equals

+ oo

(18" 8" + 8’ . II
ETAY A f 9 [ta.nh o — tanh 9 T]

— oo

X Im GE (") Im GE (¢ + & — &').

Considering in the vertex part diagrams all cuts of Fig. 112 and summing,
we can clearly replace I3 and I, by the complete vertices. Finally, we
have

A —e)=I( —e+i0) —I'( —e—1id)

d
=2f(9 p)il’wﬁ,‘(p,pﬁp —0; 05 P) Lope (P, P's Py + P — P, D)

[tanh 1 —I; ; % __{anh k—‘l Im G¥(p,) Im GE(p, 4 p’ —p). (41.8)
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The discontinuity when Im (z 4 2" 4 w) changes sign is connected with
the diagrams of Fig. 113. Procecding similarly as before we get

dolet+ & t+o)=Te+e+o+id)—TI'et+e +w—id)
f(zpl Faﬁw(P’P P+P ‘pl!pl) vﬂa(pl'P+p pl’p p)

X {tanh Ny tanh & Z - _?78 ImGR(pI)ImGR(p +2 +k—p).
(41.9)
The vertex parts occurring in these expressions must for- ptk o

mally botaken at e = &' =¢" =0, p = p' = 9" = p,, and
k = 0. Strictly speaking, for Fermi quantities, the vertices
are defined in the points (2n 4+ 1) n7's. We implied this
dependence only so that when |p — p’| and |p + p’| are
not small compared to p, all vertices vary slowly when the
frequency varies by an amount of order w, 7' € u. Because
of this, all quantities I" depend only on the angles between P Pk
the momenta and this enables us as in § 19 to integrate over Fig. 113
& = v(p, — »,). The result is

I 8 a P dQ’ o ,
Al—-smh 27 2712:72_[ ,va,syl oL +1 =1l -1

w | — de, L
vosh (/2 T) cosh [(g, + & — ¢)/2 T]
and

et €& +w a?p®

- dQ’ 4
Ay = — sinh Y 27302-[—47;IFM3W|26(“+1 — 1, —1)

de,
x fcosh (8,/2T)cosh[(e +¢&" + © —&)/2T]"

We can easily integrate over & :

Mie — )= (¢ — ) 4Gy tp. ) l
(41.10)
Aple 4+ & +w)=—-— - (8+8 + @) A%.(P, P,
where
AQs (P, P'])
2512 dO , , o ,
— | [ et 2+ = 2 OF el 8 1] =,
A2,.(p, P') (41.11)

dav

dQ ,
[a p"}f ‘II",ﬁ,;,(p p.p+p —pup)fo(l+V —1L]—1).
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We now draw attention to the fact that one and the same diagram
cannot contain simultaneously the two types of cuts depicted in Fig. 114.
The quantities A, and A4, are thus determined by diagrams which do not
have cuts of the type 114a. In these diagrams we can split off two different

ptk  p+k p+k p’
p+k p'+k
P P’
4 p Hk
(a) (b) P © P
Fig. 114

groups possessing, respectively, the cuts 1145 and 114¢. The quantities
Iy, (Fig. 111) will play an important role in the following. What we have
said so far enables us to write down the following expressions for these
quantities:

A

Féz(s» &5 0) = Ip(e &; ) —1‘“%[4]1(8' —&) —dy(e + € + o)),
Ilke '3 @) = Tinles €5 @) + 5 [y & — o) + dale +¢ + @]
. (41.12)
I’fgl(s,s';w) = Tg(e &5 w) +% [—4,( —&)+Ady(e + & + w)],

TR (e ¢ ©) = Tn(e €' ©) +4 [~ 4, — &) — doe + & + )],

where Iy (e, &'; w) is continuous for Im (z — z') = 0 and Im(z 4 2’ 4 )
= 0.

§ 42. EQUATION FOR THE VERTEX PART;
TRANSPORT EQUATION

We turn now to the solution of the problem of the analytical continua-
tion of the function ¥ (w,,) of (40.8). We shall write % (w,,) as follows:
I(wm) =17 A}-: 1(810 wm)’ (421)

where
K (& ) = B (8,4 w,) B (e,) [1+T X T (&, &5 0,,) &, (6,0 + 0,,) & (en,)] .
(42.2)
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First of all, we change in (42.1) the sum over 7 into an integral. To do
this we use the fact that X(e,, w,,) considered as a function of the com-
plex argument z~ g, has the regions of analyticity shown in Fig. 115. In-
deed, the intermediate cutsin the diagrams for X (¢, 0,,) depending on &,
contain either simply ¢,, or ¢, 4 o,,. Let K,(2,0,) (i = 1, 2, 8) be

Imz=0

______________ Im (z+w,)=0

Fig. 115

functions, analytical in z for given w,, in the appropriate regions of
Fig. 115. Choosing the integration contour such that it goes round each
of the three regious in the positive direction, we can write

+ o
T%‘ X(e, w,) =2171z ; _f de {tanh [K, (e w,) — Ks(e, w,,)]
—|—tanh [K (e — w,, w,) — Ks(e — w,, com)]} . (42.3)

Although the analytical continuation in region 2 is not unique, the choice
of the function K, (e, w,,) does not affect the value of the integral (42.3).

