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Preface

This book is the eighth edition of an elementary text on solid state/
condensed matter physics for seniors and beginning graduate students of the
physical sciences, chemistry, and engineering. In the years since the first edi-
tion was published the field has developed vigorously, and there are notable
applications. The challenge to the author has been to treat significant new
areas while maintaining the introductory level of the text. It would be a pity to
present such a physical, tactile field as an exercise in formalism.

At the first edition in 1953 superconductivity was not understood; Fermi
surfaces in metals were beginning to be explored and cyclotron resonance in
semiconductors had just been observed; ferrites and permanent magnets were
beginning to be understood; only a few physicists then believed in the reality of
spin waves. Nanophysics was forty years off. In other fields, the structure of
DNA was determined and the drift of continents on the Earth was demon-
strated. It was a great time to be in Science, as it is now. I have tried with the
successive editions of ISSP to introduce new generation to the same excitement.

There are several changes from the seventh edition, as well as much
clarification:

e An important chapter has been added on nanophysics, contributed by an
active worker in the field, Professor Paul L. McEuen of Cornell University.
Nanophysics is the science of materials with one, two, or three small dimen-
sions, where “small” means nanometer 10™° m) This field is the most excit-
ing and vigorous addition to solid state science in the last ten years.

o The text makes use of the simplifications made possible by the universal
availability of computers. Bibliographies and references have been nearly
eliminated because simple computer searches using keywords on a search
engine such as Google will quickly generate many useful and more recent
references. As an example of what can be done on the Web, explore the
entry http://www.physicsweb.org/bestof/cond-mat. No lack of honor is in-
tended by the omissions of early or traditional references to the workers
who first worked on the problems of the solid state.

* The order of the chapters has been changed: superconductivity and
magnetism appear earlier, thereby making it easier to arrange an interesting
one-semester course.

The crystallographic notation conforms with current usage in physics. Im-
portant equations in the body of the text are repeated in SI and CGS-Gaussian
units, where these differ, except where a single indicated substitution will
translate from CGS to SI. The dual usage in this book has been found helpful
and acceptable. Tables are in conventional units. The symbol e denotes the



Preface

charge on the proton and is positive. The notation (18) refers to Equation 18
of the current chapter, but (3.18) refers to Equation 18 of Chapter 3. A caret (")
over a vector denotes a unit vector.

Few of the problems are exactly easy: Most were devised to carry forward
the subject of the chapter. With few exceptions, the problems are those of the
original sixth and seventh editions. The notation QTS refers to my Quantum
Theory of Solids, with solutions by C. Y. Fong; TP refers to Thermal Physics,
with H. Kroemer.

This edition owes much to detailed reviews of the entire text by Professor
Paul L. McEuen of Cornell University and Professor Roger Lewis of Wollongong
University in Australia. They helped make the book much easier to read and un-
derstand. However, I must assume responsibility for the close relation of the text
to the earlier editions, Many credits for suggestions, reviews, and photographs
are given in the prefaces to earlier editions. I have a great debt to Stuart Johnson,
my publisher at Wiley; Suzanne Ingrao, my editor; and Barbara Bell, my per-
sonal assistant.

Corrections and suggestions will be gratefully received and may be ad-
dressed to the author by email to kittel@berkeley.edu.

The Instructor’s Manual is available for download at www.wiley.com/
college/kittel.

Charles Kittel
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Figure 1 Relation of the external form of crystals to the form of the elementary building blocks.
The building blocks are identical in (a) and (b), but different crystal faces are developed.

(¢) Cleaving a crystal of rocksalt.



CHAPTER 1: CRYSTAL STRUCTURE

PERIODIC ARRAYS OF ATOMS

The serious study of solid state physics began with the discovery of x-ray
diffraction by crystals and the publication of a series of simple calculations of
the properties of crystals and of electrons in crystals. Why crystalline solids
rather than noncrystalline solids? The important electronic properties of solids
are best expressed in crystals. Thus the properties of the most important semi-
conductors depend on the crystalline structure of the host, essentially because
electrons have short wavelength components that respond dramatically to the
regular periodic atomic order of the specimen. Noncrystalline materials, no-
tably glasses, are important for optical propagation because light waves have a
longer wavelength than electrons and see an average over the order, and not
the less regular local order itself.

We start the book with crystals. A crystal is formed by adding atoms in a
constant environment, usually in a solution. Possibly the first crystal you ever
saw was a natural quartz crystal grown in a slow geological process from a sili-
cate solution in hot water under pressure. The crystal form develops as identical
building blocks are added continuously. Figure 1 shows an idealized picture of
the growth process, as imagined two centuries ago. The building blocks here
are atoms or groups of atoms. The crystal thus formed is a three-dimensional
periodic array of identical building blocks, apart from any imperfections and
impurities that may accidentally be included or built into the structure.

The original experimental evidence for the periodicity of the structure
rests on the discovery by mineralogists that the index numbers that define the
orientations of the faces of a crystal are exact integers. This evidence was sup-
ported by the discovery in 1912 of x-ray diffraction by crystals, when Laue de-
veloped the theory of x-ray diffraction by a periodic array, and his coworkers
reported the first experimental observation of x-ray diffraction by crystals.
The importance of x-rays for this task is that they are waves and have a wave-
length comparable with the length of a building block of the structure. Such
analysis can also be done with neutron diffraction and with electron diffraction,
but x-rays are usually the tool of choice.

The diffraction work proved decisively that crystals are built of a periodic
array of atoms or groups of atoms. With an established atomic model of a crys-
tal, physicists could think much further, and the development of quantum the-
ory was of great importance to the birth of solid state physics. Related studies
have been extended to noncrystalline solids and to quantum fluids. The wider
field is known as condensed matter physics and is one of the largest and most
vigorous areas of physics.



Lattice Translation Vectors

An ideal crystal is constructed by the infinite repetition of identical groups
of atoms (Fig. 2). A group is called the basis. The set of mathematical points to
which the basis is attached is called the lattice. The lattice in three dimensions
may be defined by three translation vectors a;, ay, a;, such that the arrange-
ment of atoms in the crystal looks the same when viewed from the point r as
when viewed from every point r’ translated by an integral multiple of the a’s:

r' =r+ua; +ua, +usa;. (1)

Here uy, u,, ug are arbitrary integers. The set of points r" defined by (1) for all
Uy, Uy, uy defines the lattice.

The lattice is said to be primitive if any two points from which the atomic
arrangement looks the same always satisfy (1) with a suitable choice of the in-
tegers u;. This statement defines the primitive translation vectors a,. There
is no cell of smaller volume than a, - a, X a; that can serve as a building block
for the crystal structure. We often use the primitive translation vectors to de-
fine the crystal axes, which form three adjacent edges of the primitive paral-
lelepiped. Nonprimitive axes are often used as crystal axes when they have a
simple relation to the symmetry of the structure.

Figure 2 The crystal structure is formed by
the addition of the basis (b) to every lattice
point of the space lattice (a). By looking at
(c), one can recognize the basis and then one
can abstract the space lattice. It does not
matter where the basis is put in relation to a
lattice point.




1 Crystal Structure

Basis and the Crystal Structure

The basis of the crystal structure can be identified once the crystal axes
have been chosen. Figure 2 shows how a crystal is made by adding a basis to
every lattice point—of course the lattice points are just mathematical con-
structions. Every basis in a given crystal is identical to every other in composi-
tion, arrangement, and orientation.

The number of atoms in the basis may be one, or it may be more than one.
The position of the center of an atom j of the basis relative to the associated
lattice point is

r;=xa +ya, +za;5. (2)

We may arrange the origin, which we have called the associated lattice point,
sothat 0 = x;, y;, 2, < 1.

Figure 3a Lattice points of a space lattice in two dimensions. All pairs of vectors a,, a, are trans-
lation vectors of the lattice. But a,""’, a,"’" are not primitive translation vectors because we cannot
form the lattice translation T from integral combinations of a,"’’ and a,’"’. The other pairs shown
of a, and a, may be taken as the primitive translation vectors of the lattice. The parallelograms 1,
2, 3 are equal in area and any of them could be taken as the primitive cell. The parallelogram 4 has
twice the area of a primitive cell.

Figure 3b Primitive cell of a space lattice in three dimensions.

Figure 3¢ Suppose these points are identical atoms: Sketch in on the figure a set of lattice points,
a choice of primitive axes, a primitive cell, and the basis of atoms associated with a lattice point.



Figure 4 A primitive cell may also be chosen fol-
lowing this procedure: (1) draw lines to connect a
given lattice point to all nearby lattice points; (2) at
the midpoint and normal to these lines, draw new
lines or planes. The smallest volume enclosed in this
way is the Wigner-Seitz primitive cell. All space may
be filled by these cells, just as by the cells of Fig. 3.

Primitive Lattice Cell

The parallelepiped defined by primitive axes a,, a,, a3 is called a primitive
cell (Fig. 3b). A primitive cell is a type of cell or unit cell. (The adjective unit is
superfluous and not needed.) A cell will fill all space by the repetition of suit-
able crystal translation operations. A primitive cell is a minimum-volume cell.
There are many ways of choosing the primitive axes and primitive cell for a
given lattice. The number of atoms in a primitive cell or primitive basis is
always the same for a given crystal structure.

There is always one lattice point per primitive cell. If the primitive cell is a
parallelepiped with lattice points at each of the eight corners, each lattice
point is shared among eight cells, so that the total number of lattice points in
the cell is one: 8 X § = 1. The volume of a parallelepiped with axes a,, a,, a is

Vv , (3)

c

= |a1’az>< ag

by elementary vector analysis. The basis associated with a primitive cell is called
a primitive basis. No basis contains fewer atoms than a primitive basis contains.
Another way of choosing a primitive cell is shown in Fig. 4. This is known to
physicists as a Wigner-Seitz cell.

FUNDAMENTAL TYPES OF LATTICES

Crystal lattices can be carried or mapped into themselves by the lattice
translations T and by various other symmetry operations. A typical symmetry
operation is that of rotation about an axis that passes through a lattice point.
Lattices can be found such that one-, two-, three-, four-, and sixfold rotation
axes carry the lattice into itself, corresponding to rotations by 27, 27/2, 27/3,
27/4, and 27/6 radians and by integral multiples of these rotations. The rota-
tion axes are denoted by the symbols 1, 2, 3, 4, and 6.

We cannot find a lattice that goes into itself under other rotations, such as
by 27/7 radians or 27/5 radians. A single molecule properly designed can have
any degree of rotational symmetry, but an infinite periodic lattice cannot. We
can make a crystal from molecules that individually have a fivefold rotation axis,
but we should not expect the lattice to have a fivefold rotation axis. In Fig. 5 we
show what happens if we try to construct a periodic lattice having fivefold
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Figure 5 A fivefold axis of symmetry can-
not exist in a periodic lattice because it is
not possible to fill the area of a plane with
a connected array of pentagons. We can,
however, fill all the area of a plane with just
two distinct designs of “tiles” or elementary

polygons.

(c) (d)

Figure 6 (a) A plane of symmetry parallel to the faces of a cube. (b) A diagonal plane of symmetry
in a cube. (c) The three tetrad axes of a cube. (d) The four triad axes of a cube. (e) The six diad axes
of a cube.

symmetry: the pentagons do not fit together to fill all space, showing that we can-
not combine fivefold point symmetry with the required translational periodicity.
By lattice point group we mean the collection of symmetry operations
which, applied about a lattice point, carry the lattice into itself. The possible ro-
tations have been listed. We can have mirror reflections m about a plane through



a lattice point. The inversion operation is composed of a rotation of 7 followed
by reflection in a plane normal to the rotation axis; the total effect is to replace r
by —r. The symmetry axes and symmetry planes of a cube are shown in Fig. 6.

Two-Dimensional Lattice Types

The lattice in Fig. 3a was drawn for arbitrary a, and a,. A general lattice
such as this is known as an oblique lattice and is invariant only under rotation
of 7 and 27 about any lattice point. But special lattices of the oblique type can
be invariant under rotation of 27/3, 27/4, or 2m/6, or under mirror reflection.
We must impose restrictive conditions on a; and a, if we want to construct a lat-
tice that will be invariant under one or more of these new operations. There are
four distinct types of restriction, and each leads to what we may call a special
lattice type. Thus there are five distinct lattice types in two dimensions, the
oblique lattice and the four special lattices shown in Fig. 7. Bravais lattice is
the common phrase for a distinct lattice type; we say that there are five Bravais
lattices in two dimensions.

ay ay

° °
J@ a) ¥/<P
&
° °
°
° ° °
° ° °
(a) Square lattice (b) Hexagonal lattice
lay | = lay|; @ = 90° la;] = layl; 0 =120°
a
/ a; a a] 1
a| -/
) a) ©
°
ay .
° ° °
° °
(c) Rectangular lattice (d) Centered rectangular lattice;
o] # layl; 0 = 90° axes are shown for both the

primitive cell and for the
rectangular unit cell, for

which |a; | # [a,]; @ = 90°

Figure 7 Four special lattices in two dimensions.
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Three-Dimensional Lattice Types

The point symmetry groups in three dimensions require the 14 different
lattice types listed in Table 1. The general lattice is triclinic, and there are
13 special lattices. These are grouped for convenience into systems classified
according to seven types of cells, which are triclinic, monoclinic, orthorhom-
bic, tetragonal, cubic, trigonal, and hexagonal. The division into systems is
expressed in the table in terms of the axial relations that describe the cells.
The cells in Fig. § are conventional cells: of these only the sc is a primitive cell.
Often a nonprimitive cell has a more obvious relation with the point symmetry
operations than has a primitive cell.

There are three lattices in the cubic system: the simple cubic (sc) lattice,
the body-centered cubic (bec) lattice, and the face-centered cubic (fec) lattice.

Table 1 The 14 lattice types in three dimensions

Number of Restrictions on conventional
System lattices cell axes and angles
=
Triclinic 1 a, # ay # as
aFLFy
Monoclinic 2 a, F ay, # a,
a=y=90°#p8
Orthorhombic 4 a, # ay # a,
a=B=y=90°
Tetragonal 2 a, = a, # a,
a=B=y=90°
Cubic 3 a, = a; = a,
a=p=y=90°
Trigonal 1 a, = ay, = ay
a=pB=vy<120° # 90°
Hexagonal 1 a, = a; # as
a=p=90°
vy =120°

sc bee

Figure 8 The cubic space lattices. The cells shown are the conventional cells.
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Figure 9 Body-centered cubic lattice, showing a
primitive cell. Thsﬁrimitive cell shown is a rhombo-

hedron of edge 3

Table 2 Characteristics of cubic lattices®

Simple Body-centered Face-centered
Volume, conventional cell a® a® a’
Lattice points per cell 1 2 4
Volume, primitive cell a’ 1 i
Lattice points per unit volume 1/a® 2/a® 4/a®
Number of nearest neighbors 6 8 12
Nearest-neighbor distance a 32 4/2 = 0.866a a/2"? = 0.707a
Number of second neighbors 12 6 6
Second neighbor distance 2124 a a
Packing fraction” i V3 V2

=0.524 =0.680 =0.740

“The packing fraction is the maximum proportion of the available volume that can be filled
with hard spheres.

Figure 10 Primitive translation vectors of the body-
centered cubic lattice; these vectors connect the lattice
point at the origin to lattice points at the body centers.
The primitive cell is obtained on completing the rhom-
cent edges is 109°28" bohedron. In terms of the cube edge a, the primitive
translation vectors are

3 a, and the angle between adja-

a=s&+y-2) ; ay=za(—k+y+2) ;
a; =k —y+2) .
Here &, ¥, 2 are the Cartesian unit vectors.

The characteristics of the three cubic lattices are summarized in Table 2. A
primitive cell of the bec lattice is shown in Fig. 9, and the primitive translation
vectors are shown in Fig. 10. The primitive translation vectors of the fcc lattice
are shown in Fig. 11. Primitive cells by definition contain only one lattice
point, but the conventional bee cell contains two lattice points, and the fec cell
contains four lattice points.
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Figure 11 The rhombohedral primitive cell of the face-centered Figure 12 Relation of the primitive cell
cubic crystal. The primitive translation vectors a;, a,, az connect in the hexagonal system (heavy lines) to
the lattice point at the origin with lattice points at the face centers. a prism of hexagonal symmetry. Here
As drawn, the primitive vectors are: a,=a,#a;.

al=]§a(§+y) ; a2=§a(§r+2) s ay=za(Z+X) .

The angles between the axes are 60°.

The position of a point in a cell is specified by (2) in terms of the atomic
coordinates x, y, z. Here each coordinate is a fraction of the axial length a,, as,
as in the direction of the coordinate axis, with the origin taken at one corner of
the cell. Thus the coordinates of the body center of a cell are 111 and the face
centers include 330, 053; 505. In the hexagonal system the primitive cell is a
right prism based on a rhombus with an included angle of 120°. Figure 12
shows the relationship of the rhombic cell to a hexagonal prism.

INDEX SYSTEM FOR CRYSTAL PLANES

The orientation of a crystal plane is determined by three points in the
plane, provided they are not collinear. If each point lay on a different crystal
axis, the plane could be specified by giving the coordinates of the points in
terms of the lattice constants a,, a,, a;. However, it turns out to be more useful
for structure analysis to specify the orientation of a plane by the indices deter-
mined by the following rules (Fig. 13).

* Find the intercepts on the axes in terms of the lattice constants a,, a,, as.
The axes may be those of a primitive or nonprimitive cell.
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Figure 13 This plane intercepts
the a;, a,, a; axes at 3a;, 2a,, 2a,.
The reciprocals of these numbers
are 3,3, 3. The smallest three inte-
gers having the same ratio are 2, 3,
3, and thus the indices of the plane
are (233).

— T ==
/'\/

(100) (110) (111)

|
e — /
_— — ~

(200) (100)

@
/

Figure 14 Indices of important planes in a cubic crystal. The plane (200) is parallel to (100) and
to (100).

e Take the reciprocals of these numbers and then reduce to three integers
having the same ratio, usually the smallest three integers. The result, en-
closed in parentheses (hkl), is called the index of the plane.

For the plane whose intercepts are 4, 1, 2, the reciprocals are 11, and 3; the
smallest three integers having the same ratio are (142). For an intercept at infin-
ity, the corresponding index is zero. The indices of some important planes in a
cubic crystal are illustrated by Fig. 14. The indices (hkl) may denote a single
plane or a set of parallel planes. If a plane cuts an axis on the negative side of the
origin, the corresponding index is negative, indicated by placing a minus sign
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above the index: (hkl). The cube faces of a cubic crystal are (100), (010), (001),
(100), (010), and (001). Planes equivalent by symmetry may be denoted by curly
brackets (braces) around indices; the set of cube faces is {100}. When we speak
of the (200) plane we mean a plane parallel to (100) but cutting the a, axis at éa.
The indices [uvw] of a direction in a crystal are the set of the smallest inte-
gers that have the ratio of the components of a vector in the desired direction,
referred to the axes. The a, axis is the [100] direction; the —a, axis is the [010]
direction. In cubic crystals the direction [hkl] is perpendicular to a plane (hkl)
having the same indices, but this is not generally true in other crystal systems.

SIMPLE CRYSTAL STRUCTURES

We discuss simple crystal structures of general interest: the sodium chlo-
ride, cesium chloride, hexagonal close-packed, diamond, and cubic zinc sulfide
structures.

Sodium Chloride Structure

The sodium chloride, NaCl, structure is shown in Figs. 15 and 16. The
lattice is face-centered cubic; the basis consists of one Na™ ion and one Cl™ ion

Figure 15 We may construct the sodium chloride
crystal structure by arranging Na* and CI~ ions alter-
nately at the lattice points of a simple cubic lattice. In
the crystal each ion is surrounded by six nearest neigh-
bors of the opposite charge. The space lattice is fec,
and the basis has one Cl~ ion at 000 and one Na™ ion at
111 The figure shows one conventional cubic cell.  Figure 16 Model of sodium chloride. The sodium ions are
The ionic diameters here are reduced in relation to the ~ smaller than the chlorine ions. (Courtesy of A. N. Holden and

cell in order to clarify the spatial arrangement. P. Singer.)
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A

Figure 17 Natural crystals of lead sulfide, PbS, which has the Figure 18 The cesium chloride crystal

NaCl crystal structure. (Photograph by B. Burleson.) structure. The space lattice is simple
cubic, and the basis has one Cs* ion at
000 and one Cl™ ion at 3 3 3.

separated by one-half the body diagonal of a unit cube. There are four units of
NaCl in each unit cube, with atoms in the positions

Cl:
Na:

1 101 11
g 50 305 ; 0335 .

5 5
;005 ; 030 ;

>

i~ O
MR

0
1
2

Each atom has as nearest neighbors six atoms of the opposite kind. Represen-
tative crystals having the NaCl arrangement include those in the following
table. The cube edge a is given in angstroms; 1 A=10"%cm = 10" m = 0.1
nm. Figure 17 is a photograph of crystals of lead sulfide (PbS) from Joplin,
Missouri. The Joplin specimens form in beautiful cubes.

Crystal a Crystal a
LiH 4.08 A AgBr  577A
MgO 4.20 PbS 5.92
MnO 4.43 KCl 6.29
NaCl 5.63 KBr 6.59

Cesium Chloride Structure

The cesium chloride structure is shown in Fig. 18. There is one molecule

per primitive cell, with atoms at the corners 000 and body-centered positions
5 5 5 of the simple cubic space lattice. Each atom may be viewed as at the center
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Figure 19 A close-packed layer of spheres is shown, with centers at points marked A. A second
and identical layer of spheres can be placed on top of this, above and parallel to the plane of the
drawing, with centers over the points marked B. There are two choices for a third layer. It can go
in over A or over C. If it goes in over A, the sequence is ABABAB . . . and the structure is hexagonal
close-packed. If the third layer goes in over C, the sequence is ABCABCABC . . . and the structure
is face-centered cubic.

Figure 20 The hexagonal close-packed structure.
The atom positions in this structure do not constitute
a space lattice. The space lattice is simple hexagonal
with a basis of two identical atoms associated with
each lattice point. The lattice parameters a and ¢ are
indicated, where « is in the basal plane and c¢ is the
magnitude of the axis az of Fig. 12.

of a cube of atoms of the opposite kind, so that the number of nearest neigh-
bors or coordination number is eight.

Crystal a Crystal a
BeCu 270 A LiHg 3.29 A
AINi 2.88 NH,CI 3.87
CuZn (B-brass) 2.94 TIBr 3.97
CuPd 2.99 CsCl 411
AgMg 3.28 T 4.20

Hexagonal Close-Packed Structure (hep)

There are an infinite number of ways of arranging identical spheres in a
regular array that maximizes the packing fraction (Fig. 19). One is the face-
centered cubic structure; another is the hexagonal close-packed structure
(Fig. 20). The fraction of the total volume occupied by the spheres is 0.74 for
both structures. No structure, regular or not, has denser packing.

15
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included angle of 120°. The ¢ axis (or az) is normal

I
i
I
Figure 21 The primitive cell has a;, = a,, with an l
I
I
I

to the plane of a; and a,. The ideal hep structure has /_\

s
¢ = 1.633 a. The two atoms of one basis are shown - \
as solid circles. One atom of the basis is at the ori- \ A N2 /
gin; the other atom is at 211 which means at the £ 0

g 2 1 1
position r = 3a, + 3a, + za;.

Spheres are arranged in a single closest-packed layer A by placing each
sphere in contact with six others in a plane. This layer may serve as either the
basal plane of an hep structure or the (111) plane of the fcc structure. A sec-
ond similar layer B may be added by placing each sphere of B in contact with
three spheres of the bottom layer, as in Figs. 19-21. A third layer C may be
added in two ways. We obtain the fcc structure if the spheres of the third layer
are added over the holes in the first layer that are not occupied by B. We
obtain the hep structure when the spheres in the third layer are placed directly
over the centers of the spheres in the first layer.

The number of nearest-neighbor atoms is 12 for both hep and fee struc-
tures. If the binding energy (or free energy) depended only on the number of
nearest-neighbor bonds per atom, there would be no difference in energy
between the fcc and hep structures.

Crystal cla Crystal cla Crystal cla

He 1.633 Zn 1.861 Zr 1.594
Be 1.581 Cd 1.886 Gd 1.592
Mg 1.623 Co 1.622 Lu 1.586
Ti 1.586 Y 1.570

Diamond Structure

The diamond structure is the structure of the semiconductors silicon and
germanium and is related to the structure of several important semiconductor
binary compounds. The space lattice of diamond is face-centered cubic. The
primitive basis of the diamond structure has two identical atoms at coordinates
000 and 11} associated with each point of the fcc lattice, as shown in Fig. 22.
Because the conventional unit cube of the fcc lattice contains 4 lattice points,
it follows that the conventional unit cube of the diamond structure contains
2 X 4 = 8 atoms. There is no way to choose a primitive cell such that the basis
of diamond contains only one atom.



1 Crystal Structure
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Figure 22 Atomic positions in the cubic cell of the diamond ~ Figure 23 Crystal structure of diamond,
structure projected on a cube face; fractions denote height  showing the tetrahedral bond arrangement.
above the base in units of a cube edge. The points at 0 and 3
are on the fec lattice; those at = and 3 are on a similar lattice
displaced along the body diagonal by one-fourth of its length.
With a fce space lattice, the basis consists of two identical

atoms at 000 and § + 3.

The tetrahedral bonding characteristic of the diamond structure is shown
in Fig. 23. Each atom has 4 nearest neighbors and 12 next nearest neighbors.
The diamond structure is relatively empty: the maximum proportion of the
available volume which may be filled by hard spheres is only 0.34, which is 46
percent of the filling factor for a closest-packed structure such as fce or hep.
The diamond structure is an example of the directional covalent bonding
found in column IV of the periodic table of elements. Carbon, silicon, germa-
nium, and tin can crystallize in the diamond structure, with lattice constants
a = 3.567, 5.430, 5.658, and 6.49 A, respectively. Here a is the edge of the
conventional cubic cell.

Cubic Zinc Sulfide Structure

The diamond structure may be viewed as two fcc structures displaced
from each other by one-quarter of a body diagonal. The cubic zinc sulfide
(zinc blende) structure results when Zn atoms are placed on one fec lattice and
S atoms on the other fcc lattice, as in Fig. 24. The conventional cell is a cube.

The coordinates of the Zn atoms are 000; 03 3: 2 01; 22 0; the coordinates of the

S atoms are ;14,122,223 231 The Jattice is fce. There are four molecules of
ZnS per conventional cell. About each atom there are four equally distant

atoms of the opposite kind arranged at the corners of a regular tetrahedron.



Figure 24 Crystal structure of cubic zinc

sulfide.

The diamond structure allows a center-of-inversion symmetry operation
at the midpoint of every line between nearest-neighbor atoms. The inversion
operation carries an atom at r into an atom at —r. The cubic ZnS struc-
ture does not have inversion symmetry. Examples of the cubic zinc sulfide
structure are

Crystal a Crystal a
SiC 435 A ZnSe  5.65A
7nS 541 GaAs 5.65
AlP 5.45 AlAs 5.66
GaP 5.45 InSb 6.46

The close equality of the lattice constants of several pairs, notably (Al, Ga)P
and (Al, Ga)As, makes possible the construction of semiconductor heterojunc-
tions (Chapter 19).

DIRECT IMAGING OF ATOMIC STRUCTURE

Direct images of crystal structure have been produced by transmission
electron microscopy. Perhaps the most beautiful images are produced by scan-
ning tunneling microscopy; in STM (Chapter 19) one exploits the large varia-
tions in quantum tunneling as a function of the height of a fine metal tip above
the surface of a crystal. The image of Fig. 25 was produced in this way. An
STM method has been developed that will assemble single atoms into an orga-
nized layer nanometer structure on a crystal substrate.

NONIDEAL CRYSTAL STRUCTURES

The ideal crystal of classical crystallographers is formed by the periodic
repetition of identical units in space. But no general proof has been given that
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Figure 25 A scanning tunneling microscope
image of atoms on a (111) surface of fcc plat-
inum at 4 K. The nearest-neighbor spacing is
2.78 A. (Photo courtesy of D. M. Eigler, IBM
Research Division.)

the ideal crystal is the state of minimum energy of identical atoms at the tem-
perature of absolute zero. At finite temperatures this is likely not to be true. We
give a further example here.

Random Stacking and Polytypism

The fce and hep structures are made up of close-packed planes of atoms.
The structures differ in the stacking sequence of the planes, fcc having the se-
quence ABCABC . . . and hep having the sequence ABABAB . . . . Structures
are known in which the stacking sequence of close-packed planes is random.
This is known as random stacking and may be thought of as crystalline in two
dimensions and noncrystalline or glasslike in the third.

Polytypism is characterized by a stacking sequence with a long repeat
unit along the stacking axis. The best known example is zinc sulfide, ZnS, in
which more than 150 polytypes have been identified, with the longest period-
icity being 360 layers. Another example is silicon carbide, SiC, which occurs
with more than 45 stacking sequences of the close-packed layers. The polytype
of SiC known as 393R has a primitive cell with ¢ = 3.079 A and ¢ = 989.6 A.
The longest primitive cell observed for SiC has a repeat distance of 594 layers.
A given sequence is repeated many times within a single crystal. The mecha-
nism that induces such long-range crystallographic order is not a long-range
force, but arises from spiral steps due to dislocations in the growth nucleus
(Chapter 20).

CRYSTAL STRUCTURE DATA

In Table 3 we list the more common crystal structures and lattice structures
of the elements. Values of the atomic concentration and the density are given in
Table 4. Many elements occur in several crystal structures and transform from

19
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one to the other as the temperature or pressure is varied. Sometimes two struc-
tures coexist at the same temperature and pressure, although one may be slightly
more stable.

SUMMARY

A lattice is an array of points related by the lattice translation operator
T = uja; + usa, + uzas, where uy, us, us are integers and a,, a,, az are the
crystal axes.

To form a crystal we attach to every lattice point an identical basis composed
of s atoms at the positions r; = x;a; + y;a, + zja;, withj = 1,2, ..., s. Here
x, y, z may be selected to have values between 0 and 1.

The axes a,, a,, ag are primitive for the minimum cell volume |a,* a, X ag|
for which the crystal can be constructed from a lattice translation operator T
and a basis at every lattice point.

Problems

. Tetrahedral angles. The angles between the tetrahedral bonds of diamond are the

same as the angles between the body diagonals of a cube, as in Fig. 10. Use elemen-
tary vector analysis to find the value of the angle.

. Indices of planes. Consider the planes with indices (100) and (001); the lattice is

fce, and the indices refer to the conventional cubic cell. What are the indices of
these planes when referred to the primitive axes of Fig. 117

. Hcep structure. Show that the c¢/a ratio for an ideal hexagonal close-packed struc-

ture is (3)"2 = 1.633. If ¢/a is significantly larger than this value, the crystal structure
may be thought of as composed of planes of closely packed atoms, the planes being

loosely stacked.
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Figure 2 Derivation of the Bragg equation 2d sin 6 = nA; here d is the spacing of parallel atomic
planes and 27n is the difference in phase between reflections from successive planes. The
reflecting planes have nothing to do with the surface planes bounding the particular specimen.



CHAPTER 2: WAVE DIFFRACTION AND
THE RECIPROCAL LATTICE

DIFFRACTION OF WAVES BY CRYSTALS

The Bragg law

We study crystal structure through the diffraction of photons, neutrons,
and electrons (Fig. 1). The diffraction depends on the crystal structure and on
the wavelength. At optical wavelengths such as 5000 A, the superposition of
the waves scattered elastically by the individual atoms of a crystal results in or-
dinary optical refraction. When the wavelength of the radiation is comparable
with or smaller than the lattice constant, we may find diffracted beams in
directions quite different from the incident direction.

W. L. Bragg presented a simple explanation of the diffracted beams from a
crystal. The Bragg derivation is simple but is convincing only because it repro-
duces the correct result. Suppose that the incident waves are reflected specu-
larly from parallel planes of atoms in the crystal, with each plane reflecting
only a very small fraction of the radiation, like a lightly silvered mirror. In
specular (mirrorlike) reflection the angle of incidence is equal to the angle of
reflection. The diffracted beams are found when the reflections from parallel
planes of atoms interfere constructively, as in Fig. 2. We treat elastic scatter-
ing, in which the energy of the x-ray is not changed on reflection.

Consider parallel lattice planes spaced d apart. The radiation is incident in
the plane of the paper. The path difference for rays reflected from adjacent
planes is 2d sin 6, where 6 is measured from the plane. Constructive interfer-
ence of the radiation from successive planes occurs when the path difference
is an integral number n of wavelengths A, so that

2d sin 0 = nA . (1)

This is the Bragg law, which can be satisfied only for wavelength A = 2d.

Although the reflection from each plane is specular, for only certain values
of 6 will the reflections from all periodic parallel planes add up in phase to give
a strong reflected beam. If each plane were perfectly reflecting, only the first
plane of a parallel set would see the radiation, and any wavelength would be re-
flected. But each plane reflects 107 to 1077 of the incident radiation, so that
10% to 10° planes may contribute to the formation of the Bragg-reflected beam in
a perfect crystal. Reflection by a single plane of atoms is treated in Chapter 17
on surface physics.

The Bragg law is a consequence of the periodicity of the lattice. Notice
that the law does not refer to the composition of the basis of atoms associated
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Figure 3 Sketch of a monochromator which by Bragg reflection selects a narrow spectrum of
x-ray or neutron wavelengths from a broad spectrum incident beam. The upper part of the figure
shows the analysis (obtained by reflection from a second crystal) of the purity of a 1.16 A beam of
neutrons from a calcium fluoride crystal monochromator. (After G. Bacon.)
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Figure 4 X-ray diffractometer recording of powdered silicon, showing a counter recording of the
diffracted beams. (Courtesy of W. Parrish.)

with every lattice point. We shall see, however, that the composition of the
basis determines the relative intensity of the various orders of diffraction
(denoted by n above) from a given set of parallel planes. Bragg reflection from
a single crystal is shown in Fig. 3 and from a powder in Fig. 4.

SCATTERED WAVE AMPLITUDE

The Bragg derivation of the diffraction condition (1) gives a neat state-
ment of the condition for the constructive interference of waves scattered
from the lattice points. We need a deeper analysis to determine the scattering
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intensity from the basis of atoms, which means from the spatial distribution of
electrons within each cell.

Fourier Analysis

We have seen that a crystal is invariant under any translation of the form
T = uja; + usa, + ugas, where u,, u,, us are integers and a,, a,, a; are the crystal
axes. Any local physical property of the crystal, such as the charge concentra-
tion, electron number density, or magnetic moment density is invariant under T.
What is most important to us here is that the electron number density n(r) is a
periodic function of r, with periods a,, a,, a5 in the directions of the three crys-
tal axes, respectively. Thus

n(r +T) =n(r) . (2)

Such periodicity creates an ideal situation for Fourier analysis. The most inter-
esting properties of crystals are directly related to the Fourier components of
the electron density.

We consider first a function n(x) in one dimension with period « in the
direction x. We expand n(x) in a Fourier series of sines and cosines:

n(x) =ny+ Y, [C, cos(2mpx/a) + S, sin(2mpx/a)] (3)
p>0
where the p are positive integers and C,, S, are real constants, called the

Fourier coefficients of the expansion. The factor 27/a in the arguments en-
sures that n(x) has the period a:

nlx +a) =ny+ E[Cp cos(2mpx/a + 2mp) + S, sin(2wpx/a + 2mp)]
(4)
=ny+ E[Cp cos(2mpx/a) + S, sin(2mpx/a)] = n(x) .

We say that 2ap/a is a point in the reciprocal lattice or Fourier space of the
crystal. In one dimension these points lie on a line. The reciprocal lattice

points tell us the allowed terms in the Fourier series (4) or (5). A term is al-
lowed if it is consistent with the periodicity of the crystal, as in Fig. 5; other

n(x)

0 1 O

27

—a | a | a | a | a—
Figure 5 A periodic function n(x) of
G period @, and the terms 2mp/a that
A7 O om Aw may appear in the Fourier transform
2 ¢ Y T % n(x) = 2"71 exp(i2mpx/a).
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points in the reciprocal space are not allowed in the Fourier expansion of a pe-
riodic function.
It is convenient to write the series (4) in the compact form

n(x) =E n, exp(i2mpx/a) | (5)
P

where the sum is over all integers p: positive, negative, and zero. The coeffi-
cients n, now are complex numbers. To ensure that n(x) is a real function, we
require

n*,=n, , (6)
for then the sum of the terms in p and —p is real. The asterisk on n*, denotes
the complex conjugate ofn,p.

With ¢ = 27pa/a, the sum of the terms in p and —p in (5) is real if (6) is
satisfied. The sum is

n,(cos @ + i sin @) + n_,(cos @ — i sin @)

(7)

=(n,+n_,)cos ¢ +i(n,—n_,)sin¢e ,
which in turn is equal to the real function
2Re{np} Ccos @ — QIm{nT,} sin @ (8)

if (6) is satisfied. Here Re{n},} and Im{n,,} are real and denote the real
and imaginary parts of n,. Thus the number density n(x) is a real function, as
desired.

The extension of the Fourier analysis to periodic functions n(r) in three
dimensions is straightforward. We must find a set of vectors G such that

n(r)=2 ng exp(iG - r) (9)
G
is invariant under all crystal translations T that leave the crystal invariant. It

will be shown below that the set of Fourier coefficients ng determines the
x-ray scattering amplitude.

Inversion of Fourier Series. We now show that the Fourier coefficient n,
in the series (5) is given by

n,= a! fﬂ dx n(x) exp(—i2mpx/a) . (10)
0
Substitute (5) in (10) to obtain

n,= al E n, fo dx expli2m(p’ — ph/a] . (11)
p
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If p’ # p the value of the integral is

a i2m(p'—p) _ _
T =1)=0,
i2m(p’ —p)
because p' — p is an integer and exp[i2n(integer)] = 1. For the term p’ = p the
integrand is exp(i0) = 1, and the value of the integral is a, so that n, = ailnpa =
n, which is an identity, so that (10) is an identity.

As in (10), the inversion of (9) gives

ne=V,"! dV n(r) exp(—iG - 1) . (12)

cell

Here V, is the volume of a cell of the crystal.

Reciprocal Lattice Vectors

To proceed further with the Fourier analysis of the electron concentration we
must find the vectors G of the Fourier sum 2n¢ exp(iG - r) as in (9). There is a
powerful, somewhat abstract procedure for doing this. The procedure forms the
theoretical basis for much of solid state physics, where Fourier analysis is the
order of the day.

We construct the axis vectors by, by, bs of the reciprocal lattice:

a, X ag a; X a; a; X ay

b, =27 b, =27 b, =27 (13)

a;-ay; X ag 2 a;ray; X ag g a;ra; X ag '
The factors 27 are not used by crystallographers but are convenient in solid state
physics.

If a), a,, a3 are primitive vectors of the crystal lattice, then b;, by, by are
primitive vectors of the reciprocal lattice. Each vector defined by (13) is
orthogonal to two axis vectors of the crystal lattice. Thus by, by, b; have the

property

b, a; = 2ms; , (14)
where 8; =1 ifi =jand 8; =0 if i #j.
Points in the reciprocal lattice are mapped by the set of vectors
G = U]b] + U'_)b'_) + Uf;bf; N (15)

where v}, vy, v3 are integers. A vector G of this form is a reciprocal lattice vector.

The vectors G in the Fourier series (9) are just the reciprocal lattice vectors (15),
for then the Fourier series representation of the electron density has the desired in-
variance under any crystal translation T = w,a, + u,a, + uzaz. From (9),

nr+T)= E ng exp(iG - r) exp(iG - T) . (16)
G
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But exp(iG + T) = 1, because

exp(iG * T) = expli(v;b; +voby + v3b;) * (1)a; + usay + uzay)]

= expli2m(vyu, + vguy + vus)] .

(17)

The argument of the exponential has the form 2i times an integer, because
vy + vslls + 055 is an integer, being the sum of products of integers. Thus by
(9) we have the desired invariance, n(r + T) = n(r) = 2 ng exp(iG * r).

Every crystal structure has two lattices associated with it, the crystal lattice
and the reciprocal lattice. A diffraction pattern of a crystal is, as we shall show,
a map of the reciprocal lattice of the crystal. A microscope image, if it could be
resolved on a fine enough scale, is a map of the crystal structure in real space.
The two lattices are related by the definitions (13). Thus when we rotate a crys-
tal in a holder, we rotate both the direct lattice and the reciprocal lattice.

Vectors in the direct lattice have the dimensions of [length]; vectors in the
reciprocal lattice have the dimensions of [I/length]. The reciprocal lattice is a
lattice in the Fourier space associated with the crystal. The term is motivated
below. Wavevectors are always drawn in Fourier space, so that every position
in Fourier space may have a meaning as a description of a wave, but there is a
special significance to the points defined by the set of G’s associated with a
crystal structure.

Diffraction Conditions

Theorem. The set of reciprocal lattice vectors G determines the possible
x-ray reflections.

We see in Fig. 6 that the difference in phase factors is exp[i(k — k') - r]
between beams scattered from volume elements r apart. The wavevectors of
the incoming and outgoing beams are k and k’. We suppose that the amplitude

.~ Crystal specimen
UL

]
Py

Figure 6 The difference in path length of the incident wave k at the points O, r is r sin ¢, and the
difference in phase angle is (277r sin @)/A, which is equal to k - r. For the diffracted wave the dif-
ference in phase angle is —k’ - r. The total difference in phase angle is (k — k') - r, and the wave
scattered from dV at r has the phase factor exp[i(k — k') - r] relative to the wave scattered from a
volume element at the origin O.

Outgoing beam
eiker

Incident bea

eiker
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Figure 7 Definition of the scattering vector Ak such that
k + Ak = k'. In elastic scattering the magnitudes satisfy
k' = k. Further, in Bragg scattering from a periodic lattice,
any allowed Ak must equal some reciprocal lattice vector G.

of the wave scattered from a volume element is proportional to the local elec-
tron concentration n(r). The total amplitude of the scattered wave in the di-
rection of k' is proportional to the integral over the crystal of n(r) dV times the
phase factor exp[i(k — k') - r].

In other words, the amplitude of the electric or magnetic field vectors in
the scattered electromagnetic wave is proportional to the following integral
which defines the quantity F that we call the scattering amplitude:

F= [dVn(r) explitk — k') - x]=[ dV n(r) exp(—iAk - 1) , (18)
where k — k' = —Ak, or
k+Ak=k' . (19)

Here Ak measures the change in wavevector and is called the scattering
vector (Fig. 7). We add Ak to k to obtain k', the wavevector of the scat-
tered beam.

We introduce into (18) the Fourier components (9) of n(r) to obtain for
the scattering amplitude

F=Y [dVng expli(G — Ak) - r] . (20)
G

When the scattering vector Ak is equal to a particular reciprocal lattice vector,
Ak =G |, (21)

the argument of the exponential vanishes and F = V. It is a simple exercise
(Problem 4) to show that F is negligibly small when Ak differs significantly
from any reciprocal lattice vector.

In elastic scattering of a photon its energy fiw is conserved, so that the
frequency w" = ¢k’ of the emergent beam is equal to the frequency of the inci-
dent beam. Thus the magnitudes k and k' are equal, and k* = k'?, a result that
holds also for elastic scattering of electron and neutron beams. From (21) we
found Ak = G or k + G = k', so that the diffraction condition is written as
(k + G)? =K% or

k-G+G>=0 . (22)
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This is the central result of the theory of elastic scattering of waves in a
periodic lattice. If G is a reciprocal lattice vector, so is —G, and with this sub-
stitution we can write (22) as

2k-G=G*. (23)

This particular expression is often used as the condition for diffraction.

Equation (23) is another statement of the Bragg condition (1). The result
of Problem 1 is that the spacing d(hkl) between parallel lattice planes that are
normal to the direction G = hb, + kb, + lb; is d(hkl) = 2#/IGl. Thus the
result 2k - G = G® may be written as

2(2m/A) sin 0 = 2w/d(hkl) ,

or 2d(hkl) sin ® = A. Here 6 is the angle between the incident beam and the
crystal plane.

The integers hkl that define G are not necessarily identical with the in-
dices of an actual crystal plane, because the hkl may contain a common factor
n, whereas in the definition of the indices in Chapter 1 the common factor has
been eliminated. We thus obtain the Bragg result:

2d sin 0 =nA (24)

where d is the spacing between adjacent parallel planes with indices h/n,
k/n, l/n.

Laue Equations

The original result (21) of diffraction theory, namely that Ak = G, may be
expressed in another way to give what are called the Laue equations. These
are valuable because of their geometrical representation. Take the scalar prod-
uct of both Ak and G successively with a,, a,, a;. From (14) and (15) we get

a, - Ak = 270, ; a, * Ak = 2770, ; a; - Ak = 2705 . (25)

These equations have a simple geometrical interpretation. The first equation
a, - Ak = 270, tells us that Ak lies on a certain cone about the direction of a,.
The second equation tells us that Ak lies on a cone about a, as well, and the
third equation requires that Ak lies on a cone about a3. Thus, at a reflection
Ak must satisfy all three equations; it must lie at the common line of intersec-
tion of three cones, which is a severe condition that can be satisfied only by
systematic sweeping or searching in wavelength or crystal orientation—or by
sheer accident.