We must analytically continue the functions K; occurring in the inte-
grand of (42.3) into the upper half-plane of the variable w ~ w,,. To do
this we can write for the retarded function KZ®(w):

+ oo

K®(w) = —-4-71” f de{ tanh 5 K, (e, ) (42.4)

+ (tanh j_l’ tanh )1(2 (¢ w) — tauhs—;_Tw Ky (e, w)} .

It is now necessary to express the K, in terms of the I, of Fig. 111. To
do this we change the sum over »’ in (42.2) to an integral:

T : j‘ (en’ s wm) ) (En’ + wm) Y (8"1)

fdz tallh j‘(sn, Z Cl)m) 0‘ (Z + wm) Qﬁ(z)

471 ‘)T

The contour L must go round all regions of Fig. 116 in the positive direc-
tion. Since the integrals over the arc of the large circle vanish, the relative
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position of the branch cuts does not play a role. Writing down the inte-

grals along the edge of the cuts and putting indices on 7 in accordance
with Fig. 111, we see that

1 +°° ’ 7
K; (e, w) = g;(&, 0) |1 + PRy f de"” L,.(e, €'; w) g, (¢', )| . (42.5)

We have here denoted by g, the pairs of Green functions of (41.5) (z =
1, 2, 8), while the £, are connected with the I, as follows:

L1 (685 w) = tanh 5 1’111 + coth Vi fir®— oy, (42.6)
Lg(6,6'; ) = — tanh =T “L 'L — coth & +28 T+ DT k), (429
Ly (8,85 ©) =tanh 57, r;l + coth +2‘€—T+“’ (g — Iyl (42.8)
L6, ; 0) = [tanh 6'2 T“’ — tanh ;—T] Ty (42.9)
Ly (6,63 w) = [tanh 8’2+T‘° —tanh 2%] Ty, (42.10)
Ly, (8,&"; @) = tanh 5 1:]"21, (42.11)
Lyg(e,es w) = — tanht T @ + T, (42.12)
Lo, &5 w) = [coth 5T tanh ] 3
+[coth£—_}#—c the —° 57 ]I’
+ [tanh 5'2+T‘" — coth ‘L;Ti-‘i’] Y. (4213

Equations (42.5)— (42.13) solve the problem of the analytical continuation
of the funetion X(w,,).

Earlier, in Chapter IV, we have already shown that at 7= 0 the
possibility to write down equation (18.9) for the zero-sound vibrations is
connected with the singularity of the vertex part in the variables w and
k. We turn therefore again to a study of diagrams with intermediate
cuts such as given by Fig. 114a:

I = 7,‘.‘: ]"(1) (6-1'15 Eps w-m) @5(57@” + wm) ®(en") F(2) (sn”’ Eps w'm)
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Let £ and £{2) be quantities constructed from §, I'D, and I'®
by means of equations (42.6)—(42.13). Changing the sum over »" to an
integral, we see then easily that the previous expression can be written as
follows:

1 +=
"Q;k(e’ el; wm) :4_712 f de” vegi) (6, eu; wm) gl(en’ w'm) £§Z)(6n’ el; wm)’

(42.14)

Imz2’=0

________________ Im{z+w,)=0

Im(z’+e +w) =0

where here and later on a summation over I is implied. Because of this
property we can write for the complete quantity £, an equation which
is the analogue of equation (18.3):

Ly (p, P'; k) (42.15)

LY@, '3 1) + 5 [ ?2 p)4 LD (p, 9”5 k) g1 (2”5 k) Ly (95 05 )
in which £(® corresponds to the analytical continuation of the diagrams
which do not have the cuts of Fig. 114a. Let us consider in (42.15) the
different cuts of (41.5). One sees easily that only the combination g,= GRGA
gives a contribution from the near regions when we integrate over dp’
The other combinations, g, and gy, are only integrated over parts of
momentum space far from the Fermi surface and over large frequencies.
It is at the same time clear from equations (42.9), (42.10), and (42.13)
that the structure of the quantities ., is such that they decrease expo-
nentially when we go away from the Fermi surface. Only the near regions
are therefore in fact important in the integrals containing g,.
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For small k and w the dependence of the vertex parts on k and o
is mainly taken into account by considering the integrals over the near
regions, and is thus determined by the cuts of g,. It is therefore expedient
to rearrange equation (42.15). Let us consider separately the quantity
Ly, the indices of which we shall drop in the following, and let us split
off from it the part £ which consists of diagrams containing no cuts of
g»- We can then write down the equation

~ d4 " 173 1
L@ k) =Z(p P )+— P B k)@ k) L@, s k),

(2 n)t
(42.16)

in which we can integrate over &' = v(p"’ — p,) on the basis of what we
have just said:

2(p '3 B) (42.17)
g i 40" o'k
= L(p,p'"; k) +* 2, [ de“/ 47 k) !(2p( ’?k))
where
Q@ k) =0— -k +ilyE+ o)tyE] (42.18)

The remaining quantities .0, can be expressed in terms of £ and the
parts 24 which do not contain the cuts of g,. This connection is depicted
graphically in Fig. 117. Substituting the appropriate expressions into
(42.5) we can express the funetions K, (¢, o) in terms of £ (i 3= 2; 1 5= 2):

dep
K (e, w) = K{® + 2g(s, w){ @74,2‘0’(20,20 k) g.(p', k)

[1 +_fd£n£(0)(pl’ pll; k) gz(P", IC)]

diy’ ds n .
@t (25)4 L0, 7' 1) go(0, 1) L, 275 B) G2 (07 1)

\: + _ _/dslll .,Q(O)(_'p”, plll, ;IC) gl(p'”, IC):|} , (42.19)

1 I I
K,y (e, w) = 2¢g,(e, o) {1 +9-7 / de’ LD (p, p"; k) g,(2", k) (42.20)

+ / g—ﬁ(p,p s k) go(', k){1+ f de” Q9 (2", p"; B) g1 (2", k)]}

Here K{® does not contain the cuts of g, and is thus independent of @
and k. By definition, the quantities .2 do not contain the intermediate
cuts of g,.
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Let us split off in an arbitrary diagram for £ the last cut on the
right of g, (I & 2) (Fig. 118). The vertex .22 separating this cut and
the outer cut of g, contains according to (42 9) and (42.10) a factor
tanh[(e’ + w)/27] — tanh (&'/2T). It is convenient to introduce quanti-
ties I'Y) through the definition

27 2T

{§k¢=2%+ ik + %a%a%
K#2

Fig. 117

L9 =T [mnhe‘“Lﬁ — tanh— } . (42.21)

Similarly, in correspondence with (42.11) and (42.12), we put for £{:

4

&
L8 = I'fY tanh o7 L = — I'Y tanh 2+1’w' (42.22)
m
s le
i L 2
Fig. 118

Using these relations and substituting (42.19) and (42.20) into (42.4) we
get the following expression for KX, (w, k):

& — LA g to o
K,y (o, k) = 7 | (2 @'V (p, p'’') |tanh 5T tanh ° o7
X g5 (0", k) @2 (p”, p') + e @ p, p")
2P (2 p) @y @
&'+t w " (42.23)
X [tallh ——27 — tanh 9 TJ

X go (P, ) L, P K) 928, B) QU™ p) + KO,
Q.F.T.28A
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where

AP, p") = (22)° 5(p — p”)4——f fdetmﬂlzT

X[, (p) TR (0. 2") — g5(p) I'Q (2, P15 (42.24)

Y 7 ’ 1 ’ g
QP (", p') = (27)° 6(p" — p) +,— [ d¢' tanh .

X[g (') TR (2", ') — 930 T3 (", 7)),
while K@ does not contain the cuts of g,. Thanks to the factor
tanh ([&¢” + ]/27) — tanh(e”/2T) the integration over & in (42.23) is
limited to values £” &~ w, T'. It is clear from (42.13) that also only small
values of &¢'” are important. It follows from this that also all integrals
over momenta are restricted to the immediate vicinity of the Fermi
sphere. In that region we may neglect the dependence of @ and £ on the
absolute magnitude of the momenta and integrate over &’ and &':

2 H
Kﬁ’pl(w, k)= — gnp;%;[ [da" Qp, p { 2_’;760 tanh 5 T]
1 rr ’ a? pO Q” dQ”,
d ’r d 1?r Q r t h _l_ w t h
X ‘ &g’ de (p, ") |tan o an 91

1 1
’r ln L try K(O) 2.9
X i 5y 2@ P g, @ ) - KO (32.25)

We have here taken into account that, as @V and @® are built, up from
diagrams which do not contain the cuts of g,, we can substitute their
values for w = & = 0. In that case

QY =¥ =g, (42.26)
since one easily sees that IO (p, p') = I'9(p’, p).
Let us now turn to equation (40.7). It is convenient to write the correc-

tion to the particle distribution function which is linear in the external
field in the following form:

Fo(k, w) =[O 4 [Pk, »),
where

(0) EBp’ o
f (k,w):— (2 Eo Vo (B @), (42.27)

as
Dk, @) = — / (95)3[ B KOV, (k o). (42.28)
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Let w € 7. Inthat case we have for the difference between the hyperbolic
tangents in (42.25):

e+ ow & o0nyg
tanh Wi —tallh—ﬁ~—2wa—£,
and
2 dQ 1
EE (b o) — K(0) =2 Po
vy (R, @) — K(0) ) p) 68 .Q(p k)

dQlll ’,’ag(pl III )

{Q(p Pyt [ T Skt )}

Substituting this expression into (42.28) and writing

~ d3 4 ,
Vb, ) = af(zyf)s@(p,p) Ve (B, ),

we determine the quantity dn,, through the relation
L am (a2
fu(k, @) = Zﬁvf 4
n

. d[de Q(p, p') 677’;1'(k1 ), ]}
on,, = 9

P aeo Pp- J

(42.29)

Here dn,, is given by

' 20 [ o’ [, L(p P k) 5
6,”’1’ -Q(P k)l p( )+27'l2 47’!_/(18 _Q( ',k) V (k )]r

Multiplying this relation by Y (p", p; k) and integrating over p and using
(42.17), one sees easily that ¢, satisfies the equation

ilo—(k-0)]g, = — i V,(k o)