A beautiful construction, the Ewald construction, is exhibited in Fig. 8.
This helps us visualize the nature of the accident that must occur in order to
satisfy the diffraction condition in three dimensions.
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Figure 8 The points on the right-hand side are reciprocal-lattice points of the crystal. The vector
k is drawn in the direction of the incident x-ray beam, and the origin is chosen such that k termi-
nates at any reciprocal lattice point. We draw a sphere of radius k = 27/A about the origin of k.
A diffracted beam will be formed if this sphere intersects any other point in the reciprocal lattice.
The sphere as drawn intercepts a point connected with the end of k by a reciprocal lattice vector
G. The diffracted x-ray beam is in the direction k' = k + G. The angle 6 is the Bragg angle of
Fig. 2. This construction is due to P. P. Ewald.

BRILLOUIN ZONES

Brillouin gave the statement of the diffraction condition that is most
widely used in solid state physics, which means in the description of electron
energy band theory and of the elementary excitations of other kinds. A
Brillouin zone is defined as a Wigner-Seitz primitive cell in the reciprocal lat-
tice. (The construction in the direct lattice was shown in Fig. 1.4.) The

Brillouin zone gives a vivid geometrical interpretation of the diffraction condi-
tion 2k + G = G” of Eq. (23). We divide both sides by 4 to obtain

k-(:G)=(G). (26)

We now work in reciprocal space, the space of the k's and G’s. Select a
vector G from the origin to a reciprocal lattice point. Construct a plane normal
to this vector G at its midpoint. This plane forms a part of a zone boundary
(Fig. 9a). An x-ray beam in the crystal will be diffracted if its wavevector k has
the magnitude and direction required by (26). The diffracted beam will then
be in the direction k — G, as we see from (19) with Ak = —G. Thus the
Brillouin construction exhibits all the wavevectors k which can be Bragg-
reflected by the crystal.
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Figure 9a Reciprocal lattice points near the point O at
the origin of the reciprocal lattice. The reciprocal lattice
vector G¢ connects points OC; and G, connects OD.
Two planes 1 and 2 are drawn which are the perpendic-
ular bisectors of G¢ and Gp, respectively. Any vector
from the origin to the plane 1, such as k;, will satisfy the
diffraction condition ki - (3 G¢) = (5 G¢)%. Any vector
from the origin to the plane 2, such as k,, will satisfy the
diffraction condition k, * 3 Gp) = (3 Gp)%

Figure 9b Square reciprocal lattice with reciprocal
lattice vectors shown as fine black lines. The lines
shown in white are perpendicular bisectors of the rec-
iprocal lattice vectors. The central square is the small-
est volume about the origin which is bounded entirely
by white lines. The square is the Wigner-Seitz primi-
tive cell of the reciprocal lattice. It is called the first
Brillouin zone.

The set of planes that are the perpendicular bisectors of the reciprocal
lattice vectors is of general importance in the theory of wave propagation in
crystals: A wave whose wavevector drawn from the origin terminates on any of
these planes will satisfy the condition for diffraction. These planes divide the
Fourier space of the crystal into fragments, as shown in Fig. 9b for a square
lattice. The central square is a primitive cell of the reciprocal lattice. It is a
Wigner-Seitz cell of the reciprocal lattice.

The central cell in the reciprocal lattice is of special importance in the the-
ory of solids, and we call it the first Brillouin zone. The first Brillouin zone is
the smallest volume entirely enclosed by planes that are the perpendicular bi-
sectors of the reciprocal lattice vectors drawn from the origin. Examples are

shown in Figs. 10 and 11.

Historically, Brillouin zones are not part of the language of x-ray diffrac-
tion analysis of crystal structures, but the zones are an essential part of the
analysis of the electronic energy-band structure of crystals.

Reciprocal Lattice to sc Lattice

The primitive translation vectors of a simple cubic lattice may be taken as

the set

~

a, =ax ;

a,=ay ; a;, =az . (27a)
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T~ 1B \
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Figure 10 Construction of the first Brillouin
zone for an oblique lattice in two dimensions. We
first draw a number of vectors from O to nearby
points in the reciprocal lattice. Next we construct
lines perpendicular to these vectors at their mid-
points. The smallest enclosed area is the first Bril-
. louin zone.

Linear crystal lattice

==

Reciprocal lattice

k=-Z k=

SE|

Figure 11 Crystal and reciprocal lattices in one dimension. The basis vector in the reciprocal lat-
tice is b, of length equal to 27/a. The shortest reciprocal lattice vectors from the origin are b and
—b. The perpendicular bisectors of these vectors form the boundaries of the first Brillouin zone.
The boundaries are at k = *a/a.

Here X, y, z are orthogonal vectors of unit length. The volume of the cell is
a, - a, X a; = @°. The primitive translation vectors of the reciprocal lattice are
found from the standard prescription (13):

b, = 2@/a)x ; b, = 2m/a)y ; b, = 27/a)z . (27b)

Here the reciprocal lattice is itself a simple cubic lattice, now of lattice
constant 27/a.
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Figure 13 First Brillouin zone of the body-
Figure 12 Primitive basis vectors of the body-centered centered cubic lattice. The figure is a regular
rhombic dodecahedron.

The boundaries of the first Brillouin zones are the planes normal to the six
reciprocal lattice vectors =b,, =b,, =b; at their midpoints:

+2b, = *(ma)k ; +1b, = *(mla)y ; +iby=*(mwla)z . (28)

The six planes bound a cube of edge 27/a and of volume (27r/a)?; this cube is
the first Brillouin zone of the sc crystal lattice.

Reciprocal Lattice to bee Lattice

The primitive translation vectors of the bec lattice (Fig. 12) are

| =

a=ja(—x+y+2); a=zaxk—-y+2); a;=jax+y—2), (29)

where « is the side of the conventional cube and X, y, z are orthogonal unit
vectors parallel to the cube edges. The volume of the primitive cell is

V=la,-a,Xay|=1a° . (30)

The primitive translations of the reciprocal lattice are defined by (13). We
have, using (28),

b, = 2m/a)(y + 2) ; b, = Qm/a)(x + z) ; b; = 2m/a)(x +y) . (31)

Note by comparison with Fig. 14 (p. 37) that these are just the primitive
vectors of an fcc lattice, so that an fcc lattice is the reciprocal lattice of the bee
lattice.

The general reciprocal lattice vector is, for integral v;, vy, v,

G =v,b; + vby + v3bs = 27/a)[(vy + v3)X + (v +v3)y + (v T vy)z] . (32)
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Figure 14 Primitive basis vectors of the
face-centered cubic lattice.

The shortest G’s are the following 12 vectors, where all choices of sign are
independent:

(2m/a)(*y * 2) ; (2mla)(xx £ Z) ; 2m/a)(=x £ y) . (33)

One primitive cell of the reciprocal lattice is the parallelepiped described
by the by, b,, b; defined by (31). The volume of this cell in reciprocal space
is by + by, X by = 2(27/a)’. The cell contains one reciprocal lattice point,
because each of the eight corner points is shared among eight parallelepipeds.
Each parallelepiped contains one-eighth of each of eight corner points (see
Fig. 12).

Another primitive cell is the central (Wigner-Seitz) cell of the reciprocal
lattice which is the first Brillouin zone. Each such cell contains one lattice
point at the central point of the cell. This zone (for the bec lattice) is bounded
by the planes normal to the 12 vectors of Eq. (33) at their midpoints. The zone
is a regular 12-faced solid, a rhombic dodecahedron, as shown in Fig. 13.

Reciprocal Lattice to fcc Lattice

The primitive translation vectors of the fcc lattice of Fig. 14 are

a1=%a(§'+i) ; 32:%(164‘*‘2) ; 33:%a<§+5,) ' (34)

The volume of the primitive cell is

V=|al°ag><ag|=%a3 } (35)
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Figure 15  Brillouin zones of
the face-centered cubic lattice.
The cells are in reciprocal space,
and the reciprocal lattice is body
centered.

The primitive translation vectors of the lattice reciprocal to the fcc
lattice are

b = Qula)—k+§+2) ;b= Q)& -5 +37) ;

by = Qmla)x+y —2) . (36)

These are primitive translation vectors of a bee lattice, so that the bec lattice is
reciprocal to the fcc lattice. The volume of the primitive cell of the reciprocal
lattice is 4(27/a)>.

The shortest G’s are the eight vectors:

Qmla) (X £ ¥+ %) . (37)

The boundaries of the central cell in the reciprocal lattice are determined
for the most part by the eight planes normal to these vectors at their
midpoints. But the corners of the octahedron thus formed are cut by the
planes that are the perpendicular bisectors of six other reciprocal lattice
vectors:

(2m/a)(£2%) ; (2m/a)(£2y) ; (2m/a)(*£2Z) . (38)

Note that (27/a)(2x) is a reciprocal lattice vector because it is equal to by + bs.
The first Brillouin zone is the smallest bounded volume about the origin, the
truncated octahedron shown in Fig. 15. The six planes bound a cube of edge
47r/a and (before truncation) of volume (47/a).
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FOURIER ANALYSIS OF THE BASIS

When the diffraction condition Ak = G of Eq. (21) is satisfied, the scatter-
ing amplitude (18) for a crystal of N cells may be written as

Fc =N , dV n(r) exp(—iG - r) = NS¢ . (39)
cel
The quantity S¢ is called the structure factor and is defined as an integral
over a single cell, with r = 0 at one corner.

Often it is useful to write the electron concentration n(r) as the super-
position of electron concentration functions n; associated with each atom j
of the cell. If r; is the vector to the center of atom j, then the function
ny(r — 1)) dehnes the contribution of that atom to the electron concentration
atr. The total electron concentration at r due to all atoms in the single cell is
the sum

n(r) = X e —x) (40)

over the s atoms of the basis. The decomposition of n(r) is not unique, for we
cannot always say how much charge density is associated with each atom. This
is not an important difficulty.

The structure factor defined by (39) may now be written as integrals over
the s atoms of a cell:

c= 2 [dv nj(r — 1)) exp(—iG - r)
r :

(41)
= 2 exp(—iG - 1; den ) exp(—iG * p) ,
where p = r — r;. We now define the atomic form factor as
f; =1 dV np) exp(—iG - p) , (42)

integrated over all space. If n,(p) is an atomic property, f is an atomic property.
We combine (41)and (42) to obtain the structure factor of the basis in
the form

c= Ef] exp(—iG - 1}) . (43)
J

The usual form of this result follows on writing for atom j:

= xa, T ya, tzas (44)
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asin (1.2). Then, for the reflection labelled by v, v,, v3, we have
G 1; = (vb; + v5by + vsh;) * (va, + yja, + za3)
=2m(vyx; + vgy; + 0x3))
so that (43) becomes
c(010905) Ef expl —i2m(vyy; + vay; + v57)] (46)

The structure factor S need not be real because the scattered intensity will
involve $*S, where S* is the complex conjugate of S so that S*S is real.

Structure Factor of the bee Lattice
The bce basis referred to the cubic cell has identical atoms at x; = ¢y, =
= 0and atx, = y, = z, = 3. Thus (46) becomes
S(vyosv3) = f{1 + exp[—im(v; + vy + v3)]} . (47)

where f is the form factor of an atom. The value of S is zero whenever
the exponential has the value —1, which is whenever the argument
is —i7 X (odd integer). Thus we have

>

S=2f when v, + vy + v3 = even integer .

S=0 when v, + v, + v3 = odd integer ;

Metallic sodium has a bee structure. The diffraction pattern does not con-
tain lines such as (100), (300), (111), or (221), but lines such as (200), (110), and
(222) will be present; here the indices (v,v5v5) are referred to a cubic cell. What
is the physical interpretation of the result that the (100) reflection vanishes?
The (100) reflection normally occurs when reflections from the planes that
bound the cubic cell differ in phase by 27r. In the bcce lattice there is an inter-
vening plane (Fig. 16) of atoms, labeled the second plane in the figure, which is
equal in scattering power to the other planes. Situated midway between them,
it gives a reflection retarded in phase by 7 with respect to the first plane,
thereby canceling the contribution from that plane. The cancellation of the
(100) reflection occurs in the bee lattice because the planes are identical in
composition. A similar cancellation can easily be found in the hep structure.

Structure Factor of the fcc Lattice

The basis of the fce structure referred to the cubic cell has identical atoms
at 000; 035; 20%; 220. Thus (46) becomes

S(vyvqa03) = f[l + expl—im(vy + v3)] + exp[—im(v; + v3)] (48)
+ exp[—im(v, + vz)]} .
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Figure 16 Explanation of the absence of a (100) reflection from a body-centered cubic lattice.
The phase difference between successive planes is 7, so that the reflected amplitude from two
adjacent planesis 1 + ¢ =1—1=0.

If all indices are even integers, S = 4f; similarly if all indices are odd integers.
But if only one of the integers is even, two of the exponents will be odd multi-
ples of —im and S will vanish. If only one of the integers is odd, the same argu-
ment applies and S will also vanish. Thus in the fcc lattice no reflections can
occur for which the indices are partly even and partly odd.

The point is beautifully illustrated by Fig. 17: both KCI and KBr have an
fee lattice, but n(r) for KCI simulates an sc lattice because the K™ and Cl™ ions
have equal numbers of electrons.

Atomic Form Factor

In the expression (46) for the structure factor, there occurs the quantity f;,
which is a measure of the scattering power of the jth atom in the unit cell. The
value of f involves the number and distribution of atomic electrons, and the
wavelength and angle of scattering of the radiation. We now give a classical
calculation of the scattering factor.

The scattered radiation from a single atom takes account of interference
effects within the atom. We defined the form factor in (42):

fi= [dv n(r) exp(—iG - r) , (49)

with the integral extended over the electron concentration associated with a
single atom. Let r make an angle a with G; then G * r = Gr cos a. If the elec-
tron distribution is spherically symmetric about the origin, then

fi=2m [ dr*d(cos a) n,(r) exp(—iGr cos a)
iG iGr

_ e —e
—27der72nj(r) Tiar
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Figure 17 Comparison of x-ray reflections from KCI (220)
and KBr powders. In KCI the numbers of electrons
of K™ and Cl” ions are equal. The scattering ampli-
tudes f(K") and f(Cl") are almost exactly equal, so
that the crystal looks to x-rays as if it were a
monatomic simple cubic lattice of lattice constant (420) (222)
a/2. Only even integers occur in the reflection indices
when these are based on a cubic lattice of lattice con- (331)

stant @. In KBr the form factor of Br™ is quite differ- A LA——|J

" 200) '
KCl

(220)

(200)

KBr

(111)
(400)
(311)

ent to that of K', and all reflections of the fcc 80° 70° 60° 50° 40° 30° 20°
lattice are present. (Courtesy of R. van Nordstrand.) ~—20

after integration over d(cos a) between —1 and 1. Thus the form factor is

given by

fi=4m [ dr nj(r)r2 = % . (50)

If the same total electron density were concentrated at r = 0, only Gr = 0
would contribute to the integrand. In this limit (sin Gr)/Gr = 1, and

fi=4m [dr nj(r)r2 =7, (51)

the number of atomic electrons. Therefore f'is the ratio of the radiation ampli-
tude scattered by the actual electron distribution in an atom to that scattered
by one electron localized at a point. In the forward direction G = 0, and f
reduces again to the value Z.

The overall electron distribution in a solid as seen in x-ray diffraction is
fairly close to that of the appropriate free atoms. This statement does not
mean that the outermost or valence electrons are not redistributed somewhat
in forming the solid; it means only that the x-ray reflection intensities are
represented well by the free atom values of the form factors and are not very
sensitive to small redistributions of the electrons.



2 Reciprocal Lattice

SUMMARY

Various statements of the Bragg condition:
2d sin O = nA Ak =G ; k-G =G> .

Laue conditions:

a, * Ak = 270, ; a, - Ak = 270, ; a; * Ak = 270, .
The primitive translation vectors of the reciprocal lattice are
a, X a a; X a a; X a:
a;ra; X ag a;ra, X ag a;ra; X ag

Here a,, a,, a; are the primitive translation vectors of the crystal lattice.
A reciprocal lattice vector has the form
G = v,b; + v,b, + v5by |
where v}, v,, vz are integers or zero.
The scattered amplitude in the direction k' = k + Ak = k + G is propor-
tional to the geometrical structure factor:

S¢= Ef/ exp(—ir; + G) = Ef, exp—i2m(x, + o, + z05)]

where j runs over the s atoms of the basis, andﬁ is the atomic form factor
(49) of the jth atom of the basis. The expression on the right-hand side is
written for a reflection (v,0,03), for which G = v;b; + v,b, + v;b;.

Any function invariant under a lattice translation T may be expanded in a
Fourier series of the form

n(r) = E ng exp(iG *r) .
G

The first Brillouin zone is the Wigner-Seitz primitive cell of the reciprocal
lattice. Only waves whose wavevector k drawn from the origin terminates on
a surface of the Brillouin zone can be diffracted by the crystal.

Crystal lattice First Brillouin zone

Simple cubic Cube

Body-centered cubic Rhombic dodecahedron (Fig. 13)

Face-centered cubic Truncated octahedron (Fig. 15)
Problems

. Interplanar separation. Consider a plane hkl in a crystal lattice. (a) Prove that the
reciprocal lattice vector G = hb, + kb, + [b; is perpendicular to this plane. (b)
Prove that the distance between two adjacent parallel planes of the lattice is
d(hkl) = 27/|G]|. (¢) Show for a simple cubic lattice that d* = a*/(h* + k* + [%).
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2. Hexagonal space lattice. The primitive translation vectors of the hexagonal space

lattice may be taken as

a, = (3"a2)% + (a2)y ; ay = —(3"a/2)x + (a2)y ; a;=cz .

(a) Show that the volume of the primitive cell is (3"%/2)a%c.
(b) Show that the primitive translations of the reciprocal lattice are

b, = @2n/3"%a)x + (2m/a)y ; b, = —(27/3"a)k + (2m/a)y ; b, = 2w/c)z ,

so that the lattice is its own reciprocal, but with a rotation of axes.
(¢) Describe and sketch the first Brillouin zone of the hexagonal space lattice.

. Yolume of Brillouin zone. Show that the volume of the first Brillouin zone is

(2m)%V,, where V, is the volume of a crystal primitive cell. Hint: The volume of a
Brillouin zone is equal to the volume of the primitive parallelepiped in Fourier
space. Recall the vector identity (¢ X a) X (a X b) = (¢-a X b)a.

. Width of diffraction maximum. We suppose that in a linear crystal there are

identical point scattering centers at every lattice point p,, = ma, where m is an inte-
ger. By analogy with (20), the total scattered radiation amplitude will be proportional
to F = X exp[—ima - Ak]. The sum over M lattice points is

P 1 — exp[—iM(a - Ak]
T 1- exp[—i(a-Ak)] ’
by the use of the series

M=1 1— M

Ex :l—vx

m=0

(a) The scattered intensity is proportional to |[F[*. Show that
sin?1 M(a - Ak)
sin?2 (a - Ak)

(b) We know that a diffraction maximum appears when a + Ak = 27h, where h is an

[F]P=FF =

integer. We change Ak slightly and define € in a - Ak = 27h + € such that € gives
the position of the first zero in sin i1M(a - Ak). Show that € = 277/M, so that the width
of the diffraction maximum is proportional to 1/M and can be extremely narrow for
macroscopic values of M. The same result holds true for a three-dimensional crystal.

. Structure factor of diamond. The crystal structure of diamond is described in

Chapter 1. The basis consists of eight atoms if the cell is taken as the conventional
cube. (a) Find the structure factor S of this basis. (b) Find the zeros of S and show
that the allowed reflections of the diamond structure satisfy v, + vy + vy = 4n,
where all indices are even and n is any integer, or else all indices are odd (Fig. 18).
(Notice that h, k, l may be written for v,, vs, v; and this is often done.)

. Form factor of atomic hydrogen. For the hydrogen atom in its ground state, the

number density is n(r) = (ma3) ™ exp(—2r/a,y), where a, is the Bohr radius. Show that
the form factor is f; = 16/(4 + G%a})*.
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Figure 18 Neutron diffraction pattern for powdered diamond. (After G. Bacon.)

7. Diatomic line. Consider a line of atoms ABAB . . . AB, with an A—B bond length
of 3a. The form factors are f,, f for atoms A, B, respectively. The incident beam of
x-rays is perpendicular to the line of atoms. (a) Show that the interference condition
is nA = a cos 0, where 0 is the angle between the diffracted beam and the line of
atoms. (b) Show that the intensity of the diffracted beam is proportional to |f, — f3]*

for n odd, and to |f, + f3[* for n even. (c) Explain what happens if fy = f3.
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Figure 1 The principal types of crystalline binding. In (a) neutral atoms with closed electron
shells are bound together weakly by the van der Waals forces associated with fluctuations in the
charge distributions. In (b) electrons are transferred from the alkali atoms to the halogen atoms,
and the resulting ions are held together by attractive electrostatic forces between the positive and
negative ions. In (c) the valence electrons are taken away from each alkali atom to form a commu-
nal electron sea in which the positive ions are dispersed. In (d) the neutral atoms are bound to-
gether by the overlapping parts of their electron distributions.



CHAPTER 3: CRYSTAL BINDING AND ELASTIC CONSTANTS

In this chapter we are concerned with the question: What holds a crystal
together? The attractive electrostatic interaction between the negative charges
of the electrons and the positive charges of the nuclei is entirely responsible
for the cohesion of solids. Magnetic forces have only a weak effect on cohe-
sion, and gravitational forces are negligible. Specialized terms categorize dis-
tinctive situations: exchange energy, van der Waals forces, and covalent bonds.
The observed differences between the forms of condensed matter are caused
in the final analysis by differences in the distribution of the outermost elec-
trons and the ion cores (Fig. 1).

The cohesive energy of a crystal is defined as the energy that must be
added to the crystal to separate its components into neutral free atoms at rest,
at infinite separation, with the same electronic configuration. The term lattice
energy is used in the discussion of ionic crystals and is defined as the energy
that must be added to the crystal to separate its component ions into free ions
at rest at infinite separation.

Values of the cohesive energy of the crystalline elements are given in
Table 1. Notice the wide variation in cohesive energy between different
columns of the periodic table. The inert gas crystals are weakly bound, with
cohesive energies less than a few percent of the cohesive energies of the ele-
ments in the C, Si, Ge . . . column. The alkali metal crystals have intermediate
values of the cohesive energy. The transition element metals (in the middle
columns) are quite strongly bound. The melting temperatures (Table 2) and
bulk modulii (Table 3) vary roughly as the cohesive energies.

CRYSTALS OF INERT GASES

The inert gases form the simplest crystals. The electron distribution is
very close to that of the free atoms. Their properties at absolute zero are sum-
marized in Table 4. The crystals are transparent insulators, weakly bound, with
low melting temperatures. The atoms have very high ionization energies (see
Table 5). The outermost electron shells of the atoms are completely filled, and
the distribution of electron charge in the free atom is spherically symmetric.
In the crystal the inert gas atoms pack together as closely as possible': the

lZero-point motion of the atoms (kinetic energy at absolute zero) is a quantum effect that plays
a dominant role in He® and He®. They do not solidify at zero pressure even at absolute zero temp-
erature. The average fluctuation at 0 K of a He atom from its equilibrium position is of the order of
30 to 40 percent of the nearest-neighbor distance. The heavier the atom, the less important the zero-
point effects. If we omit zero-point motion, we calculate a molar volume of 9 cm® mol ™! for solid
helium, as compared with the observed values of 27.5 and 36.8 ¢cm® mol ™" for liquid He* and liquid
He?, respectively.
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Table 1 Cohesive energies

Energy required to form separated neutral atoms in their ground
electronic state from the solid at 0 K at 1 atm. The data were supplied by
Prof. Leo Brewer.
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Table 2 Melting points, in K.

(After R. H. Lamoreaux)
L
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3 Crystal Binding 53

Table 4 Properties of inert gas crystals
(Extrapolated to 0 K and zero pressure)

Parameters in

Experimental Lennard-Jones

Nearest- . Tonization .
n?ighbor Cgr}::rsgle . potential potential, Fq. 10
dlstaqce, -~ 5 Melting of free €, o,
in A kJ/mol eV/atom point, K atom, eV in 10’16erg in A
-~ |
He (liquid at zero pressure) 24.58 14 2.56
Ne 3.13 1.88 0.02 24.56 21.56 50 2.74
Ar 3.76 7.74 0.080 83.81 15.76 167 3.40
Kr 4.01 11.2 0.116 115.8 14.00 225 3.65
Xe 4.35 16.0 0.17 161.4 12.13 320 3.98

crystal structures (Fig. 2) are all cubic close-packed (fcc), except He®
and He™.

What holds an inert gas crystal together? The electron distribution in the
crystal is not significantly distorted from the electron distribution around the
free atoms because not much energy is available to distort the free atom
charge distributions. The cohesive energy of an atom in the crystal is only
1 percent or less of the ionization energy of an atomic electron. Part of this
distortion gives the van der Waals interaction.

Van der Waals-London Interaction

Consider two identical inert gas atoms at a separation R large in compari-
son with the radii of the atoms. What interactions exist between the two neu-
tral atoms? If the charge distributions on the atoms were rigid, the interaction
between atoms would be zero, because the electrostatic potential of a spheri-
cal distribution of electronic charge is canceled outside a neutral atom by the
electrostatic potential of the charge on the nucleus. Then the inert gas atoms
could show no cohesion and could not condense. But the atoms induce dipole
moments in each other, and the induced moments cause an attractive interac-
tion between the atoms.

As a model, we consider two identical linear harmonic oscillators 1 and 2
separated by R. Each oscillator bears charges *e with separations x; and x,, as in
Fig. 3. The particles oscillate along the x axis. Let p; and p, denote the momenta.
The force constant is C. Then the hamiltonian of the unperturbed system is

1

g 1 1 1
%O=%p%+§Cx%+%p§+5Cx§ . (1

~

Each uncoupled oscillator is assumed to have the frequency w, of the
strongest optical absorption line of the atom. Thus C = may3.
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3 Crystal Binding 55

Figure 2 Cubic close-packed (fcc) crystal structure of the inert gases Ne, Ar, Kr, and Xe. The lat-
tice parameters of the cubic cells are 4.46, 5.31, 5.64, and 6.13 A, respectively, at 4 K.

—n—|
EOAAN(-) O 7222222

\ R } 1‘1 }

Figure 3 Coordinates of the two oscillators.

Let €, be the coulomb interaction energy of the two oscillators. The
geometry is shown in the figure. The internuclear coordinate is R. Then

2 2 2 2

_e e e e )
(CGS) %1_R+R+x,—x2 R+x;, R-—ux,’ @)

in the approximation |x,], |xs| <R we expand (2) to obtain in lowest order:

>

2 o
_2e7xxy
R’

¥, = (3)
The total hamiltonian with the approximate form (3) for ¥, can be diago-
nalized by the normal mode transformation

XELCXI +x2> 5 X, = (Z)C] _x'?) > (4)
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or, on solving for x; and x,,

=) s r = (-1 (5)

V2 V2

The subscripts s and @ denote symmetric and antisymmetric modes of motion.
Further, we have the momenta p,, p, associated with the two modes:
1 1
Ei(s_*— (l); 'Ei(s_ a)‘ (6)

The total hamiltonian ¥, + 9, after the transformations (5) and (6) is

N D TR VR A 1 I IR AT | 2%\
%_[ZWPYJrZ(C RS)xS]JF[ZmP”JrZ(CJrRB Yal - (7)

The two frequencies of the coupled oscillators are found by inspection of (7) to be

9,2 12 2 0.2 \2
w=[<Cii§3>/m] =w0[1i5<§;ﬁ)—é<é;3>+“'], (8)

with @, given by (C/m)"2. In (8) we have expanded the square root.
The zero point energy of the system is 3% (w, + @,); because of the interac-
tion the sum is lowered from the uncoupled value 2 * 5%, by

by 9
AU = %Mo, + Aw,) = —fiw, - (26) =4 9)
8 \CR? R®
This attractive interaction varies as the minus sixth power of the separation of
the two oscillators.

This is called the van der Waals interaction, known also as the London in-
teraction or the induced dipole-dipole interaction. It is the principal attractive
interaction in crystals of inert gases and also in crystals of many organic mole-
cules. The interaction is a quantum effect, in the sense that AU — 0 as # — 0.
Thus the zero point energy of the system is lowered by the dipole-dipole cou-
pling of Eq. (3). The van der Waals interaction does not depend for its exis-
tence on any overlap of the charge densities of the two atoms.

An approximate value of the constant A in (9) for identical atoms is given
by iwga®, where fiw, is the energy of the strongest optical absorption line and
«a is the electronic polarizability (Chapter 15).

Repulsive Interaction

As the two atoms are brought together, their charge distributions gradually
overlap (Fig. 4), thereby changing the electrostatic energy of the system. At
sufficiently close separations the overlap energy is repulsive, in large part be-
cause of the Pauli exclusion principle. The elementary statement of the
principle is that two electrons cannot have all their quantum numbers equal.
When the charge distributions of two atoms overlap, there is a tendency for
electrons from atom B to occupy in part states of atom A already occupied by
electrons of atom A, and vice versa.
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Figure 4 Electronic charge distribu-
tions overlap as atoms approach. The

(a)
+ - Total electron
energy: —78.98 eV
1sT 1sd

1sT1sd

Total spin zero

(b)

Total electron

energy: —59.38 eV
1sT 1sT

1sT2sT
Total spin one

Figure 5 The effect of Pauli principle on the repulsive energy: in an extreme example, two hydro-
gen atoms are pushed together until the protons are almost in contact. The energy of the electron
system alone can be taken from observations on atomic He, which has two electrons. In (a) the elec-
trons have antiparallel spins and the Pauli principle has no effect: the electrons are bound by
—78.98 eV. In (b) the spins are parallel: the Pauli principle forces the promotion of an electron from
als? orbital of Hto a2s 1 orbital of He. The electrons now are bound by -59.38 eV, less than (a)
by 19.60 eV. This is the amount by which the Pauli principle has increased the repulsion. We have
omitted the repulsive coulomb energy of the two protons, which is the same in both (a) and (b).

The Pauli principle prevents multiple occupancy, and electron distribu-
tions of atoms with closed shells can overlap only if accompanied by the partial
promotion of electrons to unoccupied high energy states of the atoms. Thus
the electron overlap increases the total energy of the system and gives a repul-
sive contribution to the interaction. An extreme example in which the overlap
is complete is shown in Fig. 5.

We make no attempt here to evaluate the repulsive interaction® from first
principles. Experimental data on the inert gases can be fitted well by an empirical
repulsive potential of the form B/R"?, where B is a positive constant, when used

*The overlap energy naturally depends on the radial distribution of charge about each atom.
The mathematical calculation is always complicated even if the charge distribution is known.

solid circles denote the nuclei.
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Figure 6 Form of the Lennard-Jones potential (10) which describes the interaction of two inert gas
atoms. The minimum occurs at R/o- = 26 = 1.12. Notice how steep the curve is inside the minimum,
and how flat it is outside the minimum. The value of U at the minimum is —€; and U = 0 at R = 0.

together with a long-range attractive potential of the form of (9). The constants A
and B are empirical parameters determined from independent measurements
made in the gas phase; the data used include the virial coefficients and the viscos-
ity. It is usual to write the total potential energy of two atoms at separation R as

12 6
U(R) = 4€|:<R> - (R> } , (10)

where € and o are the new parameters, with 4e6® = A and 4ec'* = B. The
potential (10) is known as the Lennard-Jones potential, Fig. 6. The force
between the two atoms is given by —dU/dR. Values of € and o given in Table 4
can be obtained from gas-phase data, so that calculations on properties of the
solid do not involve disposable parameters.

Other empirical forms for the repulsive interaction are widely used, in par-
ticular the exponential form A exp(—R/p), where p is a measure of the range of
the interaction. This is generally as easy to handle analytically as the inverse
power law form.

Equilibrium Lattice Constants

If we neglect the kinetic energy of the inert gas atoms, the cohesive en-
ergy of an inert gas crystal is given by summing the Lennard-Jones potential
(10) over all pairs of atoms in the crystal. If there are N atoms in the crystal,
the total potential energy is

12 6
Um*:zN(‘*f)[? (w) -2 (m)] ’ an
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where p;R is the distance between reference atom i and any other atom j, ex-
pressed in terms of the nearest-neighbor distance R. The factor 5 occurs with
the N to compensate for counting twice each pair of atoms.

The summations in (11) have been evaluated, and for the fcc structure

>'py 2 =12.13188 ; >'p;® =14.45392 . (12)
i J

There are 12 nearest-neighbor sites in the fce structure; we see that the series
are rapidly converging and have values not far from 12. The nearest neighbors
contribute most of the interaction energy of inert gas crystals. The corre-
sponding sums for the hep structure are 12.13229 and 14.45489.

If we take Uy, in (11) as the total energy of the crystal, the equilibrium
value R, is given by requiring that Uy, be a minimum with respect to variations
in the nearest-neighbor distance R:

d Utot _
dR

0= —2Ne[(12)(12.13);;f3 —(6)(14.45) :| (13)

0,6
R"|’
whence

Ry/o=1.09 , (14)

the same for all elements with an fcc structure. The observed values of Ry/o,
using the independently determined values of o given in Table 4, are:

Ne Ar Kr Xe
R,/o 1.14 1.11 1.10 1.09 .

The agreement with (14) is remarkable. The slight departure of Ry/o for the
lighter atoms from the universal value 1.09 predicted for inert gases can be ex-
plained by zero-point quantum effects. From measurements on the gas phase
we have predicted the lattice constant of the crystal.

Cohesive Energy

The cohesive energy of inert gas crystals at absolute zero and at zero pres-
sure is obtained by substituting (12) and (14) in (11):

U (R) = 2Ne [(12.13)(%)12 - <14.45)<;)6] , (15)

and, at R = R,,
U(Ry) = —(2.15)(4Ne) , (16)

the same for all inert gases. This is the calculated cohesive energy when the
atoms are at rest. Quantum-mechanical corrections act to reduce the binding
by 28, 10, 6, and 4 percent of Eq. (16) for Ne, Ar, Kr, and Xe, respectively.
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The heavier the atom, the smaller the quantum correction. We can under-
stand the origin of the quantum correction by consideration of a simple model
in which an atom is confined by fixed boundaries. If the particle has the quan-
tum wavelength A, where A is determined by the boundaries, then the particle
has kinetic energy p2/2M = (h/\)*/2M with the de Broglie relation p = h/A for
the connection between the momentum and the wavelength of a particle. On
this model the quantum zero-point correction to the energy is inversely pro-
portional to the mass. The final calculated cohesive energies agree with the ex-
perimental values of Table 4 within 1 to 7 percent.

One consequence of the quantum kinetic energy is that a crystal of the iso-
tope Ne?’ is observed to have a larger lattice constant than a crystal of Ne?2. The
higher quantum kinetic energy of the lighter isotope expands the lattice because
the kinetic energy is reduced by expansion. The observed lattice constants
(extrapolated to absolute zero from 2.5 K) are Ne®, 4.4644 A; Ne?2, 4.4559 A.

IONIC CRYSTALS

Ionic crystals are made up of positive and negative ions. The ionic bond
results from the electrostatic interaction of oppositely charged ions. Two com-
mon crystal structures found for ionic crystals, the sodium chloride and the ce-
sium chloride structures, were shown in Chapter 1.

The electronic configurations of all ions of a simple ionic crystal corre-
spond to closed electronic shells, as in the inert gas atoms. In lithium fluoride
the configuration of the neutral atoms are, according to the periodic table in
the front endpapers of this book, Li: 15°2s, F: 1s?25%2p°. The singly charged
ions have the configurations Lit:1s®, F: 1822822]36, as for helium and neon, re-
spectively. Inert gas atoms have closed shells, and the charge distributions are
spherically symmetric. We expect that the charge distributions on each ion in
an ionic crystal will have approximately spherical symmetry, with some distor-
tion near the region of contact with neighboring atoms. This picture is con-
firmed by x-ray studies of electron distributions (Fig. 7).

A quick estimate suggests that we are not misguided in looking to electro-
static interactions for a large part of the binding energy of an ionic crystal. The
distance between a positive ion and the nearest negative ion in crystalline
sodium chloride is 2.81 X 107® ¢m, and the attractive coulomb part of the
potential energy of the two ions by themselves is 5.1 eV. This value may be
compared (Fig. 8) with the experimental value of 7.9 eV per molecular unit for
the lattice energy of crystalline NaCl with respect to separated Na™ and CI™
ions. We now calculate the energy more closely.

Electrostatic or Madelung Energy

The long-range interaction between ions with charge *¢ is the electrostatic
interaction *¢*r, attractive between ions of opposite charge and repulsive
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Figure 7 Electron density distribution in the
base plane of NaCl, after x-ray studies by G.
Schoknecht. The numbers on the contours give
the relative electron concentration.

[¢] +° —»c +  36lev

Elect
Gas Gas a{%cnjrgzn Figure 8 The energy per molecule unit of a crys-

tal of sodium chloride is (7.9 — 5.1 + 3.6) = 6.4 eV
lower than the energy of separated neutral atoms.

The lattice energy with respect to separated ions
° + . 0 + 79ev is 7.9 €V per molecule unit. All values on the fig-
ure are experimental. Values of the ionization en-

Cohesive  ergy are given in Table 5, and values of the elec-
Gas Gas Crystal energy  tron affinity are given in Table 6.

between ions of the same charge. The ions arrange themselves in whatever crys-
tal structure gives the strongest attractive interaction compatible with the repul-
sive interaction at short distances between ion cores. The repulsive interactions
between ions with inert gas configurations are similar to those between inert gas
atoms. The van der Waals part of the attractive interaction in ionic crystals
makes a relatively small contribution to the cohesive energy in ionic crystals, of
the order of 1 or 2 percent. The main contribution to the binding energy of ionic
crystals is electrostatic and is called the Madelung energy.
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Table 6 Electron affinities of negative ions

The electron affinity is positive for a stable negative ion.

Atom Electron affinity energy eV Atom Electron affinity energy eV
-~ ]
H 0.7542 Si 1.39
Li 0.62 P 0.74
C 1.27 S 2.08
O 1.46 Cl 3.61
F 3.40 Br 3.36
Na 0.55 I 3.06
Al 0.46 K 0.50

Source: H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 4, 539 (1975).

If Uy is the interaction energy between ions i and j, we define a sum U,
which includes all interactions involving the ion i:

U= E’Ui‘ > (17)
J

where the summation includes all ions except j = i. We suppose that U; may be
written as the sum of a central field repulsive potential of the form A exp(—1/p),
where A and p are empirical parameters, and a coulomb potential +¢*r. Thus

(CGS) Uy = A exp(—ry/p) = qIry (18)

where the + sign is taken for the like charges and the — sign for unlike charges.
In ST units the coulomb interaction is *¢*/4me,r; we write this section in CGS
units in which the coulomb interaction is =¢*/r.

The repulsive term describes the fact that each ion resists overlap with the
electron distributions of neighboring ions. We treat the strength A and range p
as constants to be determined from observed values of the lattice constant and
compressibility; we have used the exponential form of the empirical repulsive
potential rather than the R™"* form used for the inert gases. The change is
made because it may give a better representation of the repulsive interaction.
For the ions, we do not have gas-phase data available to permit the indepen-
dent determination of A and p. We note that p is a measure of the range of the
repulsive interaction; when r = p, the repulsive interaction is reduced to e !
of the value at r = 0.

In the NaCl structure the value of U; does not depend on whether the
reference ion i is a positive or a negative ion. The sum in (17) can be arranged
to converge rapidly, so that its value will not depend on the site of the reference
ion in the crystal, as long as it is not near the surface. We neglect surface effects
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and write the total lattice energy U, of a crystal composed of N molecules or
2N ions as U, = NU,. Here N, rather than 2N, occurs because we must count
each pair of interactions only once or each bond only once. The total lattice en-
ergy is defined as the energy required to separate the crystal into individual
ions at an infinite distance apart.

It is convenient again to introduce quantities Py such that ry = pyR, where
R is the nearest-neighbor separation in the crystal. If we include the repulsive
interaction only among nearest neighbors, we have

2
(CGS) A exp(—R/p) — % (nearest neighbors)
U, = 2 (19)
ij
i% qﬁ (otherwise).
ij
Thus
(CGS) Upw = NU, = N(er‘Rm - “g) , (20)

where z is the number of nearest neighbors of any ion and

+
a=Y' (P_y ) = Madelung constant . (21)

J

The sum should include the nearest-neighbor contribution, which is just z.
The (*) sign is discussed just before (25). The value of the Madelung constant
is of central importance in the theory of an ionic crystal. Methods for its calcu-
lation are discussed next.

At the equilibrium separation dU,,/dR = 0, so that

dUi Z Na 2
(CGs) = e—wp) + k=0 (22)
or
(CGS) R3 exp(—Ry/p) = paq’/zA . (23)

This determines the equilibrium separation R, if the parameters p, A of the re-
pulsive interaction are known. For SI, replace g by g*/4me,.

The total lattice energy of the crystal of 2N ions at their equilibrium sepa-
ration R, may be written, using (20) and (23), as

cGs A Y 24
( > tot — T() Rio . ( )

The term —Nag”R, is the Madelung energy. We shall find that p is of the
order of 0.1R,, so that the repulsive interaction has a very short range.
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/—Reference ion
+ =+ =+ =+ =+ -+
R~

Figure 9 Line of ions of alternating signs, with distance R between ions.

Evaluation of the Madelung Constant

The first calculation of the coulomb energy constant o was made by
Madelung. A powerful general method for lattice sum calculations was devel-
oped by Ewald and is developed in Appendix B. Computers are now used for
the calculations.

The definition of the Madelung constant « is, by (21),

For (20) to give a stable crystal it is necessary that @ be positive. If we take the
reference ion as a negative charge, the plus sign will apply to positive ions and
the minus sign to negative ions.

An equivalent definition is

o r(i>
E‘ETJ’ (25)

where r; is the distance of the jth ion from the reference ion and R is the near-
est- nelghbor distance. The value given for a will depend on whether it is
defined in terms of the nearest-neighbor distance R or in terms of the lattice
parameter a or in terms of some other relevant length.

As an example, we compute the Madelung constant for the infinite line of
ions of alternating sign in Fig. 9. Pick a negative ion as reference ion, and let R
denote the distance between adjacent ions. Then

o_J1_ 1.1 1
R_Z[R 3R "B3R 4R ]

- 1.
2[1 i ]

the factor 2 occurs because there are two ions, one to the right and one to the

or

[\)\»—l
C»J\»—J

left, at equal distances r;. We sum this series by the expansion

o
In(1 +x)=x—%+

W=
|
w7

Thus the Madelung constant for the one-dimensional chain is « = 2 1n 2.
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Figure 10 Energy per molecule of KCI crystal, showing
contributions.

Madelung (coulomb) and repulsive

In three dimensions the series presents greater difficulty. It is not
possible to write down the successive terms by a casual inspection. More

important, the series will not converge unless the successive terms in the se-
ries are arranged so that the contributions from the positive and negative

terms nearly cancel.

Typical values of the Madelung constant are listed below, based on unit
charges and referred to the nearest-neighbor distance:

Structure
Sodium chloride, NaCl
Cesium chloride, CsCl
Zinc blende, cubic ZnS

o
1.747565
1.762675
1.6381

The Madelung and repulsive contributions to the binding of a KCI crystal
are shown in Fig. 10. Properties of alkali halide crystals having the sodium
chloride structure are given in Table 7. The calculated values of the lattice en-
ergy are in exceedingly good agreement with the observed values.
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Table 7 Properties of alkali halide crystals with the NaCl structure

All values (except those in square brackets) at room temperature and atmospheric pressure, with no correction for changes in R, and U from
absolute zero. Values in square brackets at absolute zero temperature and zero pressure, from private communication by L. Brewer.
L

Nearest- Repulsive Repulsive Lattic ) d
neighbor Bulk modulus B, energy range attice energy compare
: - 1 B to free ions, in kcal/mol
separation in 10" dyn/cm parameter parameter
Ryin A or 10" N/m? zA,in 10" % erg p,in A Experimental Calculated
- _________________________________- |
LiF 2.014 6.71 0.296 0.291 242.3[246.8] 242.2
LiCl 2.570 2.98 0.490 0.330 198.9[201.8] 192.9
LiBr 2.751 2.38 0.591 0.340 189.8 181.0
Lil 3.000 (1.71) 0.599 0.366 177.7 166.1
NaF 2.317 4.65 0.641 0.290 214.4[217.9] 215.2
NaCl 2.820 2.40 1.05 0.321 182.6[185.3] 178.6
NaBr 2.989 1.99 1.33 0.328 173.6[174.3] 169.2
Nal 3.237 1.51 1.58 0.345 163.2[162.3] 156.6
KF 2.674 3.05 1.31 0.298 189.8[194.5] 189.1
KCl 3.147 1.74 2.05 0.326 165.8[169.5] 161.6
KBr 3.298 1.48 2.30 0.336 158.5[159.3] 154.5
KI 3.533 1.17 2.85 0.348 149.9[151.1] 144.5
RbF 2.815 2.62 1.78 0.301 181.4 180.4
RbCl 3.291 1.56 3.19 0.323 159.3 155.4
RbBr 3.445 1.30 3.03 0.338 152.6 148.3
RbI 3.671 1.06 3.99 0.348 144.9 139.6

|
Data from various tables by M. P. Tosi, Solid State Physics 16, 1 (1964).
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Ge
10

95 12

Figure 11 Calculated valence electron concentration in germanium. The numbers on the con-
tours give the electron concentration per primitive cell, with four valence electrons per atom
(eight electrons per primitive cell). Note the high concentration midway along the Ge-Ge bond,
as we expect for covalent bonding. (After J. R. Chelikowsky and M. L. Cohen.)