. azpo
2n2v

dQl
i / fde L0 3B) g+ 29(8) 7y (42.30)

Let us study now the structure of the kernel £ of this equation. This
quantity consists of two parts (Fig. 119). The first part £ is produced

Fig. 119

by the diagrams which do not contain cuts with two lines g;,. Into the
second part 2™ enter those diagrams which althouzh they do not contain
cuts of g,, may contain various numbers of cuts of g, with ! &= 2. According

23*
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to (42.18), LM is constructed from the quantities 'V which occur when
we analytically continue the diagrams of the vertex part which do not
contain cuts with two lines. We can then write for '@ an expression such
as (41.12) where the magnitudes of the jumps 4, and .4, are the same as for
the complete vertex part. (Bear in mind that 4, and 4, are dcfined by
cuts such as those of Figs. 112 and 113. All diagrams with such cuts occur
in I'M)) Substituting (41.12) into (42.13) we get
£
27 27T

LV, & w) =TV [tanh €+ @ anh } +iL0 (e €;w), (42.31)

1 r — I r
£'(£,£';w)=—l2coth§__f__tanh;— —tanh® :iTw] d,( — &)

2 2T T
(42.32)
1 et 4o & &+ o ’
+§[2coth 4 —tanhzT—tauh 2T—]A2(8+8 + w).

The second part L£® is proportional to tanh ([¢’ - ©]/27) — tanh(&’/2 T')
since according to Fig. 119 any diagram of £® contains an element 22
which contains such a factor according to (42.9) and (42.10).

We can thus write altogether for 2

B, p'; k) = T*(p, p) |tanh :IT“’ — tanh ;T] il (p, ' k). (42.33)
It is clear that we cannot take into account the trequency dependence of
I'%(p, p'). Moreover, we must assume I™ to be a rcal quantity since its
imaginary part is connected with a different kind of real scattering pro-
eesses and the decay of excitations. For small {requencies and low tem-
peratures the imaginary part is small and is basically determined by the
second term in (42.33).

We shall now show that I*(p, p’) is the same as the k-limit of the
vertex part, introduced by us earlier in § 18. To do this, we note that
if we wished to obtain the analogue of that quantity in the temperature-
diagram technique, we should consider 7 (p, p”; k) for w,, = 0. When we
analytically continue this quantity only the I'; with ¢, k &= 2 appear,
which are the same as the quantities defined in § 41, if we put w = 0.
Let us now construct the combinations (42.6)—(42.8). The cuts of g,
disappear in the equation (42.15) for £, (w = 0) (3, k¥ & 2): indeed, only
the term £ is involved with the cuts with g,(e') and this term is pro-
portional to tanh([e’ 4 w]/2T) — tanh(¢'/27) which vanishes when
o = 0. Finally, for small frequencies ¢ and &’ all quantities I, (e, £') are
the same, since the magnitude of the discontinuities on the euts becomes
small.



EFQUATION FOR THE VERTEX PART 357

Writing equation (42.30) in the form

a® pg /‘dgl

t o ,dn ~
—q . vy - . k ’ . 0_ s
ilo—(k-v)]g, —iw = 4:51 (p,p)/ de de’ toV,

_ aph d.Q’/' , , . |
_-27721)[ 47;0 de 'Q(p’l’)%'—zy(ew,,,

we see that its left-hand side 1s the same as (40.4Db), since the relations
found in § 18, especially (18.8), show that the function ¢g(p, p’) is the same
as ¢2I'* (p, ¢'). As far as the right-hand side is coneerned, we must bear
in mind that the quantity .2'(p, p’; k) in (42.33) is dctermined by the
magnitude of the discontinuities ., and [, while for £ the discontinuities
are the same as those of the complete vertex part, being connected with
the singularities of diagrams such as those of Figs. 114b and ¢. For 4,
and .1, we have equation (41.10). Comparing this with (40.6) we see that
the function 67, in (42.29) has. indeed, the meaning of the linear eorrection
to the excitation distribution funetion. There now remains only for us
to show that we can use that function to write down expressions for the
particle, momentum, and energy fluxes which are of the same form as in
the phenomenological theory of a Fermi liquid.

Let us eonsider as an example the particle flux, which, clearly, because
of the isotropy of the system is connected only with the part f* of the
non-equilibrium particle distribution function which is given by (42.28):

" a8
ik wy=| PP

(27!)3 i fp(k w).

Substituting here (42.29) we get

. 13 2
nkm=;/é$wm&mhm,

wherc

13p’
(QP)—/ (2 )3P'Q(P', p) =f((.zf)3Q(p, pHp

(ldp’ 17 ? ’
—p T./‘(Z:-z)4 Loy(p- P") g(2) P’ (42.34)

For further transformations we usc a relation for the rctarded Green
function which is similar to equation (19.2):

dip’ , o P _
W@n——ﬂ—f Lyip,p) 0 HE (42.35)

m o (27)%
It is also a consequence of the gauge invariance of the theory and could
have been obtained either by a direet study of the perturbation theory
series or after the analytieal continuation of the appropriate formulae for
&, (e,)-

Q. F.T.231R
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Near the Fermi surface it follows from (42.34) that

@p) = —m [w; 1} :

ép

Using the definition of the effective mass,
Po_ _, cG1 )

m* op

we find that

m
at) — — .,
@ m¥*

The particle current density is thus connected with én, by the usual rela-
tion:

, "3 '
jk, )= / ((25)—3 7—np—* dny, (k, @).