COVALENT CRYSTALS

The covalent bond is the classical electron pair or homopolar bond of
chemistry, particularly of organic chemistry. It is a strong bond: the bond be-
tween two carbon atoms in diamond with respect to separated neutral atoms is
comparable with the bond strength in ionic crystals.

The covalent bond is usually formed from two electrons, one from each
atom participating in the bond. The electrons forming the bond tend to be
partly localized in the region between the two atoms joined by the bond. The
spins of the two electrons in the bond are antiparallel.

The covalent bond has strong directional properties (Fig. 11). Thus car-
bon, silicon, and germanium have the diamond structure, with atoms joined to
four nearest neighbors at tetrahedral angles, even though this arrangement
gives a low filling of space, 0.34 of the available space, compared with 0.74 for
a close-packed structure. The tetrahedral bond allows only four nearest neigh-
bors, whereas a close-packed structure has 12. We should not overemphasize
the similarity of the bonding of carbon and silicon. Carbon gives biology, but
silicon gives geology and semiconductor technology.

The binding of molecular hydrogen is a simple example of a covalent bond.
The strongest binding (Fig. 12) occurs when the spins of the two electrons are
antiparallel. The binding depends on the relative spin orientation not because
there are strong magnetic dipole forces between the spins, but because the Pauli
principle modifies the distribution of charge according to the spin orientation.
This spin-dependent coulomb energy is called the exchange interaction.
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Figure 12 Energy of molecular hydrogen (H,) referred to separated neutral atoms. A negative
energy corresponds to binding. The curve N refers to a classical calculation with free atom charge
densities; A is the result for parallel electron spins, taking the Pauli exclusion principle into ac-
count, and S (the stable state) for antiparallel spins. The density of charge is represented by con-
tour lines for the states A and S.

The Pauli principle gives a strong repulsive interaction between atoms
with filled shells. If the shells are not filled, electron overlap can be accommo-
dated without excitation of electrons to high energy states and the bond will be
shorter. Compare the bond length (2 A) of Cl, with the interatomic distance
(3.76 A) of Ar in solid Ar: also compare the cohesive energies given in Table 1.
The difference between Cl, and Ar, is that the Cl atom has five electrons in
the 3p shell and the Ar atom has six, filling the shell, so that the repulsive in-
teraction is stronger in Ar than in CL.

The elements C, Si, and Ge lack four electrons with respect to filled
shells, and thus these elements (for example) can have an attractive interaction
associated with charge overlap. The electron configuration of carbon is
1s*2s%2p*. To form a tetrahedral system of covalent bonds the carbon atom
must first be promoted to the electronic configuration 1s*2s2p®. This promo-
tion from the ground state requires 4 eV, an amount more than regained when
the bonds are formed.
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Table 8 Fractional ionic character of bonds in binary crystals

Fractional Fractional

Crystal ionic character Crystal ionic character

L

Si 0.00

SiC 0.18 GaAs 0.31

Ge 0.00 GaSb 0.26

ZnO 0.62 AgCl 0.86

ZnS 0.62 AgBr 0.85

ZnSe 0.63 Agl 0.77

ZnTe 0.61 MgO 0.84

Cdo 0.79 MgS 0.79

Cds 0.69 MgSe 0.79

CdSe 0.70

CdTe 0.67 LiF 0.92
NaCl 0.94

InP 0.42 RbF 0.96

InAs 0.36

InSb 0.32

o
After J. C. Phillips, Bonds and bands in semiconductors.

There is a continuous range of crystals between the ionic and the covalent
limits. It is often important to estimate the extent a given bond is ionic or cova-
lent. A semiempirical theory of the fractional ionic or covalent character of a
bond in a dielectric crystal has been developed with considerable success by
J. C. Phillips, Table 8.

METALS

Metals are characterized by high electrical conductivity, and a large num-
ber of electrons in a metal are free to move about, usually one or two per atom.
The electrons available to move about are called conduction electrons. The
valence electrons of the atom become the conduction electrons of the metal.

In some metals the interaction of the ion cores with the conduction elec-
trons always makes a large contribution to the binding energy, but the charac-
teristic feature of metallic binding is the lowering of the energy of the valence
electrons in the metal as compared with the free atom.

The binding energy of an alkali metal crystal is considerably less than that
of an alkali halide crystal: the bond formed by a conduction electron is not very
strong. The interatomic distances are relatively large in the alkali metals because
the kinetic energy of the conduction electrons is lower at large interatomic
distances. This leads to weak binding. Metals tend to crystallize in relatively
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Figure 13 The hydrogen difluoride ion HF;
is stabilized by a hydrogen bond. The sketch
is of an extreme model of the bond, extreme
in the sense that the proton is shown bare of
electrons.

close packed structures: hep, fee, bee, and some other closely related structures,
and not in loosely-packed structures such as diamond.

In the transition metals there is additional binding from inner electron shells.
Transition metals and the metals immediately following them in the periodic
table have large d-electron shells and are characterized by high binding energy.

HYDROGEN BONDS

Because neutral hydrogen has only one electron, it should form a covalent
bond with only one other atom. It is known, however, that under certain condi-
tions an atom of hydrogen is attracted by rather strong forces to two atoms,
thus forming a hydrogen bond between them, with a bond energy of the
order of 0.1 eV. It is believed that the hydrogen bond is largely ionic in charac-
ter, being formed only between the most electronegative atoms, particularly F,
O, and N. In the extreme ionic form of the hydrogen bond, the hydrogen atom
loses its electron to another atom in the molecule; the bare proton forms the
hydrogen bond. The atoms adjacent to the proton are so close that more than
two of them would get in each other’s way; thus the hydrogen bond connects
only two atoms (Fig. 13).

The hydrogen bond is an important part of the interaction between H,O
molecules and is responsible together with the electrostatic attraction of the
electric dipole moments for the striking physical properties of water and ice. It
is important in certain ferroelectric crystals and in DNA.

ATOMIC RADII

Distances between atoms in crystals can be measured very accurately by
x-ray diffraction, often to 1 part in 10°. Can we say that the observed distance
between atoms may be assigned partly to atom A and partly to atom B? Can a
definite meaning be assigned to the radius of an atom or an ion, irrespective of
the nature and composition of the crystal?

Strictly, the answer is no. The charge distribution around an atom is not
limited by a rigid spherical boundary. Nonetheless, the concept of an atomic
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radius is fruitful in predicting interatomic spacing. The existence and probable
lattice constants of phases that have not yet been synthesized can be predicted
from the additive properties of the atomic radii. Further, the electronic config-
uration of the constituent atoms often can be inferred by comparison of mea-
sured and predicted values of the lattice constants.

To make predictions of lattice constants it is convenient to assign (Table 9)
sets of self-consistent radii to various types of bonds: one set for ionic crystals
with the constituent ions 6-coordinated in inert gas closed-shell configura-
tions, another set for the ions in tetrahedrally-coordinated structures, and an-
other set for 12-coordinated (close-packed) metals.

The predicted self-consistent radii of the cation Na* and the anion F~ as
given in Table 9 would lead to 0.97 A+ 1.36 A = 2.33 A for the interatomic
separation in the crystal NaF, as compared with the observed 2.32 A. This
agreement is much better than if we assume atomic (neutral) configurations
for Na and F, for this would lead to 2.58 A for the interatomic separation in the
crystal. The latter value is 5(n.n. distance in metallic Na+ interatomic distance
in gaseous Fy).

The interatomic distance between C atoms in diamond is 1.54 A: one-half
of this is 0.77 A. In silicon, which has the same crystal structure, one-half the
interatomic distance is 1.17 A. In SiC each atom is surrounded by four atoms
of the opposite kind. If we add the C and Si radii just given, we predict 1.94 A
for the length of the C-Si bond, in fair agreement with the 1.89 A observed for
the bond length. This is the kind of agreement (a few percent) that we shall
find in using tables of atomic radii.

Ionic Crystal Radii

Table 9 gives the ionic crystal radii in inert gas configurations for 6-fold
coordination. The ionic radii can be used in conjunction with Table 10. Let us

Table 10 Use of the standard radii of ions given in Table 9

The interionic distance D is represented by Dy = Rc + R,y + Ay, for ionic crystals,
where N is the coordination number of the cation (positive ion), R and R, are the stan-
dard radii of the cation and anion, and Ay is a correction for coordination number.
Room temperature. (After Zachariasen.)

.
N Ay(A) N Ay(A) N Ay(A)
.
1 —0.50 5 —0.05 9 +0.11
2 —0.31 6 0 10 +0.14
3 —0.19 7 +0.04 11 +0.17
4 —0.11 8 +0.08 12 +0.19
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consider BaTiO; with a lattice constant of 4.004 A at room temperature. Each
Ba®™" ion has 12 nearest O™~ ions, so that the coordination number is 12 and
the correction A, of Table 10 applies. If we suppose that the structure is
determined by the Ba-O contacts, we have D}, = 1.35 + 1.40 + 0.19 = 2.94 A
ora = 4.16 A; if the Ti-O contact determines the structure, we have D = 0.68 +
1.40 = 2.08 or a = 4.16 A. The actual lattice constant is somewhat smaller
than the estimates and may perhaps suggest that the bonding is not purely
ionic, but is partly covalent.

ANALYSIS OF ELASTIC STRAINS

We consider the elastic properties of a crystal viewed as a homogeneous
continuous medium rather than as a periodic array of atoms. The continuum
approximation is usually valid for elastic waves of wavelengths A longer than
107%cm, which means for frequencies below 10" or 10" Hz. Some of the ma-
terial below looks complicated because of the unavoidable multiplicity of sub-
scripts on the symbols. The basic physical ideas are simple: we use Hooke’s law
and Newton’s second law. Hooke’s law states that in an elastic solid the strain
is directly proportional to the stress. The law applies to small strains only. We
say that we are in the nonlinear region when the strains are so large that
Hooke’s law is no longer satisfied.

We specify the strain in terms of the components e,,, ¢,,, e.., ¢, €., €.,
which are defined below. We treat infinitesimal strains only. We shall not
distinguish in our notation between isothermal (constant temperature) and
adiabatic (constant entropy) deformations. The small differences between the
isothermal and adiabatic elastic constants are not often of importance at room
temperature and below.

We imagine that three orthogonal vectors X, y, Z of unit length are embed-
ded securely in the unstrained solid, as shown in Fig. 14. After a small uniform
deformation of the solid has taken place, the axes are distorted in orientation
and in length. In a uniform deformation each primitive cell of the crystal is
deformed in the same way. The new axes x’, y’, z’ may be written in terms of
the old axes:

x'=(1+e€)x+e,
y = eyxﬁ +(1+ eyy)y + e_,/:i ; (26)
z=eXxtey+t(lte)z.

y +e€.Z ;

The coefficients €,5 define the deformation; they are dimensionless and have
values < 1 if the strain is small. The original axes were of unit length, but the
new axes will not necessarily be of unit length. For example,

! — 2 2 2
x''x'=1+2,te, te, e

Xz 2
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Figure 14 Coordinate axes for the description of the state of strain; the
orthogonal unit axes in the unstrained state (a) are deformed in the
strained state (b).

whence " =1+ €, + - The fractional changes of length of the X, ¥, and z
axes are €, €,,, €.., respectively, to the first order.

What is the effect of the deformation (26) on an atom originally at r =
xX + yy + zz? The origin is taken at some other atom. If the deformation
is uniform, then after deformation the point will be at the position
r' =xx’ +yy' + zz'. This is obviously correct if we choose the X axis such that
r = xX; then r’ = xx’ by definition of x’. The displacement R of the deforma-
tion is defined by

REr’—r:x(x’—§)+y(y,_§7)+2(z,_i), (27)
or, from (26),

R(r) = (ve, + ye, + z€.)X + (xe, + ye, +z2€,)y
+(ve, + ye,. +z€.)2 . (28)

This may be written in a more general form by introducing u, v, w such that
the displacement is given by

R(r) = u(r)x + o(r)y + w(r)z . (29)

If the deformation is nonuniform we must relate u, v, w to the local strains. We
take the origin of r close to the region of interest; then comparison of (28) and
(29) gives, by Taylor series expansion of R using R(0) = 0,

oo o ‘
Y€ =X Y€y yay ; ete. (30)
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It is usual to work with coefficients e,z rather than €,5. We define the

strain components e,,, ¢,,, e.. by the relations

by
_, o . _, _dw
Cry = €y ox eyy - GW ay > €= € 9z (31)

using (30). The other strain components e,,, ¢,., e, are defined in terms of the
changes in angle between the axes: using (26) we may define

o =x' v =e +e =04 40U
xy Y T €T €y ay ox
e g = —0v  dw
eyzzy z _ez.y+6y:._ 0z 6y > (32)
’ ’ Ju Jw
=z X =e +e =4+
e, =7 *X €. T €. oz o

We may replace the = signs by = signs if we neglect terms of order €. The six
dimensionless coefficients e,g(=eg,) completely define the strain.
Dilation

The fractional increase of volume associated with a deformation is called
the dilation. The dilation is negative for hydrostatic pressure. The unit cube of
edges %, ¥, z has a volume after deformation of

V=x'-y' Xz', (33)

by virtue of a well-known result for the volume of a parallelepiped having
edgesx’,y’, z'. From (26) we have

1+e, €y €,
X'y Xz'=| €, 1+e, €. |=l+te,te, Te. . (34)
ezx 631/ 1 + 613

Products of two strain components have been neglected. The dilation 8 is then

given by

=e.tey, Te. . (35)

Stress Components

The force acting on a unit area in the solid is defined as the stress. There
are nine stress components: X, X, X, Y,,Y,, Y, Z.,Z,, Z.. The capital letter
indicates the direction of the force, and the subscript indicates the normal to
the plane to which the force is applied. In Fig. 15 the stress component X,
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Figure 15 Stress component X, is a force applied in the —""
x direction to a unit area of a plane whose normal lies in

the x direction; X, is applied in the x direction to a unit

area of a plane whose normal lies in the y direction.

Figure 16 Demonstration that for a body in static equilibrium
Y, = X,. The sum of the forces in the x direction is zero. The sum

-—
X

——»;<

=

of the forces in the y direction is also zero. The total force vanishes.

The total torque about the origin is also zero if Y, = X,

v

represents a force applied in the x direction to a unit area of a plane whose
normal lies in the x direction; the stress component X, represents a force
applied in the x direction to a unit area of a plane whose normal lies in the y
direction. The number of independent stress components is reduced from
nine to six by applying to an elementary cube (as in Fig. 16) the condition that
the angular acceleration vanish, and hence that the total torque must be zero.
It follows that

Y.=7, :

X, =Y, . (36)

The six independent stress components may be taken as X, Y,, Z., Y., Z,, X,,.

Stress components have the dimensions of force per unit area or
energy per unit volume. The strain components are ratios of lengths and are
dimensionless.
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ELASTIC COMPLIANCE AND STIFFNESS CONSTANTS

Hooke’s law states that for sufficiently small deformations the strain is di-
rectly proportional to the stress, so that the strain components are linear func-
tions of the stress components:

o = S1Xy + SlZYy + 82, + S1Y. + Si5Z, + SlGle

€y = X, + SpY, + SuZ. + oY + SuZ + Sy,
6= SuX, + S0a, + SyuZ + SuyY. + o + SueX, 37
= SuX, + SpY, + SuZ. + SuY. + SiZy + S,
€ = S5: Xy + S5aY, + S5pZ. + S5,Y. + S55Z, + SseX,
= 84X, + SeY, + SeZe + SeiY. + SesZs + S,

X C]]eu + Clze + C]f;e,,'f' C14e + C]*@, + C]ﬁ
Yy = Cz]@ + nge + nge,_-f- C24e + Cgr;@ + C')G
Z: = Cgle + nge + ng@,-"f‘ C34e + Cgr;e -+ Cg(;e

Y: = C41€ + C42€ + C,p;@,-"f‘ C44e + C456 -+ C46€

Zx = C51€ + C52€ + C;g@,-"f‘ C54e + er;e -+ C56@
X Cmeu + Cﬁze

J’/+ Cﬁge,,‘l' C64e + C({e, + C66€

The quantities S;;, Sy5 ... are called elastic compliance constants or
elastic constants; the quantities Cy;, Cp,, ... are called the elastic stiffness
constants or moduli of elasticity. The S’s have the dimensions of [areal/
[force] or [volume]/[energy]. The C’s have the dimensions of [force]/[area] or
[energy]/[volume].

Elastic Energy Density

The 36 constants in (37) or in (38) may be reduced in number by several
considerations. The elastic energy density U is a quadratic function of the
strains, in the approximation of Hooke’s law (recall the expression for the energy
of a stretched spring). Thus we may write

18 & -
§ 2 21 C/\y,e)\ey, > (39)
where the indices 1 through 6 are defined as:

l=xx; 2=yy; 3=zz; 4=yz; 5=zx; 6=uy. (40)
The C’s are related to the Cs of (38), as in (42) below.
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The stress components are found from the derivative of U with respect to
the associated strain component. This result follows from the definition of
potential energy. Consider the stress X, applied to one face of a unit cube, the
opposite face being held at rest:

= 90U _9U_

6
* T e, e 2 (Cip+ Cailep - (41)

l\)\)—l

Note that only the combination : (Caﬁ + Cﬁa) enters the stress-strain relations.
It follows that the elastic stiffness constants are symmetrical:

Cap = 2(Cap +Cpa) = Cpy . (42)

Thus the thirty-six elastic stiffness constants are reduced to twenty-one.

Elastic Stiffness Constants of Cubic Crystals

The number of independent elastic stiffness constants is reduced further
if the crystal possesses symmetry elements. We now show that in cubic crystals
there are only three independent stiffness constants.

We assert that the elastic energy density of a cubic crystal is

U=1C, & + ey, tel)+ W + e+ e;,) + Caleye.. +ee. +ewe,) (43)

Yz Z

and that no other quadratic terms occur; that is,

(e.e,+ ) ; (e

Xy

lj:e:x +- ) 5 (8 61/7 +- ) (44)

do not occur.

The minimum symmetry requirement for a cubic structure is the exis-
tence of four three-fold rotation axes. The axes are in the [111] and equivalent
directions (Fig. 17). The effect of a rotation of 277/3 about these four axes is to
interchange the x, y, z axes according to the schemes

X—=>y—>z—>x Xz Yy X

’ (45)

>

>

X—=>z—=> —y =X ;

>

—X—=y—>z—> X
according to the axis chosen. Under the first of these schemes, for example,

e +e +ew+e +e~~ +en ,
and similarly for the other terms in parentheses in (43). Thus (43) is invariant
under the operations considered. But each of the terms exhibited in (44) is
odd in one or more indices. A rotation in the set (45) can be found which will
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Figure 17 Rotation by 27/3 about the axis

marked 3 changes x — y; y — z; and z — x.

change the sign of the term, because e,, = —e,,, for example. Thus the
terms (44) are not invariant under the required operations.
It remains to verify that the numerical factors in (43) are correct. By (41),

dU/de,, = X; = Cyje,, + Crole,, T e) (46)
The appearance of C)e,, agrees with (38). On further comparison, we see that

Ciy=0Ci3 ; Cuyu=Ci3=Ci=0. (47)
Further, from (43),

dUlde,, = X, = Cye,, ; (48)

1y
on comparison with (38) we have
Ce1 = Ce=Ci3=Ces = Cs5=0 ; Ces=Cus (49)

Thus from (43) we find that the array of values of the elastic stiffness
constants is reduced for a cubic crystal to the matrix

€y eyy € ey: € exy

., Cy Cy Co 0O 0 0

Y, C, C, Cyp 0 0 0

Z: C] 9 C12 C]] 0 O 0

(50)

g 0 0 0 Cu 0 0

0 0 0 0 C.y 0
X, 0 0 0 0 0 Cu
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For cubic crystals the stiffness and compliance constants are related by

Ciu= 184y ; Cyy = Cro=(8, — S12>_1 5
Cyp +2C;,,=(S); +2S;,) 7" . (51)

These relations follow on evaluating the inverse matrix to (50).

Bulk Modulus and Compressibility

Consider the uniform dilation e, = ¢,, = e.. = 8. For this deformation the

energy density (43) of a cubic crystal is

w =

U=24C +2C)8% . (52)
We may define the bulk modulus B by the relation
U=3B& , (53)
which is equivalent to the definition =V dp/dV. For a cubic crystal,
B=2%C,, +2C,,) . (54)

The compressibility K is defined as K = 1/B. Values of B and K are given in
Table 3.

ELASTIC WAVES IN CUBIC CRYSTALS

By considering as in Figs. 18 and 19 the forces acting on an element of
volume in the crystal we obtain the equation of motion in the x direction

29X, 90X, 9x_
8u — X Y 2 : (55)

p ot> ox ay 0z
here p is the density and u is the displacement in the x direction. There are
similar equations for the y and z directions. From (38) and (50) it follows that
for a cubic crystal

82u _ ae.\‘x ae!/y ae:: aex!l ae:x
paitQ—CH o +C12( ox + ox +C44 ay + oz 5 (56)

here the x, y, z directions are parallel to the cube edges. Using the definitions
(31) and (32) of the strain components we have

ou _ 0%u Pu | u 0% o*w
p =Cy 2 +Cy <8y2 + 922 +(Ce+Cyy) ox ay + ox oz ) (57a)

where u, v, w are the components of the displacement R as defined by (29).
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Figure 18 Cube of volume Ax Ay Az acted
on by a stress —X,(x) on the face at x, and

Volume Ax Ay Az

ax,

X (x + Ax) = X, (x) + Tx Ax on the parallel
face at x + Ax. The net force is
X,

(a—\‘ Ax)Ay Az. Other forces in the x direction

arise from the variation across the cube of
the stresses X, and X_, which are not shown. The
net x component of the force on the cube is

aX,\‘ aXV a}(:,
F.= + +
’ ox dy 0z

)AxAyAz .

The force equals the mass of the cube times
the component of the acceleration in the x
direction. The mass is p Ax Ay Az, and the
acceleration is 8%u/dt>.

W

WWH RN W W —

A B

Figure 19 If springs A and B are stretched equally, the block between them experiences no net
force. This illustrates the fact that a uniform stress X, in a solid does not give a net force on a vol-
ume element. If the spring at B is stretched more than the spring at A, the block between them
will be accelerated by the force X(B) — X,(A).

The corresponding equations of motion for %v/0t> and 9*w/0t> are found
directly from (57a) by symmetry:

v _ 0% v, 9% u 9w
o g T Ou (ax2 Fozz) Tt O\ Gray Tayaz)
(57b)
9w O*w (621,0 82w> ( 0%u 0% >
=c, %% +c +2%) 4 (Cp+C - :
p Y 12 4\ g2 !/2 (Cye 1) ax 0z | 9y oz
(57¢)
We now look for simple special solutions of these equations.
Waves in the [100] Direction
One solution of (57a) is given by a longitudinal wave
u =ugexp [i(Kx — ot)] , (58)

where u is the x component of the particle displacement. Both the wavevector
and the particle motion are along the x cube edge. Here K=2m/A is the
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wavevector and w = 2mv is the angular frequency. If we substitute (58) into
(57a) we find

w’p=C,K ; (59)
thus the velocity w/K of a longitudinal wave in the [100] direction is
v,=vA = w/K=(C,/p)"* . (60)
Consider a transverse or shear wave with the wavevector along the x cube
edge and with the particle displacement v in the y direction:
v =1v,exp [i(Kx — wt)] . (61)
On substitution in (57b) this gives the dispersion relation
w’p=CLK ; (62)
thus the velocity w/K of a transverse wave in the [100] direction is
v, = (C/p)”? . (63)

The identical velocity is obtained if the particle displacement is in the z direc-
tion. Thus for K parallel to [100] the two independent shear waves have equal
velocities. This is not true for K in a general direction in the crystal.

Waves in the [110] Direction

There is a special interest in waves that propagate in a face diagonal direc-
tion of a cubic crystal, because the three elastic constants can be found simply
from the three propagation velocities in this direction.

Consider a shear wave that propagates in the xy plane with particle dis-
placement w in the z direction

w =wqexp [i(Kx + Ky — ot)] , (64)
whence (32¢) gives
‘UZP =Cy (K\Z"‘ K;) = C44K2 > (65)

independent of propagation direction in the plane.
Consider other waves that propagate in the xy plane with particle motion
in the xy plane: let

u = uyexp [i(Kx + Ky — ot)] ; v =vyexp [i(Kx + Ky — ot)] . (66)
From (57a) and (57b),
w’pu = (C K + CuKu + (Cyp + Co)KKp
w’pv = (C K} +C Ko + (Cpy + Cy) KK
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This pair of equations has a particularly simple solution for a wave in the [110]
direction, for which K, =K, = K/V2 . The condition for a solution is that the
determinant of the coefficients of u and v in (67) should equal zero:

—w’p+3(Cy, + C K> 3(Cip+ CK ~0 (68)
é(Clz + C44)K2 _‘ng + é(cn + C44)K2 .
This equation has the roots
w2P = %(Cn +Cp+ 2C44)K2 ; wgp = é(cn - CIQ)K2 . (69)

The first root describes a longitudinal wave; the second root describes a
shear wave. How do we determine the direction of particle displacement? The
first root when substituted into the upper equation of (67) gives

HC+Cra+2C)K%u = 5(Cy + Cu)K?u + 5(Cy+ C)K?0 | (70)

whence the displacement components satisfy u = v. Thus the particle dis-
placement is along [110] and parallel to the K vector (Fig. 20). The second
root of (44) when substituted into the upper equation of (67) gives

%(Cn - C12>K2U = é(cn + C44)K2u + é(clz + C44)K20 > (71)

whence u = —v. The particle displacement is along [110] and perpendicular to
the K vector.

Selected values of the adiabatic elastic stiffness constants of cubic crystals
at low temperatures and at room temperature are given in Table 11. Notice the
general tendency for the elastic constants to decrease as the temperature is in-
creased. Further values at room temperature alone are given in Table 12.

L T L !
K/ \ T
/ K
Wave in [100] direction Wave in [110] direction Wave in [111] direction
L:Cn L:3(Cyy + Cia+ 2Cyy) L:3(Cyy +2C 5+ 4Cy)
T:Cy4 T,:Cy T:%(CHfCler Cyuy)

T23%<C11*C12>

Figure 20 Effective elastic constants for the three modes of elastic waves in the principal propa-
gation directions in cubic crystals. The two transverse modes are degenerate for propagation in
the [100] and [111] directions.
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Table 11 Adiabatic elastic stiffness constants of cubic crystals
at low temperature and at room temperature

The values given at 0 K were obtained by extrapolation of measurements carried out
down to 4 K. The table was compiled with the assistance of Professor Charles S. Smith.

Stiffness constants, in 102 dyne/cm2 (10"'N/m?)

Crystal Ch Cis Cyy Temperature, K Density, g/cm3
|
w 5.326 2.049 1.631 0 19.317
5.233 2.045 1.607 300 —
Ta 2.663 1.582 0.874 0 16.696
2.609 1.574 0.818 300 —
Cu 1.762 1.249 0.818 0 9.018
1.684 1.214 0.754 300 —
Ag 1.315 0.973 0.511 0 10.635
1.240 0.937 0.461 300 —
Au 2.016 1.697 0.454 0 19.488
1.923 1.631 0.420 300 —
Al 1.143 0.619 0.316 0 2.733
1.068 0.607 0.282 300 —
K 0.0416 0.0341 0.0286 4
0.0370 0.0314 0.0188 295
Pb 0.555 0.454 0.194 0 11.599
0.495 0.423 0.149 300 —
Ni 2.612 1.508 1.317 0 8.968
2.508 1.500 1.235 300 —
Pd 2.341 1.761 0.712 0 12.132
2.271 1.761 0.717 300 —

Table 12 Adiabatic elastic stiffness constants of several
cubic crystals at room temperature or 300 K

]
Stiffness constants, in 102 dyne/cm2 or 10" N/m?

Cll Cl2 C44
L
Diamond 10.76 1.25 5.76
Na 0.073 0.062 0.042
Li 0.135 0.114 0.088
Ge 1.285 0.483 0.680
Si 1.66 0.639 0.796
GaSb 0.885 0.404 0.433
InSb 0.672 0.367 0.302
MgO 2.86 0.87 1.48
NaCl 0.487 0.124 0.126
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There are three normal modes of wave motion in a crystal for a given
magnitude and direction of the wavevector K. In general, the polarizations
(directions of particle displacement) of these modes are not exactly parallel or
perpendicular to K. In the special propagation directions [100], [111], and
[110] of a cubic crystal two of the three modes for a given K are such that the
particle motion is exactly transverse to K and in the third mode the motion
is exactly longitudinal (parallel to K). The analysis is much simpler in these
special directions than in general directions.

SUMMARY

o Crystals of inert gas atoms are bound by the van der Waals interaction (in-
duced dipole-dipole interaction), and this varies with distance as 1/RS.

o The repulsive interaction between atoms arises generally from the electro-
static repulsion of overlapping charge distributions and the Pauli principle,
which compels overlapping electrons of parallel spin to enter orbitals of

higher energy.

o Jonic crystals are bound by the electrostatic attraction of charged ions of
opposite sign. The electrostatic energy of a structure of 2N ions of charge
.

*qis

>

2 9

B q (£)g
(CGS) U=-Nap=-NY "
where a is the Madelung constant and R is the distance between nearest
neighbors.

o Metals are bound by the reduction in the kinetic energy of the valence elec-
trons in the metal as compared with the free atom.

o A covalent bond is characterized by the overlap of charge distributions of
antiparallel electron spin. The Pauli contribution to the repulsion is reduced
for antiparallel spins, and this makes possible a greater degree of overlap.
The overlapping electrons bind their associated ion cores by electrostatic
attraction.

Problems

1. Quantum solid. In a quantum solid the dominant repulsive energy is the zero-
point energy of the atoms. Consider a crude one-dimensional model of crystalline
He* with each He atom confined to a line segment of length L. In the ground state
the wave function within each segment is taken as a half wavelength of a free parti-
cle. Find the zero-point kinetic energy per particle.
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. Cohesive energy of bee and fce neon. Using the Lennard-Jones potential, cal-

culate the ratio of the cohesive energies of neon in the bee and fee structures (Ans.
0.958). The lattice sums for the bce structures are

i

2 ppP=911418 5 X'p;°=12.2533 .
J J

. Solid molecular hydrogen. For H, one finds from measurements on the gas that

the Lennard-Jones parameters are € = 50 X 1076 erg and o = 2.96 A. Find the
cohesive energy in k] per mole of H,; do the calculation for an fcc structure.
Treat each Hy molecule as a sphere. The observed value of the cohesive energy is
0.751 kJ/mol, much less than we calculated; thus, quantum corrections must be
very important.

. Possibility of ionic crystals R*R™. Imagine a crystal that exploits for binding the

coulomb attraction of the positive and negative ions of the same atom or molecule
R. This is believed to occur with certain organic molecules, but it is not found
when R is a single atom. Use the data in Tables 5 and 6 to evaluate the stability of
such a form of Na in the NaCl structure relative to normal metallic sodium. Evalu-
ate the energy at the observed interatomic distance in metallic sodium, and use
0.78 eV as the electron affinity of Na.

. Linear ionic crystal. Consider a line of 2N ions of alternating charge *¢q with a

repulsive potential energy A/R" between nearest neighbors. (a) Show that at the
equilibrium separation

CGS UR,) = EAUMLE |
( ) (Ry) = TR, nl -

(b) Let the crystal be compressed so that Ry— Ry(1 — ). Show that the work done
in compressing a unit length of the crystal has the leading term ;C8%, where

(n—=1)¢*In2
(CGS) C= TR
To obtain the results in SI, replace ¢* by g*4re,. Note: We should not expect to ob-
tain this result from the expression for U(R,), but we must use the complete expres-
sion for U(R).

. Cubic ZnS structure. Using A and p from Table 7 and the Madelung constants

given in the text, calculate the cohesive energy of KCl in the cubic ZnS structure
described in Chapter 1. Compare with the value calculated for KCI in the NaCl
structure.

. Divalent ionic crystals. Barium oxide has the NaCl structure. Estimate the

cohesive energies per molecule of the hypothetical crystals Ba*O™ and Ba**O™~
referred to separated neutral atoms. The observed nearest-neighbor internuclear
distance is R, = 2.76 A; the first and second ionization potentials of Ba are 5.19
and 9.96 eV: and the electron affinities of the first and second electrons added
to the neutral oxygen atom are 1.5 and —9.0 eV. The first electron affinity of the



Figure 21 Young’s modulus is defined as stress/strain for a ten-
sile stress acting in one direction, with the specimen sides left
free. Poisson’s ratio is defined as (Sw/w)/(8l/1) for this situation. from the two shears e,, = —¢
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12.
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neutral oxygen atom is the energy released in the reaction O + e — O™. The sec-
ond electron affinity is the energy released in the reaction O~ + e — O™ ~. Which
valence state do you predict will occur? Assume Ry is the same for both forms, and
neglect the repulsive energy.

. Young’s modulus and Poisson’s ratio. A cubic crystal is subject to tension in the

[100] direction. Find expressions in terms of the elastic stiffnesses for Young’s
modulus and Poisson’s ratio as defined in Fig. 21.

. Longitudinal wave velocity. Show that the velocity of a longitudinal wave in the

[111] direction of a cubic crystal is given by v, = [A(C, + 2C,, + 4C)/p)"2. Hint:
For such awave u = v =w. Letu = 1,L()e"[<<””+:)/\/§ef"“”, and use Eq. (57a).

Transverse wave velocity. Show that the velocity of transverse waves in the [111]
direction of a cubic crystal is given by v, = [X(C,,— Ciy+ Cudp]"?. Hint: See
Problem 9.

Effective shear constant. Show that the shear constant 3(C;; — Cy,) in a cubic

crystal is defined by setting e, = —e,, = e and all other strains equal to zero, as in

Fig. 22. Hint: Consider the energy density (43); look for a C' such that U = 3C’e”.
Determinantal approach. It is known that an R-dimensional square matrix with
all elements equal to unity has roots R and 0, with the R occurring once and the
zero occurring R — 1 times. If all elements have the value p, then the roots are
Rp and 0. (a) Show that if the diagonal elements are ¢ and all other elements are
p, then there is one root equal to (R — 1)p + g and R — 1 roots equal to ¢ — p.
(b) Show from the elastic equation (57) for a wave in the [111] direction of a cubic
crystal that the determinantal equation which gives w” as a function of K is

q— P p
P q-wp p_|=0,
p p q—wp

where g =3K*Cy; +2C,,) and p =3K*C,, + Cy). This expresses the condition
that three linear homogeneous algebraic equations for the three displacement

Figure 22 This deformation is compounded
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13.

14.

components u, v, w have a solution. Use the result of part (a) to find the three
roots of w?: check with the results given for Problems 9 and 10.

General propagation direction. (a) By substitution in (57) find the determinan-
tal equation which expresses the condition that the displacement

R(r) = [uX + o5y + wyz] exp [i(K - r — wt)]

be a solution of the elastic wave equations in a cubic crystal. (b) The sum of the
roots of a determinantal equation is equal to the sum of the diagonal elements a;.
Show from part (a) that the sum of the squares of the three elastic wave velocities
in any direction in a cubic crystal is equal to (C,; + 2C,,)/p. Recall that v} = 0¥/K>.

Stability criteria. The criterion that a cubic crystal with one atom in the primi-
tive cell be stable against small homogeneous deformations is that the energy den-
sity (43) be positive for all combinations of strain components. What restrictions
are thereby imposed on the elastic stiffness constants? (In mathematical language
the problem is to find the conditions that a real symmetric quadratic form should
be positive definite. The solution is given in books on algebra; see also Korn and
Korn, Mathematical Handbook, McGraw-Hill, 1961, Sec. 13.5-6.) Ans. C,, > 0,
C,, >0, C}, —C%>0, and C;; +2C,, > 0. For an example of the instability
which results when C); = C),, see L. R. Testardi et al., Phys. Rev. Letters 15,
250 (1965).
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Name Field

_ Electron _—
ANNANA~ Photon Electromagnetic wave
—N— Phonon Elastic wave
—_— | Plasmon Collective electron wave
—\MDJ—> Magnon Magnetization wave

- Polaron Electron + elastic deformation

- Exciton Polarization wave

Figure 1 Important elementary excitations in solids.
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CHAPTER 4: PHONONS I. CRYSTAL VIBRATIONS

VIBRATIONS OF CRYSTALS WITH MONATOMIC BASIS

Consider the elastic vibrations of a crystal with one atom in the primitive
cell. We want to find the frequency of an elastic wave in terms of the wavevec-
tor that describes the wave and in terms of the elastic constants.

The mathematical solution is simplest in the [100], [110], and [111] propa-
gation directions in cubic crystals. These are the directions of the cube edge,
face diagonal, and body diagonal. When a wave propagates along one of these
directions, entire planes of atoms move in phase with displacements either
parallel or perpendicular to the direction of the wavevector. We can describe
with a single coordinate u, the displacement of the plane s from its equilibrium
position. The problem is now one dimensional. For each wavevector there are
three modes as solutions for u,, one of longitudinal polarization (Fig. 2) and
two of transverse polarization (Fig. 3).

We assume that the elastic response of the crystal is a linear function of
the forces. That is equivalent to the assumption that the elastic energy is a
quadratic function of the relative displacement of any two points in the crystal.
Terms in the energy that are linear in the displacements will vanish in
equilibrium—see the minimum in Fig. 3.6. Cubic and higher-order terms may
be neglected for sufficiently small elastic deformations.

We assume that the force on the plane s caused by the displacement of the
plane s + p is proportional to the difference u,,, —u, of their displacements.
For brevity we consider only nearest-neighbor interactions, with p = *=1. The
total force on s from planes s * 1:

FS‘ = C<us+l - us) + C(“’x*l - u,\‘) : (1>

This expression is linear in the displacements and is of the form of Hooke’s law.
The constant C is the force constant between nearest-neighbor planes
and will differ for longitudinal and transverse waves. It is convenient hereafter
to regard C as defined for one atom of the plane, so that F, is the force on one
atom in the plane s.
The equation of motion of an atom in the plane s is

d?u,

d?

= C<us+l + Us—1 — 2”.3‘) > (2)

where M is the mass of an atom. We look for solutions with all displacements
having the time dependence exp(—iwt). Then d*u /dt* = —w*u,, and (2) becomes

_MCL)QUS = C(“x+] + Ug—y — 2“-5‘> ' (3>
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This is a difference equation in the displacements u and has traveling
wave solutions of the form:

) = u exp(isKa) exp(* iKa) , (4)

where « is the spacing between planes and K is the wavevector. The value to
use for a will depend on the direction of K.
With (4), we have from (3):

—w’Mu exp(isKa) = Cu{expli(s + 1)Ka] + expli(s — 1)Ka] — 2 exp(isKa)} . (5)
We cancel u exp(isKa) from both sides, to leave
w’M = —Clexp(iKa) + exp(—iKa) — 2] . (6)

With the identity 2 cos Ka = exp(iKa) + exp(-iKa), we have the dispersion
relation w(K).

> = (2C/M)(1 — cos Ka) . (7)

The boundary of the first Brillouin zone lies at K = *m/a. We show from
(7) that the slope of w versus K is zero at the zone boundary:

dw*/dK = (2Ca/M) sin Ka = 0 (8)

at K= *a/a, for here sin Ka = sin (=) = 0. The special significance of
phonon wavevectors that lie on the zone boundary is developed in (12) below.
By a trigonometric identity, (7) may be written as

w® = (4C/M) sin® 3 Ka ; o = (4C/M)"?|sin $ Ka| . (9)

A plot of w versus K is given in Fig. 4.

1.2

1.0 —

0.8— |
[0}

(4C/M)12
0.6— —

o .1
04 ac/M)2 SmiK"‘

02— —

2|3

T 2
0 T 2T

K
Li First Brillouin zone ——— |

Figure 4 Plot of w versus K. The region of K < 1/a or A > a corresponds to the contin-
uum approximation; here w is directly proportional to K.
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First Brillouin Zone

What range of K is physically significant for elastic waves? Only those in
the first Brillouin zone. From (4) the ratio of the displacements of two succes-
sive planes is given by

Uy _U expli(s + 1)Ka]

u, = W = exp(zKa) . (10)

The range — to + for the phase Ka covers all independent values of the
exponential.
The range of independent values of K is specified by

—mT<Ka=m , or —g<KS;—T.

This range is the first Brillouin zone of the linear lattice, as defined in
Chapter 2. The extreme values are K, ,, = *a/a. Values of K outside of the
first Brillouin zone (Fig. 5) merely reproduce lattice motions described by
values within the limits =/a.

We may treat a value of K outside these limits by subtracting the integral
multiple of 277/a that will give a wavevector inside these limits. Suppose K lies out-
side the first zone, but a related wavevector K’ defined K’ = K — 2mn/a lies within
the first zone, where n is an integer. Then the displacement ratio (10) becomes

Ugi1/u, = exp(iKa) = exp(i27n) expli(Ka — 2mmn)]| = exp(iK'a) , (11)

because exp(i27n) = 1. Thus the displacement can always be described by a
wavevector within the first zone. We note that 27n/a is a reciprocal lattice vec-
tor because 27r/a is a reciprocal lattice vector. Thus by subtraction of an appro-
priate reciprocal lattice vector from K, we always obtain an equivalent
wavevector in the first zone.

At the boundaries K,,,, = =7/a of the Brillouin zone the solution u, =
u exp(isKa) does not represent a traveling wave, but a standing wave. At the
zone boundaries sK,,,.a = *sm, whence

u,=uexp(*ism) =u(—1) . (12)

JVAVAVAVAVAVAVA

Figure 5 The wave represented by the solid curve conveys no information not given by the
dashed curve. Only wavelengths longer than 2a are needed to represent the motion.
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This is a standing wave: alternate atoms oscillate in opposite phases, because
u, = *1 according to whether s is an even or an odd integer. The wave moves
neither to the right nor to the left.

This situation is equivalent to Bragg reflection of x-rays: when the Bragg
condition is satisfied a traveling wave cannot propagate in a lattice, but
through successive reflections back and forth, a standing wave is set up.

The critical value K,,,, = =7/a found here satisfies the Bragg condition
2d sin @ = nA: we have 0 =37, d =a, K=2mw/A,n=1, so that A = 2a. With
x-rays it is possible to have n equal to other integers besides unity because the
amplitude of the electromagnetic wave has a meaning in the space between
atoms, but the displacement amplitude of an elastic wave usually has a mean-
ing only at the atoms themselves.

Group Velocity
The transmission velocity of a wave packet is the group velocity, given as
v, = dw/dK ,
or
v, = gradg o(K) , (13)

the gradient of the frequency with respect to K. This is the velocity of energy
propagation in the medium.
With the particular dispersion relation (9), the group velocity (Fig. 6) is

v, = (Ca*/M)"* cos 5 Ka . (14)

This is zero at the edge of the zone where K = m/a. Here the wave is a standing
wave, as in (12), and we expect zero net transmission velocity for a standing wave.

Long Wavelength Limit

When Ka < 1 we expand cosKa =1 — 1(Ka)?, so that the dispersion rela-
tion (7) becomes

w®> = (C/M)K*® . (15)

The result that the frequency is directly proportional to the wavevector in the
long wavelength limit is equivalent to the statement that the velocity of sound
is independent of frequency in this limit. Thus v = w/K, exactly as in the con-
tinuum theory of elastic waves—in the continuum limit Ka < 1.

Derivation of Force Constants from Experiment

In metals the effective forces may be of quite long range and are carried
from ion to ion through the conduction electron sea. Interactions have been
found between planes of atoms separated by as many as 20 planes. We can make
a statement about the range of the forces from the observed experimental
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1.0

Yy

(Ca¥M)2

0.5 T

i s Figure 6 Group velocity v, versus K, for model of
2a a  Fig. 4. At the zone boundary K = 7/a the group
K velocity is zero.

dispersion relation for w. The generalization of the dispersion relation (7) to p
nearest planes is easily found to be
> = (YM) 2, C,(1 — cos pKa) . (16a)
p>0
We solve for the interplanar force constants C,, by multiplying both sides

by cos rKa, where r is an integer, and integrating over the range of indepen-
dent values of K:

Trla 7la
M dK w? cos rKa = 22 C, dK (1 — cos pKa) cos rKa
—la p=>0 —la
= —2mC,/a . (16b)

The integral vanishes except for p = r. Thus

C = - Ma(™ ik 2 cos pKa (17)
=T o 777/0( W} COS P

gives the force constant at range pa, for a structure with a monatomic basis.

TWO ATOMS PER PRIMITIVE BASIS

The phonon dispersion relation shows new features in crystals with two or
more atoms per primitive basis. Consider, for example, the NaCl or diamond
structures, with two atoms in the primitive cell. For each polarization mode in
a given propagation direction the dispersion relation @ versus K develops two
branches, known as the acoustical and optical branches, as in Fig. 7. We have
longitudinal LA and transverse acoustical TA modes, and longitudinal LO and
transverse optical TO modes.

If there are p atoms in the primitive cell, there are 3p branches to the dis-
persion relation: 3 acoustical branches and 3p — 3 optical branches. Thus ger-
manium (Fig. 8a) and KBr (Fig. 8b), each with two atoms in a primitive cell,
have six branches: one LA, one LO, two TA, and two TO.
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Figure 7 Optical and acoustical branches of the dis-
persion relation for a diatomic linear lattice, showing
the limiting frequencies at K = 0 and K = K,,,, = w/a.
The lattice constant is a.
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Figure 8a Phonon dispersion relations in the [111]

direction in germanium at 80 K. The two TA phonon
branches are horizontal at the zone boundary position,
K,.. = (27/a)3£3). The LO and TO branches coincide at
K = 0; this also is a consequence of the crystal symmetry
of Ge. The results were obtained with neutron inelastic
scattering by G. Nilsson and G. Nelin.
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Figure 8b Dispersion curves in the [111]
direction in KBr at 90 K, after A. D. B.
Woods, B. N. Brockhouse, R. A. Cowley,
and W. Cochran. The extrapolation to K = 0
of the TO, LO branches are called wy, ;.