Let us now turn to that part of the particle distribution function which
is connected with K® and which is determincd by diagrams which do not
contain the cuts of g,. As we can put » and k cqual to zeroin K@, we have

E

. . 1
EO=K(@0) = . [de[K,(e) — Ky(e)] tanh .

One verifies easily by changing the summation over discrete frequencies
to an integration, as we have done so often before, that K@ is the value
of the Fourier component of the function X (k, 7) of (42.2) for w = 0.
Therefore, @ is the quasi-equilibrium correction to the particle distri-
bution function which appears when we take a constant cxternal field
into account in the Gibbs ensemble.

We must in eonelusion once more emphasise that the whole derivation
given here refers only to a linearised transport equation for the excita-
tions.



(SRR VI

10.
*11.

24.

25.

26.
21.

REFERENCES

L.D. Laxpav and E. M. LirsHrTz, Statistical Physics, Pergamon Press, 1958.
R. E. Pe1erLs, Quantum Theory of Solids, Oxford University Press, 1955.

L. D. Lanvav, Zh. Exp. Teor. Fiz. 11, 592 (1941); J. Phys. U.S.S.R. 5, 71
1940) ; Collected Papers, Gordon & Breach and Pergamon Press, 1965, Ch. 46,

(
p- 301.

. L. D. Lanpav, J. Phys. U.S.S.R. 11, 91 (1947); Collected Papers, Gordon

& Breach and Pergamon Press, 1965, Ch. 63, p. 466.

. L. P. PrtaBvsEnl, Zh. Exp. Teor. Fiz. 81, 536 (1956); Soviet Phys. JETP

4, 439 (1957).

. R. P. FeynmaN, Phys. Rev. 94, 262 (1951).
. J. L. YarNELL, G. P. Arnowp, P.J. BEXDT and E. C. KErR, Phys. Rev. 113,

1379 (1959).

. I. M. KuavLaTNIROV, Usp. Fiz. Nouk 59, 673 (1956); 60, 69 (1956). (German

transl. in Forischr. Phys. 5, 211, 287 (1956)).

. E.M. Lirsnrrz, Appendix to the Russian translation of the book by W. KEE-

soMm (see 10) [English translation published by Consultants Bureau (1959)].
W. H. KEesom, Helium, Elsevier, Amsterdam (1942).

L. D. Lanvav, Zh. Exp. Teor. Fiz. 30, 10568 (1956); Soviet Phys. JETP 8,
920 (1957); Collected Papers, Gordon & Breach and Pergamon Press, 1966,
Ch. 90, p. 723.

. L. D. Lanpav, Zhk. Exp. Teor. Fiz. 32, b9 (1957); Soviet Phys. JETP b, 101

(1957); Collected Papers, Gordon & Breach and Pergamon Press, 19656, Ch. 91,
p. 131.

. D. F. BREWER, J. G. DaunT and A. K. SREEDHAR, Phys. Rev. 115, 836 (1959).
. E. C. Kerr, Phys. Rev. 96, 551 (1954).
. A. A. ABrixosov and I. E. DzyavLosriNsgI, Zh. Fap. Teor. Fiz. 85, 771

(1958); Soviet Phys. JETP 8, 535 (1959).

. L.D.Lanpavu and E. M. Lirsuirz, Quantum Mechanics, Pergamon Press, 1958.
. N. N. BocoLyusov, J. Phys. U.S.8.R. 11, 23 (1947).

. K. Huang, C. N. Yane and J. M. LuTTINGER, Phys. Rev. 108, 776 (1957).

. K. BRueckNER and K. Sawapa, Phys. Rev. 106, 1117 (1957).

. K. Huang and C. N. Yanc, Phys. Rev. 105, 767 (1957).

. T. D. Lee and C. N. Yanq, Phys. Rev. 105, 1119 (1957).

. A. A. ABrikosov and 1. M. KHaALATNIROV, Zh. Ezp. Teor. Fiz. 83, 1154

(1957); Soviet Phys. JETP 6, 888 (1958).

. V.M. Gavresgu, Zh. Exp. Teor. Fiz. 8%, 151 (1958); Soviet Phys. JETP 7,

104 (1958).

V. A. BELYAROV, Zh. Exp. Teor. Fiz 40. 1210 (1961); Soviet Phys. JETP 18,
850 (1961).

A.I. Akmiezer and V. B. BERESTETSKH, Quantum Electrodynamics, Fizmatgiz
(1959). (English translation published by Interscience, 1965.)

M. GELL-MaNN and F. Low, Phys. Rev. 84, 350 (1951).

V. M. GALitsk and A. B. MicpaL, Zh. Exp. Teor. Fiz. 31, 139 (1958); Soviet
Phys. JETP 7, 96 (1968).

. H. LEEMANN, Nuovo Cimento 11, 342 (1954).