The numerology of the branches follows from the number of degrees of free-
dom of the atoms. With p atoms in the primitive cell and N primitive cells, there
are pN atoms. Each atom has three degrees of freedom, one for each of the x, y, z
directions, making a total of 3pN degrees of freedom for the crystal. The number
of allowed K values in a single branch is just N for one Brillouin zone.' Thus the

'"We show in Chapter 5 by application of periodic boundary conditions to the modes of the
crystal of volume V that there is one K value in the volume (27)%/V in Fourier space. The volume of a
Brillouin zone is (2)%V,, where V, is the volume of a crystal primitive cell. Thus the number of
allowed K values in a Brillouin zone is V/V,, which is just N, the number of primitive cells in the crystal.
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Ug—1 Us—1 U U Ug+1 Us+1

M, M,

I a |

Figure 9 A diatomic crystal structure with masses M,, M, connected by force constant C be-
tween adjacent planes. The displacements of atoms M, are denoted by u,_, ug, t,41, . .., and of
atoms M, by v,_;, v, v,11. The repeat distance is a in the direction of the wavevector K. The atoms
are shown in their undisplaced positions.

LA and the two TA branches have a total of 3N modes, thereby accounting for 3N
of the total degrees of freedom. The remaining (3p — 3)N degrees of freedom are
accommodated by the optical branches.

We consider a cubic crystal where atoms of mass M, lie on one set of planes
and atoms of mass M, lie on planes interleaved between those of the first set
(Fig. 9). It is not essential that the masses be different, but either the force con-
stants or the masses will be different if the two atoms of the basis are in non-
equivalent sites. Let a denote the repeat distance of the lattice in the direction
normal to the lattice planes considered. We treat waves that propagate in a
symmetry direction such that a single plane contains only a single type of ion;
such directions are [111] in the NaCl structure and [100] in the CsCl structure.

We write the equations of motion under the assumption that each plane
interacts only with its nearest-neighbor planes and that the force constants are
identical between all pairs of nearest-neighbor planes. We refer to Fig. 9 to

obtain
dPu,
1? = C(uc + Us—1 — 2us) 5
) (18)
d*v,
M, 02 = Cluyyy +u, — 20,) .

We look for a solution in the form of a traveling wave, now with different
amplitudes u, v on alternate planes:

u, = u exp(isKa) exp(—iwt) ; 0y = v explisKa) exp(—iwt) . (19)

We define @ in Fig. 9 as the distance between nearest identical planes, not
nearest-neighbor planes.
On substitution of (19) in (18) we have

—w’Mu = Cv[l + exp(—iKa)] — 2Cu ;
—w’My = Culexp(iKa) + 1] — 2Cv .
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The homogeneous linear equations have a solution only if the determinant of
the coefficients of the unknowns u, v vanishes:

2C — Mw” —C[1 + exp(iKa)] | _ (21)
—C[1 + exp(iKa)]  2C — My ’
or
M,M,w* — 2C(M, + M,)»> + 2C*1 — cos Ka) =0 . (22)

We can solve this equation exactly for ?, but it is simpler to examine the
limiting cases Ka <1 and Ka = = at the zone boundary. For small Ka we

have cos Ko =1 — 1 K%® + ..., and the two roots are
2~ ¢ L L 10 . N .
W= 2C<Ml + M2> (optical branch) ; (23)
3C
2~ _ 2 2.2 ne ane
W= M+ M2K a (acoustical branch) . (24)

The extent of the first Brillouin zone is —#/a = K = m/a  where a is the repeat

distance of the lattice. At K, = */a the roots are

@*=2C/M, ;  w*=2C/M, . (25)

The dependence of w on K is shown in Fig. 7 for M, > M,.

The particle displacements in the transverse acoustical (TA) and trans-
verse optical (TO) branches are shown in Fig. 10. For the optical branch at
K = 0 we find, on substitution of (23) in (20),

_M,
M] ’

E:
v

(26)

The atoms vibrate against each other, but their center of mass is fixed. If the
two atoms carry opposite charges, as in Fig. 10, we may excite a motion of this

Figure 10  Transverse optical and
transverse acoustical waves in a di-
atomic linear lattice, illustrated by the
particle displacements for the two
modes at the same wavelength. Acoustical mode
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type with the electric field of a light wave, so that the branch is called the opti-
cal branch. At a general K the ratio u/v will be complex, as follows from either
of the equations (20). Another solution for the amplitude ratio at small K is
u = v, obtained as the K = 0 limit of (24). The atoms (and their center of
mass) move together, as in long wavelength acoustical vibrations, whence the
term acoustical branch.

Wavelike solutions do not exist for certain frequencies, here between
(2C/M )" and (2C/M,)"2. This is a characteristic feature of elastic waves in
polyatomic lattices. There is a frequency gap at the boundary K., = =7/a of

max

the first Brillouin zone.

QUANTIZATON OF ELASTIC WAVES

The energy of a lattice vibration is quantized. The quantum of energy is
called a phonon in analogy with the photon of the electromagnetic wave. The
energy of an elastic mode of angular frequency w is

e=(n+Hhw (27)

when the mode is excited to quantum number n; that is, when the mode is occu-
pied by n phonons. The term ; fiw is the zero point energy of the mode. It occurs
for both phonons and photons as a consequence of their equivalence to a quan-
tum harmonic oscillator of frequency w, for which the energy eigenvalues are
also (n + 3)hw. The quantum theory of phonons is developed in Appendix C.

We can quantize the mean square phonon amplitude. Consider the stand-
ing wave mode of amplitude

u =1, cos Kx cos wt .

Here u is the displacement of a volume element from its equilibrium position
atx in the crystal. The energy in the mode, as in any harmonic oscillator, is half
kinetic energy and half potential energy, when averaged over time. The kinetic
energy density is 3 p(u/dt)*, where p is the mass density. In a crystal of volume
V, the volume integral of the kinetic energy is ; pVwuf sin> wt. The time aver-
age kinetic energy is

spVoud =5n + ko (28)
because <sin® wt>= 1. The square of the amplitude of the mode is
ul=4n+ Hh/pVo . (29)

This relates the displacement in a given mode to the phonon occupancy n of
the mode.

What is the sign of w? The equations of motion such as (2) are equations
for @?, and if this is positive then @ can have either sign, + or —. But the
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energy of a phonon must be positive, so it is conventional and suitable to view
w as positive. If the crystal structure is unstable, then w” will be negative and w
will be imaginary.

PHONON MOMENTUM

A phonon of wavevector K will interact with particles such as photons,
neutrons, and electrons as if it had a momentum %K. However, a phonon does
not carry physical momentum.

The reason that phonons on a lattice do not carry momentum is that a
phonon coordinate (except for K = 0) involves relative coordinates of the
atoms. Thus in an H, molecule the internuclear vibrational coordinate r; — r,
is a relative coordinate and does not carry linear momentum; the center of
mass coordinate 3(r; + 1,) corresponds to the uniform mode K =0 and can
carry linear momentum.

In crystals there exist wavevector selection rules for allowed transitions
between quantum states. We saw in Chapter 2 that the elastic scattering of an
x-ray photon by a crystal is governed by the wavevector selection rule

k=k+G, (30)

where G is a vector in the reciprocal lattice, k is the wavevector of the incident
photon, and k' is the wavevector of the scattered photon. In the reflection
process the crystal as a whole will recoil with momentum —#G, but this uni-
form mode momentum is rarely considered explicitly.

Equation (30) is an example of the rule that the total wavevector of inter-
acting waves is conserved in a periodic lattice, with the possible addition of a
reciprocal lattice vector G. The true momentum of the whole system always is
rigorously conserved. If the scattering of the photon is inelastic, with the
creation of a phonon of wavevector K, then the wavevector selection rule
becomes

k+K=k+G . (31)
If a phonon K is absorbed in the process, we have instead the relation
k=k+K+G . (32)

Relations (31) and (32) are the natural extensions of (30).

INELASTIC SCATTERING BY PHONONS

Phonon dispersion relations w(K) are most often determined experimen-
tally by the inelastic scattering of neutrons with the emission or absorption of a
phonon. A neutron sees the crystal lattice chiefly by interaction with the nuclei
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of the atoms. The kinematics of the scattering of a neutron beam by a crystal
lattice are described by the general wavevector selection rule:

k+G=k =K, (33)

and by the requirement of conservation of energy. Here K is the wavevector of
the phonon created (+) or absorbed (—) in the scattering process, and G is

any reciprocal lattice vector. For a phonon we choose G such that K lies in the
first Brillouin zone.

4
N I
= [001] 00® * [110] * [111] oo
ja - [ - o -

[ )

= 2 * . 0
R= g0 b o
= 2 o — 0" — o
Q
= ° o .
s o° o ®, o
= e Longitudinal — 6 0 © —
g oTransverse o ©
= | \

0 100 0 330 0 B

Wavevector, in units 27/a

Figure 11 The dispersion curves of sodium for phonons propagating in the [001], [110], and

[111] directions at 90 K, as determined by inelastic scattering of neutrons, by Woods, Brockhouse,
March and Bowers.

Figure 12 A triple axis neutron spectrometer at Brookhaven. (Courtesy of B. H. Grier.)

101



102

The kinetic energy of the incident neutron is p?%/2M,,, where M, is the mass
of the neutron. The momentum p is given by #ik, where k is the wavevector of
the neutron. Thus 7°k*/2M,, is the kinetic energy of the incident neutron. If k'
is the wavevector of the scattered neutron, the energy of the scattered neutron
is i*%k'?/2M,,. The statement of conservation of energy is

oM, 2M,

+hw | (34)

where fiw is the energy of the phonon created (+) or absorbed (—) in the
process.

To determine the dispersion relation using (33) and (34) it is necessary in
the experiment to find the energy gain or loss of the scattered neutrons as a
function of the scattering direction k — k’. Results for germanium and KBr are
given in Fig. 8; results for sodium are given in Fig. 11. A spectrometer used for
phonon studies is shown in Fig. 12.

SUMMARY
e The quantum unit of a crystal vibration is a phonon. If the angular fre-
quency is w, the energy of the phonon is Zw.

e When a phonon of wavevector K is created by the inelastic scattering of a
photon or neutron from wavevector k to k', the wavevector selection rule that
governs the process is

k=k'+K+G ,
where G is a reciprocal lattice vector.

o All elastic waves can be described by wavevectors that lie within the first
Brillouin zone in reciprocal space.

o If there are p atoms in the primitive cell, the phonon dispersion relation will
have 3 acoustical phonon branches and 3p — 3 optical phonon branches.

Problems
1. Monatomic linear lattice. Consider a longitudinal wave
u, = u cos(wt — sKa)

which propagates in a monatomic linear lattice of atoms of mass M, spacing a, and
nearest-neighbor interaction C.
(a) Show that the total energy of the wave is

E=1MY(du/dt? +3C Y (u, —ug)? .

s

where s runs over all atoms.
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(b) By substitution of u, in this expression, show that the time-average total ener
y s p g gy
per atom is

I Mou? +1C(1 — cos Kau® = : Mw®u?® |
where in the last step we have used the dispersion relation (9) for this problem.

Continuum wave equation. Show that for long wavelengths the equation of mo-
tion (2) reduces to the continuum elastic wave equation

o’ on?

>

where v is the velocity of sound.

Basis of two unlike atoms. For the problem treated by (18) to (26), find the am-
plitude ratios u/v for the two branches at K, = 7/a. Show that at this value of K
the two lattices act as if decoupled: one lattice remains at rest while the other lat-
tice moves.

. Kohn anomaly. We suppose that the interplanar force constant C,, between planes

sand s + p is of the form

sin pkya

P pa >

where A and k; are constants and p runs over all integers. Such a form is expected in
metals. Use this and Eq. (16a) to find an expression for ® and also for dw*aK. Prove
that dw*dK is infinite when K = k. Thus a plot of ” versus K or of @ versus K has a
vertical tangent at k: there is a kink at k, in the phonon dispersion relation w(K).

. Diatomic chain. Consider the normal modes of a linear chain in which the force

constants between nearest-neighbor atoms are alternately C and 10C. Let the
masses be equal, and let the nearest-neighbor separation be a/2. Find w(K) at
K = 0 and K = 7/a. Sketch in the dispersion relation by eye. This problem simu-
lates a crystal of diatomic molecules such as H,.

. Atomic vibrations in a metal. Consider point ions of mass M and charge ¢ im-

mersed in a uniform sea of conduction electrons. The ions are imagined to be in
stable equilibrium when at regular lattice points. If one ion is displaced a small dis-
tance r from its equilibrium position, the restoring force is largely due to the elec-
tric charge within the sphere of radius r centered at the equilibrium position. Take
the number density of ions (or of conduction electrons) as 3/47R?, which defines R.
(a) Show that the frequency of a single ion set into oscillation is @ = (¢/MR®)".
(b) Estimate the value of this frequency for sodium, roughly. (¢) From (a), (b), and
some common sense, estimate the order of magnitude of the velocity of sound in
the metal.

Soft phonon modes. Consider a line of ions of equal mass but alternating in
charge, with e, =e(—1) as the charge on the pth ion. The interatomic potential is

“This problem is rather difficult.
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the sum of two contributions: (1) a short-range interaction of force constant C,z = y
that acts between nearest neighbors only, and (2) a coulomb interaction between
all ions. (a) Show that the contribution of the coulomb interaction to the atomic
force constants is Cpe=2(—1y e*/p*a®, where a is the equilibrium nearest-neigh-
bor distance. (b) From (16a) show that the dispersion relation may be written as

wYwi —sin®> 3 Ka + oY, (—1) (1 — cos pKa)p™ ,
1

where 0j =4y/M and o = ¢*/ya®. (c) Show that @” is negative (unstable mode) at
the zone boundary Ka = 7 if o > 0.475 or 4/7{(3), where { is a Riemann zeta func-
tion. Show further that the speed of sound at small Ka is imaginary if ¢ > (21n 2)"
= 0.721. Thus ®* goes to zero and the lattice is unstable for some value of Ka in
the interval (0, ) if 0.475 < o < 0.721. Notice that the phonon spectrum is not
that of a diatomic lattice because the interaction of any ion with its neighbors is the
same as that of any other ion.
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Figure 1 Plot of Planck distribution function. At high temperatures the occupancy of a state is
approximately linear in the temperature. The function (n) + 3, which is not plotted, approaches
the dashed line as asymptote at high temperatures.
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CHAPTER 3: PHONONS II. THERMAL PROPERTIES

We discuss the heat capacity of a phonon gas and then the effects of
anharmonic lattice interactions on the phonons and on the crystal.

PHONON HEAT CAPACITY

By heat capacity we shall usually mean the heat capacity at constant vol-
ume, which is more fundamental than the heat capacity at constant pressure,
which is what the experiments determine.' The heat capacity at constant vol-
ume is defined as Cy = (9U/dT)y where U is the energy and T the temperature.

The contribution of the phonons to the heat capacity of a crystal is called
the lattice heat capacity and is denoted by Cy,. The total energy of the
phonons at a temperature 7(=kT) in a crystal may be written as the sum of
the energies over all phonon modes, here indexed by the wavevector K and
polarization index p:

U]ut = ; 2 UK,}) = ; E(nK,p>ﬁwl\’,p > (1)
P P

where (ny,) is the thermal equilibrium occupancy of phonons of wavevector
K and polarization p. The form of (ng,) is given by the Planck distribution
function:

_ 1
(= exp(hw/T) =1~ @)

where the (- --) denotes the average in thermal equilibrium. A graph of (n) is
given in Fig. 1.

Planck Distribution

Consider a set of identical harmonic oscillators in thermal equilibrium.
The ratio of the number of oscillators in their (n + 1)th quantum state of exci-
tation to the number in the nth quantum state is

N,. /N, = exp(—ho/T) | T=kT , (3)

'A thermodynamic relation gives C,—Cy= 9a’BVT, where a is the temperature coefficient
of linear expansion, V the volume, and B the bulk modulus. The fractional difference between C,
and Cy is usually small in solids and often may be neglected. As T— 0 we see that C, — Cy, pro-
vided @ and B are constant.
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by use of the Boltzmann factor. Thus the fraction of the total number of oscil-
lators in the nth quantum state is

N, exp(—nhw/T)
i . (4)

2 N, 2 exp(—shw/T)
s=0 s=0
We see that the average excitation quantum number of an oscillator is

ES exp(—shw/T)

n=-———. 5
2 Eexp(—sﬁw/T) (5)

The summations in (5) are

s — 1 . s — i s — X
ny T2 gsx xdxgx TR (6)

with x = exp(—#iw/7). Thus we may rewrite (5) as the Planck distribution:

X 1
(n) = 1—x expthw/T) — 1~ @

Normal Mode Enumeration

The energy of a collection of oscillators of frequencies wg, in thermal
equilibrium is found from (1) and (2):

U=2%

T exp(ﬁwK!P/T) -1

fiwg,

(8)

It is usually convenient to replace the summation over K by an integral. Sup-
pose that the crystal has Dp(w)dw modes of a given polarization p in the fre-
quency range w to w + dw. Then the energy is

_ how

U= ;fdw DP(w)exp(ﬁa)/T) -1 )
The lattice heat capacity is found by differentiation with respect to tempera-
ture. Let x = fiw/T = hw/kpT: then oU/IT gives

% exp x

Cu=hy 3 [ do Do) (10)
p (

expx — 1)*
The central problem is to find D(w), the number of modes per unit fre-

quency range. This function is called the density of modes or, more often, den-
sity of states.

Density of States in One Dimension

Consider the boundary value problem for vibrations of a one-dimensional
line (Fig. 2) of length L carrying N + 1 particles at separation a. We suppose



5 Phonons II. Thermal Properties

L

Fixed\ .~ o o :_T—u; . ‘;'a’i . /Fixed
s=0 1 2 e s =10

Figure 2 Elastic line of N + 1 atoms, with N = 10, for boundary conditions that the end atoms
s = 0and s = 10 are fixed. The particle displacements in the normal modes for either longitudinal
or transverse displacements are of the form u, = sin sKa. This form is automatically zero at the
atom at the end s = 0, and we choose K to make the displacement zero at the end s = 10 .

0 _m 2w . 10w
10a 10a 10a

K—

Figure 3 The boundary condition sin sKa = 0 for s = 10 can be satisfied by choosing K = 7/10a,
2m/10a, . . ., 97/10a, where 10a is the length L of the line. The present figure is in K space. The
dots are not atoms but are the allowed values of K. Of the N + 1 particles on the line, only N — 1
are allowed to move, and their most general motion can be expressed in terms of the N — 1 al-
lowed values of K. This quantization of K has nothing to do with quantum mechanics but follows
classically from the boundary conditions that the end atoms be fixed.

that the particles s =0 and s = N at the ends of the line are held fixed. Each
normal vibrational mode of polarization p has the form of a standing wave,
where u, is the displacement of the particle s:

u, = u(0) exp(—iw t) sin sKa , (11)

where wy, is related to K by the appropriate dispersion relation.
As in Fig. 3, the wavevector K is restricted by the fixed-end boundary con-
ditions to the values

_m 27 3w (N—D)m
k=T, . T T : (12)
The solution for K = #/L has
u, < sin (s7ra/L) (13)

and vanishes for s = 0 and s = N as required.

The solution for K= Na/L = w/a = K,,,, has u, o sin s7; this permits no
motion of any atom, because sin s7 vanishes at each atom. Thus there are
N — 1 allowed independent values of K in (12). This number is equal to the
number of particles allowed to move. Each allowed value of K is associated
with a standing wave. For the one-dimensional line there is one mode for each
interval AK = @1/L, so that the number of modes per unit range of K is L/7 for
K = 7/a, and 0 for K> m/a.

There are three polarizations p for each value of K: in one dimension two
of these are transverse and one longitudinal. In three dimensions the polariza-
tions are this simple only for wavevectors in certain special crystal directions.

Another device for enumerating modes is equally valid. We consider the
medium as unbounded, but require that the solutions be periodic over a large
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Figure 4 Consider N particles constrained to slide on
a circular ring. The particles can oscillate if connected
by elastic springs. In a normal mode the displacement
u, of atom s will be of the form sin sKa or cos sKa:
these are independent modes. By the geometrical pe-
riodicity of the ring the boundary condition is that
uy, = ug for all s, so that NKa must be an integral
multiple of 277. For N = 8§ the allowed independent
values of K are 0, 271/8a, 41/8a, 67/8a, and 87/Sa. The
value K = 0 is meaningless for the sine form, because
sin s0a = 0. The value 87/8a has a meaning only for
the cosine form, because sin (s8ma/8a) = sin s = 0.
The three other values of K are allowed for both the
sine and cosine modes, giving a total of eight allowed
modes for the eight particles. Thus the periodic
boundary condition leads to one allowed mode per
particle, exactly as for the fixed-end boundary condi-
tion of Fig. 3. If we had taken the modes in the com-
plex form exp(isKa), the periodic boundary condition
would lead to the eight modes with K = 0, *27/Na,
*+4m/Na, =6m/Na, and 87/Na, as in Eq. (14).

K——

Figure 5 Allowed values of wavevector K for periodic boundary conditions applied to a linear lat-
tice of periodicity N = 8 atoms on a line of length L. The K = 0 solution is the uniform mode. The
special points £ N#/L represent only a single solution because exp(imrs) is identical to exp(—ims);
thus there are eight allowed modes, with displacements of the sth atom proportional to 1,
exp(*ims/4), exp(£ims/2), exp(*+i3ms/4), exp(ims).

distance L, so that u(sa) = u(sa + L). The method of periodic boundary
conditions (Figs. 4 and 5) does not change the physics of the problem in any
essential respect for a large system. In the running wave solution
u, = u(0) expli(sKa — wgt)] the allowed values of K are

K=0 | i%”, i%“, t%”,...,NL”. (14)

This method of enumeration gives the same number of modes (one per
mobile atom) as given by (12), but we have now both plus and minus values of
K, with the interval AK = 27/L between successive values of K. For periodic
boundary conditions, the number of modes per unit range of K is L/2m for
—m/a = K = m/a, and 0 otherwise. The situation in a two-dimensional lattice is
portrayed in Fig. 6.

We need to know D(w), the number of modes per unit frequency range for
a given polarization. The number of modes D(w) dw in dw at w is given in one
dimension by

dK

_LdK, _L. do
D](w)dw—ﬂ.dwdw T JwldK (15)




5 Phonons II. Thermal Properties

s
a

Figure 6 Allowed values in Fourier space of the phonon wavevector K for a square lattice of lat-
tice constant a, with periodic boundary conditions applied over a square of side L = 10a. The uni-
form mode is marked with a cross. There is one allowed value of K per area (27/10a)? = (27/L)?, so
that within the circle of area K* the smoothed number of allowed points is mK*(L/2m).

We can obtain the group velocity dw/dK from the dispersion relation w versus
K. There is a singularity in D;(w)whenever the dispersion relation w(K) is hori-
zontal; that is, whenever the group velocity is zero.

Density of States in Three Dimensions

We apply periodic boundary conditions over N° primitive cells within a
cube of side L, so that K is determined by the condition

expli(K,x + Ky + K. z)] = expli[K(x + L) + K(y+L)+K(z+ L)}, (16)
whence
KoK, K=0; =20, =2m, .. N7 a7

Therefore, there is one allowed value of K per volume (27/L)° in K space, or

LY v
(%) - a8)

allowed values of K per unit volume of K space, for each polarization and for
each branch. The volume of the specimen is V = L.

The total number of modes with wavevector less than K is found from (18)
to be (L/27)° times the volume of a sphere of radius K. Thus

N = (L/2m)}(4mK>/3) (19)
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for each polarization type. The density of states for each polarization is

D(w) = dN/dow = (VK*/21)(dK/dw) . (20)

Debye Model for Density of States

In the Debye approximation the velocity of sound is taken as constant for
each polarization type, as it would be for a classical elastic continuum. The dis-
persion relation is written as

w=vK |, (21)

with v the constant velocity of sound.
The density of states (20) becomes

D(w) = Vo2 . (22)

If there are N primitive cells in the specimen, the total number of acoustic
phonon modes is N. A cutoff frequency wj, is determined by (19) as

w}, = 6T0°N/V . (23)
To this frequency there corresponds a cutoff wavevector in K space:
K, = wp/v = (67N/V)3 | (24)

On the Debye model we do not allow modes of wavevector larger than Kj,. The
number of modes with K = K}, exhausts the number of degrees of freedom of a
monatomic lattice.

The thermal energy (9) is given by

U= jdw D(w){n(w))Yho = fwu dw ( Vo? )(ﬁ(u) , (25)

o
0 2703 S\ — 1

for each polarization type. For brevity we assume that the phonon velocity is
independent of the polarization, so that we multiply by the factor 3 to obtain

3Vh [ w® 3VkyT* f W48
U= d = X — , 26
2% ¢ e — 1 27kt * e —1 (26)
where x = hiw/T = hw/kgT and
xp = hwp/kyT = 6/T . (27)

This defines the Debye temperature 0 in terms of w;, defined by (23).
We may express 0 as

0 (28)

:@ - (6772N>U3
kB V ’
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To convert a value in cal/mol-K to J/mol-K,

Temperature, K multiply by 4.186.

so that the total phonon energy is

3
U= 9NkBT<£>

where N is the number of atoms in the specimen and xj, = 6/T.
The heat capacity is found most easily by differentiating the middle ex-
pression of (26) with respect to temperature. Then

Svhil an (1)4 eﬁw/f < ) f
Cy=—=—"— Tw ——— = 9Nk d . 30
' 20k, T2 Jo e (e —1)? P x 1)? (30)

The Debye heat capacity is plotted in Fig. 7. At T> 6 the heat capacity ap-
proaches the classical value of 3Nkj,. Measured values for silicon and germa-
nium are plotted in Fig. 8.

(29)
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Debye T?Law

At very low temperatures we may approximate (29) by letting the upper
limit go to infinity. We have

°© 3
X
f() dxex_].

where the sum over s * is found in standard tables. Thus U = 37*Nk,T"/56° for
T <0, and

4

=f dx x* Y, exp(—sx) GEL4 l , (31)
0 pe=| T

S

k 3
Cy= 127” Nk,;( ) = 934 Nk,;(i) : (32)

which is the Debye T? approximation. Experimental results for argon are plot-
ted in Fig. 9.

At sufficiently low temperature the T° approximation is quite good; that is,
when only long wavelength acoustic modes are thermally excited. These are just
the modes that may be treated as an elastic continuum with macroscopic elastic
constants. The energy of the short wavelength modes (for which this approxima-
tion fails) is too high for them to be populated significantly at low temperatures.

We understand the T° result by a simple argument (Fig. 10). Only those
lattice modes having Aw < kT will be excited to any appreciable extent at a
low temperature T. The excitation of these modes will be approximately classi-
cal, each with an energy close to kzT, according to Fig. 1.

Of the allowed volume in K space, the fraction occupied by the excited
modes is of the order of (w;/wp)® or (K;/Kp)?, where Ky is a “thermal” wavevec-
tor defined such that ZivK; = kT and K}, is the Debye cutoff wavevector. Thus
the fraction occupied is (7/6)° of the total volume in K space. There are of the
order of 3N(T/6)%xcited modes, each having energy kyzT. The energy is
~3NkgT(T/0)°, and the heat capacity is ~12Nkg(1/6)°.

For actual crystals the temperatures at which the T3 approximation holds
are quite low. It may be necessary to be below T = 6/50 to get reasonably pure
T3 behavior.

Selected values of 6 are given in Table 1. Note, for example, in the alkali
metals that the heavier atoms have the lowest 6’s, because the velocity of
sound decreases as the density increases.

Einstein Model of the Density of States

Consider N oscillators of the same frequency w, and in one dimension.
The Einstein density of states is D(w) = N6(w — w,)), where the delta function
is centered at ;. The thermal energy of the system is

Nho

eha)/T _ 1

U= Nn)ho = , (33)

with @ now written in place of w,, for convenience.
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Figure 9 Low temperature heat capacity of solid argon, plotted against T In this temperature
region the experimental results are in excellent agreement with the Debye T° law with 6 = 92.0 K.
(Courtesy of L. Finegold and N. E. Phillips.)

fiwp = wKp = kg
fwKyp = kgT

Ky

@

Figure 10 To obtain a qualitative explanation of the Debye T* law, we suppose that all phonon
modes of wavevector less than K; have the classical thermal energy k3T and that modes between
Ky and the Debye cutoff K, are not excited at all. Of the 3N possible modes, the fraction excited is

(Ky/Kp)® = (T/0)%, because this is the ratio of the volume of the inner sphere to the outer sphere.
The energy is U = kT - 3N(T/6)%, and the heat capacity is Cy = 9U/9T = 12Nk, (T/6)°.
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Figure 11 Comparison of experimental values of the heat capacity of diamond with values calcu-
lated on the earliest quantum (Einstein) model, using the characteristic temperature
0 = hw/ky = 1320 K. To convert to J/mol-deg, multiply by 4.186.

The heat capacity of the oscillators is

_ w _ @ 2 eﬁm/f
o= (), =k, (B ) 2 (51)

as plotted in Fig. 11. This expresses the Einstein (1907) result for the contribu-
tion of N identical oscillators to the heat capacity of a solid. In three dimensions
N is replaced by 3N, there being three modes per oscillator. The high tempera-
ture limit of Cy, becomes 3Nk, which is known as the Dulong and Petit value.

At low temperatures (34) decreases as exp(—#Aw/T), whereas the experi-
mental form of the phonon contribution is known to be T%as accounted for by
the Debye model treated above. The Einstein model, however, is often used to
approximate the optical phonon part of the phonon spectrum.

General Result for D(w)

We want to find a general expression for D(w), the number of states per unit
frequency range, given the phonon dispersion relation w(K). The number of al-
lowed values of K for which the phonon frequency is between w and w + dw is

D(w) do = <L>3 f K (35)
27 ) J el
where the integral is extended over the volume of the shell in K space bounded
by the two surfaces on which the phonon frequency is constant, one surface on
which the frequency is w and the other on which the frequency is w + dw.
The real problem is to evaluate the volume of this shell. We let dS,, denote
an element of area (Fig. 12) on the surface in K space of the selected constant
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/ \Ky

Figure 12 Element of area dS,, on a constant Ky

frequency surface in K space. The volume

between two surfaces of constant frequency at ‘
o and  + dw is equal to [ dS,, dw/|Vxe|.

frequency w. The element of volume between the constant frequency surfaces
w and o + dw is a right cylinder of base dS,, and altitude dK, so that

f d’K = f dS,dK, , (36)
shell

Here dK, is the perpendicular distance (Fig. 13) between the surface w con-
stant and the surface w + dw constant. The value of dK; will vary from one
point to another on the surface.

The gradient of w, which is Vgw, is also normal to the surface w constant,
and the quantity

|VK(1)| dKl = dw 5

is the difference in frequency between the two surfaces connected by dK;.
Thus the element of the volume is

do _ dw
- dSw v,

dS,dK, =dsS,

where v, = |Vkw| is the magnitude of the group velocity of a phonon. For (35)

(L SIdSw
D(w) dw = <277> o, dow .

We divide both sides by dw and write V = L? for the volume of the crystal: the
result for the density of states is

we have

v (dS,
D<w)_(27-r)3f o, - (37)
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Vs Surface w + dw = constant

dK,
Figure 13 The quantity dK, is the perpendicular distance
Z between two constant frequency surfaces in K space, one at
Surface @ = constant frequency w and the other at frequency w + dw.
D(w) D(w)

(a) (b)

Figure 14 Density of states as a function of frequency for (a) the Debye solid and (b) an actual
crystal structure. The spectrum for the crystal starts as o® for small w, but discontinuities develop
at singular points.

The integral is taken over the area of the surface w constant, in K space. The
result refers to a single branch of the dispersion relation. We can use this re-
sult also in electron band theory.

There is a special interest in the contribution to D(w) from points at which
the group velocity is zero. Such critical points produce singularities (known as
Van Hove singularities) in the distribution function (Fig. 14).

ANHARMONIC CRYSTAL INTERACTIONS

The theory of lattice vibrations discussed thus far has been limited in the
potential energy to terms quadratic in the interatomic displacements. This is
the harmonic theory; among its consequences are:

e Two lattice waves do not interact; a single wave does not decay or change
form with time.

* There is no thermal expansion.

e Adiabatic and isothermal elastic constants are equal.

e The elastic constants are independent of pressure and temperature.

 The heat capacity becomes constant at high temperatures T > 6.
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In real crystals none of these consequences is satisfied accurately. The devia-
tions may be attributed to the neglect of anharmonic (higher than quadratic)
terms in the interatomic displacements. We discuss some of the simpler as-
pects of anharmonic effects.

Beautiful demonstrations of anharmonic effects are the experiments on
the interaction of two phonons to produce a third phonon at a frequency
w3 = w; + w,. Three-phonon processes are caused by third-order terms in the
lattice potential energy. The physics of the phonon interaction can be stated
simply: the presence of one phonon causes a periodic elastic strain which
(through the anharmonic interaction) modulates in space and time the elastic
constant of the crystal. A second phonon perceives the modulation of the elas-
tic constant and thereupon is scattered to produce a third phonon, just as from
a moving three-dimensional grating.

Thermal Expansion

We may understand thermal expansion by considering for a classical oscil-
lator the effect of anharmonic terms in the potential energy on the mean sepa-
ration of a pair of atoms at a temperature T. We take the potential energy of the
atoms at a displacement x from their equilibrium separation at absolute zero as

Ul) =cx® —gx® — it (38)

with ¢, g, and f all positive. The term in 2° represents the asymmetry of the
mutual repulsion of the atoms and the term in x* represents the softening of the
vibration at large amplitudes. The minimum at x =0 is not an absolute mini-
mum, but for small oscillations the form is an adequate representation of an in-
teratomic potential.

We calculate the average displacement by using the Boltzmann distribu-
tion function, which weights the possible values of x according to their
thermodynamic probability:

fio dx x exp[—BU(x)]

(x) =

>

fio dx exp[—BU(x)]

with B = 1/kyT. For displacements such that the anharmonic terms in the
energy are small in comparison with kT, we may expand the integrands as

[ dx x exp(—BU) = [ dx [exp(—Bex?)](x + Bax* + BA®) = (3m4/4)(g/c™*)B 2 ;
J dx exp(—BU) = [ dx exp(—Bex?) = (m/Bc)? (39)

whence the thermal expansion is

3g
(x) = 4—02kBT (40)
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in the classical region. Note that in (39) we have left cx” in the exponential, but
we have expanded exp(Bgx® + Bfr*) = 1 + Bax® + Bt +- .

Measurements of the lattice constant of solid argon are shown in Fig. 15.
The slope of the curve is proportional to the thermal expansion coefficient.
The expansion coefficient vanishes as T— 0, as we expect from Problem 5. In
lowest order the thermal expansion does not involve the symmetric term fx* in
U(x), but only the antisymmetric term gx”.

THERMAL CONDUCTIVITY

The thermal conductivity coefficient K of a solid is defined with respect to
the steady-state flow of heat down a long rod with a temperature gradient
dT/dx:
dT

dx ’ (41)

Ju=—

where jy is the flux of thermal energy, or the energy transmitted across unit
area per unit time.

This form implies that the process of thermal energy transfer is a random
process. The energy does not simply enter one end of the specimen and pro-
ceed directly (ballistically) in a straight path to the other end, but diffuses
through the specimen, suffering frequent collisions. If the energy were propa-
gated directly through the specimen without deflection, then the expression
for the thermal flux would not depend on the temperature gradient, but only
on the difference in temperature AT between the ends of the specimen, re-
gardless of the length of the specimen. The random nature of the conductivity
process brings the temperature gradient and, as we shall see, a mean free path
into the expression for the thermal flux.

121
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Table 2 Phonon mean free paths

[Calculated from (44), taking v = 5 X 10° cm/sec as a representative sound velocity.
The €’s obtained in this way refer to umklapp processes.]

Crystal T,°C C,in]J cm K7} K, in Wem ™ 'K™! €,in A
|
Quartz* 0 2.00 0.13 40
—190 0.55 0.50 540
NaCl 0 1.88 0.07 23
—190 1.00 0.27 100

*Parallel to optic axis.

From the kinetic theory of gases we find below the following expression
for the thermal conductivity:

K=3iCuvl | (42)

where C is the heat capacity per unit volume, v is the average particle velocity,
and ¢ is the mean free path of a particle between collisions. This result was ap-
plied first by Debye to describe thermal conductivity in dielectric solids, with C
as the heat capacity of the phonons, v the phonon velocity, and € the phonon
mean free path. Several representative values of the mean free path are given
in Table 2.

We give the elementary kinetic theory which leads to (42). The flux of par-
ticles in the x direction is 3n{|v,|), where n is the concentration of molecules;
in equilibrium there is a flux of equal magnitude in the opposite direction. The
(- --) denote average value.

If ¢ is the heat capacity of a particle, then in moving from a region at local
temperature T + AT to a region at local temperature T a particle will give up
energy ¢ AT. Now AT between the ends of a free path of the particle is given by

_dr, _dr

AT_dx * dxuxT ’

where 7 is the average time between collisions.
The net flux of energy (from both senses of the particle flux) is therefore

Ju= —n(v'f.)m'ﬂ = —%n(vz)m'd—T ) (43)

dx dx
If, as for phonons, v is constant, we may write (43) as

jo= —%Cufill—: , (44)

with € = vr and C = nc. Thus K = 5Cvf.
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Thermal Resistivity of Phonon Gas

The phonon mean free path ¢ is determined principally by two processes,
geometrical scattering and scattering by other phonons. If the forces between
atoms were purely harmonic, there would be no mechanism for collisions be-
tween different phonons, and the mean free path would be limited solely by
collisions of a phonon with the crystal boundary, and by lattice imperfections.
There are situations where these effects are dominant.

With anharmonic lattice interactions, there is a coupling between differ-
ent phonons which limits the value of the mean free path. The exact states of
the anharmonic system are no longer like pure phonons.

The theory of the effect of anharmonic coupling on thermal resistivity pre-
dicts that € is proportional to 1/T at high temperatures, in agreement with
many experiments. We can understand this dependence in terms of the num-
ber of phonons with which a given phonon can interact: at high temperature
the total number of excited phonons is proportional to T. The collision fre-
quency of a given phonon should be proportional to the number of phonons
with which it can collide, whence € o< 1/T.

To define a thermal conductivity there must exist mechanisms in the crys-
tal whereby the distribution of phonons may be brought locally into thermal
equilibrium. Without such mechanisms we may not speak of the phonons at
one end of the crystal as being in thermal equilibrium at a temperature T, and
those at the other end in equilibrium at T).

It is not sufficient to have only a way of limiting the mean free path, but
there must also be a way of establishing a local thermal equilibrium distribu-
tion of phonons. Phonon collisions with a static imperfection or a crystal
boundary will not by themselves establish thermal equilibrium, because such
collisions do not change the energy of individual phonons: the frequency w, of
the scattered phonon is equal to the frequency w, of the incident phonon.

It is rather remarkable also that a three-phonon collision process

K, +K, =K, (45)

will not establish equilibrium, but for a subtle reason: the total momentum of
the phonon gas is not changed by such a collision. An equilibrium distribution
of phonons at a temperature T can move down the crystal with a drift velocity
which is not disturbed by three-phonon collisions of the form (45). For such
collisions the phonon momentum

J= 3 K (46)
K

is conserved, because on collision the change in J is K; — K, — K; = 0. Here ng
is the number of phonons having wavevector K.

For a distribution with J # 0, collisions such as (45) are incapable of es-
tablishing complete thermal equilibrium because they leave J unchanged. If
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Figure 16a Flow of gas molecules in a state of drifting equilibrium down a long open tube with
frictionless walls. Elastic collision processes among the gas molecules do not change the momen-
tum or energy flux of the gas because in each collision the velocity of the center of mass of the col-
liding particles and their energy remain unchanged. Thus energy is transported from left to right
without being driven by a temperature gradient. Therefore the thermal resistivity is zero and the
thermal conductivity is infinite.

Figure 16b The usual definition of thermal conductivity in a gas refers to a situation where no
mass flow is permitted. Here the tube is closed at both ends, preventing the escape or entrance of
molecules. With a temperature gradient the colliding pairs with above-average center of mass ve-
locities will tend to be directed to the right, those with below-average velocities will tend to be di-
rected to the left. A slight concentration gradient, high on the right, will be set up to enable the
net mass transport to be zero while allowing a net energy transport from the hot to the cold end.

Figure 16¢ In a crystal we may arrange to create phonons chiefly at one end, as by illuminating
the left end with a lamp. From that end there will be a net flux of phonons toward the right end of
the crystal. If only N processes (K; + K, = K;) occur, the phonon flux is unchanged in momentum
on collision and some phonon flux will persist down the length of the crystal. On arrival of
phonons at the right end we can arrange in principle to convert most of their energy to radiation,
thereby creating a sink for the phonons. Just as in (a) the thermal resistivity is zero.

we start a distribution of hot phonons down a rod with J # 0, the distribution
will propagate down the rod with J unchanged. Therefore there is no thermal
resistance. The problem as illustrated in Fig. 16 is like that of the collisions be-
tween molecules of a gas in a straight tube with frictionless walls.
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Figure 16d In U processes there is a large net change in phonon momentum in each collision
event. An initial net phonon flux will rapidly decay as we move to the right. The ends may act as
sources and sinks. Net energy transport under a temperature gradient occurs as in (b).

K,
N\ KI\\A
— Kx ~
I(2 ~§~ Kl + K2
K3 ~~~
~
K

(a) (b)

Figure 17 (a) Normal K, + K, =K; and (b) umklapp K, + K, =K; + G phonon collision
processes in a two-dimensional square lattice. The square in each figure represents the first
Brillouin zone in the phonon K space; this zone contains all the possible independent values of the
phonon wavevector. Vectors K with arrowheads at the center of the zone represent phonons
absorbed in the collision process; those with arrowheads away from the center of the zone repre-
sent phonons emitted in the collision. We see in (b) that in the umklapp process the direction of
the x-component of the phonon flux has been reversed. The reciprocal lattice vector G as shown is
of length 27/a, where a is the lattice constant of the crystal lattice, and is parallel to the K, axis.
For all processes, N or U, energy must be conserved, so that , + w, = @

Umklapp Processes

The important three-phonon processes that cause thermal resistivity are
not of the form K, + K, = Kj; in which K is conserved, but are of the form

K +K=K;,+G , (47)

where G is a reciprocal lattice vector (Fig. 17). These processes, discovered by
Peierls, are called umklapp processes. We recall that G may occur in all mo-
mentum conservation laws in crystals. In all allowed processes of the form of
(46) and (47), energy is conserved.
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We have seen examples of wave interaction processes in crystals for which
the total wavevector change need not be zero, but may be a reciprocal lattice
vector. Such processes are always possible in periodic lattices. The argument is
particularly strong for phonons: the only meaningful phonon K lie in the first
Brillouin zone, so that any longer K produced in a collision must be brought
back into the first zone by addition of a G. A collision of two phonons both
with a negative value of K, can by an umklapp process (G # 0), create a phonon
with positive K,. Umklapp processes are also called U processes.

Collisions in which G = 0 are called normal processes or N processes. At
high temperatures T > 6 all phonon modes are excited because kzT > fiw,,,.
A substantial proportion of all phonon collisions will then be U processes, with
the attendant high momentum change in the collision. In this regime we can
estimate the thermal resistivity without particular distinction between N and U
processes; by the earlier argument about nonlinear effects we expect to find a
lattice thermal resistivity o< T at high temperatures.

The energy of phonons K;, K, suitable for umklapp to occur is of the order
of k0, because each of the phonons 1 and 2 must have wavevectors of the
order of 3G in order for the collision (47) to be possible. If both phonons have
low K, and therefore low energy, there is no way to get from their collision a
phonon of wavevector outside the first zone. The umklapp process must con-
serve energy, just as for the normal process. At low temperatures the number
of suitable phonons of the high energy 3kz0 required may be expected to vary
roughly as exp(—6/2T), according to the Boltzmann factor. The exponential
form is in good agreement with experiment. In summary, the phonon mean
free path which enters (42) is the mean free path for umklapp collisions be-
tween phonons and not for all collisions between phonons.

Imperfections

Geometrical effects may also be important in limiting the mean free path.
We must consider scattering by crystal boundaries, the distribution of isotopic
masses in natural chemical elements, chemical impurities, lattice imperfec-
tions, and amorphous structures.

When at low temperatures the mean free path € becomes comparable with
the width of the test specimen, the value of € is limited by the width, and the
thermal conductivity becomes a function of the dimensions of the specimen. This
effect was discovered by de Haas and Biermasz. The abrupt decrease in thermal
conductivity of pure crystals at low temperatures is caused by the size effect.

At low temperatures the umklapp process becomes ineffective in limiting
the thermal conductivity, and the size effect becomes dominant, as shown in
Fig. 18. One would expect then that the phonon mean free path would be con-
stant and of the order of the diameter D of the specimen, so that

K=~ CuD . (48)
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The only temperature-dependent term on the right is C, the heat capacity,
which varies as T% at low temperatures. We expect the thermal conductivity to
vary as T° at low temperatures. The size effect enters whenever the phonon
mean free path becomes comparable with the diameter of the specimen.
Dielectric crystals may have thermal conductivities as high as metals. Syn-
thetic sapphire (Al;O3) has one of the highest values of the conductivity: nearly



128

200 W em ™' K ! at 30 K. The maximum of the thermal conductivity in sapphire
is greater than the maximum of 100 W em™ K™™' in copper. Metallic gallium,
however, has a conductivity of 845 W em™ K™ at 1.8 K. The electronic contri-
bution to the thermal conductivity of metals is treated in Chapter 6.