359



360
29.

30.
31.

32.

33.

34.

35.
36.
37.
38.

39.
40.

41.

43.
44.

45.
46.
47.
48.
49.
50.

51.

52.
53.
54.

55.

56.
57.

REFERENCES

A. B. MiopaL, Zh. Exp. Teor. Fiz. 82, 399 (1957); Soviet Phys. JETP b, 333
(1957).

T. MaTsUBARA, Progr. Theor. Phys. 14, 351 (195D).

A. A. ABrirosov, L. P. Gor’rov and 1. E. DzyavosmiNsgn, Zh. Exp. Teor.
Fiz. 86, 900 (1959); Soviet Phys. JETP 9, 636 (1959).

E. S. FraviIN, Zh. Exp. Teor. Fiz. 36, 1286 (1959); Soviet Phys. JETP 9,
912 (1959).

L. D. Lanvav, Zh. Exp. Teor. Fiz. 84, 262 (1958); Soviet Phys. JETP 7, 182
(1958); Collected Papers, Gordon & Breach and Pergamon Press, 1965,
Ch. 94, p. 749.

N. N. BocoLyusov and 8. V. Tyvasurov, Dokl. Aked. Nauk 126, 53 (1959);
Soviet Phys. Dokl. 4, 604 (1959); see also D. N. ZuBarEv, Usp. Fiz. Nauk.
71, 71 (1960); Soviet Phys. Uspekhi 8, 320 (1961).

L.D.Lanpav, Zh. Exp. Teor. Fiz. 35, 97 (1958); Soviet Phys. JETP 8, 70 (1959);
Collected Papers, Gordon & Breach and Pergamon Press, 1965, Ch. 95, p. 762.
L. P. Prragvskir, Zh. Exp. Teor. Fiz. 87, 1794 (1959); Soviet Phys. JET P
10, 1267 (1960).

J. M. Lurtincer and J. C. WarD, Phys. Rev. 118, 1417 (1960), and J. M. Lut-
TINGER, Phys. Rev. 119, 1153 (1960).

A. B. Migpar, Zh. Exp. Teor. Fiz. 34, 1438 (19568); Soviet Phys. JETP 7,
996 (1958).

M. Gerr-Manw and K. A. BRUECKNER, Phys. Rev. 106, 364 (1957).

A. A. Veperov, Zh. Exp. Teor. Fiz. 36, 641 (1959); Soviet Phys. JETP 9,
446 (1959).

S. T. BeLyaEv, Zh. Exp. Teor. Fiz. 84, 417 (1958); Soviet Phys. JETP 7, 289
(1958).

. S.T. BELYaEv, Zh. Exp. Teor. Fiz. 84, 433 (1958); Soviet Phys. JETP 7, 299

(1958).

N. M. Hucenuortz and D. PinEs, Phys. Rev. 116, 489 (1959).

L. P. Prragvskir, Zh. Exp. Teor. Fiz. 86, 1168 (1959); Soviet Phys. JETP,
9, 830 (1959).

L. P. Prragvsgit, Zh. Exp. Teor. Fiz. 89, 216 (1960); Soviet Phys. JETP 12,
155 (1961).

D. G. Henseaw, A.D. B. Woops and B. N. BROCKEOUSE, Bull. Amer. Phys.
Soc. b, No. 1, 12, C 3 (1960).

L. D. Laxpav and E. M. Liesmitz, The Electrodynamics of Continuous Media,
Pergamon Press, 1960.

I. E. Dzyarosainskil and L. P. Prraevsga, Zh. Exp. Teor. Fiz. 36, 1797
(1959); Soviet Phys. JETP 9, 1282 (1959).

M. I. Ryazanov, Zh. Exp. Teor. Fiz. 82, 1244 (1957); Soviet Phys. JETP 5,
1013 (1957).

1. E. DzvavosgNsgn, E. M. Lirsmitz and L. P. PrraBvsEn, Zh. Exp. Teor.
Fiz. 87, 229 (1959); Soviet Phys. JETP 10, 161 (1960).

E. M. Lirsurrz, Zh. Exp. Teor. Fiz. 29, 94 (1955); Soviet Phys. JETP 2, 13
(1956).

R. F1senscurtz and F. LoNDON, Zs. f. Physik 60, 491 (1930).

H. B. C. Castmir and D. PoLpER, Phys. Rev. 73, 360 (1948).

L. P. PiTaEvsgl, Zh. Exp. Teor. Fiz. 8%, 577 (1959); Soviet Phys. JETP 10,
408 (1960).

E. Maxwerr, Phys. Rev. 78, 447 (1959); 79, 173 (1950); C. A. REYNoLDS
B. Seriy, W. H. WrigET and L. B. Nessirt, Phys. Rev. 78, 487 (1950).

H. FroHLICH, Phys. Rev. 79, 845 (1950).

L. N. CoorEr, Phys. Rev. 104, 1189 (1957).



60.

61.
62.

63.