In an otherwise perfect crystal, the distribution of isotopes of the chemical
elements often provides an important mechanism for phonon scattering. The
random distribution of isotopic mass disturbs the periodicity of the density as
seen by an elastic wave. In some substances scattering of phonons by isotopes
is comparable in importance to scattering by other phonons. Results for ger-
manium are shown in Fig. 19. Enhanced thermal conductivity has been ob-
served also in isotopically pure silicon and diamond; the latter has device
importance as a heat sink for laser sources.

Problems

1. Singularity in density of states. (a) From the dispersion relation derived in Chap-
ter 4 for a monatomic linear lattice of N atoms with nearest-neighbor interactions,
show that the density of modes is

oN .1

(wzz _w2>1/2 )

where w,, is the maximum frequency. (b) Suppose that an optical phonon branch
has the form w(K) = w,—AK>, near K= 0 in three dimensions. Show that D(w) =
(L2m)3(27/AY)(wy — @) for © < wy and D(w) = 0 for @ > w,. Here the density
of modes is discontinuous.

2. Rms thermal dilation of crystal cell. (a) Estimate for 300 K the root mean
square thermal dilation AV/V for a primitive cell of sodium. Take the bulk modulus
as 7 X 10" erg cm™®. Note that the Debye temperature 158 K is less than 300 K, so
that the thermal energy is of the order of kzT. (b) Use this result to estimate the root
mean square thermal fluctuation Aa/a of the lattice parameter.

3. Zero point lattice displacement and strain. (a) In the Debye approximation,
show that the mean square displacement of an atom at absolute zero is (R*) =
3hwi/8mpv’, where v is the velocity of sound. Start from the result (4.29) summed
over the independent lattice modes: (R*) = (#/2pV)Zw'. We have included a factor
ofito go from mean square amplitude to mean square displacement. (b) Show that
Sw " and (R?) diverge for a one-dimensional lattice, but that the mean square strain
is finite. Consider ((0R/9x)?) = 33K} as the mean square strain, and show that it is
equal to fiwhL/AMN©® for a line of N atoms each of mass M, counting longitudinal
modes only. The divergence of R* is not significant for any physical measurement.

4. Heat capacity of layer lattice. (a) Consider a dielectric crystal made up of layers

of atoms, with rigid coupling between layers so that the motion of the atoms
is restricted to the plane of the layer. Show that the phonon heat capacity in
the Debye approximation in the low temperature limit is proportional to T2
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(b) Suppose instead, as in many layer structures, that adjacent layers are very weakly
bound to each other. What form would you expect the phonon heat capacity to ap-
proach at extremely low temperatures?

‘5. Griineisen constant. (a) Show that the free energy of a phonon mode of fre-
quency w is kT In [2 sinh (hw/2kgT)]. It is necessary to retain the zero-point energy
1w to obtain this result. (b) If A is the fractional volume change, then the free en-
ergy of the crystal may be written as

F(A, T) = 3BA® + kT Y, In [2 sinh (hwg/2k,T)] |

where B is the bulk modulus. Assume that the volume dependence of wg is
dw/w = —yA, where 7 is known as the Griineisen constant. If vy is taken as indepen-
dent of the mode K, show that F is a minimum with respect to A when BA = yS3fhw
coth (hAw/2kyT), and show that this may be written in terms of the thermal energy
density as A = yU(T)/B. (c¢) Show that on the Debye model y = —4a In 6/d In V. Note:
Many approximations are involved in this theory: the result (a) is valid only if @ is in-
dependent of temperature; y may be quite different for different modes.

“This problem is somewhat difficult.
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Figure 1 Schematic model of a crystal of sodium metal. The atomic cores are Na™ ions: they are
immersed in a sea of conduction electrons. The conduction electrons are derived from the 3s
valence electrons of the free atoms. The atomic cores contain 10 electrons in the configuration
15?25%2p°. In an alkali metal the atomic cores occupy a relatively small part (~15 percent) of the
total volume of the crystal, but in a noble metal (Cu, Ag, Au) the atomic cores are relatively larger
and may be in contact with each other. The common crystal structure at room temperature is
bece for the alkali metals and fcc for the noble metals.



CHAPTER 6: FREE ELECTRON FERMI GAS

In a theory which has given results like these,
there must certainly be a great deal of truth.
H. A. Lorentz

We can understand many physical properties of metals, and not only of the
simple metals, in terms of the free electron model. According to this model, the
valence electrons of the constituent atoms become conduction electrons and
move about {reely through the volume of the metal. Even in metals for which
the free electron model works best, the charge distribution of the conduction
electrons reflects the strong electrostatic potential of the ion cores. The utility
of the free electron model is greatest for properties that depend essentially on
the kinetic properties of the conduction electrons. The interaction of the
conduction electrons with the ions of the lattice is treated in the next chapter.

The simplest metals are the alkali metals—Ilithium, sodium, potassium,
cesium, and rubidium. In a free atom of sodium the valence electron is in a
3s state; in the metal this electron becomes a conduction electron in the 3s
conduction band.

A monovalent crystal which contains N atoms will have N conduction
electrons and N positive ion cores. The Na™ ion core contains 10 electrons that
occupy the 1s, 2s, and 2p shells of the free ion, with a spatial distribution that
is essentially the same when in the metal as in the free ion. The ion cores fill
only about 15 percent of the volume of a sodium crystal, as in Fig. 1. The
radius of the free Na* ion is 0.98 A, whereas one-half of the nearest-neighbor
distance of the metal is 1.83 A.

The interpretation of metallic properties in terms of the motion of free
electrons was developed long before the invention of quantum mechanics. The
classical theory had several conspicuous successes, notably the derivation of the
form of Ohm’s law and the relation between the electrical and thermal conduc-
tivity. The classical theory fails to explain the heat capacity and the magnetic
susceptibility of the conduction electrons. (These are not failures of the free
electron model, but failures of the classical Maxwell distribution function.)

There is a further difficulty with the classical model. From many types of
experiments it is clear that a conduction electron in a metal can move freely in
a straight path over many atomic distances, undeflected by collisions with
other conduction electrons or by collisions with the atom cores. In a very pure
specimen at low temperatures, the mean free path may be as long as 108 inter-
atomic spacings (more than 1 cm).

Why is condensed matter so transparent to conduction electrons? The
answer to the question contains two parts: (a) A conduction electron is not
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deflected by ion cores arranged on a periodic lattice because matter waves can
propagate freely in a periodic structure, as a consequence of the mathematics
treated in the following chapter. (b) A conduction electron is scattered only in-
frequently by other conduction electrons. This property is a consequence of
the Pauli exclusion principle. By a free electron Fermi gas, we shall mean a
gas of free electrons subject to the Pauli principle.

ENERGY LEVELS IN ONE DIMENSION

Consider a free electron gas in one dimension, taking account of quantum
theory and of the Pauli principle. An electron of mass m is confined to a length L
by infinite barriers (Fig. 2). The wavefunction ¢, (x) of the electron is a solu-
tion of the Schrodinger equation ¥ = e; with the neglect of potential energy
we have ¥ = p2/2m, where p is the momentum. In quantum theory p may be
represented by the operator —ifi d/dx, so that

h2 di,

o9m de = Endfn > (1>

Hip, =

where €, is the energy of the electron in the orbital.

We use the term orbital to denote a solution of the wave equation for a
system of only one electron. The term allows us to distinguish between an
exact quantum state of the wave equation of a system of N interacting elec-
trons and an approximate quantum state which we construct by assigning the
N electrons to N different orbitals, where each orbital is a solution of a wave
equation for one electron. The orbital model is exact only if there are no inter-
actions between electrons.

The boundary conditions are ,(0) = 0; ¢,(L) = 0, as imposed by the infi-
nite potential energy barriers. They are satisfied if the wavefunction is sinelike
with an integral number n of half-wavelengths between 0 and L:

Y, = Asin <iﬂ-x> ; =L, (2)

where A is a constant. We see that (2) is a solution of (1), because

%ZAMCOS Mx : %Z—Aw2sin MX
dx L I dq? L L ’

whence the energy €, is given by

s
€ =2fi<’f> . (3)

n

We want to accommodate N electrons on the line. According to the Pauli
exclusion principle, no two electrons can have all their quantum numbers
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———Energy levels
Wavefunctions,

Nl=|»4 A=2g relative scale =

N\lé 9 3 g
'Qm‘” g Figure 2 First three energy levels and wave-
= g functions of a free electron of mass m confined
; E to a line of length L. The energy levels are la-
jﬁ %’ beled according to the quantum number n
g C:; which gives the number of half-wavelengths in
= the wavefunction. The wavelengths are indi-
cated on the wavefunctions. The energy €, of

the level of quantum number n is equal to
(h¥2m)(n/2L)>.

identical. That is, each orbital can be occupied by at most one electron. This
applies to electrons in atoms, molecules, or solids.

In a linear solid the quantum numbers of a conduction electron orbital are
n and mg, where n is any positive integer and the magnetic quantum number
m, = *3, according to spin orientation. A pair of orbitals labeled by the quan-
tum number n can accommodate two electrons, one with spin up and one with
spin down.

If there are six electrons, then in the ground state of the system the filled
orbitals are those given in the table:

Electron Electron
occupancy occupancy

3
3

B
3

DO DO —
— D&
— = =
B s L W
— D&
SO ==

More than one orbital may have the same energy. The number of orbitals with
the same energy is called the degeneracy.

Let ny denote the topmost filled energy level, where we start filling the
levels from the bottom (n = 1) and continue filling higher levels with elec-
trons until all N electrons are accommodated. It is convenient to suppose that
N is an even number. The condition 2n; = N determines ng, the value of n for
the uppermost filled level.

The Fermi energy € is defined as the energy of the topmost filled level
in the ground state of the N electron system. By (3) with n = n; we have in one

dimension:
_ 2 () _ w2 (N’ 4
T om\ L) Tam\aoL ) -

~
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EFFECT OF TEMPERATURE ON THE FERMI-DIRAC DISTRIBUTION

The ground state is the state of the N electron system at absolute zero.
What happens as the temperature is increased? This is a standard problem in
elementary statistical mechanics, and the solution is given by the Fermi-Dirac
distribution function (Appendix D and TP, Chapter 7).

The kinetic energy of the electron gas increases as the temperature is in-
creased: some energy levels are occupied which were vacant at absolute zero,
and some levels are vacant which were occupied at absolute zero (Fig. 3). The
Fermi-Dirac distribution gives the probability that an orbital at energy e
will be occupied in an ideal electron gas in thermal equilibrium:

_ 1
L Y ES

(5)

The quantity w is a function of the temperature; w is to be chosen for the
particular problem in such a way that the total number of particles in the system
comes out correctly—that is, equal to N. At absolute zero u = €5, because in the
limit T — 0 the function f{e) changes discontinuously from the value 1 (filled) to
the value 0 (empty) at € = €, = w. At all temperatures f(€) is equal to 5 when
€ = u, for then the denominator of (5) has the value 2.

1.2
10 1 W\iom 500 Kw
0.8 \\\
25% \
fle) 0.6 ~J
04— X T07g
\
\
02 Q
10X 10t | T— \\ N
: AR

0 1 2 3 4 5 6 7 8 9
€/kg, in units of 10* K

Figure 3 Fermi-Dirac distribution function (5) at the various labelled temperatures, for
T = ep/ky = 50,000 K. The results apply to a gas in three dimensions. The total number of parti-
cles is constant, independent of temperature. The chemical potential u at each temperature may
be read off the graph as the energy at which f = 0.5.
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The quantity w is the chemical potential (TP, Chapter 5), and we see
that at absolute zero the chemical potential is equal to the Fermi energy, de-
fined as the energy of the topmost filled orbital at absolute zero.

The high energy tail of the distribution is that part for which € — u > k,T;
here the exponential term is dominant in the denominator of (5), so
that f(e) = exp[(n — €)/kgT]. This limit is called the Boltzmann or Maxwell
distribution.

FREE ELECTRON GAS IN THREE DIMENSIONS

The free-particle Schrédinger equation in three dimensions is

72 <32 5 32>
T T ) g(r) = € alr)
o9m axz ayz 652 dlk( ) k¢k< > (6)
If the electrons are confined to a cube of edge L, the wavefunction is the
standing wave

P, (r) = A sin (7na/L) sin (Wnyy/L) sin (mnz/L) , (7)

where n,, n,, n_ are positive integers. The origin is at one corner of the cube.

It is convenient to introduce wavefunctions that satisfy periodic boundary
conditions, as we did for phonons in Chapter 5. We now require the wavefunc-
tions to be periodic in x, y, z with period L. Thus

Plx + Ly, z) =lx,y,z) , (8)

and similarly for the y and z coordinates. Wavefunctions satisfying the free-
particle Schrédinger equation and the periodicity condition are of the form of
a traveling plane wave:

afr) = exp (ik - r) | (9)

provided that the components of the wavevector k satisfy

k.=0 . izl. 14777.

X > L: L9"'> (lo)

and similarly for k, and k..

Any component of k of the form 2na/L will satisfy the periodicity
condition over a length L, where n is a positive or negative integer. The com-
ponents of k are the quantum numbers of the problem, along with the
quantum number m for the spin direction. We confirm that these values of k,
satisfy (8), for

explik(x + L)] = expli2nr(x + L)/L]
= exp(i2nmx/L) exp(i2n) = exp(i2nmx/L) = exp(ik.x) . (11)
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Figure 4 In the ground state of a system of N free
electrons the occupied orbitals of the system fill a
sphere of radius ky, where €; = #i%3}/2m is the energy of

On substituting (9) in (6) we have the energy €, of the orbital with
wavevector k:

I SR TU A TER TR (12)
Ek_ka _2m<kx+ky+kz)'

The magnitude k of the wavevector is related to the wavelength A by k = 27/A.
The linear momentum p may be represented in quantum mechanics by
the operator p = —iAV, whence for the orbital (9)

pialr) = —ifiVija(r) = fikiq(r) , (13)

so that the plane wave iy is an eigenfunction of the linear momentum with the
eigenvalue #ik. The particle velocity in the orbital k is given by v = Aik/m.

In the ground state of a system of N free electrons, the occupied orbitals
may be represented as points inside a sphere in k space. The energy at the sur-
face of the sphere is the Fermi energy; the wavevectors at the Fermi surface
have a magnitude ky such that (Fig. 4):

2
€ = Zimk% . (14)

From (10) we see that there is one allowed wavevector—that is, one dis-
tinct triplet of quantum numbers k., ky, k.—for the volume element (27/L)* of
k space. Thus in the sphere of volume 47k}/3 the total number of orbitals is

2_47Tk%/3 _V
@m/L)? 3

ky=N, (15)

where the factor 2 on the left comes from the two allowed values of the spin
quantum number for each allowed value of k. Then (15) gives

1/3
ey = (3”$N> , (16)

which depends only on the particle concentration.

k.

Fermi surface,
at energy

€F

ky

an electron having a wavevector kj. x
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Table 1 Calculated free electron Fermi surface parameters for metals at room temperature

(Except for Na, K, Rb, Cs at 5 K and Li at 78 K)
-~

Fermi
Electron Radius* Fermi Fermi Fermi temperature
concentration, parameter wavevector, velocity, energy, Ty = €plky,
Valency Metal in cm ™3 r, in cm ™! incms ! in eV in deg K
|
1 Li 4.70 X 10?2 3.25 1.11 x 10° 1.29 x 10° 4.72 5.48 x 10*
Na 2.65 3.93 0.92 1.07 3.23 3.75
K 1.40 4.86 0.75 0.86 2.12 2.46
Rb 1.15 5.20 0.70 0.81 1.85 2.15
Cs 0.91 5.63 0.64 0.75 1.58 1.83
Cu 8.45 2.67 1.36 1.57 7.00 8.12
Ag 5.85 3.02 1.20 1.39 5.48 6.36
Au 5.90 3.01 1.20 1.39 5.51 6.39
2 Be 24.2 1.88 1.93 2.23 14.14 16.41
Mg 8.60 2.65 1.37 1.58 7.13 8.27
Ca 4.60 3.27 1.11 1.28 4.68 5.43
Sr 3.56 3.56 1.02 1.18 3.95 4.58
Ba 3.20 3.69 0.98 1.13 3.65 4.24
Zn 13.10 2.31 1.57 1.82 9.39 10.90
Cd 9.28 2.59 1.40 1.62 7.46 8.66
3 Al 18.06 2.07 1.75 2.02 11.63 13.49
Ga 15.30 2.19 1.65 1.91 10.35 12.01
In 11.49 2.41 1.50 1.74 8.60 9.98
4 Pb 13.20 2.30 1.57 1.82 9.37 10.87
Sn(w) 14.48 2.23 1.62 1.88 10.03 11.64

*The dimensionless radius parameter is defined as r,, = ry/ay, where ay; is the first Bohr radius and ry is the radius of a sphere that contains one electron.
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Density of orbitals, relative scale

kpT—=
1
=~
\
\
\
\
Figure 5 Density of single-particle states as a func-
\ tion of energy, for a free electron gas in three dimen-
\ sions. The dashed curve represents the density
‘\ f (e, T)D(e) of filled orbitals at a finite temperature,
\ but such that kzT is small in comparison with €;. The
2\\ shaded area represents the filled orbitals at absolute
Z ~
~ ———-  zero. The average energy is increased when the tem-
€F perature is increased from 0 to T, for electrons are
Energy, € —>- thermally excited from region 1 to region 2.

Using (14) and (16),

(17)

€p

_ W (3N
2m\ V ’

This relates the Fermi energy to the electron concentration N/V. The electron
velocity vy at the Fermi surface is

ﬁk S 1/3
A

Calculated values of kp, vy, and € are given in Table 1 for selected metals; also
given are values of the quantity Ty which is defined as €p/ky. (The quantity T}
has nothing to do with the temperature of the electron gas!)

We now find an expression for the number of orbitals per unit energy
range, D(e), called the density of states." We use (17) to obtain the total
number of orbitals of energy <e:

ome \32 (19)
N = V(”ff) )
3m\ A
so that the density of states (Fig. 5) is
o \32
Die) = ‘(il—f - # : <2ﬁ’§‘> LN (20)

!Strictly, D(e) is the density of one-particle states, or density of orbitals.
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This result may be expressed more simply by comparing (19) and (20) to obtain
ate

dN _ 3N

D(e) = e 2

(21)
Within a factor of the order of unity, the number of orbitals per unit energy
range at the Fermi energy is the total number of conduction electrons divided
by the Fermi energy, just as we would expect.

HEAT CAPACITY OF THE ELECTRON GAS

The question that caused the greatest difficulty in the early development
of the electron theory of metals concerns the heat capacity of the conduction
electrons. Classical statistical mechanics predicts that a free particle should
have a heat capacity of 5 kg, where ky is the Boltzmann constant. If N atoms
each give one valence electron to the electron gas, and the electrons are freely
mobile, then the electronic contribution to the heat capacity should be 5 Nk,
just as for the atoms of a monatomic gas. But the observed electronic contribu-
tion at room temperature is usually less than 0.01 of this value.

This important discrepancy distracted the early workers, such as Lorentz:
How can the electrons participate in electrical conduction processes as if they
were mobile, while not contributing to the heat capacity? The question was
answered only upon the discovery of the Pauli exclusion principle and the
Fermi distribution function. Fermi found the correct result and he wrote,
“One recognizes that the specific heat vanishes at absolute zero and that at low
temperatures it is proportional to the absolute temperature.”

When we heat the specimen from absolute zero, not every electron gains
an energy ~kpT as expected classically, but only those electrons in orbitals
within an energy range kT of the Fermi level are excited thermally, as in
Fig. 5. This gives an immediate qualitative solution to the problem of the heat
capacity of the conduction electron gas. If N is the total number of electrons,
only a fraction of the order of T/Ty can be excited thermally at temperature T,
because only these lie within an energy range of the order of kzT of the top of
the energy distribution.

Each of these NT/Ty electrons has a thermal energy of the order of kyT.
The total electronic thermal kinetic energy U is of the order of

U, = (NT/TpkgT . (22)
The electronic heat capacity is given by
C.; = 9U/AT ~ Nks(T/T,) (23)

and is directly proportional to T, in agreement with the experimental
results discussed in the following section. At room temperature C,; is smaller
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than the classical value 5 Nk, by a factor of the order of 0.01 or less, for
T, ~5% 10'K

We now derive a quantitative expression for the electronic heat capacity
valid at low temperatures kzT < €. The increase AU = U(T) — U(0) in the
total energy (Fig. 5) of a system of N electrons when heated from 0 to T is

AU = f " de eD(e) fle) — f " de eDle) . (24)
0 0

Here f(e) is the Fermi-Dirac function (5):

1
expl(e — w)/kyT + 1]

fle, T, u) = (24a)

and D(e) is the number of orbitals per unit energy range. We multiply the
identity

N= J " deDie) fle) = | de Die) (25)

0

by €5 to obtain

(f: + fw> de € fl€)D(e) = f: de e:D(e) . (26)

We use (26) to rewrite (24) as

€r

AU = f “de(e — ) fle)Dle) + f de(e, — 1~ fleDe) . (27)

0

The first integral on the right-hand side of (27) gives the energy needed to
take electrons from e, to the orbitals of energy € > €5, and the second integral
gives the energy needed to bring the electrons to € from orbitals below ;.
Both contributions to the energy are positive.

The product fle)D(e)de in the first integral of (27) is the number of
electrons elevated to orbltdls in the energy range de at an energy €. The factor
[1 — fle)] in the second integral is the probability that an electron has been
removed from an orbital €. The function AU is plotted in Fig. 6.

The heat capacity of the electron gas is found on differentiating AU with
respect to T. The only temperature-dependent term in (27) is f(€), whence we
can group terms to obtain

Cu= 10~ [“dete— e'prpte) (2)

At the temperatures of interest in metals, 7/e; < 0.01, and we see from
Fig. 3 that (€ — €;) df/dT has large positive peaks at energies near €. It is a
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Figure 6 Temperature dependence of the
energy of a noninteracting fermion gas in three
00 0.2 04 0.6 08 10 dimensions. The energy is plotted in normal-
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kgT/ep electrons. The temperature is plotted as kzT/ey.
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Figure 7 Plot of the chemical potential u versus temperature as kT for a gas of noninteracting
fermions in three dimensions. For convenience in plotting, the units of w and kT are 0.763€;.

good approximation to evaluate the density of states D(e) at €, and take it
outside of the integral:

® 1
Cy=Dlep) fo d€<€_€F)% . (29)

Examination of the graphs in Figs. 7 and 8 of the variation of the chemical
potential u with T suggests that when kT < € we ignore the temperature
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Figure 8 Variation with temperature of the chemical Three dimensions—'
potential w, for free electron Fermi gases in one and
three dimensions. In common metals 7/e; = 0.01 at
room temperature, so that u is closely equal to . 095 | |
These curves were calculated from series expansions 0 0.1 0.2
of the integral for the number of particles in the T -
system. €F

dependence of the chemical potential w in the Fermi-Dirac distribution func-
tion and replace u by the constant €. We have then, with 7 = kT,

df _ €& expl(€ — €p)/7]

- = . (30)
dr i {expl(e — ep)/T] + 1)
We set
x = (e — €p)/T , (31)
and it follows from (29) and (30) that
C,=ITD ,fw e —C 32
=KD (32)
We may safely replace the lower limit by —o0 because the factor ¢ in the inte-
grand is already negligible at x = —e,/7 if we are concerned with low tempera-
tures such that /7 ~ 100 or more. The integral in (32) then becomes
© X 2
de®—C— =T 33
f—w T (ex"l_l)z 3 ’ ( )

whence the heat capacity of an electron gas is
C, = smD(ep)k3T . (34)
From (21) we have
Dley) = 3N/2€p = 3N/2k, Ty (35)
for a free electron gas, with kzT = €. Thus (34) becomes

C, =3 NkpT/Ty . (36)
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Recall that although Ty is called the Fermi temperature, it is not the electron
temperature, but only a convenient reference notation.

Experimental Heat Capacity of Metals

At temperatures much below both the Debye temperature 6 and the
Fermi temperature Ty, the heat capacity of metals may be written as the sum
of electron and phonon contributions: C = yT + AT®, where y and A are con-
stants characteristic of the material. The electronic term is linear in T and is
dominant at sufficiently low temperatures. It is convenient to exhibit the ex-
perimental values of C as a plot of C/T versus T*:

CIT =y +AT? | (37)

for then the points should lie on a straight line with slope A and intercept v.
Such a plot for potassium is shown in Fig. 9. Observed values of v, called the
Sommerfeld parameter, are given in Table 2.

The observed values of the coefficient vy are of the expected magnitude,
but often do not agree very closely with the value calculated for free electrons
of mass m by use of (17) and (34). It is common practice to express the ratio of
the observed to the free electron values of the electronic heat capacity as a
ratio of a thermal effective mass m,, to the electron mass m, where my, is de-
fined by the relation

my, y(observed)

m = v(free) (38)

This form arises in a natural way because €y is inversely proportional to the
mass of the electron, whence y o< m. Values of the ratio are given in Table 2.
The departure from unity involves three separate effects:

* The interaction of the conduction electrons with the periodic potential of
the rigid crystal lattice. The effective mass of an electron in this potential is
called the band effective mass.

3.0
- o
VI C/T = 2.08 + 257 T ././
s r Potassi o
3 otassium °
\E B /o"/.
? 25— ./..
£ B '.'.’.
o | ] ‘..‘./0
E\J /.‘-.
20 \ \
0 0.1 0.2 0.3
T2, in K2

Figure 9 Experimental heat capacity values for potassium, plotted as C/T versus T% (After
W. H. Lien and N. E. Phillips.)
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e The interaction of the conduction electrons with phonons. An electron
tends to polarize or distort the lattice in its neighborhood, so that the mov-
ing electron tries to drag nearby ions along, thereby increasing the effective
mass of the electron.

* The interaction of the conduction electrons with themselves. A moving elec-
tron causes an inertial reaction in the surrounding electron gas, thereby in-
creasing the effective mass of the electron.

Heavy Fermions. Several metallic compounds have been discovered that have
enormous values, two or three orders of magnitude higher than usual, of the elec-
tronic heat capacity constant . The heavy fermion compounds include UBe;s3,
CeAl;, and CeCu,Si,. It has been suggested that f electrons in these compounds
may have inertial masses as high as 1000 m, because of the weak overlap of wave-
functions of f electrons on neighboring ions (see Chapter 9, “tight binding”).

ELECTRICAL CONDUCTIVITY AND OHM’S LAW

The momentum of a free electron is related to the wavevector by mv = #ik.
In an electric field E and magnetic field B the force F on an electron of charge
—eis —e[E + (1/c)v X B], so that Newton’s second law of motion becomes

(CGS) F:mdvzhdkz—e<E+iva> : (39)

dt dt

In the absence of collisions the Fermi sphere (Fig. 10) moves in k space at a
uniform rate by a constant applied electric field. We integrate (39) with B = 0
to obtain

k(t) — k(0) = —¢Et/fi . (40)

If the force F = —¢E is applied at time ¢ = 0 to an electron gas that fills
the Fermi sphere centered at the origin of k space, then at a later time ¢ the
sphere will be displaced to a new center at

ok = —cEt/h . (41)

Notice that the Fermi sphere is displaced as a whole because every electron is
displaced by the same k.

Because of collisions of electrons with impurities, lattice imperfections, and
phonons, the displaced sphere may be maintained in a steady state in an electric
field. If the collision time is 7, the displacement of the Fermi sphere in the
steady state is given by (41) with ¢ = 7. The incremental velocity is v = 8k/m =
—eEt/m. If in a constant electric field E there are n electrons of charge g = —e
per unit volume, the electric current density is

j=nqv=ne’rE/m . (42)
This is Ohm’s law.
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Figure 10 (a) The Fermi sphere encloses the occupied electron orbitals in k space in the ground
state of the electron gas. The net momentum is zero, because for every orbital k there is an occu-
pied orbital at —k. (b) Under the influence of a constant force F acting for a time interval ¢ every
orbital has its k vector increased by 8k = Ft/A. This is equivalent to a displacement of the whole
Fermi sphere by 8k. The total momentum is N%8k, if there are N electrons present. The applica-
tion of the force increases the energy of the system by N(#5k)*/2m.

The electrical conductivity o is defined by j = oE, so by (42)

o="T. (43)

The electrical resistivity p is defined as the reciprocal of the conductivity,
so that

p=m/me’r . (44)

Values of the electrical conductivity and resistivity of the elements are given in
Table 3. In Gaussian units o has the dimensions of frequency.

It is easy to understand the result (43) for the conductivity of a Fermi gas.
We expect the charge transported to be proportional to the charge density ne;
the factor e/m enters (43) because the acceleration in a given electric field is
proportional to ¢ and inversely proportional to the mass m. The time 7 describes
the free time during which the field acts on the carrier. Closely the same result
for the electrical conductivity is obtained for a classical (Maxwellian) gas of elec-
trons, as realized at low carrier concentration in many semiconductor problems.

Experimental Electrical Resistivity of Metals

The electrical resistivity of most metals is dominated at room temperature
(300 K) by collisions of the conduction electrons with lattice phonons and at
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Figure 11 Electrical resistivity in most metals arises from collisions of electrons with irregulari-
ties in the lattice, as in (a) by phonons and in (b) by impurities and vacant lattice sites.

liquid helium temperature (4 K) by collisions with impurity atoms and me-
chanical imperfections in the lattice (Fig. 11). The rates of these collisions
are often independent to a good approximation, so that if the electric field
were switched off the momentum distribution would relax back to its ground
state with the net relaxation rate

Q=

_ 1.1
B (45)
where 7, and 7; are the collision times for scattering by phonons and by imper-
fections, respectively.

The net resistivity is given by
p=p.tp, (46)

where p;, is the resistivity caused by the thermal phonons, and p; is the resistiv-
ity caused by scattering of the electron waves by static defects that disturb the
periodicity of the lattice. Often p;, is independent of the number of defects
when their concentration is small, and often p; is independent of temperature.
This empirical observation expresses Matthiessen’s rule, which is convenient
in analyzing experimental data (Fig. 12).

The residual resistivity, p,(0), is the extrapolated resistivity at 0 K because
pr, vanishes as T — 0. The lattice resistivity, p;(T) = p — p,(0), is the same for
different specimens of a metal, even though p;(0) may itself vary widely. The
resistivity ratio of a specimen is usually defined as the ratio of its resistivity at
room temperature to its residual resistivity. It is a convenient approximate in-
dicator of sample purity: for many materials an impurity in solid solution cre-
ates a residual resistivity of about 1 wohm-cm (1 X 107° ohm-cm) per atomic
percent of impurity. A copper specimen with a resistivity ratio of 1000
will have a residual resistivity of 1.7 X 107° pohm-cm, corresponding to an
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impurity concentration of about 20 ppm. In exceptionally pure specimens the
resistivity ratio may be as high as 10%, whereas in some alloys (e.g., manganin)
it is as low as 1.1.

It is possible to obtain crystals of copper so pure that their conductivity at
liquid helium temperatures (4 K) is nearly 10° times that at room temperature;
for these conditions 7 = 2 X 107" s at 4 K. The mean free path € of a conduc-
tion electron is defined as

€ = UpT , (47)

where vy is the velocity at the Fermi surface, because all collisions involve only
electrons near the Fermi surface. From Table 1 we have v, = 1.57 X 10* cm 57!
for Cu, thus the mean free path is €(4 K) = 0.3 cm. Mean free paths as long as
10 cm have been observed in very pure metals in the liquid helium tempera-
ture range.

The temperature-dependent part of the electrical resistivity is proportional
to the rate at which an electron collides with thermal phonons and thermal elec-
trons. The collision rate with phonons is proportional to the concentration of
thermal phonons. One simple limit is at temperatures over the Debye tempera-
ture 60: here the phonon concentration is proportional to the temperature T, so
that p o< T for T > 6. A sketch of the theory is given in Appendix J.

Umklapp Scattering

Umklapp scattering of electrons by phonons (Chapter 5) accounts for
most of the electrical resistivity of metals at low temperatures. These are
electron-phonon scattering processes in which a reciprocal lattice vector G is
involved, so that electron momentum change in the process may be much larger
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Figure 13 Two Fermi spheres in adjacent
zones: a construction to show the role of phonon
umklapp processes in electrical resistivity.

than in a normal electron-phonon scattering process at low temperatures. (In an
umklapp process the wavevector of one particle may be “flipped over.”)

Consider a section perpendicular to [100] through two adjacent Brillouin
zones in bee potassium, with the equivalent Fermi spheres inscribed within
each (Fig. 13). The lower half of the figure shows the normal electron-phonon
collision k" = k + ¢, while the upper half shows a possible scattering process
k' =k + q + G involving the same phonon and terminating outside the first
Brillouin zone, at the point A. This point is exactly equivalent to the point A’
inside the original zone, where AA’ is a reciprocal lattice vector G. This scat-
tering is an umklapp process, in analogy to phonons. Such collisions are strong
scatterers because the scattering angle can be close to .

When the Fermi surface does not intersect the zone boundary, there is
some minimum phonon wavevector g, for umklapp scattering. At low enough
temperatures the number of phonons available for umklapp scattering falls
as exp(—60y/T), where 6y is a characteristic temperature calculable from the
geometry of the Fermi surface inside the Brillouin zone. For a spherical Fermi
surface with one electron orbital per atom inside the bee Brillouin zone, one
shows by geometry that g, = 0.267 ky.

The experimental data (Fig. 12) for potassium have the expected exponen-
tial form with 6, = 23 K compared with the Debye 8 = 91 K. At the very low-
est temperatures (below about 2 K in potassium) the number of umklapp
processes is negligible and the lattice resistivity is then caused only by small
angle scattering, which is the normal (not umklapp) scattering.

MOTION IN MAGNETIC FIELDS

By the arguments of (39) and (41) we are led to the equation of motion for
the displacement 8k of a Fermi sphere of particles acted on by a force F and
by friction as represented by collisions at a rate 1/7:

d 1) sK=
h(dt+7>6k F . (48)



6 Free Electron Fermi Gas

The free particle acceleration term is (fid/dt) 6k and the effect of collisions
(the friction) is represented by #dk/r, where 7 is the collision time.

Consider now the motion of the system in a uniform magnetic field B. The
Lorentz force on an electron is

(CGS) F = —e<E + 1y x B) ; (49)

(SI) F=—¢E+vXB)
If mv = A8k, then the equation of motion is
AT

(CGS) m(d + 1>v - —e<E +lix B) . (50)

An important situation is the following: let a static magnetic field B lie
along the z axis. Then the component equations of motion are

(CGS) m (((llt +,1r>vx =—¢ (Ex + lcg_v!/) ;
1n<i+71.>u,j=—e(E,j—fuv> ; (51)

d 1
m(dt-i-7.>vz= —ek. .

The results in SI are obtained by replacing ¢ by 1.
In the steady state in a static electric field the time derivatives are zero, so
that the drift velocity is
et et et
v, = = B — oo, v, = = E, + 010, ; v.=—E. , (52)
where w, = eB/mc is the cyclotron frequency, as discussed in Chapter 8 for
cyclotron resonance in semiconductors.

Hall Effect

The Hall field is the electric field developed across two faces of a conduc-
tor, in the direction j X B, when a current j flows across a magnetic field B.
Consider a rod-shaped specimen in a longitudinal electric field E, and a trans-
verse magnetic field, as in Fig. 14. If current cannot flow out of the rod in the
y direction we must have dv, = 0. From (52) this is possible only if there is a
transverse electric field

(CGS) E, = —wrE =-BTp . (53)

4 mc
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Figure 14 The standard geometry for the Hall effect: a rod-shaped specimen of rectangular
cross-section is placed in a magnetic field B, as in (a). An electric field E, applied across the end
electrodes causes an electric current density j, to flow down the rod. The drift velocity of the
negatively-charged electrons immediately after the electric field is applied as shown in (b). The
deflection in the —y direction is caused by the magnetic field. Electrons accumulate on one face
of the rod and a positive ion excess is established on the opposite face until, as in (c), the trans-
verse electric field (Hall field) just cancels the Lorentz force due to the magnetic field.

eBTt

(SI) E, = —w;rEx = = WEx .

Y

The quantity defined by

Ry = —y (54)

is called the Hall coefficient. To evaluate it on our simple model we use j, =
ne’tE, /m and obtain

_ eBtE/mc _ 1
(CGS) Ry =~ ne*rEB/m  "ec’ (55)
_ 1
(ST) Ry=—ps -

This is negative for free electrons, for e is positive by definition.
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Table 4 Comparison of observed Hall coefficients with free electron theory

[The experimental values of Ry, as obtained by conventional methods are summarized from data at
room temperature presented in the Landolt-Bornstein tables. The values obtained by the helicon
wave method at 4 K are by J. M. Goodman. The values of the carrier concentration n are from
Table 1.4 except for Na, K, Al, In, where Goodman’s values are used. To convert the value of Rj; in
CGS units to the value in volt-cm/amp-gauss, multiply by 9 X 10"; to convert Ry in CGS to
m%coulomb, multiply by 9 X 10'%.]

-

Experimental Assumed Calculated
Ry, carriers —1/nec,
Metal Method in 107** CGS units per atom in 107** CGS units
[ s
Li conv. —1.89 1 electron —1.48
Na helicon —-2.619 1 electron —2.603
conv. —2.3
K helicon —4.946 1 electron —4.944
conv. —4.7
Rb conv. —5.6 1 electron —6.04
Cu conv. —-0.6 1 electron —0.82
Ag conv. -1.0 1 electron —-1.19
Au conv. -0.8 1 electron —1.18
Be conv. +2.7 — —
Mg conv. —0.92 — —
Al helicon +1.136 1 hole +1.135
In helicon +1.774 1 hole +1.780
As conv. +50. — —
Sb conv. —22. — —
Bi conv. —6000. — —

The lower the carrier concentration, the greater the magnitude of the
Hall coefficient. Measuring Ry is an important way of measuring the carrier
concentration. Note: The symbol Ry, denotes the Hall coefficient (54), but the
same symbol is sometimes used with a different meaning, that of Hall resis-
tance in two-dimensional problems.

The simple result (55) follows from the assumption that all relaxation
times are equal, independent of the velocity of the electron. A numerical fac-
tor of order unity enters if the relaxation time is a function of the velocity. The
expression becomes somewhat more complicated if both electrons and holes
contribute to the conductivity.

In Table 4 observed values of the Hall coefficient are compared with val-
ues calculated from the carrier concentration. The most accurate measure-
ments are made by the method of helicon resonance which is treated as a
problem in Chapter 14.

The accurate values for sodium and potassium are in excellent agreement
with values calculated for one conduction electron per atom, using (55).
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Notice, however, the experimental values for the trivalent elements aluminum
and indium: these agree with values calculated for one positive charge carrier
per atom and thus disagree in magnitude and sign with values calculated for
the expected three negative charge carriers.

The problem of an apparent positive sign for the charge carriers arises
also for Be and As, as seen in the table. The anomaly of the sign was explained
by Peierls (1928). The motion of carriers of apparent positive sign, which
Heisenberg later called “holes,” cannot be explained by a free electron gas, but
finds a natural explanation in terms of the energy band theory to be developed
in Chapters 7-9. Band theory also accounts for the occurrence of very large
values of the Hall coefficient, as for As, Sb, and Bi.

THERMAL CONDUCTIVITY OF METALS

In Chapter 5 we found an expression K = 5 Cv{ for the thermal conductiv-
ity of particles of velocity v, heat capacity C per unit volume, and mean free
path €. The thermal conductivity of a Fermi gas follows from (36) for the heat
capacity, and with €, = émv%:

K =2 nk3T mnk3Tr (56)
=T cope = — B0

¢ 3 n]@% 3m

Here € = vyt; the electron concentration is n, and 7 is the collision time.

Do the electrons or the phonons carry the greater part of the heat current
in a metal? In pure metals the electronic contribution is dominant at all tem-
peratures. In impure metals or in disordered alloys, the electron mean free
path is reduced by collisions with impurities, and the phonon contribution may
be comparable with the electronic contribution.

Ratio of Thermal to Electrical Conductivity

The Wiedemann-Franz law states that for metals at not too low temper-
atures the ratio of the thermal conductivity to the electrical conductivity is
directly proportional to the temperature, with the value of the constant of
proportionality independent of the particular metal. This result was important
in the history of the theory of metals, for it supported the picture of an
electron gas as the carrier of charge and energy. It can be explained by using
(43) for o and (56) for K:

27.2 5 2
%: T kBTClT/Sm _ <keB> T (57)
net-/m 3
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Table 5 Experimental Lorenz numbers

L X 10° watt-ohm/deg? L X 10° watt-ohm/deg?
Metal 0°C 100°C Metal 0°C 100°C
]
Ag 2.31 2.37 Pb 2.47 2.56
Au 2.35 2.40 Pt 2.51 2.60
Cd 2.42 2.43 Su 2.52 2.49
Cu 2.23 2.33 W 3.04 3.20
Mo 2.61 2.79 Zn 2.31 2.33

The Lorenz number L is defined as

L=K/oT , (58)
and according to (57) should have the value

2
L= ? <kj> =272 X 107" (erg/esu-deg)

= 2.45 X 107° watt-ohm/deg® . (59)

This remarkable result involves neither n nor m. Experimental values of L at
0°C and at 100°C as given in Table 5 are in good agreement with (59).

Problems

1. Kinetic energy of electron gas. Show that the kinetic energy of a three-dimensional
gas of N free electrons at 0 K is

U, =2Ne, . (60)

2. Pressure and bulk modulus of an electron gas. (a) Derive a relation connecting
the pressure and volume of an electron gas at 0 K. Hint: Use the result of Problem
1 and the relation between € and electron concentration. The result may be writ-
ten as p = 2(U,/V). (b) Show that the bulk modulus B = —V(dp/aV) of an electron
gas at 0 K is B = 5p/3 = 10Uy/9V. (c) Estimate for potassium, using Table 1, the
value of the electron gas contribution to B.

3. Chemical potential in two dimensions. Show that the chemical potential of a
Fermi gas in two dimensions is given by:
u(T) = kT In [exp(ﬂ'nﬁz/kaT) -1], (61)

for n electrons per unit area. Note: The density of orbitals of a free electron gas in
two dimensions is independent of energy: D(e) = mymh?, per unit area of specimen.
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. Fermi gases in astrophysics. (a) Given My, = 2 X 10% g for the mass of the Sun,

estimate the number of electrons in the Sun. In a white dwarf star this number of
electrons may be ionized and contained in a sphere of radius 2 X 10° cm; find the
Fermi energy of the electrons in electron volts. (b) The energy of an electron in the
relativistic limit € > mc? is related to the wavevector as € = pc = fikc. Show that the
Fermi energy in this limit is €, =~#c (N/V)", roughly. (c) If the above number of
electrons were contained within a pulsar of radius 10 km, show that the Fermi en-
ergy would be =10° eV. This value explains why pulsars are believed to be composed
largely of neutrons rather than of protons and electrons, for the energy release in the
reaction n = p + ¢~ is only 0.8 X 10° eV, which is not large enough to enable many
electrons to form a Fermi sea. The neutron decay proceeds only until the electron
concentration builds up enough to create a Fermi level of 0.8 X 10° eV, at which
point the neutron, proton, and electron concentrations are in equilibrium.

. Liquid He®. The atom He® has spin 3 and is a fermion. The density of liquid He

is 0.081 g cm® near absolute zero. Calculate the Fermi energy €, and the Fermi
temperature T’.

. Frequency dependence of the electrical conductivity. Use the equation

m(dv/dt + v/T) = —e¢E for the electron drift velocity v to show that the conductivity
at frequency o is

() = o(0) (”“‘”) , (62)

1+ (w1)?
where a(0) = ne’r/m.

7. Dynamic magnetoconductivity tensor for free electrons. A metal with a concen-

tration n of free electrons of charge —e is in a static magnetic field BZ. The electric
current density in the xy plane is related to the electric field by

Je = onby + oy By Jy =0k + oy By

Assume that the frequency w > o, and w > 1/7, where w, = eB/mc and 7 is the

collision time. (a) Solve the drift velocity equation (51) to find the components of
the magnetoconductivity tensor:

O = Oy

T, = iwﬁ/ﬁlww ; Oy = =0, = wuwf,/élﬂ'w2 ,
where wi = 47ne/m. (b) Note from a Maxwell equation that the dielectric func-
tion tensor of the medium is related to the conductivity tensor as € = 1 + i(47/w)o.
Consider an electromagnetic wave with wavevector k = kZ. Show that the disper-

sion relation for this wave in the medium is

279 _ 92 ) 2
k=0 —w, *ow/w. (63)
At a given frequency there are two modes of propagation with different wavevec-
tors and different velocities. The two modes correspond to circularly polarized

"This problem is somewhat difficult.
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waves. Because a linearly polarized wave can be decomposed into two circularly
polarized waves, it follows that the plane of polarization of a linearly polarized wave
will be rotated by the magnetic field.