REFERENCES 361

58. J. BARDEEN, L. N. CooreR and J. R. SCHRIEFFER, Phys. Rev. 108, 1175 (1957).

- N. N. BoGOLYUBOV, Zh. Exp. Teor. Fiz. 84, 58, 73 (1958); Soviet Phys jETP
7, 41, 51 (1958).

N. N. Bogoryueov, V. V. ToLmacrev and D. V. SEIREOY, 4 New Method in
the Theory of Superconductivity, Tzd-vo Akad. Nauk SSSR (1958), (English
transl. publ. by Consultants Bureau.)

L.P. Gor'rov, Zh. Exp. Teor. Fiz. 34, 135 (1958); Soviet Phys. JETP 7 505
(1958).

G. M. Er1aSHBERG, Zh. Exp. Teor. Fiz. 38, 966 (1960); Soviet Phys. JETP 13,
696 (1960).

A. A. Asrigosov and I. M. KeAvATNIROV, Usp. Fiz. Nauk. 65, 5561 (1958); Ady,
Phys. 8, 45 (1959).

64. H. Loxnpon and F. LoNDoN, Proc. Roy. Soc. A 149, 71 (1935); Physica 2, 341

65.

67.

68.

69.

76.

71

78.

79.
80.

(1935).

A. B. P1eraRD, Proc. Roy. Soc. A 216, 547 (1953).

. D. C. MaTTis and J. BARDERN, Phys. Rev. 111, 412 (1958).

A. A. Asrigosov, L.P. Gor’kov and I.M.XKmuaratNigov, Zh. Exp. Teor.

Fiz. 85, 265 (1958); 87, 187 (1959); Soviet Phys. JETP 8, 182 (1959); 10, 132

(1960).

L. P. Gor’gov, Zh. Exp. Teor. Fiz. 86, 1918 (1959); Soviet Phys. JETP 9,

1364 (1959).

V. L. Ginzeure and L. D. Lanvau, Zh. Exp. Teor. Fiz. 20, 1064 (1958),

(English transl. publ. in Landaw’s Collected Papers, Gordon & Breach and

Pergamon Press, 1965, Ch. 73, p. 546.)

. A. A. Aerigosov and L. P. Gor'Rov, Zh. Exp. Teor. Fiz. 35, 1558 (1958);
86, 319 (1959); Soviet Phys. JETP 8, 1090 (1959); 9, 220 (1959).

. S. F. Epwarps, Phil. Mag. 8, 1020 (1958).

. M. Comen and R.P. FeynmaN, Phys. Rev. 107, 13 (1957).

. P. Nozitres and D. Pines, Phys. Rev. 109, 741 (1958).

. G. M. ELIASHBERG, Zh. Exp. Teor. Fiz. 42, 1658 (1962); Soviet Phys. JETP 15,
1151 (1962).

. G. M. EvL1asHBERG, Zh. Ezp. Teor. Fiz. 41, 1241 (1961); Soviet Phys. JETP 14,

886 (1962).

G. M. ELIASHBERG, Zh. Bxp. Teor. Fiz. 43, 1105 (1962); Soviet Phys. JETP 16,

1000 (1963).

A. A. ABRIROSOV, Zh. Exp. Teor. Fiz. 41, 569 (1961); Soviet Phys. JETP 14,

408 (1962).

T. TsuNETO, Technical Report of the Institute of Solids State Physics, Univer-

gity of Tokyo, No. A 47 (1962).

P. C. HOEENBERG, reprint.

A. S. Davypov, Quantum Mechanics, Pergamon Press, 1965.






INDEX

Acoustic absorption 148

Acoustic branches 3

Acoustic excitations 162
Adiabatic switching on 47
Advanced Green function 56, 145
Anharmonic terms 4

Anisotropic superconductor 334
Annihilation operators 53, 65, 105
Anomalous skin effect 328

Born approximation 34

Bose branches 162ff.

Bose condensation 203, 245, 249, 285,
286

Bose excitations 155

Bose liquid 51f., 233

Bose type spectrum 4

Causal function 342

Chemical potential 20, 54, 60, 63, 96, 98,
131, 161, 196

Closed loop 71, 77, 129

Collision integral 13, 24, 340, 341

Collision processes 170

Compact diagram 91, 135, 139

Connected diagrams 68, 88, 109, 128, 129

Conservation laws 80, 85, 131, 150, 340

Contraction 65

Cooper effect 39

Cooper pairs 279, 285, 323

Coulomb interactions 187, 189, 279

Creation operators 53, 65, 105

Critical magnetic field 304

Current density 305

Damping 194, 233, 240

Damping of quasi-particles 170£f.

Decay of excitations 356

Density correlation 98

Diagram techniques 63ff., 109£f.

Dielectric constant 141, 165, 250ff.,
20711,

Dielectric permeability 148

Dilute boson gas 311f., 2201f.

Dilute Fermi gas 35£f., 61

Dirty superconductors 322ff.

Dispersion relations 144

Displacement vector 262

Dyson equation 83ff., 90, 91, 132£f., 139,
213, 237

Effective interaction potential 229ff.

Effective mass 21, 35, 38, 40, 152, 160,
358

Electrical conductivity 339

Electrical resistance 141

Electromagnetic field 251

Electromagnetic field Green function
148, 254

Electromagnetic radiation 2501f.