’8. Cohesive energy of free electron Fermi gas. We define the dimensionless

10.

length r, as ry/ay, where ry is the radius of a sphere that contains one electron,
and ay, is the bohr radius #%¢*m. (a) Show that the average kinetic energy per elec-
tron in a free electron Fermi gas at 0 K is 2.21/r;, where the energy is expressed in
rydbergs, with 1 Ry = me*/2A% (b) Show that the coulomb energy of a point posi-
tive charge e interacting with the uniform electron distribution of one electron in
the volume of radius r, is —3¢*2r;, or —3/r, in rydbergs. (c) Show that the
coulomb self-energy of the electron distribution in the sphere is 3¢*/5r,, or 6/5r; in
rydbergs. (d) The sum of (b) and (c¢) gives —1.80/r, for the total coulomb energy
per electron. Show that the equilibrium value of r, is 2.45. Will such a metal be
stable with respect to separated H atoms?

. Static magnetoconductivity tensor. For the drift velocity theory of (51), show

that the static current density can be written in matrix form as

;\ - & 1 —w,T 0 E.
I/ Tt e\ (1) 1+ (OwCﬂQ ? oy
In the high magnetic field limit of w,7 > 1, show that
o, =nec/B=—o, . (65)

In this limit o, =0, to order l/w,7. The quantity o, is called the Hall
conductivity.

Maximum surface resistance. Consider a square sheet of side L, thickness d, and
electrical resistivity p. The resistance measured between opposite edges of the
q = pL/Ld = p/d, which is independent of
the area L? of the sheet. (Ryq is called the resistance per square and is expressed in

sheet is called the surface resistance: R,

ohms per square, because p/d has the dimensions of ohms.) If we express p by (44),
then Ry,
determined by scattering from the surfaces of the sheet, so that 7 = d/vy, where v

= m/ndé’*r. Suppose now that the minimum value of the collision time is

. . . . " . P . 2 9
is the Fermi velocity. Thus the maximum surface resistivity is Ry, = mog/nd’e”.

Show for a monatomic metal sheet one atom in thickness that R, = fi/e? = 4.1 k(.

q

“This problem is somewhat difficult.
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Insulator Metal Semimetal Semiconductor Semiconductor

Figure 1 Schematic electron occupancy of allowed energy bands for an insulator, metal, semi-
metal, and semiconductor. The vertical extent of the boxes indicates the allowed energy regions;
the shaded areas indicate the regions filled with electrons. In a semimetal (such as bismuth) one
band is almost filled and another band is nearly empty at absolute zero, but a pure semiconduc-
tor (such as silicon) becomes an insulator at absolute zero. The left of the two semiconductors
shown is at a finite temperature, with carriers excited thermally. The other semiconductor is
electron-deficient because of impurities.



CHAPTER 7: ENERGY BANDS

When I started to think about it, I felt that the
main problem was to explain how the electrons
could sneak by all the ions in a metal. ... By
straight Fourier analysis I found to my delight
that the wave differed from the plane wave of
free electrons only by a periodic modulation.

F. Bloch

The free electron model of metals gives us good insight into the heat
capacity, thermal conductivity, electrical conductivity, magnetic susceptibility,
and electrodynamics of metals. But the model fails to help us with other large
questions: the distinction between metals, semimetals, semiconductors, and
insulators; the occurrence of positive values of the Hall coefficient; the rela-
tion of conduction electrons in the metal to the valence electrons of free
atoms; and many transport properties, particularly magnetotransport. We need
a less naive theory, and fortunately it turns out that almost any simple attempt
to improve upon the free electron model is enormously profitable.

The difference between a good conductor and a good insulator is striking.
The electrical resistivity of a pure metal may be as low as 1071° ohm-cm at a
temperature of 1 K, apart from the possibility of superconductivity. The resis-
tivity of a good insulator may be as high as 10> ohm-cm. This range of 10*
may be the widest of any common physical property of solids.

Every solid contains electrons. The important question for electrical con-
ductivity is how the electrons respond to an applied electric field. We shall see
that electrons in crystals are arranged in energy bands (Fig. 1) separated by
regions in energy for which no wavelike electron orbitals exist. Such forbidden
regions are called energy gaps or band gaps, and result from the interaction
of the conduction electron waves with the ion cores of the crystal.

The crystal behaves as an insulator if the allowed energy bands are either
filled or empty, for then no electrons can move in an electric field. The crystal
behaves as a metal if one or more bands are partly filled, say between 10 and
90 percent filled. The crystal is a semiconductor or a semimetal if one or two
bands are slightly filled or slightly empty.

To understand the difference between insulators and conductors, we must
extend the free electron model to take account of the periodic lattice of the solid.
The possibility of a band gap is the most important new property that emerges.

We shall encounter other quite remarkable properties of electrons in crys-
tals. For example, they respond to applied electric or magnetic fields as if the
electrons were endowed with an effective mass m*, which may be larger or
smaller than the free electron mass, or may even be negative. Electrons in
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crystals respond to applied fields as if endowed with negative or positive
charges, —e¢ or +e, and herein lies the explanation of the negative and positive
values of the Hall coefficient.

NEARLY FREE ELECTRON MODEL

On the free electron model the allowed energy values are distributed es-
sentially continuously from zero to infinity. We saw in Chapter 6 that

e

2
6 =
K" om

(kI + Ky + k), (1)

where, for periodic boundary conditions over a cube of side L,

ki k - L’ T L~

v

The free electron wavefunctions are of the form
(r) = exp(ik - r) ; (3)

they represent running waves and carry momentum p = fik.

The band structure of a crystal can often be explained by the nearly free
electron model for which the band electrons are treated as perturbed only
weakly by the periodic potential of the ion cores. This model answers almost
all the qualitative questions about the behavior of electrons in metals.

We know that Bragg reflection is a characteristic feature of wave propaga-
tion in crystals. Bragg reflection of electron waves in crystals is the cause of
energy gaps. (At Bragg reflection wavelike solutions of the Schrédinger equa-
tion do not exist, as in Fig. 2.) These energy gaps are of decisive significance in
determining whether a solid is an insulator or a conductor.

We explain physically the origin of energy gaps in the simple problem of a
linear solid of lattice constant a. The low energy portions of the band structure

Second

allowed

(a)

Figure 2 (a) Plot of energy € versus wavevector k for a free electron. (b) Plot of energy versus
wavevector for an electron in a monatomic linear lattice of lattice constant a. The energy gap E,
shown is associated with the first Bragg reflection at k = */a; other gaps are found at higher
energies at =nm/a, for integral values of n.
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are shown qualitatively in Fig. 2, in (a) for entirely free electrons and in (b) for
electrons that are nearly free, but with an energy gap at k = =m/a. The Bragg
condition (k + G)? = k? for diffraction of a wave of wavevector k becomes in
one dimension

k=*1G=*nma

, (4)

where G = 27n/a is a reciprocal lattice vector and n is an integer. The first re-
flections and the first energy gap occur at k = *7/a. The region in k space be-
tween —ar/a and 7/a is the first Brillouin zone of this lattice. Other energy
gaps occur for other values of the integer n.

The wavefunctions at k = *a/a are not the traveling waves exp(imx/a) or
exp(—imx/a) of free electrons. At these special values of k the wavefunctions
are made up of equal parts of waves traveling to the right and to the left. When
the Bragg reflection condition k = */a is satisfied by the wavevector, a wave
traveling to the right is Bragg-reflected to travel to the left, and vice versa.
Each subsequent Bragg reflection will reverse the direction of travel of the
wave. A wave that travels neither to the right nor to the left is a standing wave:
it doesn’t go anywhere.

The time-independent state is represented by standing waves. We can form
two different standing waves from the two traveling waves

exp(* imx/a) = cos(mx/a) = i sin(mx/a),
so that the standing waves are

Y(+) = explimx/a) + exp(—imx/a) = 2 cos (wx/a) ;
5
Y(—) = explimx/a) — exp(—imx/a) = 2i sin (wx/a) . (5)
The standing waves are labeled (+) or (—) according to whether or not they
change sign when —x is substituted for x. Both standing waves are composed
of equal parts of right- and left-directed traveling waves.

Origin of the Energy Gap

The two standing waves ¢(+) and ¢(—) pile up electrons at different
regions, and therefore the two waves have different values of the potential
energy in the field of the ions of the lattice. This is the origin of the energy
gap. The probability density p of a particle is y*¢ = lyI*. For a pure traveling
wave exp(ikx), we have p = exp(—ikx) exp(ikx) = 1, so that the charge density
is constant. The charge density is not constant for linear combinations of plane
waves. Consider the standing wave (+) in (5); for this we have

p(+) = |p(+)|? < cos* mx/a .

This function piles up electrons (negative charge) on the positive ions centered
atx =0, a, 2a, . . .in Fig. 3, where the potential energy is lowest.
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U, potential energy

VIOH core l—a _>‘
(a)

p, probability density

l(-)[2 KWW

NN

Figure 3 (a) Variation of potential energy of a conduction electron in the field of the ion cores
of a linear lattice. (b) Distribution of probability density p in the lattice for l(—)I* oc sin® mv/a;
lp(+)1? < cos® mx/a; and for a traveling wave. The wavefunction ¢(+) piles up electronic charge
on the cores of the positive ions, thereby lowering the potential energy in comparison with the
average potential energy seen by a traveling wave. The wavefunction ¢(—) piles up charge in
the region between the ions, thereby raising the potential energy in comparison with that seen by
a traveling wave. This figure is the key to understanding the origin of the energy gap.

Figure 3a pictures the variation of the electrostatic potential energy of a
conduction electron in the field of the positive ion cores. The ion cores bear a
net positive charge because the atoms are ionized in the metal, with the va-
lence electrons taken off to form the conduction band. The potential energy of
an electron in the field of a positive ion is negative, so that the force between
them is attractive.

For the other standing wave ¢(—) the probability density is

p(=) = [p(=) P ecsin® mu/a

which concentrates electrons away from the ion cores. In Fig. 3b we show
the electron concentration for the standing waves (+), ¥(—), and for a travel-
ing wave.

When we calculate the average or expectation values of the potential
energy over these three charge distributions, we find that the potential energy
of p(+) is lower than that of the traveling wave, whereas the potential energy of
p(—) is higher than the traveling wave. We have an energy gap of width E, if
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the energies of p(—) and p(+) differ by E,. Just below the energy gap at
points A in Fig. 2 the wavefunction is ¢(+), and just above the gap at points B
the wavefunction is {(—).

Magnitude of the Energy Gap

The wavefunctions at the Brillouin zone boundary k = 7/a are V2 cos mx/a
and V2 sin mx/a, normalized over unit length of line. Let us suppose that the
potential energy of an electron in the crystal at point x is

U(x) = U cos 2mx/a .

The first-order energy difference between the two standing wave states is

1
Be= | e U el = )P o

=2 fdx U cos(2mx/a)(cos® mx/a — sin® mx/a) = U .

We see that the gap is equal to the Fourier component of the crystal potential.

BLOCH FUNCTIONS

F. Bloch proved the important theorem that the solutions of the
Schrodinger equation for a periodic potential must be of a special form:

ir) = uy(r) exp(ik - r) | (7)

where u)(r) has the period of the crystal lattice with u)(r) = u)(r + T). Here T
is a translation vector of the lattice. The result (7) expresses the Bloch theorem:

The eigenfunctions of the wave equation for a periodic potential are
the product of a plane wave exp(ik - r) times a function u(r) with the
periodicity of the crystal lattice.

A one-electron wavefunction of the form (7) is called a Bloch function and
can be decomposed into a sum of traveling waves, as we see later. Bloch func-
tions can be assembled into wave packets to represent electrons that propa-
gate freely through the potential field of the ion cores.

We give now a restricted proof of the Bloch theorem, valid when i is
nondegenerate; that is, when there is no other wavefunction with the same
energy and wavevector as . The general case will be treated later. We con-
sider N identical lattice points on a ring of length Na. The potential energy is
periodic in a, with U(x) = U(x + sa), where s is an integer.

Let us be guided by the symmetry of the ring to look for solutions of the
wave equation such that

Plx +a) = Cilx) , (8)
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where C is a constant. Then, on going once around the ring,
p(x + Na) = p(x) = CV (x) ,

because (x) must be single-valued. It follows that C is one of the N roots of
unity, or

C = exp(i2ms/N) ; s=0,1,2, ... , N—1. (9)
We use (9) to see that

Plx) = uy(x) exp(i2msx/Na) (10)

satisfies (8), provided that u;(x) has the periodicity a, so that u;(x) = u(x + a).
This is the Bloch result (7).

KRONIG-PENNEY MODEL

A periodic potential for which the wave equation can be solved in terms of
elementary functions is the square-well array of Fig. 4. The wave equation is

_ e dy

2m@

+ U =€y, (11)

where Ul(x) is the potential energy and € is the energy eigenvalue.
In the region 0 < x < @ in which U = 0, the eigenfunction is a linear

combination,
= Ae'®™ + Be K| (12)
of plane waves traveling to the right and to the left, with energy
€ =hK2m . (13)
In the region —b < x < 0 within the barrier the solution is of the form
= Ce? + De 9" | (14)
with
Uy, — € =#°Q%2m . (15)
Ulx)
H H UO
Figure 4 Square-well periodic potential as e B il —

introduced by Kronig and Penney.
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We want the complete solution to have the Bloch form (7). Thus the solu-
tion in the region ¢ < x < a + b must be related to the solution (14) in the
region —b <x < 0 by the Bloch theorem:

Pla<x<a+b)=y(—b<x<0)ekert) (16)

which serves to define the wavevector k used as an index to label the
solution.

The constants A, B, C, D are chosen so that ¢ and di/dx are continuous at
x = 0 and x = a. These are the usual quantum mechanical boundary condi-
tions in problems that involve square potential wells. Atx = 0,

A+B=C+D ; (17)
iK(A—B)=Q(C—D) , (18)

with Q from (14). At x = a, with the use of (16) for ¥(a) under the barrier in
terms of y(—b),

AeiKa + Be*iKa — (Ce*Qb + DeQb) eik(qub) . <19)

iK(Ae'™ — Be K1) = Q(Ce @ — D) et th) (20)

The four equations (17) to (20) have a solution only if the determinant of
the coefficients of A, B, C, D vanishes, yielding

[(Q* — K*)/2QK] sinh Qb sin Ka + cosh Qb cos Ka = cos k(a +b) . (21a)

It is rather tedious to obtain this equation.

The result is simplified if we represent the potential by the periodic delta
function obtained when we pass to the limit b = 0 and U, = % in such a way
that Q*ba/2 = P, a finite quantity. In this limit Q > K and Qb < 1. Then (21a)
reduces to

(P/Ka)sin Ka + cos Ka = cos ka . (21b)

The ranges of K for which this equation has solutions are plotted in Fig. 5,
for the case P = 3m/2. The corresponding values of the energy are plotted in
Fig. 6. Note the energy gaps at the zone boundaries. The wavevector k of the
Bloch function is the important index, not the K in (12), which is related to the
energy by (13). A treatment of this problem in wavevector space is given later
in this chapter.

WAVE EQUATION OF ELECTRON IN A PERIODIC POTENTIAL

We considered in Fig. 3 the approximate form we expect for the solution
of the Schriodinger equation if the wavevector is at a zone boundary, as at
k = *ar/a. We treat in detail the wave equation for a general potential, at general
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€
(P/Ka) sin Ka + cos Ka

o “om VELE 7 3 Ka

_l\ 37 /ITI\ -7 0 T /\l\ 37 /|

Figure 5 Plot of the function (P/Ka) sin Ka + cos Ka, for P = 3m/2. The allowed values of the
energy e are given by those ranges of Ka = (2me/h*)?a for which the function lies between =1.
For other values of the energy there are no traveling wave or Bloch-like solutions to the wave
equation, so that forbidden gaps in the energy spectrum are formed.

20 | | |
15—
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-
5
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P '
Figure 6 Plot of energy vs. wavenumber for the 0 —
Kronig-Penney potential, with P = 37/2. Notice 77 2m 3w 4
the energy gaps atka = o, 27, 37 . . .. ka

values of k. Let U(x) denote the potential energy of an electron in a linear lattice
of lattice constant a. We know that the potential energy is invariant under a crys-
tal lattice translation: U(x) = U(x + a). A function invariant under a crystal lattice
translation may be expanded as a Fourier series in the reciprocal lattice vectors
G. We write the Fourier series for the potential energy as

Ulx) = % Ug e | (22)

The values of the coefficients Ug; for actual crystal potentials tend to decrease
rapidly with increasing magnitude of G. For a bare coulomb potential U
decreases as 1/G>.
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We want the potential energy U(x) to be a real function:

Ulx) =Y, Ugle™ + e =2 U cos Gx . (23)

G>0 G>0

For convenience we have assumed that the crystal is symmetric about x = 0
and that U, = 0.

The wave equation of an electron in the crystal is i = e, where ¥ is the
hamiltonian and € is the energy eigenvalue. The solutions ¢ are called eigen-
functions or orbitals or Bloch functions. Explicitly, the wave equation is

(2},1;92+U<x>>¢<,> (zmp + 3 U o )w<x>=e¢<x>. (24)

Equation (24) is written in the one-electron approximation in which the
orbital ¢(x) describes the motion of one electron in the potential of the ion
cores and in the average potential of the other conduction electrons.

The wavefunction (x) may be expressed as a Fourier series summed over
all values of the wavevector permitted by the boundary conditions, so that

¢[ 2 C th (25>

where k is real. (We could equally well write the index k as a subscript on C, as
in C;.)

The set of values of k has the form 27n/L, because these values satisfy
periodic boundary conditions over length L. Here n is any integer, positive or
negative. We do not assume, nor is it generally true, that (x) itself is periodic
in the fundamental lattice translation a. The translational properties of (x)
are determined by the Bloch theorem (7).

Not all wavevectors of the set 2an/L enter the Fourier expansion of
any one Bloch function. If one particular wavevector k is contained in a i,
then all other wavevectors in the Fourier expansion of this ¢ will have the
form k + G, where G is any reciprocal lattice vector. We prove this result in
(29) below.

We can label a wavefunction ¢ that contains a component k as i, or,
equally well, as ¢, ¢, because if k enters the Fourier expansion then k + G
may enter. The wavevectors k + G running over G are a restricted subset of
the set 2arn/L, as shown in Fig. 7.

We shall usually choose as a label for the Bloch function that k which lies
within the first Brillouin zone. When other conventions are used, we shall say
so. This situation differs from the phonon problem for a monatomic lattice
where there are no components of the ion motion outside the first zone. The
electron problem is like the x-ray diffraction problem because like the electron
wavefunction the electromagnetic field exists everywhere within the crystal
and not only at the ions.
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oky- 2T ok, -k0+2—77 -k0+4—77
a

-30 -20 -10 0 10 20 30
k, in units 27/L

Figure 7 The lower points represent values of the wavevector k = 27n/L allowed by the periodic
boundary condition on the wavefunction over a ring of circumference L composed of 20 primitive
cells. The allowed values continue to +o. The upper points represent the first few wavevectors
which may enter into the Fourier expansion of a wavefunction #(x), starting from a particular
wavevector k = k, = —8(2a/L). The shortest reciprocal lattice vector is 27/a = 20(2m/L).

To solve the wave equation, substitute (25) in (24) to obtain a set of linear
algebraic equations for the Fourier coefficients. The kinetic energy term is

2
Lpzl!f(x) = L (_lﬁd)z d](x) _ ﬁZ d ¢ ﬁE k2C<k> eikx :

2m 2m dx 2m d: 2m =4

and the potential energy term is

<E UG eti) ¢<x> _ E E U(, ez(AC lk\
@ c T
The wave equation is obtained as the sum:
2
S g ECW) & + 35 UaClk) ¢!+ = €3, Clk (26)

Each Fourier component must have the same coefficient on both sides of the
equation. Thus we have the central equation

A —€)Ck)+ X U;Ck—G)=0 . (27)
c
with the notation
A =Rk 2m . (28)

Equation (27) is a useful form of the wave equation in a periodic lattice,
although unfamiliar because a set of algebraic equations has taken the place of
the usual differential equation (24). The set appears unpleasant and formida-
ble because there are, in principle, an infinite number of C(k — G) to be de-
termined. In practice a small number will often suffice, perhaps two or four. It
takes some experience to appreciate the practical advantages of the algebraic

approach.
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Restatement of the Bloch Theorem

Once we determine the C’s from (27), the wavefunction (25) is given as
Pilx) = X Clk — G) e (29)
@

which may be rearranged as
Plx) = (; Ckk—-@G) ei@x) ™ =Myl |

with the definition
u(x) =D, Clk — G) e 6.
C

Because u;(x) is a Fourier series over the reciprocal lattice vectors, it is in-
variant under a crystal lattice translation T, so that u;(x) = ui(x + T). We verify
this directly by evaluating u;(x + T):

wx + T) =D Clk — G)e D = I Ok — G) e '] = e Ty (x) .

Because exp(—iGT) = 1 by (2.17), it follows that uy(x + T) = u(x), thereby
establishing the periodicity of u;. This is an alternate and exact proof of the
Bloch theorem and is valid even when the ¢, are degenerate.

Crystal Momentum of an Electron

What is the significance of the wavevector k used to label the Bloch func-
tion? It has several properties:

e Under a crystal lattice translation which carries r to r + T we have
Pr+T)=e* Tk (r+T)=e*Ty(r) , (30)

because u(r + T) = uy(r). Thus exp(ik - T) is the phase factor by which a
Bloch function is multiplied when we make a crystal lattice translation T.

o If the lattice potential vanishes, the central equation (27) reduces to
(A — €)C(k) = 0, so that all C(k — G) are zero except C(k), and thus u,(r)
is constant. We have i (r) = ¥, just as for a free electron. (This assumes
we have had the foresight to pick the “right” k as the label. For many pur-
poses other choices of k, differing by a reciprocal lattice vector, will be more
convenient.)

e The quantity k enters in the conservation laws that govern collision processes
in crystals. (The conservation laws are really selection rules for transitions.)
Thus %k is called the crystal momentum of an electron. If an electron k
absorbs in a collision a phonon of wavevector ¢, the selection rule is k + q =
k' + G. In this process the electron is scattered from a state k to a state k',
with G a reciprocal lattice vector. Any arbitrariness in labeling the Bloch func-
tions can be absorbed in the G without changing the physics of the process.
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Solution of the Central Equation

The central equation (27),
A —€)Ck)+ X ULk —G)=0 , (31)
@

represents a set of simultaneous linear equations that connect the coefficients
C(k — G) for all reciprocal lattice vectors G. It is a set because there are as
many equations as there are coefficients C. These equations are consistent if
the determinant of the coefficients vanishes.

Let us write out the equations for an explicit problem. We let g denote the
shortest G. We suppose that the potential energy U(x) contains only a single
Fourier component U, = U_,, denoted by U. Then a block of the determinant
of the coefficients is given by£

Aoy — € U 0 0 0
U Ap—g— € U 0 0
0 U AL — € U 0 (32)
0 0 U Aivg— € U
0 0 0 U Akyog — €

To see this, write out five successive equations of the set (31). The determi-
nant in principle is infinite in extent, but it will often be sufficient to set equal
to zero the portion we have shown.

At a given k, each root € or €, lies on a different energy band, except in
case of coincidence. The solution of the determinant (32) gives a set of energy
eigenvalues €,,, where n is an index for ordering the energies and k is the
wavevector that labels C,.

Most often k will be taken in the first zone, to reduce possible confusion in
the labeling. If we chose a k different from the original by some reciprocal
lattice vector, we would have obtained the same set of equations in a different
order—but having the same energy spectrum.

Kronig-Penney Model in Reciprocal Space

As an example of the use of the central equation (31) for a problem that is
exactly solvable, we use the Kronig-Penney model of a periodic delta-function
potential:

Ulx)=2 E U cos Gx = AaE 8(x —sa) , (33)

G>0 s

where A is a constant and a the lattice spacing. The sum is over all integers s
between 0 and 1/a. The boundary conditions are periodic over a ring of unit
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length, which means over 1/a atoms. Thus the Fourier coefficients of the
potential are

1 1
U, = J dx U(x) cos Gx = AaE J dx &(x — sa) cos Gx
0 s 0

=AaY, cos Gsa = A .

All U, are equal for the delta-function potential.
We write the central equation with k as the Bloch index. Thus (31)

becomes
(A —€)C(k) + AY, C(k — 2mn/a) = 0 | (35)
where A, =#%%k*2m and the sum is over all integers n. We want to solve (35)
for e(k).
We define
fk) =, Ctk — 2mn/a) , (36)
so that (35) becomes
2mA/R2) f (k
clk) = — @mAR) f (k) . (37)

k? — (2me/h?)
Because the sum (36) is over all coefficients C, we have, for any n,
fk)= f(k — 2mn/a) . (38)
This relation lets us write

C(k — 2mm/a) = — (2mA/A?) f(k)[(k — 2mn/a)* — 2me/h?)] ™" . (39)

We sum both sides over all n to obtain, using (36) and cancelling f(k) from
both sides,

(h22mA) = =D [(k — 27n/a)* — (2me/h?)] ! . (40)

n

The sum can be carried out with the help of the standard relation

1
ctnx=2nﬂ_+x . (41)

n
After trigonometric manipulations in which we use relations for the difference
of two cotangents and the product of two sines, the sum in (40) becomes

a® sin Ka
4Ka(cos ka — cos Ka)

(42)

where we write K> = 2me/h> as in (13).
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The final result for (40) is

(mAa*/2h%)(Ka)™ ' sin Ka + cos Ka = cos ka (43)

which agrees with the Kronig-Penney result (21b) with P written for mAa®/2h>.

Empty Lattice Approximation

Actual band structures are usually exhibited as plots of energy versus
wavevector in the first Brillouin zone. When wavevectors happen to be given
outside the first zone, they are carried back into the first zone by subtracting a
suitable reciprocal lattice vector. Such a translation can always be found. The
operation is helpful in visualization.

When band energies are approximated fairly well by free electron ener-
gies €, = A’k*2m, it is advisable to start a calculation by carrying the free elec-
tron energies back into the first zone. The procedure is simple enough once
one gets the hang of it. We look for a G such that a k' in the first zone satisfies

K+G=k,

where k is unrestricted and is the true free electron wavevector in the empty
lattice. (Once the plane wave is modulated by the lattice, there is no single
“true” wavevector for the state i.)

If we drop the prime on k' as unnecessary baggage, the free electron
energy can always be written as

elkok, k) = (h2m)(k + G)?
= ®w2m)[(k, + G)* + (k, + G)* + (k. + G.] ,

with k in the first zone and G allowed to run over the appropriate reciprocal
lattice points.

We consider as an example the low-lying free electron bands of a simple
cubic lattice. Suppose we want to exhibit the energy as a function of k in the
[100] direction. For convenience, choose units such that A%2m = 1. We show
several low-lying bands in this empty lattice approximation with their energies
€(000) at k = 0 and €(k,00) along the k, axis in the first zone:

Band Ga/2m €(000) €(k,00)
_______________________________________________________________________________________________________________________|
1 000 0 K2

2,3 100,100 (2m/a)? (k, + 2m/a)?

45,67 010,010,001,001 (2m/a)? k2 + (2m/a)

8,9,10,11 110,101,110,101 2(2m/a)? (k, + 2m/a)* + (2m/a)?
12,13,14,15 110,101,110,101 2(2m/a)? (k, — 2@/a)® + (27/a)*
16,17,18,19 011,011,011,011 2(27/a)? k2 + 2(27/a)?
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15

Figure 8 Low-lying free electron energy bands
of the empty sc lattice, as transformed to the first
Brillouin zone and plotted vs. (k,00). The free
electron energy is #2(k + G)¥2m, where the G’s
are given in the second column of the table. The
bold curves are in the first Brillouin zone, with
—7/a = k, = ar/a. Energy bands drawn in this
way are said to be in the reduced zone scheme.

2y

These free electron bands are plotted in Fig. 8. It is a good exercise to plot the
same bands for k parallel to the [111] direction of wavevector space.

Approximate Solution Near a Zone Boundary

We suppose that the Fourier components U of the potential energy are
small in comparison with the kinetic energy of a free electron at the zone
boundary. We first consider a wavevector exactly at the zone boundary at G,
that is, at 7/a. Here

=G6G?; k—-GP=G6G-G?*=GG),

so that at the zone boundary the kinetic energy of the two component waves
k = +3G are equal.

If CEG) is an important coefficient in the orbital (29) at the zone boundary,
then C(—3G) is also an important coefficient. This result also follows from the
discussion of (5). We retain only those equations in the central equation that
contain both coefficients C(3G) and C(—1G), and neglect all other coefficients.
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One equation of (31) becomes, with k = 1G and A = #2(3G)¥2m,
(A —€)CGG) +UC(—3G) =0 . (44)

Another equation of (31) becomes, with k = G,

A—€e)C(—1G)+UCEG)=0 . (45)

These two equations have nontrivial solutions for the two coefficients if
the energy e satisfies

A—€ U :0, (46)

U A—€

whence

h2

A—€e?=0": e=AxU=
2m

GGP+U . (47)
The energy has two roots, one lower than the free electron kinetic energy by
U, and one higher by U. Thus the potential energy 2U cos Gx has created an
energy gap 2U at the zone boundary.

The ratio of the C’s may be found from either (44) or (45):

1
C(—3G) e—)t:il

C:G) U ' o

where the last step uses (47). Thus the Fourier expansion of #(x) at the zone
boundary has the two solutions

Plx) = exp(iGx/2) * exp(—iGa/2) .

These orbitals are identical to (5).

One solution gives the wavefunction at the bottom of the energy gap; the
other gives the wavefunction at the top of the gap. Which solution has the
lower energy depends on the sign of U.

We now solve for orbitals with wavevector k near the zone boundary G.
We use the same two-component approximation, now with a wavefunction of
the form

P(x) = Ck) ™ + Clk — G) & | (49)
As directed by the central equation (31), we solve the pair of equations

A\ — €)Ck) + UC(k —G) =0 :
A —€)Ck — G) + UC(k) =0 |
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with A, defined as %%*2m. These equations have a solution if the energy €
satisfies

/\k —€ U _
U M_c—€| 0,
whence € — e(A\j_¢ + Ap) + Ao A, —U? = 0.
The energy has two roots:
€=5 Moo+ ) T[N — A+ U2, (50)

and each root describes an energy band, plotted in Fig. 9. It is convenient to
expand the energy in terms of a quantity K (the mark over the K is called a
tilde), which measures the difference K=k — 3G in wavevector between k
and the zone boundary:

= (A%2m)(G? +K?) + [4A(HK>2m) + U?]"?
= (ﬁ2/2m)( G? + Kz) U1 + 2WUH(KR2K>2m)] ,  (51)

in the region #’GK/2m < |U|. Here A = (1%2m)(5 G)? as before.
Writing the two zone boundary roots of (47) as (%), we may write (51) as

ek(i)ze(i)+ﬁ27m <1+2L)7‘> (52)

l\)

Zone boundary

Figure 9 Solutions of (50) in the periodic zone scheme, in the region near a boundary of the first
Brillouin zone. The units are such that U = —0.45, G = 2, and #%m = 1. The free electron curve is
drawn for comparison. The energy gap at the zone boundary is 0.90. The value of U has deliberately
been chosen large for this illustration, too large for the two-term approximation to be accurate.
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| I |
0 0.5 1.0 1.5

Figure 10 Ratio of the coefficients in ¢y(x) = C(k) exp(ikx) + C(k — G) expli(k — G)x] as calcu-
lated near the boundary of the first Brillouin zone. One component dominates as we move away

from the boundary.

These are the roots for the energy when the wavevector is very close to the
zone boundary at 1G. Note the quadratic dependence of the energy on the
wavevector K. For U negative, the solution €(—) corresponds to the upper of
the two bands, and €(+) to the lower of the two bands. The two C’s are plotted
in Fig. 10.

NUMBER OF ORBITALS IN A BAND

Consider a linear crystal constructed of an even number N of primitive
cells of lattice constant a. In order to count states we apply periodic boundary
conditions to the wavefunctions over the length of the crystal. The allowed
values of the electron wavevector k in the first Brillouin zone are given by (2):

21 47 N
k=0 ; e T AL R (53)
We cut the series off at Na/L = ar/a, for this is the zone boundary. The point
—Na/L = —m/a is not to be counted as an independent point because it is

connected by a reciprocal lattice vector with 7/a. The total number of points is
exactly N, the number of primitive cells.

Each primitive cell contributes exactly one independent value of k
to each energy band. This result carries over into three dimensions. With
account taken of the two independent orientations of the electron spin, there
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are 2N independent orbitals in each energy band. If there is a single
atom of valence, one in each primitive cell, the band can be half filled with
electrons. If each atom contributes two valence electrons to the band, the
band can be exactly filled. If there are two atoms of valence, one in each prim-
itive cell, the band can also be exactly filled.

Metals and Insulators

If the valence electrons exactly fill one or more bands, leaving others
empty, the crystal will be an insulator. An external electric field will not cause
current flow in an insulator. (We suppose that the electric field is not strong
enough to disrupt the electronic structure.) Provided that a filled band is sepa-
rated by an energy gap from the next higher band, there is no continuous way
to change the total momentum of the electrons if every accessible state is
filled. Nothing changes when the field is applied. This is quite unlike the situa-
tion for free electrons for which k increases uniformly in a field (Chapter 6).

A crystal can be an insulator only if the number of valence electrons in a
primitive cell of the crystal is an even integer. (An exception must be made for
electrons in tightly bound inner shells which cannot be treated by band
theory.) If a crystal has an even number of valence electrons per primitive cell,
it is necessary to consider whether or not the bands overlap in energy. If the
bands overlap in energy, then instead of one filled band giving an insulator, we
can have two partly filled bands giving a metal (Fig. 11).

The alkali metals and the noble metals have one valence electron per
primitive cell, so that they have to be metals. The alkaline earth metals have
two valence electrons per primitive cell; they could be insulators, but the
bands overlap in energy to give metals, but not very good metals. Diamond,
silicon, and germanium each have two atoms of valence four, so that there are

€rn|—
&) o [}
=} =] =i
=5) 3] =
— €F
0 a 0 o 0 =
k— a k —> a k— a

(a) (b) (c)

Figure 11 Occupied states and band structures giving (a) an insulator, (b) a metal or a semimetal
because of band overlap, and (c) a metal because of electron concentration. In (b) the overlap
need not occur along the same directions in the Brillouin zone. If the overlap is small, with rela-
tively few states involved, we speak of a semimetal.
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eight valence electrons per primitive cell; the bands do not overlap, and the
pure crystals are insulators at absolute zero.

SUMMARY

* The solutions of the wave equation in a periodic lattice are of the
Bloch form ¢ (r) = e uy(r), where u,(r) is invariant under a crystal lattice
translation.

e There are regions of energy for which no Bloch function solutions of the
wave equation exist (see Problem 5). These energies form forbidden regions
in which the wavefunctions are damped in space and the values of the k’s are
complex, as pictured in Fig. 12. The existence of forbidden regions of energy
is prerequisite to the existence of insulators.

* Energy bands may often be approximated by one or two plane waves: for
example, iy (x) = Ck)e™ + Ck — G)e'* =" near the zone boundary at 1G.

e The number of orbitals in a band is 2N, where N is the number of primitive
cells in the specimen.

Problems

1. Square lattice, free electron energies. (a) Show for a simple square lattice (two
dimensions) that the kinetic energy of a free electron at a corner of the first zone is
higher than that of an electron at midpoint of a side face of the zone by a factor of 2.
(b) What is the corresponding factor for a simple cubic lattice (three dimensions)?
(c) What bearing might the result of (b) have on the conductivity of divalent metals?

2. Free electron energies in reduced zone. Consider the free electron energy bands
of an fcc crystal lattice in the approximation of an empty lattice, but in the reduced
zone scheme in which all k” s are transformed to lie in the first Brillouin zone. Plot
roughly in the [111] direction the energies of all bands up to six times the lowest
band energy at the zone boundary at k = (2m/a)(3, 3, 1). Let this be the unit of en-
ergy. This problem shows why band edges need not necessarily be at the zone cen-
ter. Several of the degeneracies (band crossings) will be removed when account is
taken of the crystal potential.

3. Kronig-Penney model. (a) For the delta-function potential and with P < 1, find at
k = 0 the energy of the lowest energy band. (b) For the same problem find the band
gap atk = m/a.

4. Potential energy in the diamond structure. (a) Show that for the diamond struc-
ture the Fourier component Uy; of the crystal potential seen by an electron is equal
to zero for G = 2A, where A is a basis vector in the reciprocal lattice referred to the
conventional cubic cell. (b) Show that in the usual first-order approximation to
the solutions of the wave equation in a periodic lattice the energy gap vanishes at
the zone boundary plane normal to the end of the vector A.
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Figure 12 In the energy gap there exist solutions of the wave equation for complex values of the
wavevector. At the boundary of the first zone the real part of the wavevector is 3G. The imaginary
part of k in the gap is plotted in the approximation of two plane waves, for U = 0.01 #°G¥2m. In an
infinite unbounded crystal the wavevector must be real, or else the amplitude will increase with-
out limit. But on a surface or at a junction there can exist solutions with complex wavevector.

“5. Complex wavevectors in the energy gap. Find an expression for the imaginary
part of the wavevector in the energy gap at the boundary of the first Brillouin zone,
in the approximation that led to Eq. (46). Give the result for the Im(k) at the center
of the energy gap. The result for small Im(k) is

(h22m)[Im(k)]* = 2mUH*G? .

The form as plotted in Fig. 12 is of importance in the theory of Zener tunneling
from one band to another in the presence of a strong electric field.

6. Square lattice. Consider a square lattice in two dimensions with the crystal potential

Ulx,y) = —4U cos(2mx/a) cos(2my/a) .

Apply the central equation to find approximately the energy gap at the corner
point (7/a, 7/a) of the Brillouin zone. It will suffice to solve a 2 X 2 determinantal
equation.

"This problem is somewhat difficult.
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Figure 1 Carrier concentrations for metals, semimetals, and semiconductors. The semiconductor
range may be extended upward by increasing the impurity concentration, and the range can be ex-
tended downward to merge eventually with the insulator range.
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CHAPTER 8: SEMICONDUCTOR CRYSTALS

Carrier concentrations representative of metals, semimetals, and semicon-
ductors are shown in Fig. 1. Semiconductors are generally classified by their
electrical resistivity at room temperature, with values in the range of 1072 to
10? ohm-cm, and strongly dependent on temperature. At absolute zero a pure,
perfect crystal of most semiconductors will be an insulator, if we arbitrarily de-
fine an insulator as having a resistivity above 10" ohm-cm.

Devices based on semiconductors include transistors, switches, diodes,
photovoltaic cells, detectors, and thermistors. These may be used as single
circuit elements or as components of integrated circuits. We discuss in this
chapter the central physical features of the classical semiconductor crystals,
particularly silicon, germanium, and gallium arsenide.

Some useful nomenclature: the semiconductor compounds of chemical
formula AB, where A is a trivalent element and B is a pentavalent element, are
called III-V (three-five) compounds. Examples are indium antimonide and
gallium arsenide. Where A is divalent and B is hexavalent, the compound is
called a II-VI compound; examples are zinc sulfide and cadmium sulfide. Silicon
and germanium are sometimes called diamond-type semiconductors, because
they have the crystal structure of diamond. Diamond itself is more an insulator
rather than a semiconductor. Silicon carbide SiC is a IV-IV compound.

A highly purified semiconductor exhibits intrinsic conductivity, as distin-
guished from the impurity conductivity of less pure specimens. In the intrin-
sic temperature range the electrical properties of a semiconductor are not
essentially modified by impurities in the crystal. An electronic band scheme
leading to intrinsic conductivity is indicated in Fig. 2. The conduction band is
vacant at absolute zero and is separated by an energy gap E, from the filled
valence band.

The band gap is the difference in energy between the lowest point of the
conduction band and the highest point of the valence band. The lowest point
in the conduction band is called the conduction band edge; the highest
point in the valence band is called the valence band edge.

As the temperature is increased, electrons are thermally excited from the
valence band to the conduction band (Fig. 3). Both the electrons in the con-
duction band and the vacant orbitals or holes left behind in the valence band
contribute to the electrical conductivity.

BAND GAP

The intrinsic conductivity and intrinsic carrier concentrations are largely
controlled by E/ksT, the ratio of the band gap to the temperature. When this
ratio is large, the concentration of intrinsic carriers will be low and the
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Figure 2 Band scheme for intrinsic conductivity in a semiconductor. At 0 K the conductivity is
zero because all states in the valence band are filled and all states in the conduction band are va-
cant. As the temperature is increased, electrons are thermally excited from the valence band to the
conduction band, where they become mobile. Such carriers are called “intrinsic.”
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Figure 3 Intrinsic electron concentration as a function of temperature for (a) germanium and
(b) silicon. Under intrinsic conditions the hole concentration is equal to the electron concentra-
tion. The intrinsic concentration at a given temperature is higher in Ge than in Si because the
energy gap is narrower in Ge (0.66 eV) than in Si (1.11 eV). (After W. C. Dunlap.)

conductivity will be low. Band gaps of representative semiconductors are given
in Table 1. The best values of the band gap are obtained by optical absorption.

In a direct absorption process the threshold of continuous optical ab-
sorption at frequency w, measures the band gap E, = fiw, as shown in Figs. 4a
and 5a. A photon is absorbed by the crystal with the creation of an electron
and a hole.

In the indirect absorption process in Figs. 4b and 5b the minimum
energy gap of the band structure involves electrons and holes separated by a
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CRYSTAL WITH DIRECT GAP CRYSTAL WITH INDIRECT GAP
Absorption Absorption
Transparent
region

Onset of indirect

Onset of direct "
photon transition

photon
transition

-7 Onset of direct
:/ transition

ha, By + Q. E, e
Photon energy fiw —> Photon energy fiw —>
(a) (b)

Figure 4 Optical absorption in pure insulators at absolute zero. In (a) the threshold determines
the energy gap as E, = fiw,. In (b) the optical absorption is weaker near the threshold: at
fio = E, + hQ a photon is absorbed with the creation of three particles: a free electron, a free
hole, and a phonon of energy A{). In (b) the energy E,.,, marks the threshold for the creation of a
free electron and a free hole, with no phonon involved. Such a transition is called vertical; it is
similar to the direct transition in (a). These plots do not show absorption lines that sometimes are
seen lying just to the low energy side of the threshold. Such lines are due to the creation of a
bound electron-hole pair, called an exciton.

Conduction Conduction
band edge band edge
Valence band edge Valence band edge

(a) (b)

Figure 5 In (a) the lowest point of the conduction band occurs at the same value of k as the highest
point of the valence band. A direct optical transition is drawn vertically with no significant change of
k, because the absorbed photon has a very small wavevector. The threshold frequency w, for absorp-
tion by the direct transition determines the energy gap E, = fiw,. The indirect transition in (b) in-
volves both a photon and a phonon because the band edges of the conduction and valence bands are
widely separated in k space. The threshold energy for the indirect process in (b) is greater than the
true band gap. The absorption threshold for the indirect transition between the band edges is at
hw = E, + 7€), where () is the frequency of an emitted phonon of wavevector K = —k,. At higher
temperatures phonons are already present; if a phonon is absorbed along with a photon, the thresh-
old energy is fiw = E, — #€). Note: The figure shows only the threshold transitions. Transitions occur
generally between almost all points of the two bands for which the wavevectors and energy can be
conserved.
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Table 1 Energy gap between the valence and conduction bands
(i = indirect gap; d = direct gap)

E, eV E, eV
Crystal Gap 0K 300 K Crystal Gap 0K 300 K
L
Diamond i 5.4 SiC(hex) i 3.0 —
Si i 1.17 1.11 Te d 0.33 —
Ge i 0.744  0.66 HgTe* d —0.30
aSn d 0.00 0.00 PbS d 0.286 0.34-0.37
InSb d 0.23 0.17 PbSe i 0.165 0.27
InAs d 0.43 0.36 PbTe i 0.190 0.29
InP d 1.42 1.27 Cds d 2.582 2.42
GaP i 2.32 2.25 CdSe d 1.840 1.74
GaAs d 1.52 1.43 CdTe d 1.607 1.44
GaSb d 0.81 0.68 SnTe d 0.3 0.18
AlSb i 1.65 1.6 Cu,0 d 2.172 —

]
*HgTe is a semimetal; the bands overlap.

substantial wavevector k.. Here a direct photon transition at the energy of the
minimum gap cannot satisfy the requirement of conservation of wavevector,
because photon wavevectors are negligible at the energy range of interest. But
if a phonon of wavevector K and frequency () is created in the process, then
we can have

k(photon) =k, + K= 0 ; hwo = E, + hQ ,

as required by the conservation laws. The phonon energy ) will generally be
much less than E,: a phonon even of high wavevector is an easily accessible
source of crystal momentum because the phonon energies are characteristi-
cally small (~0.01 to 0.03 eV) in comparison with the energy gap. If the tem-
perature is high enough that the necessary phonon is already thermally excited
in the crystal, it is possible also to have a photon absorption process in which
the phonon is absorbed.

The band gap may also be deduced from the temperature dependence
of the conductivity or of the carrier concentration in the intrinsic range. The
carrier concentration is obtained from measurements of the Hall voltage
(Chapter 6), sometimes supplemented by conductivity measurements. Optical
measurements determine whether the gap is direct or indirect. The band
edges in Ge and in Si are connected by indirect transitions; the band edges in
InSb and GaAs are connected by a direct transition (Fig. 6). The gap in aSn is
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Figure 6 Optical absorption in pure indium antimonide, InSb. The transition is direct because
both conduction and valence band edges are at the center of the Brillouin zone, k = 0. Notice the
sharp threshold. (After G. W. Gobeli and H. Y. Fan.)

direct and is exactly zero; HgTe and HgSe are semimetals and have negative
gaps—the conduction and valence bands overlap.

EQUATIONS OF MOTION

We derive the equation of motion of an electron in an energy band. We
look at the motion of a wave packet in an applied electric field. Suppose that
the wave packet is made up of wavefunctions assembled near a particular
wavevector k. The group velocity by definition is v, = dw/dk. The frequency as-
sociated with a wavefunction of energy € by quantum theory is w = €/f, and so

v, = f ! de/dk or v=#1"1V,ek) . (1)

The effects of the crystal on the electron motion are contained in the disper-
sion relation (k).
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The work e done on the electron by the electric field E in the time
interval 8¢ is

e = —eEuv, 8t . (2)
We observe that
de = (de/dk)ok = fiv, ok , (3)
using (1). On comparing (2) with (3) we have
8k = —(eE/h)dt (4)

whence Adk/dt = —e¢E.
We may write (4) in terms of the external force F as

@:
G =F . (5)

This is an important relation: in a crystal Adk/dt is equal to the external force
on the electron. In free space d(mv)/dt is equal to the force. We have not over-
thrown Newton’s second law of motion: the electron in the crystal is subject to
forces from the crystal lattice as well as from external sources.

The force term in (5) also includes the electric field and the Lorentz force
on an electron in a magnetic field, under ordinary conditions where the mag-
netic field is not so strong that it breaks down the band structure. Thus the
equation of motion of an electron of group velocity v in a constant magnetic
field B is

(€Gs) #lE = Ly xp D #lk=—evxB (6

where the right-hand side of each equation is the Lorentz force on the electron.
With the group velocity v = %~ 'grad,e, the rate of change of the wavevector is

dk _ e : dk _ _e

where now both sides of the equation refer to the coordinates in k space.

We see from the vector cross-product in (7) that in a magnetic field
an electron moves in k space in a direction normal to the direction of the gra-
dient of the energy e, so that the electron moves on a surface of constant
energy. The value of the projection kg of k on B is constant during the
motion. The motion in k space is on a plane normal to the direction of B, and
the orbit is defined by the intersection of this plane with a surface of constant
energy.
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Physical Derivation of ik = F

We consider the Bloch eigenfunction s belonging to the energy eigen-
value €, and wavevector k:

=2, Clk + G) explitk + G) - r] . (8)

G

The expectation value of the momentum of an electron in the Bloch state k is

P, = (k|-ifiV|k) = X, ik + G)|C(k + G)[* = fi(k + X, G|C(k + G)") ,
G G
(9)

using 2|C(k + G)|* = 1.

We examine the transfer of momentum between the electron and the lat-
tice when the state k of the electron is changed to k + Ak by the application
of an external force. We imagine an insulating crystal electrostatically neutral
except for a single electron in the state k of an otherwise empty band.

We suppose that a weak external force is applied for a time interval such
that the total impulse given to the entire crystal system is J = [F dt. If the
conduction electron were free (m* = m), the total momentum imparted to
the crystal system by the impulse would appear in the change of momentum of
the conduction electron:

J = Apy = Apy = RAk . (10)

The neutral crystal suffers no net interaction with the electric field, either
directly or indirectly through the free electron.

If the conduction electron interacts with the periodic potential of the crys-
tal lattice, we must have

J = Aptnt = APlat + Apel . (11)

From the result (9) for p; we have
Ap. = Ak + D AG[(V|C(k + G)P) - AK] . (12)
G

The change Apy, in the lattice momentum resulting from the change of
state of the electron may be derived by an elementary physical consideration.
An electron reflected by the lattice transfers momentum to the lattice. If an
incident electron with plane wave component of momentum 7k is reflected
with momentum fi(k + G), the lattice acquires the momentum —#AG, as re-
quired by momentum conservation. The momentum transfer to the lattice
when the state iy goes over to iy 5 is

Apy = —ﬁ% G[(Vi[C(k + G)[* - Ak] , (13)
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because the portion
VilCk + G)J* - Ak (14)

of each individual component of the initial state is reflected during the state
change Ak.

The total momentum change is therefore
APel + Aplat = J = hAk > (15)
exactly as for free electrons, Eq. (10). Thus from the definition of J, we have

fidk/dt = F | (16)

derived in (5) by a different method. A rigorous derivation of (16) by an en-
tirely different method is given in Appendix E.

Holes

The properties of vacant orbitals in an otherwise filled band are important
in semiconductor physics and in solid state electronics. Vacant orbitals in a
band are commonly called holes, and without holes there would be no transis-
tors. A hole acts in applied electric and magnetic fields as if it has a positive
charge +e. The reason is given in five steps in the boxes that follow.

1. k,= -k, . (17)

The total wavevector of the electrons in a filled band is zero: =k = 0,
where the sum is over all states in a Brillouin zone. This result follows
from the geometrical symmetry of the Brillouin zone: every fundamental
lattice type has symmetry under the inversion operation r— —r about
any lattice point; it follows that the Brillouin zone of the lattice also has
inversion symmetry. If the band is filled all pairs of orbitals k and —k are
filled, and the total wavevector is zero.

If an electron is missing from an orbital of wavevector k,, the total
wavevector of the system is —k, and is attributed to the hole. This result
is surprising: the electron is missing from k, and the position of the hole
is usually indicated graphically as situated at k,, as in Fig. 7. But the true
wavevector k;, of the hole is —k,, which is the wavevector of the point G
if the hole is at E. The wavevector —k, enters into selection rules for
photon absorption.

The hole is an alternate description of a band with one missing elec-
tron, and we either say that the hole has wavevector —k, or that the band
with one missing electron has total wavevector —k,.
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Figure 7 Absorption of a photon of energy #iw and negligible wavevector takes an electron from
E in the filled valence band to Q in the conduction band. If k, was the wavevector of the electron
at E, it becomes the wavevector of the electron at Q. The total wavevector of the valence band
after the absorption is —k,, and this is the wavevector we must ascribe to the hole if we describe
the valence band as occupied by one hole. Thus k;, = —k,; the wavevector of the hole is the same
as the wavevector of the electron which remains at G. For the entire system the total wavevector
after the absorption of the photon is k, + k;, = 0, so that the total wavevector is unchanged by the
absorption of the photon and the creation of a free electron and free hole.

2. ek, = —¢.(k,) . (18)

Here the zero of energy of the valence band is at the top of the band.
The lower in the band the missing electron lies, the higher the energy of
the system. The energy of the hole is opposite in sign to the energy of
the missing electron, because it takes more work to remove an electron
from a low orbital than from a high orbital. Thus if the band is symmet-
ric,' €,(k,) = €,(—k,) = —€,(—k,)= —¢,(k;). We construct in Fig. 8 a
band scheme to represent the properties of a hole. This hole band is a
helpful representation because it appears right side up.

3. v, =V, . (19)

The velocity of the hole is equal to the velocity of the missing electron.
From Fig. 8 we see that Ve, (k;,) = Ve, (k,), so that v,(k;,) = v,(k,).

'Bands are always symmetric under the inversion k — —k if the spin-orbit interaction is
neglected. Even with spin-orbit interaction, bands are always symmetric if the crystal structure

permits the inversion operation. Without a center of symmetry, but with spin-orbit interaction, the
bands are symmetric if we compare subbands for which the spin direction is reversed: e(k, )
e(—k, ). See QTS, Chapter 9.
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Hole band constructed
with k, = -k, and
e,(k,) = —€,(k,), to
simulate dynamics
of a hole.

Valence band
with one
electron missing

Figure 8 The upper half of the figure shows the hole band that simulates the dynamics of a hole,
constructed by inversion of the valence band in the origin. The wavevector and energy of the hole
are equal, but opposite in sign, to the wavevector and energy of the empty electron orbital in the va-
lence band. We do not show the disposition of the electron removed from the valence band at k,.

4, my, = —m, . (20)

We show below that the effective mass is inversely proportional to the
curvature d’e/dk?, and for the hole band this has the opposite sign to that
for an electron in the valence band. Near the top of the valence band m,
is negative, so that m, is positive.

(lk]l
dt

5 At =o(E + Ly, X B) | (21)

This comes from the equation of motion

dk, 1 .
T e(E +2v. X B) (22)

(CGS) h

that applies to the missing electron when we substitute —k;, for k, and v,
for v,. The equation of motion for a hole is that of a particle of
positive charge e. The positive charge is consistent with the electric
current carried by the valence band of Fig. 9: the current is carried by
the unpaired electron in the orbital G:

j=(=e)v(G) =(—e)[-Vv(E)] = ev(E) , (23)

which is just the current of a positive charge moving with the velocity as-
cribed to the missing electron at E. The current is shown in Fig. 10.
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Figure 9 (a) Att = 0 all states are filled except F at the top of the band; the velocity v, is zero at F
because de/dk, = 0. (b) An electric field E, is applied in the +x direction. The force on the elec-
trons is in the —k, direction and all electrons make transitions together in the —k, direction, mov-
ing the hole to the state E. (c) After a further interval the electrons move farther along in k space
and the hole is now at D.

vy, Figure 10 Motion of electrons in the conduction band and

holes in the valence band in the electric field E. The hole

Jh and electron drift velocities are in opposite directions, but their
electric currents are in the same direction, the direction of the
electric field.

Effective Mass

When we look at the energy-wavevector relation € = (h22m)k* for free
electrons, we see that the coefficient of k*> determines the curvature of € versus
k. Turned about, we can say that 1/m, the reciprocal mass, determines the cur-
vature. For electrons in a band there can be regions of unusually high curva-
ture near the band gap at the zone boundary, as we see from the solutions in
Chapter 7 of the wave equation near the zone boundary. If the energy gap is
small in comparison with the free electron energy A at the boundary, the cur-
vature is enhanced by the factor A/E,.

In semiconductors the band width, which is like the free electron energy,
is of the order of 20 eV, while the band gap is of the order of 0.2 to 2 eV. Thus
the reciprocal mass is enhanced by a factor 10 to 100, and the effective mass is
reduced to 0.1-0.01 of the free electron mass. These values apply near the
band gap; as we go away from the gap the curvatures and the masses are likely
to approach those of free electrons.

To summarize the solutions of Chapter 7 for U positive, an electron near
the lower edge of the second band has an energy that may be written as

e(K) = €, + (h*2m,)K* ; m,/m = 1/[(2A/U)—1] . (24)
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Here K is the wavevector measured from the zone boundary, and m, denotes
the effective mass of the electron near the edge of the second band. An elec-
tron near the top of the first band has the energy

e(K) =€, — (h*2m;)K> ; my/m = 1/[(2A/U) + 1] . (25)

The curvature and hence the mass will be negative near the top of the first
band, but we have introduced a minus sign into (25) in order that the symbol
my, for the hole mass will have a positive value—see (20) above.

The crystal does not weigh any less if the effective mass of a carrier is less
than the free electron mass, nor is Newton’s second law violated for the crystal
taken as a whole, ions plus carriers. The important point is that an electron in a
periodic potential is accelerated relative to the lattice in an applied electric or
magnetic field as if the mass of the electron were equal to an effective mass
which we now define.

We differentiate the result (1) for the group velocity to obtain

dv 2 )
g =41 d € =41 E@ .
@ aka " (dk2 dt) (26)
We know from (5) that dk/dt = F/h, whence
dv 2 2 dv
g _ (1 d% ) __h g
dt <ﬁ2 K ) Fooor P goae d (&)

If we identify 12/(d%e/dk>) as a mass, then (27) assumes the form of Newton’s
second law. We define the effective mass m* by

1 _1d%
m g2 dk*

(28)

It is easy to generalize this to take account of an anisotropic electron en-
ergy surface, as for electrons in Si or Ge. We introduce the components of the
reciprocal effective mass tensor

1) _1 de Ao (1
(ﬂl’“‘),w_ w2 dk, dk, dt <m*>,wF“ ’ (29)

where w, v are Cartesian coordinates.

Physical Interpretation of the Effective Mass

How can an electron of mass m when put into a crystal respond to applied
fields as if the mass were m*? It is helpful to think of the process of Bragg re-
flection of electron waves in a lattice. Consider the weak interaction approxi-
mation treated in Chapter 7. Near the bottom of the lower band the orbital is
represented quite adequately by a plane wave exp(ikx) with momentum #k;
the wave component expli(k — G)x] with momentum #(k—G) is small and
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Figure 11 Explanation of negative effective masses which occur near, but below, a Brillouin zone
boundary. In (a) the energy of the electron beam incident on a thin crystal is slightly too low to sat-
isfy the condition for Bragg reflection and the beam is transmitted through the crystal. The appli-
cation of a small voltage across the grid may, as in (b), cause the Bragg condition to be satisfied,
and the electron beam will then be reflected from the appropriate set of crystal planes.

increases only slowly as k is increased, and in this region m* = m. An increase
in the reflected component expli(k — G)x] as k is increased represents mo-
mentum transfer to the electron from the lattice.

Near the boundary the reflected component is quite large; at the bound-
ary it becomes equal in amplitude to the forward component, at which point
the eigenfunctions are standing waves, rather than running waves. Here the
momentum component #(— 1 G) cancels the momentum component h:G).

A single electron in an energy band may have positive or negative effective
mass: the states of positive effective mass occur near the bottom of a band be-
cause positive effective mass means that the band has upward curvature
(d®e/dk* is positive). States of negative effective mass occur near the top of the
band. A negative effective mass means that on going from state k to state
k + Ak, the momentum transfer to the lattice from the electron is larger than
the momentum transfer from the applied force to the electron. Although k is
increased by Ak by the applied electric field, the approach to Bragg reflection
can give an overall decrease in the forward momentum of the electron; when
this happens the effective mass is negative (Fig. 11).

As we proceed in the second band away from the boundary, the amplitude
of exp[i(k — G)x] decreases rapidly and m* assumes a small positive value.
Here the increase in electron velocity resulting from a given external impulse
is larger than that which a free electron would experience. The lattice makes
up the difference through the reduced recoil it experiences when the ampli-
tude of exp[i(k — G)x] is diminished.

If the energy in a band depends only slightly on k, then the effective mass
will be very large. That is, m*/m > 1 when d%e/dk? is very small. The tight-
binding approximation discussed in Chapter 9 gives quick insight into the for-
mation of narrow bands. If the wavefunctions centered on neighboring atoms
overlap very little, then the overlap integral is small; the width of the band
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narrow, and the effective mass large. The overlap of wavefunctions centered
on neighboring atoms is small for the inner or core electrons. The 4f electrons
of the rare earth metals, for example, overlap very little.

Effective Masses in Semiconductors

In many semiconductors it has been possible to determine by cyclotron
resonance the effective masses of carriers in the conduction and valence bands
near the band edges. The determination of the energy surface is equivalent to
a determination of the effective mass tensor (29). Cyclotron resonance in a
semiconductor is carried out with centimeter wave or millimeter wave radia-
tion at low carrier concentration.

The current carriers are accelerated in helical orbits about the axis of a
static magnetic field. The angular rotation frequency w, is

(CGS) =B (8D @, =% | (30)

© m*c

where m* is the appropriate cyclotron effective mass. Resonant absorption of
energy from an rf electric field perpendicular to the static magnetic field
(Fig. 12) occurs when the rf frequency is equal to the cyclotron frequency.
Holes and electrons rotate in opposite senses in a magnetic field.

We consider the experiment for m*/m = 0.1. At f, = 24 GHz, or o, =
1.5 X 10" s7!, we have B = 860 G at resonance. The line width is determined
by the collision relaxation time 7, and to obtain a distinctive resonance it is
necessary that w7 = 1. The mean free path must be long enough to permit the
average carrier to get one radian around a circle between collisions. The re-
quirements are met with the use of higher frequency radiation and higher
magnetic fields, with high purity crystals in liquid helium.

In direct-gap semiconductors with band edges at the center of the Bril-
louin zone, the bands have the structure shown in Fig. 13. The conduction
band edge is spherical with the effective mass my:

e=E, + w2k 2m, | (31)
B (static)
E
Figure 12 Arrangement of fields in i Z
a cyclotron resonance experiment in Orbit of electron

a semiconductor. The sense of the
circulation is opposite for electrons
and holes.
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\spht_offho]es Figure 13 Simplified view of the

band edge structure of a direct-gap
semiconductor.

Table 2 Effective masses of electrons and holes in direct-gap semiconductors

Electron Heavy hole Light hole Split-off hole Spin-orbit
Crystal m,/m my/m my/m my,/m A, eV
InSb 0.015 0.39 0.021 (0.11) 0.82
InAs 0.026 0.41 0.025 0.08 0.43
InP 0.073 0.4 (0.078) (0.15) 0.11
GaSb 0.047 0.3 0.06 (0.14) 0.80
GaAs 0.066 0.5 0.082 0.17 0.34
Cu,O 0.99 — 0.58 0.69 0.13

referred to the valence band edge. The valence bands are characteristically
threefold near the edge, with the heavy hole hh and light hole [h bands degen-
erate at the center, and a band soh split off by the spin-orbit splitting A:

(hh) = —1%2my, ;.  €(Ih) = —h%k2my, ;

32
ED(SOh) =-A- hzkz/zmsoh . ( )

Values of the mass parameters are given in Table 2. The forms (32) are only
approximate, because even close to k = 0 the heavy and light hole bands are
not spherical—see the discussion below for Ge and Si.

The perturbation theory of band edges (Problem 9.8) suggests that the
electron effective mass should be proportional to the band gap, approximately,
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for a direct gap crystal. We use Tables 1 and 2 to find the fairly constant values
m(/(mEg) = 0.063, 0.060, and 0.051 in (eV) ' for the series InSb, InAs, and
InP, in agreement with this suggestion.

Silicon and Germanium

The conduction and valence bands of germanium are shown in Fig. 14,
based on a combination of theoretical and experimental results. The valence
band edge in both Si and Ge is at k = 0 and is derived from py, and p, states
of the free atoms, as is clear from the tight-binding approximation (Chapter 9)
to the wavefunctions.

The py level is fourfold degenerate as in the atom; the four states corre-
spond to m; values +5 and *5. The py, level is doubly degenerate, with
my == 5. The pyy, states are higher in energy than the p,, states; the energy
difference A is a measure of the spin-orbit interaction.

The valence band edges are not simple. Holes near the band edge are
characterized by two effective masses, light and heavy. These arise from the
two bands formed from the pj), level of the atom. There is also a band formed
from the py,, level, split off from the p;, level by the spin-orbit interaction.
The energy surfaces are not spherical, but warped (QTS, p. 271):

e(k) = AK* = [B%k* + C*(kiky + Kk + k2k3)]"2 (33)

The choice of sign distinguishes the two masses. The split-off band has
e(k) = —A + Ak® The experiments give, in units #%2m,

Si: A= —4.29 ; Bl = 0.68 ; ICl = 4.87 ; A =0.044 eV
Ge: A= —-1338; IBl = 8.48 ; ICl =13.15 ; A =0.29eV

Roughly, the light and heavy holes in germanium have masses 0.043 m and
0.34 m; in silicon 0.16 m and 0.52 m; in diamond 0.7 m and 2.12 m.

The conduction band edges in Ge are at the equivalent points L of the
Brillouin zone, Fig. 15a. Each band edge has a spheroidal energy surface ori-
ented along a (111) crystal axis, with a longitudinal mass m; = 1.59 m and a
transverse mass m, = 0.082 m. For a static magnetic field at an angle 6 with
the longitudinal axis of a spheroid, the effective cyclotron mass m, is

1 _ cos®@ , sin’@ (34)
m2  omp W

Results for Ge are shown in Fig. 16.

In silicon the conduction band edges are spheroids oriented along the
equivalent (100) directions in the Brillouin zone, with mass parameters
my = 0.92 m and m, = 0.19 m, as in Fig. 17a. The band edges lie along the lines
labeled A in the zone of Fig. 15a, a little way in from the boundary points X.

In GaAs we have A = —6.98, B = —4.5, IC| =6.2, A = 0.341 eV. The
band structure is shown in Fig. 17b. It has a direct band gap with an isotropic
conduction electron mass of 0.067 m.
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Figure 14 Calculated band structure of germanium, after C. Y. Fong. The general features are in
good agreement with experiment. The four valence bands are shown in gray. The fine structure of
the valence band edge is caused by spin-orbit splitting. The energy gap is indirect; the conduction

band edge is at the point (27/a)(3 3 1). The constant energy surfaces around this point are ellipsoidal.
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(a)

(b)

Figure 15 Standard labels of the symmetry points and axes of the Brillouin zones of the fcc and
bec lattices. The zone centers are I'. In (a) the boundary point at (27/a)(100) is X; the boundary
point at (2m/a)(: 1 2) is L; the line A runs between T' and X. In (b) the corresponding symbols are

222

H, P, and A.

Figure 16 Effective cyclotron mass of electrons in germa-
nium at 4 K for magnetic field directions in a (110) plane.
There are four independent mass spheroids in Ge, one
along each [111] axis, but viewed in the (110) plane two
spheroids always appear equivalent. (After Dresselhaus,
Kip, and Kittel.)
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Figure 17a Constant energy ellipsoids for Figure 17b Band structure of GaAs, after S. G. Louie.

electrons in silicon, drawn for my/m, = 5.

INTRINSIC CARRIER CONCENTRATION

We want the concentration of intrinsic carriers as a function of tempera-
ture, in terms of the band gap. We do the calculation for simple parabolic band
edges. We first calculate in terms of the chemical potential u the number of
electrons excited to the conduction band at temperature T. In semiconductor
physics u is called the Fermi level. At the temperatures of interest we may
suppose for the conduction band of a semiconductor that € — u > kT, so that
the Fermi-Dirac distribution function reduces to

fo=expl(u—eVkgT] . (35)

This is the probability that a conduction electron orbital is occupied, in an
approximation valid when f, < 1.
The energy of an electron in the conduction band is

€ = E, + #%k*2m, | (36)

where E, is the energy at the conduction band edge, as in Fig. 18. Here
m, is the effective mass of an electron. Thus from (6.20) the density of states
at € is

D,(e) = 2;( 2;” )”@ ~E)” . (37)
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The concentration of electrons in the conduction band is

n= J D,(e de = 27172 <2m >3/2 exp(uwkzT) X
fE (e —E)" exp(—e/kgT)de o
which integrates to give
n= 2< “;i;T >3/2 expl(p — E)/kyT] | (39)

The problem is solved for n when w is known. It is useful to calculate the
equilibrium concentration of holes p. The distribution function fj, for holes is
related to the electron distribution function f, by f;, = 1 — f,, because a hole is
the absence of an electron. We have

fi=1- ! - !
expl(e — w/kzT1+ 1 expl(pn — €)/kT] + 1 (40)
= expl(e — w)/kpT] ,

provided (u — €) > k,T.
If the holes near the top of the valence band behave as particles with
effective mass my,, the density of hole states is given by

Die) = 2;( 2 )(E o (41)

where E, is the energy at the valence band edge. Proceeding as in (38) we obtain

3/2
p= f Dyle)fy(e) (ze_z(”;ﬁz) expl(E,— )k, T] (42)

for the concentration p of holes in the valence band.
We multiply together the expressions for n and p to obtain the equilibrium
relation, with the energy gap E, = E, — E, as in Fig. 18,

= 4( kT )3( )2 exp(—E,/kgT) (43)
np = Y mgany,)”" exp JksT) .

This useful result does not involve the Fermi level u. At 300 K the value of np
is 2.10 X 10" em ™%, 2.89 X 10% ¢m™°, and 6.55 X 10" ¢cm ™ ®, for the actual
band structures of Sl, Ge, and GaAs, respectively.

We have nowhere assumed in the derivation that the material is intrinsic:
the result holds for impurity ionization as well. The only assumption made is
that the distance of the Fermi level from the edge of both bands is large in
comparison with k,T.

A simple kinetic argument shows why the product np is constant at a given
temperature. Suppose that the equilibrium population of electrons and holes
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Fermi level

Figure 18 Energy scale for statistical calcula-
Valence tions. The Fermi distribution function is shown

band on the same scale, for a temperature kT < E,
The Fermi level u is taken to lie well within the
band gap, as for an intrinsic semiconductor. If
€ =p, then f=34.

is maintained by black-body photon radiation at temperature T. The photons
generate electron-hole pairs at a rate A(T), while B(T)np is the rate of the re-
combination reaction ¢ + h = photon. Then

dn/dt = A(T) — B(T)np = dp/dt - (44)

In equilibrium dn/dt = 0, dp/dt = 0, whence np = A(T)/B(T).

Because the product of the electron and hole concentrations is a constant
independent of impurity concentration at a given temperature, the introduction
of a small proportion of a suitable impurity to increase n, say, must decrease p.
This result is important in practice—we can reduce the total carrier concentra-
tion n + p in an impure crystal, sometimes enormously, by the controlled intro-
duction of suitable impurities. Such a reduction is called compensation.

In an intrinsic semiconductor the number of electrons is equal to the
number of holes, because the thermal excitation of an electron leaves behind a
hole in the valence band. Thus from (43) we have, letting the subscript i de-
note intrinsic and E, = E, — E,,

kT \32
n=p;= 2( B ) (mmy,)** exp(— E/2kyT) . (45)
2mh*

The intrinsic carrier concentration depends exponentially on E,/2k,T,
where E, is the energy gap. We set (39) equal to (42) to obtain, for the Fermi
level as measured from the top of the valence band,

exp(2ukyT) = (my/m,)*? exp(E/kyT) ; (46)
n= %Eg + 2 kT In (my/m,) . (47)
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If m;, = m,, then pu = %Eg and the Fermi level is in the middle of the forbid-
den gap.

Intrinsic Mobility

The mobility is the magnitude of the drift velocity of a charge carrier per
unit electric field:

w=|olE . (48)

The mobility is defined to be positive for both electrons and holes, although
their drift velocities are opposite in a given field. By writing u, or w;, with
subscripts for the electron or hole mobility we can avoid any confusion be-
tween u as the chemical potential and as the mobility.

The electrical conductivity is the sum of the electron and hole contributions:

o = (new, + pepy,) , (49)

where n and p are the concentrations of electrons and holes. In Chapter 6 the
drift velocity of a charge ¢ was found to be v = g7E/m, whence

e = ETc/me 5 M = eTh//'nh > (50)

where 7 is the collision time.

The mobilities depend on temperature as a modest power law. The tem-
perature dependence of the conductivity in the intrinsic region will be
dominated by the exponential dependence exp(—E,/2k;T) of the carrier con-
centration, Eq. (45).

Table 3 gives experimental values of the mobility at room temperature.
The mobility in SI units is expressed in m%/V-s and is 10™* of the mobility in
practical units. For most substances the values quoted are limited by the scat-
tering of carriers by thermal phonons. The hole mobilities typically are smaller
than the electron mobilities because of the occurrence of band degeneracy at
the valence band edge at the zone center, thereby making possible interband
scattering processes that reduce the mobility considerably.

Table 3 Carrier mobilities at room temperature, in cm*/V-s

Crystal Electrons Holes Crystal Electrons Holes
|
Diamond 1800 1200 GaAs 8000 300
Si 1350 480 GaSb 5000 1000
Ge 3600 1800 PbS 550 600
InSb 800 450 PbSe 1020 930
InAs 30000 450 PbTe 2500 1000
InP 4500 100 AgCl 50 —

AlAs 280 — KBr (100 K) 100 —

AlSb 900 400 SiC 100 10-20
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In some crystals, particularly in ionic crystals, the holes are essentially
immobile and get about only by thermally-activated hopping from ion to ion.
The principal cause of this “self-trapping” is the lattice distortion associated
with the Jahn-Teller effect of degenerate states. The orbital degeneracy neces-
sary for self-trapping is much more frequent for holes than for electrons.

There is a tendency for crystals with small energy gaps at direct band edges
to have high values of the electron mobility. Small gaps lead to small effective
masses, which favor high mobilities. The highest mobility observed in a bulk
semiconductor is 5 X 10° cm*V-s in PbTe at 4 K, where the gap is 0.19 eV.

IMPURITY CONDUCTIVITY

Certain impurities and imperfections drastically affect the electrical prop-
erties of a semiconductor. The addition of boron to silicon in the proportion of
1 boron atom to 10° silicon atoms increases the conductivity of pure silicon at
room temperature by a factor of 10°. In a compound semiconductor a stoichio-
metric deficiency of one constituent will act as an impurity; such semiconduc-
tors are known as deficit semiconductors. The deliberate addition of impuri-
ties to a semiconductor is called doping.

We consider the effect of impurities in silicon and germanium. These ele-
ments crystallize in the diamond structure. Each atom forms four covalent
bonds, one with each of its nearest neighbors, corresponding to the chemical
valence four. If an impurity atom of valence five, such as phosphorus, arsenic,
or antimony, is substituted in the lattice in place of a normal atom, there will
be one valence electron from the impurity atom left over after the four cova-
lent bonds are established with the nearest neighbors, that is, after the impu-
rity atom has been accommodated in the structure with as little disturbance as
possible. Impurity atoms that can give up an electron are called donors.

Donor States. The structure in Fig. 19 has a positive charge on the impurity
atom (which has lost one electron). Lattice constant studies have verified that
the pentavalent impurities enter the lattice by substitution for normal atoms,
and not in interstitial positions. The crystal as a whole remains neutral because
the electron remains in the crystal.

The extra electron moves in the coulomb potential e/er of the impurity
ion, where € in a covalent crystal is the static dielectric constant of the
medium. The factor 1/e takes account of the reduction in the coulomb force
between charges caused by the electronic polarization of the medium. This
treatment is valid for orbits large in comparison with the distance between
atoms, and for slow motions of the electron such that the orbital frequency is
low in comparison with the frequency w, corresponding to the energy gap.
These conditions are satisfied quite well in Ge and Si by the donor electron of
P, As, or Sh.
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Figure 19 Charges associated with an arsenic impurity atom in silicon. Arsenic has five valence
electrons, but silicon has only four valence electrons. Thus four electrons on the arsenic form tetra-
hedral covalent bonds similar to silicon, and the fifth electron is available for conduction. The
arsenic atom is called a donor because when ionized it donates an electron to the conduction band.

We estimate the ionization energy of the donor impurity. The Bohr theory
of the hydrogen atom may be modified to take into account the dielectric
constant of the medium and the effective mass of an electron in the periodic
potential of the crystal. The ionization energy of atomic hydrogen is —e*'m/2h?
in CGS and —e*m/2(4meyh)? in SI.

In the semiconductor with dielectric constant € we replace ¢ by e*/e and
m by the effective mass m, to obtain

e*m,
(4meeh)?

4
(CCS) E,= e _ <13'6m">ev : (SI) E, = (51)

2e’h? e m

as the donor ionization energy of the semiconductor.
The Bohr radius of the ground state of hydrogen is f%2/me® in CGS or
4meyh*me® in SI. Thus the Bohr radius of the donor is

o 4 h?
)A : (8D ag= 2 (52)

me

(CGS) a4 =
mye

(4

eh’ _ [0.53¢
2 my/m

The application of impurity state theory to germanium and silicon is com-
plicated by the anisotropic effective mass of the conduction electrons. But the
dielectric constant has the more important effect on the donor energy because
it enters as the square, whereas the effective mass enters only as the first power.

To obtain a general impression of the impurity levels we use m, = 0.1 m
for electrons in germanium and m, = 0.2 m in silicon. The static dielectric
constant is given in Table 4. The ionization energy of the free hydrogen atom is
13.6 eV. For germanium the donor ionization energy E, on our model is 5 meV,
reduced with respect to hydrogen by the factor m,/me* =4 X 10™*. The
corresponding result for silicon is 20 meV. Calculations using the correct
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Table 4 Static relative dielectric constant of semiconductors

Crystal € Crystal €
|
Diamond 5.5 GaSb 15.69
Si 11.7 GaAs 13.13
Ge 15.8 AlAs 10.1
InSb 17.88 AlSb 10.3
InAs 14.55 SiC 10.2
InP 12.37 Cu,0O 7.1

Table 5 Donor ionization energies E, of pentavalent
impurities in germanium and silicon, in meV

P As Sb
|
Si 45. 49. 39.
Ge 12.0 12.7 9.6

anisotropic mass tensor predict 9.05 meV for germanium and 29.8 meV for
silicon. Observed values of donor ionization energies in Si and Ge are given in
Table 5. In GaAs donors have E; = 6 meV.

The radius of the first Bohr orbit is increased by em/m, over the value
0.53 A for the free hydrogen atom. The corresponding radius is (160)(0.53) =
80 A in germanium and (60)(0.53) = 30 A in silicon. These are large radii, so
that donor orbits overlap at relatively low donor concentrations, compared to
the number of host atoms. With appreciable orbit overlap, an “impurity band”
is formed from the donor states: see the discussion of the metal-insulator tran-
sition in Chapter 14.

The semiconductor can conduct in the impurity band by electrons hop-
ping from donor to donor. The process of impurity band conduction sets in at
lower donor concentration levels if there are also some acceptor atoms pre-
sent, so that some of the donors are always ionized. It is easier for a donor
electron to hop to an ionized (unoccupied) donor than to an occupied donor
atom, in order that two electrons will not have to occupy the same site during
charge transport.

Acceptor States. A hole may be bound to a trivalent impurity in germanium
or silicon (Fig. 20), just as an electron is bound to a pentavalent impurity.
Trivalent impurities such as B, Al, Ga, and In are called acceptors because
they accept electrons from the valence band in order to complete the covalent
bonds with neighbor atoms, leaving holes in the band.
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Figure 20 Boron has only three valence electrons; it can complete its tetrahedral bonds only by
taking an electron from a Si-Si bond, leaving behind a hole in the silicon valence band. The positive
hole is then available for conduction. The boron atom is called an acceptor because when ionized
it accepts an electron from the valence band. At 0 K the hole is bound.

Table 6 Acceptor ionization energies E, of trivalent
impurities in germanium and silicon, in meV

B Al Ga In
|
Si 45 57. 65 157
Ge 10.4 10.2 10.8 11.2

When an acceptor is ionized a hole is freed, which requires an input
of energy. On the usual energy band diagram, an electron rises when it gains
energy, whereas a hole sinks in gaining energy.

Experimental ionization energies of acceptors in germanium and silicon
are given in Table 6. The Bohr model applies qualitatively for holes just as for
electrons, but the degeneracy at the top of the valence band complicates the
effective mass problem.

The tables show that donor and acceptor ionization energies in Si are com-
parable with kT at room temperature (26 meV), so that the thermal ionization
of donors and acceptors is important in the electrical conductivity of silicon at
room temperature. If donor atoms are present in considerably greater num-
bers than acceptors, the thermal ionization of donors will release electrons
into the conduction band. The conductivity of the specimen then will be con-
trolled by electrons (negative charges), and the material is said to be n type.

If acceptors are dominant, holes will be released into the valence band
and the conductivity will be controlled by holes (positive charges): the mater-
ial is p type. The sign of the Hall voltage (6.53) is a rough test for n or p type.
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Figure 21 Temperature dependence of the free carrier concentration in ultrapure Ge, after
R. N. Hall. The net concentration of electrically active impurities is 2 X 10" ¢cm ™3, as determined
by Hall coefficient measurements. The rapid onset of intrinsic excitation as the temperature is in-
creased is evident at low values of 1/T. The carrier concentration is closely constant between 20 K
and 200 K.

Another handy laboratory test is the sign of the thermoelectric potential, dis-
cussed below.

The numbers of holes and electrons are equal in the intrinsic regime. The
intrinsic electron concentration n; at 300 K is 1.7 X 10" em ™ in germanium
and 4.6 X 10° cm ™ in silicon. The electrical resistivity of intrinsic material is
43 ohm-cm for germanium and 2.6 X 10° ohm-cm for silicon.

Germanium has 4.42 X 10?* atoms per cm®. The purification of Ge has
been carried further than any other element. The concentration of the
common electrically active impurities—the shallow donor and acceptor
impurities—has been reduced below 1 impurity atom in 10" Ge atoms
(Fig. 21). For example, the concentration of P in Ge can be reduced below
4 X 10" ¢cm™®. There are impurities (H, O, Si, C) whose concentrations in Ge
cannot usually be reduced below 10'2—10" ¢cm ™3, but these do not affect elec-
trical measurements and therefore may be hard to detect.

Thermal Ionization of Donors and Acceptors

The calculation of the equilibrium concentration of conduction electrons
from ionized donors is identical with the standard calculation in statistical me-
chanics of the thermal ionization of hydrogen atoms (TP, p. 369). If there are
no acceptors present, the result in the low temperature limit k3T < E,; is

n = (nyNy)"? exp(—E2kT) | (53)
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Figure 22 Electrical conductivity and hole concentration p calculated as a function of electron
concentration n for a semiconductor at a temperature such that np = 10%° cm ™%, The conductivity
is symmetrical about n = 10" em ™. For n > 10", the specimen is n type; forn < 10" itisp type.
We have taken w, = w;, for the mobilities.

with ny = 2(mkzT/27h)>? here N, is the concentration of donors. To obtain
(53) we apply the laws of chemical equilibria to the concentration ratio
[e][N7V/IN,], and then set [N;] =
under the assumption of no donor atoms.

If the donor and acceptor concentrations are comparable, affairs are com-
plicated and the equations are solved by numerical methods. However, the law
of mass action (43) requires the np product to be constant at a given tempera-
ture. An excess of donors will increase the electron concentration and de-
crease the hole concentration; the sum n + p will increase. The conductivity
will increase as n + p if the mobilities are equal, as in Fig. 22.

[e] = n. Identical results hold for acceptors,

THERMOELECTRIC EFFECTS

Consider a semiconductor maintained at a constant temperature while an
electric field drives through it an electric current density j,. If the current is
carried only by electrons, the charge flux is

Jo = (=)= )E = nep E (54)

where u, is the electron mobility. The average energy transported by an elec-
tron is referred to the Fermi level u,

(E,— ) +5kyT |
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where E, is the energy at the conduction band edge. We refer the energy to
the Fermi level because different conductors in contact have the same Fermi
level. The energy flux that accompanies the charge flux is

Ju= n(E, —p + ngT)(_,Um)E : (55)

The Peltier coefficient 1 is defined by j,; = Ilj ; or the energy carried
per unit charge. For electrons,

I, = —(E. — p+3kgTe (56)

and is negative because the energy flux is opposite to the charge flux. For
holes

Jo=pemkE 5 ju=plu—E, +ksDmE | (57)
where E, is the energy at the valence band edge. Thus
Hh = (M’ - Eu + %kBT)/e (58)

and is positive. Equations (56) and (58) are the result of our simple drift veloc-
ity theory; a treatment by the Boltzmann transport equation gives minor nu-
merical differences.?

The absolute thermoelectric power Q is defined from the open circuit
electric field created by a temperature gradient:

E=QgradT . (59)
The Peltier coefficient II is related to the thermoelectric power Q by
=0T . (60)

This is the famous Kelvin relation of irreversible thermodynamics. A measure-
ment of the sign of the voltage across a semiconductor specimen, one end of
which is heated, is a rough and ready way to tell if the specimen is n type or p
type (Fig. 23).

SEMIMETALS

In semimetals the conduction band edge is very slightly lower in energy
than the valence band edge. A small overlap in energy of the conduction and
valence bands leads to small concentration of holes in the valence band and of
electrons in the conduction band (Table 7). Three of the semimetals, arsenic,
antimony, and bismuth, are in group V of the periodic table.

Their atoms associate in pairs in the crystal lattice, with two ions and ten
valence electrons per primitive cell. The even number of valence electrons

2A simple discussion of Boltzmann transport theory is given in Appendix F.
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Table 7 Electron and hole concentrations in semimetals

3 3

Semimetal n,, in cm™ ny,, incm™

]
Arsenic (2.12 * 0.01) X 10%* (2.12 = 0.01) x 10%
Antimony (5.54 = 0.05) X 10"* (5.49 = 0.03) x 10"
Bismuth 2.88 X 107 3.00 X 107
Graphite 2.72 X 10 2.04 X 10

could allow these elements to be insulators. Like semiconductors, the semi-
metals may be doped with suitable impurities to vary the relative numbers of
holes and electrons. Their concentrations may also be varied with pressure, for
the band edge overlap varies with pressure.

SUPERLATTICES

Consider a multilayer crystal of alternating thin layers of different composi-
tions. Coherent layers on a nanometer thickness scale may be deposited by
molecular-beam epitaxy or metal-organic vapor deposition, thus building up a
superperiodic structure on a large scale. Systems of alternate layers of GaAs and
GaAlAs have been studied to 50 periods or more, with lattice spacing A of per-
haps 5 nm (50 A). A superperiodic crystal potential arises from the superperiodic
structure and acts on the conduction electrons and holes to create new (small)
Brillouin zones and mini energy bands superposed on the band structures of the
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constituent layers. Here we treat the motion of an electron in a superlattice in an

applied electric field.

Bloch Oscillator

Consider a collisionless electron in a periodic lattice in one dimension,
with motion normal to the planes of the superlattice. The equation of motion
in a constant electric field parallel to k is fidk/dt = —¢E or, for motion
across a Brillouin zone with reciprocal lattice vector G = 2m/A, we have
hG = h2m/A = eET, where T is the period of the motion. The Bloch
frequency of the motion is wy = 27/T = eEA/h. The electron accelerates from
k = 0 toward the zone boundary; when it reaches k = @/A it reappears (as by
an Umklapp process) at the zone boundary at the identical point —7/A, using
the argument of Chapter 2.

We consider the motion in a model system in real space. We suppose that
the electron lies in a simple energy band of width €:

€=¢€y(l—coskA). (61)

The velocity in k-space (momentum space) is
v="1""de/dk = (A€yh) sin kA , (62)
and the position of the electron in real space, with the initial condition z = 0

at¢ = 0, is given by
z = Judt = [dk v(k)(dt/dk) = (Aeyh) [dk(—h/eE) sin kA

=(—¢y/eE)(cos kA — 1) = (—¢€y/eE)(cos(—eEAt/h) —1) . (63)
This confirms that the Bloch oscillation frequency in real space is wz = eEA/A.

The motion in the periodic lattice is quite different from the motion in free
space, for which the acceleration is constant.

Zener Tunneling

Thus far we have considered the effect of the electrostatic potential —eEz
(or —eEnA) on one energy band; the potential tilts the whole band. Higher
bands will also be tilted similarly, creating the possibility of crossing between
ladder levels of different bands. The interaction between different band levels at
the same energy opens the possibility for an electron in one band at n to cross to
another band at n’. This field-induced interband tunneling is an example of
Zener breakdown, met most often at a single junction as in the Zener diode.

SUMMARY

e The motion of a wave packet centered at wavevector k is described by
F = fdk/dt, where F is the applied force. The motion in real space is ob-
tained from the group velocity v, = %~ 'V, ek).
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e The smaller the energy gap, the smaller is the effective mass Im*| near the
gap.

* A crystal with one hole has one empty electron state in an otherwise filled
band. The properties of the hole are those of the N — 1 electrons in this
band.

(a) If the electron is missing from the state of wavevector k,, then the
wavevector of the hole is k;, = —k,.

(b) The rate of change of k;, in an applied field requires the assignment of a

positive charge to the hole: ¢, = ¢ = —e,.
(c) If v, is the velocity an electron would have in the state k,, then the veloc-
ity to be ascribed to the hole of wavevector k, = — k,isv;, = v,.

(d) The energy of the hole referred to zero for a filled band is positive and is
€,(k,)= —e(k,).

(e) The effective mass of a hole is opposite to the effective mass of an elec-
tron at the same point on the energy band: m;, = —m

e*

Problems

1. Impurity orbits. Indium antimonide has E, = 0.23 eV; dielectric constant € = 18;

electron effective mass m, = 0.015 m. Calculate (a) the donor ionization energy;
(b) the radius of the ground state orbit. (¢) At what minimum donor concentration
will appreciable overlap effects between the orbits of adjacent impurity atoms
occur? This overlap tends to produce an impurity band—a band of energy levels
which permit conductivity presumably by a hopping mechanism in which electrons
move from one impurity site to a neighboring ionized impurity site.

2. Ionization of donors. In a particular semiconductor there are 10" donors/cm®

with an ionization energy E; of 1 meV and an effective mass 0.01 m. (a) Estimate the
concentration of conduction electrons at 4 K. (b) What is the value of the Hall coeff-
icent? Assume no acceptor atoms are present and that Eg > kyT.

3. Hall effect with two carrier types. Assuming concentration n, p; relaxation times

7,, T; and masses m,, my,, show that the Hall coefficient in the drift velocity approxi-
mation is

1 p—nb®
Ry=—vr
<CGS> H ™ ec (P + nb)z

where b = p,/u;, is the mobility ratio. In the derivation neglect terms of order B In
SI we drop the c. Hint: In the presence of a longitudinal electric field, find the
transverse electric field such that the transverse current vanishes. The algebra may
seem tedious, but the result is worth the trouble. Use (6.64), but for two carrier
types; neglect (w,7)* in comparison with w,.
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4. Cyclotron resonance for a spheroidal energy surface. Consider the energy
surface

K+ k2 g)
+ :

21’)’],, 2ml

ek) = ﬁ2<

where m, is the transverse mass parameter and m; is the longitudinal mass parame-
ter. A surface on which e(k) is constant will be a spheroid. Use the equation of mo-
tion (6), withv="%A" IVkE, to show that w, = eB/(m;m,)"?c when the static magnetic
field B lies in the xy plane. This result agrees with (34) when 6 = @/2. The result is
in CGS; to obtain SI, omit the c.