Electron damping 199

Electron Green function 182ff., 195ff.

Electron-phonon interactions 76, 82, 86,
91ff., 116£f., 177£f., 279, 2961f., 323

Electron self-energy 86, 182

Elementary excitations 4, 7, 18, 34

Energy flux 357

Energy gap 16, 293, 310, 333

Energy spectrum 34

Exchange interaction 20

Excitation distribution function 357

Excitation spectrum 50, 57, 60, 92

Fermi liquid 15ff., 61, 1562ff., 233, 280,
339ff.

Fermi momentum 60, 164

Fermi sphere 15, 17

Fermi surface 20, 23, 25

Fermi type spectrum 4

Feynman diagrams 66ff.

First sound 14

Free energy 252

Gauge invariance 159, 293ff., 297, 306,
357

Gauge transformation 251

Ginzburg—Landau theory 321

363



364

Grand ensemble average 96, 248

Grand partition function 2

Graphical summation 83

Green functions $9ff., 83

Ground state energy 38, 40, 60, 93, 262

Heat conductivity 148, 339
Heisenberg operators 97, 135, 141
Heisenberg representation 44
Helium 233, 246

Holes 16, 60, 152

Ideal Bose gas 245

Ideal Fermi gas 17

Impurities 322

Interaction representation 42ff., 101ff.,
341

Tonic sound 194

Irreducible self-cnergy part 84, 86, 179,
190

Isotope effect 287

Ladder diagrams 153, 174, 229, 335
Lambda-point 14

Lambda transition 246

Lattice dcfects 322

Linearisation 340

Liquid He? 26, 176

London equations 310

London type superconductor 310, 321
Low density approximation 226ff.

Magnetic interaction 20

Magnetic susceptibility 26

Main diagrams 83

Many-particle Green functions 87ff., 98,
104, 109, 134, 141, 146

Many-tailed diagrams 135

Mass operator 84, 133

Matsubara’s method 96, 133

Maxwell equations 251, 253

Meissner— Ochsenfled effect 277

Momentum flux 357

Momentum representation 51, 118

Neutron scattering 98, 149ff.
Non-singular diagrams 174
Normal fluid 13

Normal product 65, 107
Normal skin effect 328

INDEX

Occupation numbers 36
One-particle Grecn function 49, 92
Oscillator strengths 273

Pairing 69

Particle current density 358

Particle distribution function 354, 357

Particle flux 367

Penetration depth 277, 308, 311, 318,
321, 337, 338

Phonon damping 181, 187

Phonon Green function 53, 57, 77, 82,
92, 96, 99, 101, 104, 109, 117, 141,
17911,

Phonon self-energy 87

Phonons 3, 6, 51, 756

Pippard type superconductor 311, 321

Plasma 176, 1894f., 278

Plasma vibrations 195

Point interactions 75, 116

Polarisation 76

Polarisation operator 259ff., 262

Quasi-momentum 3
Quasi-particles 4, 18, 60, 155, 187
Quasi-particle damping 187

Radiation gauge 256

Residual resistance 322
Retardation effects 274
Retarded Green function 56, 145
Roton decay 244

Rotons 9

Scalar potential 250

Scattering of quasi-particles 157

Scattering processes 356

Schrodinger representation 44

Sercening 76, 187

Second quantisation 27ff.

Second sound 14

Self-encrgy diagrams 212

Self-energy part 84, 195, 236

Single-particle Green function 141, 209

Skeletons 85

Sound 14, 22ff.

Sound velocity 35, 38, 40, 76, 162, 194,
238

Specific heat 166£f., 188, 302ff.

Spin-orbit interaction 20



INDEX

Spin waves 26, 155

Stress tensor 264, 267, 276
Superconducting alloys 322ff.
Superconductivity 39, 176, 2771f.
Superconductors 339

Superfluid 13

Superfluidity 10, 16, 108, 277

Temperature-dependent Green Func-
tions 95£f.

Temperature-dependence of the gap
3001f.

Thermodynamic potential 2, 96, 99,
1281f., 1371f., 146, 2001f,, 252, 302

Thermodynamiecs of superconductors
3u0ff.

Time-ordering operator 47

Topologically non-equivalent diagrams
69, 71, 74, 112, 115

Topologically non-equivalent connected
diagrams 77

T-ordering 48

T-produet 105

Transition temperature 286, 323

Transport coefficients 148

Transport equation 13, 21, 3391f., 348ff.

365

Transport properties 141
Two-particle Green function 98, 104,
135, 156, 343, 344

Unconnected diagrams 68, 71, 108, 128,
129
Uncondensed particles 205, 212

Van der Waals forces 250, 261£f., 271

Vector potential 250

Vertex 70, 109

Vertex part 85, 87ff., 91, 92, 132, 135,
136, 152ff., 163, 1734f., 1774f., 191ff.,
238, 281ff., 34211, 348ff.

Viscosity 148, 339

‘Wick’s theorem 64f£f., 88, 104£f.,128, 131

X-ray scattering 99

Zero-point energy 8
Zero sound 23, 155, 164, 281, 340, 350