5. Magnetoresistance with two carrier types. Problem 6.9 shows that in the drift
velocity approximation the motion of charge carriers in electric and magnetic fields
does not lead to transverse magnetoresistance. The result is different with two car-
rier types. Consider a conductor with a concentration n of electrons of effective
mass m, and relaxation time 7, and a concentration p of holes of effective
mass ny, and relaxation time 7,. Treat the limit of very strong magnetic fields, w7 > 1.
(a) Show in this limit that Oy = (n — p)ec/B. (b) Show that the Hall field is given by,
with Q = w,7,

E,=—( ( +p>E
r " Q Qh v

which vanishes if n = p. (¢) Show that the effective conductivity in the x direction is

_ec|(n . Pyt
o= [(Q +Qh> =y (Q Qh> }

Ifn=p, o B2 Ifn # p, o saturates in strong fields; that is, it approaches a limit
independent of B as B — .
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Zone 3

Zone 2

Zone 1

DO

Copper Aluminum

Figure 1 Free electron Fermi surfaces for fcc metals with one (Cu) and three (Al) valence elec-
trons per primitive cell. The Fermi surface shown for copper has been deformed from a sphere
to agree with the experimental results. The second zone of aluminum is nearly half-filled with
electrons. (A. R. Mackintosh.)



CHAPTER 9: FERMI SURFACES AND METALS

Few people would define a metal as “a solid
with a Fermi surface.” This may nevertheless be
the most meaningful definition of a metal one
can give today; it represents a profound advance
in the understanding of why metals behave as
they do. The concept of the Fermi surface, as
developed by quantum physics, provides a pre-
cise explanation of the main physical properties
of metals.

A. R. Mackintosh

The Fermi surface is the surface of constant energy €, in k space. The
Fermi surface separates the unfilled orbitals from the filled orbitals, at
absolute zero. The electrical properties of the metal are determined by the
volume and shape of the Fermi surface, because the current is due to changes
in the occupancy of states near the Fermi surface.

The shape may be very intricate as viewed in the reduced zone scheme
below and yet have a simple interpretation when reconstructed to lie near the
surface of a sphere. We exhibit in Fig. 1 the free electron Fermi surfaces con-
structed for two metals that have the face-centered cubic crystal structure:
copper, with one valence electron, and aluminum, with three. The free elec-
tron Fermi surfaces were developed from spheres of radius kr determined by
the valence electron concentration. The surface for copper is deformed by in-
teraction with the lattice. How do we construct these surfaces from a sphere?
The constructions require the reduced and also the periodic zone schemes.

Reduced Zone Scheme

It is always possible to select the wavevector index k of any Bloch function
to lie within the first Brillouin zone. The procedure is known as mapping the
band in the reduced zone scheme.

If we encounter a Bloch function written as . (r) = e uy.(r), with k'’
outside the first zone, as in Fig. 2, we may always find a suitable reciprocal lat-
tice vector G such that k = k’ + G lies within the first Brillouin zone. Then

e(r) = ™ uy(r) = e*" (e uy(r))
eik'ruk@‘) =p(r) ,
where u,(r) = ¢ "¢ "uy(r). Both e ¢ and u,.(r) are periodic in the crystal lat-

tice, so u(r) is also, whence ¢(r) is of the Bloch form.
Even with free electrons it is useful to work in the reduced zone scheme,

(1)

as in Fig. 3. Any energy €, for k" outside the first zone is equal to an € in the
first zone, where k = k’ + G. Thus we need solve for the energy only in the
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I =3

Figure 2 First Brillouin zone of a square lattice of
side a. The wavevector k' can be carried into the first
zone by forming k’ + G. The wavevector at a point A on G
the zone boundary is carried by G to the point A’ on the

opposite boundary of the same zone. Shall we count

both A and A’ as lying in the first zone? Because they s
can be connected by a reciprocal lattice vector, we a

count them as one identical point in the zone.

Figure 3 Energy-wavevector relation €, = #%%2m for
free electrons as drawn in the reduced zone scheme.
This construction often gives a useful idea of the over-
all appearance of the band structure of a crystal. The
branch AC if displaced by —27/a gives the usual free
electron curve for negative k, as suggested by the
dashed curve. The branch A’C if displaced by 2m/a
gives the usual curve for positive k. A crystal potential
U(x) will introduce band gaps at the edges of the zone
(as at A and A’) and at the center of the zone (as at C).
The point C when viewed in the extended zone
scheme falls at the edges of the second zone. The
overall width and gross features of the band structure

are often indicated properly by such free electron k
bands in the reduced zone scheme. First Brillouin zone

us
a

23

first Brillouin zone, for each band. An energy band is a single branch of the €,
versus k surface. In the reduced zone scheme we may find different energies
at the same value of the wavevector. Each different energy characterizes a dif-
ferent band. Two bands are shown in Fig. 3.

Two wavefunctions at the same k but of different energies will be inde-
pendent of each other: the wavefunctions will be made up of different combi-
nations of the plane wave components exp[i(k + G) - r] in the expansion of
(7.29). Because the values of the coefficients C(k + G) will differ for the
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different bands, we should add a symbol, say n, to the C’s to serve as a band
index: C,(k + G). Thus the Bloch function for a state of wavevector k in the
band n can be written as

Y1 = explik * r)u, 1 (r) = Ec C,(k+G)explilk + G) -r] .

Periodic Zone Scheme

We can repeat a given Brillouin zone periodically through all of wavevec-
tor space. To repeat a zone, we translate the zone by a reciprocal lattice vector.
If we can translate a band from other zones into the first zone, we can translate
a band in the first zone into every other zone. In this scheme the energy €, of a
band is a periodic function in the reciprocal lattice:

€k = €k+qg - (2)

Here €. ¢ is understood to refer to the same energy band as €.

0

k—
Figure 4 Three energy bands of a linear lattice plotted in (a) the extended (Brillouin),
(b) reduced, and (c) periodic zone schemes.
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The result of this construction is known as the periodic zone scheme.
The periodic property of the energy also can be seen easily from the central
equation (7.27).

Consider for example an energy band of a simple cubic lattice as calcu-
lated in the tight-binding approximation in (13) below:

€ = —a — 2y (cosk,a + cos kya + cosk.a) , (3)

where o and y are constants. One reciprocal lattice vector of the sc lattice is
G = (27/a)x; if we add this vector to k the only change in (3) is

cos k,a— cos (k, + 2m/a)a = cos (k,a + 2m) ,

but this is identically equal to cos k,a. The energy is unchanged when the
wavevector is increased by a reciprocal lattice vector, so that the energy is a
periodic function of the wavevector.

Three different zone schemes are useful (Fig. 4):

¢ The extended zone scheme in which different bands are drawn in differ-
ent zones in wavevector Space.

e The reduced zone scheme in which all bands are drawn in the first
Brillouin zone.

* The periodic zone scheme in which every band is drawn in every zone.

CONSTRUCTION OF FERMI SURFACES

We consider in Fig. 5 the analysis for a square lattice. The equation of the
zone boundaries is 2k-G + G? = 0 and is satisfied if k terminates on the plane
normal to G at the midpoint of G. The first Brillouin zone of the square lattice
is the area enclosed by the perpendicular bisectors of G, and of the three reci-
procal lattice vectors equivalent by symmetry to G, in Fig. 5a. These four reci-

A N

procal lattice vectors are *(27/a)k, and = (2m/a)k,.

The second zone is constructed from G, and the three vectors equivalent
to it by symmetry, and similarly for the third zone. The pieces of the second
and third zones are drawn in Fig. 5b.

To determine the boundaries of some zones we have to consider sets of
several nonequivalent reciprocal lattice vectors. Thus the boundaries of sec-
tion 3, of the third zone are formed from the perpendicular bisectors of three

~

G’s, namely (27/a)k ; (47r/a)k,; and (277/@)(1}‘. + lAcy).

5
The free electron Fermi éurface for an arbitrary electron concentration is
shown in Fig. 6. It is inconvenient to have sections of the Fermi surface that
belong to the same zone appear detached from one another. The detachment
can be repaired by a transformation to the reduced zone scheme.
We take the triangle labeled 2, and move it by a reciprocal lattice vector

G = —2ma)k

X

such that the triangle reappears in the area of the first
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Figure 5 (a) Construction in k space of the first three Brillouin zones of a square lattice. The
three shortest forms of the reciprocal lattice vectors are indicated as G,, G, and Gj. The lines
drawn are the perpendicular bisectors of these G’s. (b) On constructing all lines equivalent by

symmetry to the three lines in (a) we obtain the regions in k space which form the first three
Brillouin zones. The numbers denote the zone to which the regions belong; the numbers here are
ordered according to the length of the vector G involved in the construction of the outer boundary

of the region.

2y

Figure 6 Brillouin zones of a square lattice in two
dimensions. The circle shown is a surface of constant
energy for free electrons; it will be the Fermi surface
for some particular value of the electron concentra-
tion. The total area of the filled region in k space de-
pends only on the electron concentration and is inde-
pendent of the interaction of the electrons with the
lattice. The shape of the Fermi surface depends
on the lattice interaction, and the shape will not be
an exact circle in an actual lattice. The labels within
the sections of the second and third zones refer to
Fig. 7.

Ist zone

2nd zone 3rd zone

Figure 7 Mapping of the first, second, and third Brillouin zones in the reduced zone scheme.
The sections of the second zone in Fig. 6 are put together into a square by translation through an
appropriate reciprocal lattice vector. A different G is needed for each piece of a zone.
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1st zone 3rd zone

Figure 8 The free electron Fermi surface of Fig. 6, as viewed in the reduced zone scheme. The
shaded areas represent occupied electron states. Parts of the Fermi surface fall in the second,
third, and fourth zones. The fourth zone is not shown. The first zone is entirely occupied.

|
Figure 9 The Fermi surface in the third zone as K
drawn in the periodic zone scheme. The figure was ! ! !

constructed by repeating the third zone of Fig. 8. I I I

Brillouin zone (Fig. 7). Other reciprocal lattice vectors will shift the triangles
2y, 2., 24 to other parts of the first zone, completing the mapping of the second
zone into the reduced zone scheme. The parts of the Fermi surface falling in
the second zone are now connected, as shown in Fig. 8.

A third zone is assembled into a square in Fig. 8, but the parts of the
Fermi surface still appear disconnected. When we look at it in the periodic
zone scheme (Fig. 9), the Fermi surface forms a lattice of rosettes.

Nearly Free Electrons

How do we go from Fermi surfaces for free electrons to Fermi surfaces
for nearly free electrons? We can make approximate constructions freehand by
the use of four facts:

e The interaction of the electron with the periodic potential of the crystal
creates energy gaps at the zone boundaries.

* Almost always the Fermi surface will intersect zone boundaries perpendicu-
larly.



9 Fermi Surfaces and Metals

™~ gradie

2nd zone 3rd zone

Figure 10 Qualitative impression of the effect of a weak periodic crystal potential on the Fermi
surface of Fig. 8. At one point on each Fermi surface we have shown the vector gradye. In the sec-
ond zone the energy increases toward the interior of the figure, and in the third zone the energy
increases toward the exterior. The shaded regions are filled with electrons and are lower in energy
than the unshaded regions. We shall see that a Fermi surface like that of the third zone is elec-
tronlike, whereas one like that of the second zone is holelike.

Figure 11 Harrison construction of free elec-
tron Fermi surfaces on the second, third, and
fourth zones for a square lattice. The Fermi
surface encloses the entire first zone, which

therefore is filled with electrons.

e The crystal potential will round out sharp corners in the Fermi surfaces.

e The total volume enclosed by the Fermi surface depends only on the
electron concentration and is independent of the details of the lattice
interaction.

We cannot make quantitative statements without calculation, but qualitatively
we expect the Fermi surfaces in the second and third zones of Fig. 8 to be
changed as shown in Fig. 10.

Freehand impressions of the Fermi surfaces derived from free electron
surfaces are useful. Fermi surfaces for free electrons are constructed by a pro-
cedure credited to Harrison, Fig. 11. The reciprocal lattice points are deter-
mined, and a free electron sphere of radius appropriate to the electron
concentration is drawn around each point. Any point in k space that lies within
at least one sphere corresponds to an occupied state in the first zone. Points
within at least two spheres correspond to occupied states in the second zone,
and similarly for points in three or more spheres.

We said earlier that the alkali metals are the simplest metals, with weak in-
teractions between the conduction electrons and the lattice. Because the
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alkalis have only one valence electron per atom, the first Brillouin zone bound-
aries are distant from the approximately spherical Fermi surface that fills one-
half of the volume of the zone. It is known by calculation and experiment that
the Fermi surface of Na is closely spherical, and that the Fermi surface for Cs
is deformed by perhaps 10 percent from a sphere.

The divalent metals Be and Mg also have weak lattice interactions and
nearly spherical Fermi surfaces. But because they have two valence electrons
each, the Fermi surface encloses twice the volume in k space as for the alkalis.
That is, the volume enclosed by the Fermi surface is exactly equal to that of a
zone, but because the surface is spherical it extends out of the first zone and
into the second zone.

ELECTRON ORBITS, HOLE ORBITS, AND OPEN ORBITS

We saw in Eq. (8.7) that electrons in a static magnetic field move on a
curve of constant energy on a plane normal to B. An electron on the Fermi
surface will move in a curve on the Fermi surface, because this is a surface of
constant energy. Three types of orbits in a magnetic field are shown in Fig. 12.

The closed orbits of (a) and (b) are traversed in opposite senses. Because
particles of opposite charge circulate in a magnetic field in opposite senses, we
say that one orbit is electronlike and the other orbit is holelike. Electrons in
holelike orbits move in a magnetic field as if endowed with a positive charge.
This is consistent with the treatment of holes in Chapter 8.

In (c) the orbit is not closed: the particle on reaching the zone boundary
at A is instantly folded back to B, where B is equivalent to B’ because

Hole orbit Electron orbit Open orbits
A 7
B
dk
dt
©
) LS B out Ve
di of paper
A
BY \

(a) (b) (c)

Figure 12 Motion in a magnetic field of the wavevector of an electron on the Fermi surface, in
(a) and (b) for Fermi surfaces topologically equivalent to those of Fig. 10. In (a) the wavevector
moves around the orbit in a clockwise direction; in (b) the wavevector moves around the orbit in a
counter-clockwise direction. The direction in (b) is what we expect for a free electron of charge
—e; the smaller k values have the lower energy, so that the filled electron states lie inside the
Fermi surface. We call the orbit in (b) electronlike. The sense of the motion in a magnetic field is
opposite in (a) to that in (b), so that we refer to the orbit in (a) as holelike. A hole moves as a par-
ticle of positive charge e. In (c) for a rectangular zone we show the motion on an open orbit in the
periodic zone scheme. An open orbit is topologically intermediate between a hole orbit and an
electron orbit.
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Figure 13 (a) Vacant states at the corners of
an almost-filled band, drawn in the reduced
zone scheme. (b) In the periodic zone scheme
the various parts of the Fermi surface are con-
\ / @ @ nected. Each circle forms a holelike orbit. The
== == ===== == different circles are entirely equivalent to
T T each other, and the density of states is that of a
! ! single circle. (The orbits need not be true cir-
cles: for the lattice shown it is only required

(a) (b) that the orbits have fourfold symmetry.)

Figure 14 Vacant states near the top of an almost filled band in a two-

dimensional crystal. This figure is equivalent to Fig. 12a.

(a) (b)

Figure 15 Constant energy surface in the Brillouin zone of a simple cubic lattice, for the assumed
energy band € = —a — 2y(cos k,a + cos kya + cos k.a). (a) Constant energy surface € = —a.
The filled volume contains one electron per primitive cell. (b) The same surface exhibited in the
periodic zone scheme. The connectivity of the orbits is clearly shown. Can you find electron, hole,
and open orbits for motion in a magnetic field Bz? (A. Sommerfeld and H. A. Bethe.)

they are connected by a reciprocal lattice vector. Such an orbit is called an
open orbit. Open orbits have an important effect on the magnetoresistance.

Vacant orbitals near the top of an otherwise filled band give rise to hole-
like orbits, as in Figs. 13 and 14. A view of a possible energy surface in three
dimensions is given in Fig. 15.
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Orbits that enclose filled states are electron orbits. Orbits that en-
close empty states are hole orbits. Orbits that move from zone to zone
without closing are open orbits.

CALCULATION OF ENERGY BANDS

Wigner and Seitz, who in 1933 performed the first serious band calcula-
tions, refer to afternoons spent on the manual desk calculators of those days,
using one afternoon for a trial wavefunction. Here we limit ourselves to three
introductory methods: the tight-binding method, useful for interpolation; the
Wigner-Seitz method, useful for the visualization and understanding of the
alkali metals; and the pseudopotential method, utilizing the general theory
of Chapter 7, which shows the simplicity of many problems.

Tight Binding Method for Energy Bands

Let us start with neutral separated atoms and watch the changes in the
atomic energy levels as the charge distributions of adjacent atoms overlap
when the atoms are brought together to form a crystal. Consider two hydrogen
atoms, each with an electron in the 1s ground state. The wavefunctions ,, 3
on the separated atoms are shown in Fig. 16a.

As the atoms are brought together, their wavefunctions overlap. We con-
sider the two combinations i, * 5. Each combination shares an electron
with the two protons, but an electron in the state ¢, + 5 will have a some-
what lower energy than in the state ¢, — .

In ¢y + ¢ the electron spends part of the time in the region midway
between the two protons, and in this region it is in the attractive potential of
both protons at once, thereby increasing the binding energy. In i, — i the
probability density vanishes midway between the nuclei; an extra binding does
not appear.

(a)

m /\}p}j
. . ° .
(c)

(b)

Figure 16 (a) Schematic drawing of wavefunctions of electrons on two hydrogen atoms at large
separation. (b) Ground state wavefunction at closer separation. (c) Excited state wavefunction.
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Figure 17 The 1s band of a ring of 20
—42r hyd ; i
ydrogen atoms; the one-electron energies
0 ! L ! — | ! ! ! J are calculated in the tight-binding approxi-
0 1 2 3 4 5 mation with the nearest-neighbor overlap
Nearest-neighbor distance, in Bohr radii integral of Eq. (9).

As two atoms are brought together, two separated energy levels are
formed for each level of the isolated atom. For N atoms, N orbitals are formed
for each orbital of the isolated atom (Fig. 17).

As free atoms are brought together, the coulomb interaction between the
atom cores and the electron splits the energy levels, spreading them into
bands. Each state of given quantum number of the free atom is spread in the
crystal into a band of energies. The width of the band is proportional to the
strength of the overlap interaction between neighboring atoms.

There will also be bands formed from p, d, . . . states ([ = 1, 2, . . .) of the
free atoms. States degenerate in the free atom will form different bands. Each
will not have the same energy as any other band over any substantial range of
the wavevector. Bands may coincide in energy at certain values of k in the
Brillouin zone.

The approximation that starts out from the wavefunctions of the free atoms
is known as the tight-binding approximation or the LCAO (linear combination
of atomic orbitals) approximation. The approximation is quite good for the inner
electrons of atoms, but it is not often a good description of the conduction elec-
trons themselves. It is used to describe approximately the d bands of the transi-
tion metals and the valence bands of diamondlike and inert gas crystals.

Suppose that the ground state of an electron moving in the potential
U(r) of an isolated atom is ¢(r), an s state. The treatment of bands arising from
degenerate (p, d, .. .) atomic levels is more complicated. If the influence of
one atom on another is small, we obtain an approximate wavefunction for one
electron in the whole crystal by taking

ilr) =2 Ciyolr — ;) , (4)
j
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where the sum is over all lattice points. We assume the primitive basis contains
one atom. This function is of the Bloch form (7.7) if Cy; = N2 ¢ which
gives, for a crystal of N atoms,

() =N~ 3 explik - ry)e(r — 1) (5)
J

We prove (5) is of the Bloch form. Consider a translation T connecting
two lattice points:

(r+T) =N E expl(ik - I})QD(I' +T-— rj)
J

= exp(ik - T) N2 Eexp[ik . (1} —T)]e[r — (rj —T)] (6)
j

= exp(ik - T) ga(r) ,

exactly the Bloch condition.
We find the first-order energy by calculating the diagonal matrix elements
of the hamiltonian of the crystal:

(K[ H[k) =N""Y Y explik - (r; — r,)]{e,|Hlg) , (7)
] m

where ¢,, = ¢(r — r,,). Writing p,, = r,, — 1},

(K[ k) = S exp(—ik - p,,) [ dV ¢*(x — p, ) He(r) . (8)

m

We now neglect all integrals in (8) except those on the same atom and
those between nearest neighbors connected by p. We write

JdVe(r)He(r) = —a ;  [dV ¢*(r — p)He(r) = =7y ; (9)

and we have the first-order energy, provided (klk) = 1:

(k|H[k) = —a =y X exp(—ik -p,) = & . (10)

m

The dependence of the overlap energy vy on the interatomic separation p
can be evaluated explicitly for two hydrogen atoms in 1s states. In rydberg
energy units, Ry = me’/2h%, we have

y(Ry) = 2(1 + p/a,) exp (—=pla) , (11)

where a,=#%%me*. The overlap energy decreases exponentially with the
separation.
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For a simple cubic structure the nearest-neighbor atoms are at
P, =(xa00); (0,£a0); (0,0,=a), (12)
so that (10) becomes
€, = —a — 2y(cos ka + cos k,a + cos k.a) . (13)

Thus the energies are confined to a band of width 127y. The weaker the over-
lap, the narrower is the energy band. A constant energy surface is shown
in Fig. 15. For ka <1, €, = —a — 6y + yk®a®. The effective mass is m* =
1%/2ya*. When the overlap integral y is small, the band is narrow and the effec-
tive mass is high.

We considered one orbital of each free atom and obtained one band e,.
The number of orbitals in the band that corresponds to a nondegenerate
atomic level is 2N, for N atoms. We see this directly: values of k within the first
Brillouin zone define independent wavefunctions. The simple cubic zone has
—m/a < k, < m/a, etc. The zone volume is 87%a®. The number of orbitals
(counting both spin orientations) per unit volume of k space is V/473, so that
the number of orbitals is 2V/a®. Here V is the volume of the crystal, and 1/a® is
the number of atoms per unit volume. Thus there are 2N orbitals.

For the fcc structure with eight nearest neighbors,

€. =—a—8ycosska cosékya cosska . (14)
For the fcc structure with 12 nearest neighbors,
€, = —a — 4y(cos %kya cos sk.a + cos 3 k.a cos s ka + cos tka cos ka) . (15)

A constant energy surface is shown in Fig. 18.

235

Figure 18 A constant energy surface of an fcc crystal
structure, in the nearest-neighbor tight-binding approx-
imation. The surface shown has € = —a + 2lyl.
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Wigner-Seitz Method

Wigner and Seitz showed that for the alkali metals there is no inconsis-
tency between the electron wavefunctions of free atoms and the nearly free
electron model of the band structure of a crystal. Over most of a band the
energy may depend on the wavevector nearly as for a free electron. However,
the Bloch wavefunction, unlike a plane wave, will pile up charge on the posi-
tive ion cores as in the atomic wavefunction.

A Bloch function satisfies the wave equation

(zfn P+ U(r)> ¥y (r) = €Ty (r) (16)

With p = —if grad, we have
P e* T uy(r) = ik ¢Fuy(r) + eik"puk(r) ;
P u(r) = (7k)* ™ u(r) + % (27k - pluy(r) + ¥ pu(r) ;

thus the wave equation (16) may be written as an equation for uy:

(1 (p + 7ik)* + U(r)) u(r) = g (r) . (17)

2m

Atk = 0 we have §, = u,(r), where uy(r) has the periodicity of the lattice, sees
the ion cores, and near them will look like the wavefunction of the free atom.

It is much easier to find a solution at k = 0 than at a general k, because at
k = 0 a nondegenerate solution will have the full symmetry of U(r), that is, of
the crystal. We can then use u(r) to construct the approximate solution

. = explik * rjuy(r) . (18)

This is of the Bloch form, but u, is not an exact solution of (17): it is a solution
only if we drop the term in k-p. Often this term is treated as a perturbation, as
in Problem 8. The k-p perturbation theory developed there is especially useful
in finding the effective mass m* at a band edge.

Because it takes account of the ion core potential the function (18) is a
much better approximation than a plane wave to the correct wavefunction.
The energy of the approximate solution depends on k as (hk)*/2m, exactly as
for the plane wave, even though the modulation represented by u(r) may be
very strong. Because u is a solution of

1

<2mP2 + U(r)>u0(r) = €yu(r) , (19)
the function (18) has the energy expectation value e, + (%*2m). The
function uy(r) often will give us a good picture of the charge distribution
within a cell.
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¥
Metal, k =0
Free atom
0 Metal, k at Brillouin

zone boundary

0 1 2 3 4
r (Bohr units)

Figure 19 Radial wavefunctions for the 3s orbital of free sodium atom and for the 3s conduction
band in sodium metal. The wavefunctions, which are not normalized here, are found by integrat-
ing the Schrédinger equation for an electron in the potential well of an Na™ ion core. For the free
atom the wavefunction is integrated subject to the usual Schrodinger boundary condition (1) — 0
as r — ®; the energy eigenvalue is —5.15 eV. The wavefunction for wavevector k = 0 in the metal
is subject to the Wigner-Seitz boundary condition that dy/dr = 0 when r is midway between
neighboring atoms; the energy of this orbital is —8.2 eV, considerably lower than for the free
atom. The orbitals at the zone boundary are not filled in sodium; their energy is +2.7 eV. (After
E. Wigner and F. Seitz.)

Wigner and Seitz developed a simple and fairly accurate method of calcu-
lating uy(r). Figure 19 shows the Wigner-Seitz wavefunction for k = 0 in the
3s conduction band of metallic sodium. The function is practically constant
over 0.9 of the atomic volume. To the extent that the solutions for higher k
may be approximated by exp(ik - r)u,y(r), the wavefunctions in the conduction
band will be similar to plane waves over most of the atomic volume, but in-
crease markedly and oscillate within the ion core.

Cohesive Energy. The stability of the simple metals with respect to free
atoms is caused by the lowering of the energy of the Bloch orbital with k = 0
in the crystal compared to the ground valence orbital of the free atom. The
effect is illustrated in Fig. 19 for sodium and in Fig. 20 for a linear periodic
potential of attractive square wells. The ground orbital energy is much lower
(because of lower kinetic energy) at the actual spacing in the metal than for
isolated atoms.

A decrease in ground orbital energy will increase the binding. The decrease
in ground orbital energy is a consequence of the change in the boundary condi-
tion on the wavefunction: The Schrédinger boundary condition for the free
atom is (r) — 0 as r — . In the crystal the k = 0 wavefunction u,(r) has the
symmetry of the lattice and is symmetric about r = 0. To have this, the normal
derivative of ¢ must vanish across every plane midway between adjacent atoms.
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Figure 20 Ground orbital (k = 0) energy for an electron in a periodic square well potential of
depth |U,| = 24%ma* The energy is lowered as the wells come closer together. Here a is held con-
stant and b is varied. Large b/a corresponds to separated atoms. (Courtesy of C. Y. Fong.)

A Metal
BlseV——Pn—  —o——Sooo
Groundl state Fermi level
Cohesive energy

—_——— - 6.3 eV —oon—
Average energy

Figure 21 Cohesive energy of sodium metal is the dif-
ference between the average energy of an electron in the
metal (—6.3 eV) and the ground state energy (—5.15 eV)
of the valence 3s electron in the free atom, referred to an
Na™ ion plus free electron at infinite separation.

-8.2eV
k = 0 state

In a spherical approximation to the shape of the smallest Wigner-Seitz cell
we use the Wigner-Seitz boundary condition

(dy/dr),, =0, (20)

where ry is the radius of a sphere equal in volume to a primitive cell of the lat-
tice. In sodium, r, = 3.95 Bohr units, or 2.08 A; the half distance to a nearest
neighbor is 1.86 A. The spherical approximation is not bad for fcc and bee
structures. The boundary condition allows the ground orbital wavefunction to
have much less curvature than the free atom boundary condition. Much less
curvature means much less kinetic energy.

In sodium the other filled orbitals in the conduction band can be repre-
sented in a rough approximation by wavefunctions of the form (18), with
hk>
2m

Yo =e"u(r) ;=€ +
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The Fermi energy is 3.1 eV, from Table 6.1. The average kinetic energy per
electron is 0.6 of the Fermi energy, or 1.9 eV. Because €, = —8.2 eV at k = 0,
the average electron energy is () = —8.2 + 1.9 = —6.3 eV, compared with
—5.15 eV for the valence electron of the free atom, Fig. 21.

We therefore estimate that sodium metal is stable by about 1.1 eV with
respect to the free atom. This result agrees well with the experimental value
1.13 eV.

Pseudopotential Methods

Conduction electron wavefunctions are usually smoothly varying in the re-
gion between the ion cores, but have a complicated nodal structure in the re-
gion of the cores. This behavior is illustrated by the ground orbital of sodium,
Fig. 19. It is helpful to view the nodes in the conduction electron wavefunction
in the core region as created by the requirement that the function be ortho-
gonal to the wavefunctions of the core electrons. This all comes out of the
Schrédinger equation, but we can see that we need the flexibility of two nodes
in the 3s conduction orbital of Na in order to be orthogonal both to the 1s core
orbital with no nodes and the 2s core orbital with one node.

Outside the core the potential energy that acts on the conduction electron
is relatively weak: the potential energy is only the coulomb potential of the
singly-charged positive ion cores and is reduced markedly by the electrostatic
screening of the other conduction electrons, Chapter 14. In this outer region
the conduction electron wavefunctions are as smoothly varying as plane waves.

If the conduction orbitals in this outer region are approximately plane
waves, the energy must depend on the wavevector approximately as
€, = 7’k*/2m as for free electrons. But how do we treat the conduction orbitals
in the core region where the orbitals are not at all like plane waves?

What goes on in the core is largely irrelevant to the dependence of € on k.
Recall that we can calculate the energy by applying the hamiltonian operator
to an orbital at any point in space. Applied in the outer region, this operation
will give an energy nearly equal to the free electron energy.

This argument leads naturally to the idea that we might replace the actual
potential energy (and filled shells) in the core region by an effective potential
energy' that gives the same wavefunctions outside the core as are given
by the actual ion cores. It is startling to find that the effective potential or

'T. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959); E. Antoncik, J. Phys. Chem.
Solids 10, 314 (1959). The general theory of pseudopotentials is discussed by B. J. Austin,
V. Heine, and L. J. Sham, Phys. Rev. 127, 276 (1962); see also Vol. 24 of Solid state physics. The
utility of the empty core model has been known for many years: it goes back to E. Fermi, Nuovo
Cimento 2, 157 (1934); H. Hellmann, Acta Physiochimica URSS 1, 913 (1935); and H. Hellmann
and W. Kassatotschkin, J. Chem. Phys. 4, 324 (1936), who wrote “Since the field of the ion
determined in this way runs a rather flat course, it is sufficient in the first approximation to set the
valence electron in the lattice equal to a plane wave.”
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pseudopotential that satisfies this requirement is nearly zero. This conclusion
about pseudopotentials is supported by a large amount of empirical experience
as well as by theoretical arguments. The result is referred to as the cancella-
tion theorem.

The pseudopotential for a problem is not unique nor exact, but it may
be very good. On the Empty Core Model (ECM) we can even take the un-
screened pseudopotential to be zero inside some radius R,:

|0 , forr<R, ;
Utr) = {—62/7' , forr>R, . (21)

This potential should now be screened as described in Chapter 10. Each com-
ponent U(K) of U(r) is to be divided by the dielectric constant €(K) of the
electron gas. If, just as an example, we use the Thomas-Fermi dielectric func-
tion (14.33), we obtain the screened pseudopotential plotted in Fig. 22a.

R, r, in units of Bohr radii —
0 1 2 3 4
0.6 T ‘ T T
Pseudopotential
R I . e“aopote“m‘
|
tial ]
I ed pseudo?(fi‘._. ————
I pseree” —~
Lomm
o
Q)
-
=]
&=
<
=
o Tonic potential

Figure 22a Pseudopotential for metallic sodium, based on the empty core model and screened
by the Thomas-Fermi dielectric function. The calculations were made for an empty core radius
R, = 1.66a,, where a, is the Bohr radius, and for a screening parameter k,a, = 0.79. The dashed
curve shows the assumed unscreened potential, as from (21). The dotted curve is the actual
potential of the ion core; other values of U(r) are —50.4, —11.6, and —4.6, for r = 0.15, 0.4, and
0.7, respectively. Thus the actual potential of the ion (chosen to fit the energy levels of the free
atom) is very much larger than the pseudopotential, over 200 times larger at r = 0.15.
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Wavevector k

Potential U(k)

2
3 €p

metals. (After M. L. Cohen.)

The pseudopotential as drawn is much weaker than the true potential, but
the pseudopotential was adjusted so that the wavefunction in the outer region
is nearly identical to that for the true potential. In the language of scattering
theory, we adjust the phase shifts of the pseudopotential to match those of the
true potential.

Calculation of the band structure depends only on the Fourier compo-
nents of the pseudopotential at the reciprocal lattice vectors. Usually only a
few values of the coefficients U(G) are needed to get a good band structure:
see the U(G) in Fig. 22b. These coefficients are sometimes calculated from
model potentials, and sometimes they are obtained from fits of tentative band
structures to the results of optical measurements. Good values of U(0) can be
estimated from first principles; it is shown in (14.43) that for a screened
coulomb potential U(0) = —2€p.

In the remarkably successful Empirical Pseudopotential Method (EPM)
the band structure is calculated using a few coefficients U(G) deduced from
theoretical fits to measurements of the optical reflectance and absorption of
crystals, as discussed in Chapter 15. Charge density maps can be plotted from
the wavefunctions generated by the EPM—see Fig. 3.11. The results are in
excellent agreement with x-ray diffraction determinations; such maps give an
understanding of the bonding and have great predictive value for proposed
new structures and compounds.

The EPM values of the coefficients U(G) often are additive in the contri-
butions of the several types of ions that are present. Thus it may be possible to
construct the U(G) for entirely new structures, starting from results on known
structures. Further, the pressure dependence of a band structure may be de-
termined when it is possible to estimate from the form of the U(r) curve the
dependence of U(G) on small variations of G.
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Figure 22b A typical reciprocal space
pseudopotential. Values of U(k) for wavevec-
tors equal to the reciprocal lattice vectors, G,
are indicated by the dots. For very small k the
potential approaches (—2/3) times the Fermi
energy, which is the screened-ion limit for
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It is often possible to calculate band structures, cohesive energy, lattice
constants, and bulk moduli from first principles. In such ab initio pseudo-
potential calculations the basic inputs are the crystal structure type and the
atomic number, along with well-tested theoretical approximations to exchange
energy terms. This is not the same as calculating from atomic number alone,
but it is the most reasonable basis for a first-principles calculation. The results
of Yin and Cohen are compared with experiment in the table that follows.

Lattice _ Cohesive Bulk modulus
constant (A) energy (eV) (Mbar)

|
Silicon

Calculated 5.45 4.84 0.98

Experimental 5.43 4.63 0.99
Germanium

Calculated 5.66 4.26 0.73

Experimental 5.65 3.85 0.77
Diamond

Calculated 3.60 8.10 4.33

Experimental 3.57 7.35 4.43

EXPERIMENTAL METHODS IN FERMI SURFACE STUDIES

Powerful experimental methods have been developed for the determina-
tion of Fermi surfaces. The methods include magnetoresistance, anomalous
skin effect, cyclotron resonance, magneto-acoustic geometric effects, the
Shubnikow-de Haas effect, and the de Haas-van Alphen effect. Further infor-
mation on the momentum distribution is given by positron annihilation,
Compton scattering, and the Kohn effect.

We propose to study one method rather thoroughly. All the methods are
useful, but need detailed theoretical analysis. We select the de Haas-van
Alphen effect because it exhibits very well the characteristic periodicity in 1/B
of the properties of a metal in a uniform magnetic field.

Quantization of Orbits in a Magnetic Field

The momentum p of a particle in a magnetic field is the sum (Appendix G)
of two parts, the kinetic momentum py;, = mv = ik and the potential momen-
tum or field momentum py.q = gA/c, where g is the charge. The vector poten-
tial is related to the magnetic field by B = curl A. The total momentum is

(CGS) P = Pxin T Priela = ik + gA/c . (22)

In SI the factor ¢! is omitted.
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Following the semiclassical approach of Onsager and Lifshitz, we assume
that the orbits in a magnetic field are quantized by the Bohr-Sommerfeld relation

35 p-dr=(n+vy2mh , (23)

when n is an integer and v is a phase correction that for free electrons has the
value 3. Then

jﬁp-dr:fﬁﬁk-dwgﬁﬂzs-dr. (24)
The equation of motion of a particle of charge ¢ in a magnetic field is

dk _9dr ,
ﬁdt c XB . (25a)

We integrate with respect to time to give
q
hk = EI‘ X B s

apart from an additive constant which does not contribute to the final result.
Thus one of the path integrals in (24) is

2
pitcdr=TdexB dr=-1B-drxar=-T1o . 1)

C C

where ® is the magnetic flux contained within the orbit in real space. We have
used the geometrical result that

% r X dr =2 X (area enclosed by the orbit) .

The other path integral in (24) is

%%Awlr:%fcurlA-d(r:%fB-dUZ%CI), (25¢)

by the Stokes theorem. Here da is the area element in real space. The momen-
tum path integral is the sum of (25b) and (25¢):

jgp.dr:—%(l)=(n+y)27rﬁ. (26)

It follows that the orbit of an electron is quantized in such a way that the
flux through it is

®, = (n + y)2rhcre) . (27)
The flux unit 27fic/e = 4.14 X 1077 gauss cm?® or Tm?.

In the de Haas-van Alphen effect discussed below we need the area of the
orbit in wavevector space. We obtained in (27) the flux through the orbit in
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real space. By (25a) we know that a line element Ar in the plane normal to B is
related to Ak by Ar = (fic/eB)Ak, so that the area S, in k space is related to the
area A, of the orbit in r space by

A, = (fic/eB)S, . (28)
It follows that

he 2 1 ¢ N

q)n = (;) ES?I = (Tl + y)zzﬁc > (29)
from (27), whence the area of an orbit in k space will satisfy
21e
= (n + = .

S, =n+y7 =B (30)

In Fermi surface experiments we may be interested in the increment AB
for which two successive orbits, n and n + 1, have the same area in k space on
the Fermi surface. The areas are equal when

1 1)_2m
S(BVH-I Bn) fic ’ <31)

from (30). We have the important result that equal increments of 1/B repro-
duce similar orbits—this periodicity in 1/B is a striking feature of the magneto-
oscillatory effects in metals at low temperatures: resistivity, susceptibility, heat

capacity.

The population of orbits on or near the Fermi surface oscillates as B is var-
ied, causing a wide variety of effects. From the period of the oscillation we
reconstruct the Fermi surface. The result (30) is independent of the gauge of
the vector potential used in the expression (22) for momentum; that is, p is not
gauge invariant, but S, is. Gauge invariance is discussed further in Chapter 10
and in Appendix G.

De Haas-van Alphen Effect

The de Haas-van Alphen effect is the oscillation of the magnetic moment
of a metal as a function of the static magnetic field intensity. The effect can be
observed in pure specimens at low temperatures in strong magnetic fields: we
do not want the quantization of the electron orbits to be blurred by collisions,
and we do not want the population oscillations to be averaged out by thermal
population of adjacent orbits.

The analysis of the dHvA effect is given for absolute zero in Fig. 23. The
electron spin is neglected. The treatment is given for a two-dimensional (2D)
system; in 3D we need only multiply the 2D wavefunction by plane wave factors
exp(ik_z), where the magnetic field is parallel to the z axis. The area of an orbit in
k., ky space is quantized as in (30). The area between successive orbits is

AS=S,— S, ,=2meB/hic . (32)
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Figure 23 Explanation of the de Haas-van Alphen effect for a free electron gas in two dimen-
sions in a magnetic field. The filled orbitals of the Fermi sea in the absence of a magnetic field are
shaded in @ and d. The energy levels in a magnetic field are shown in b, ¢, and e. In b the field has
a value B, such that the total energy of the electrons is the same as in the absence of a magnetic
field: as many electrons have their energy raised as lowered by the orbital quantization in the mag-
netic field B;. When we increase the field to B, the total electron energy is increased, because the
uppermost electrons have their energy raised. In e for field B; the energy is again equal to that for
the field B = 0. The total energy is a minimum at points such as By, B, B, . . . , and a maximum
near points such as By, By, . . . .

The area in k space occupied by a single orbital is (27/L)?, neglecting spin,
for a square specimen of side L. Using (32) we find that the number of free
electron orbitals that coalesce in a single magnetic level is

D = (2meB/fic)(L/2m)? = pB (33)

where p = eL?2fic, as in Fig. 24. Such a magnetic level is called a Landau
level.

The dependence of the Fermi level on B is dramatic. For a system of N
electrons at absolute zero the Landau levels are entirely filled up to a magnetic
quantum number we identify by s, where s is a positive integer. Orbitals at the
next higher level s + 1 will be partly filled to the extent needed to accommo-
date the electrons. The Fermi level will lie in the Landau level s + 1 if there
are electrons in this level; as the magnetic field is increased the electrons move
to lower levels. When s + 1 is vacated, the Fermi level moves down abruptly
to the next lower level s.

The electron transfer to lower Landau levels can occur because their
degeneracy D increases as B is increased, as shown in Fig. 25. As B is
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Number

(a)

(b)

Figure 24 (a) Allowed electron orbitals in two dimensions in absence of a magnetic field. (b) In a
magnetic field the points which represent the orbitals of free electrons may be viewed as re-
stricted to circles in the former k.k, plane. The successive circles correspond to successive values
of the quantum number n in the energy (n — 3)ko,. The area between successive circles is

(CGS) wAk?) = 27k(Ak) = (2mm/h%) Ae = 2mmw /h — 2meB/hic .

The angular position of the points has no significance. The number of orbitals on a circle is con-
stant and is equal to the area between successive circles times the number of orbitals per unit area
in (a), or (2meB/fic)(L/2m)* = L%B/2mtic, neglecting electron spin.

. s =1 s =2 =3
25
0 | | |
0 1 2 3 4
100/B —>
(b)

Figure 25 (a) The heavy line gives the number of particles in levels which are completely occu-
pied in a magnetic field B, for a two-dimensional system with N = 50 and p = 0.50. The shaded
area gives the number of particles in levels partially occupied. The value of s denotes the quantum
number of the highest level which is completely filled. Thus at B = 40 we have s = 2; the levels
n = 1andn = 2 are filled and there are 10 particles in the level n = 3. At B = 50 the level n = 3 is
empty. (b) The periodicity in 1/B is evident when the same points are plotted against 1/B.

increased there occur values of B at which the quantum number of the upper-

most filled level decreases abruptly by unity. At the critical magnetic fields

labeled B, no level is partly occupied at absolute zero, so that

spB, =N

(34)
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30 /Total energy
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£ 20~
=
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100/B —>

Figure 26 The upper curve is the total electronic energy versus 1/B. The oscillations in the en-
ergy U may be detected by measurement of the magnetic moment, given by —dU/dB. The thermal
and transport properties of the metal also oscillate as successive orbital levels cut through the
Fermi level when the field is increased. The shaded region in the figure gives the contribution to
the energy from levels that are only partly filled. The parameters for the figure are the same as for
Fig. 25, and we have taken the units of B such that B = fiw,.

The number of filled levels times the degeneracy at B, must equal the number
of electrons N.

To show the periodicity of the energy as B is varied, we use the result
that the energy of the Landau level of magnetic quantum number n is
E, = (n — 3)fiw,, where w, = eB/m*c is the cyclotron frequency. The result for
E, follows from the analogy between the cyclotron resonance orbits and the
simple harmonic oscillator, but now we have found it convenient to start
counting at n = 1 instead of at n = 0.

The total energy of the electrons in levels that are fully occupied is

2 Dhw,(n —3) = iDhw,s® | (35)

n=1
where D is the number of electrons in each level. The total energy of the
electrons in the partly occupied level s + 1 is
hw,(s + 3)(N —sD) | (36)
where sD is the number of electrons in the lower filled levels. The total energy
of the N electrons is the sum of (35) and (36), as in Fig. 26.

The magnetic moment u of a system at absolute zero is given by u =
—dU/9B. The moment here is an oscillatory function of 1/B, Fig. 27. This os-
cillatory magnetic moment of the Fermi gas at low temperatures is the de
Haas-van Alphen effect. From (31) we see that the oscillations occur at equal

intervals of 1/B such that
1) _ 27e
A(B) ficS (87)

247



248

Figure 27 At absolute zero the magnetic moment is given by —aUdB. The energy plotted in
Fig. 26 leads to the magnetic moment shown here, an oscillatory function of 1/B. In impure speci-
mens the oscillations are smudged out in part because the energy levels are no longer sharply defined.

Magnetic
Figure 28 The orbits in the section AA" are ex- W
tremal orbits: the cyclotron period is roughly con-
stant over a reasonable section of the Fermi surface.
Other sections such as BB’ have orbits that vary in

period along the section.

where S is the extremal area (see below) of the Fermi surface normal to the di-
rection of B. From measurements of A(1/B), we deduce the corresponding ex-
tremal areas S; thereby much can be inferred about the shape and size of the
Fermi surface.

Extremal Orbits. One point in the interpretation of the dHvA effect is sub-
tle. For a Fermi surface of general shape the sections at different values of ky
will have different periods. Here kjy is the component of k along the direction
of the magnetic field. The response will be the sum of contributions from all
sections or all orbits. But the dominant response of the system comes from or-
bits whose periods are stationary with respect to small changes in kg. Such
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orbits are called extremal orbits. Thus, in Fig. 28 the section AA" dominates
the observed cyclotron period.

The argument can be put in mathematical form, but we do not give the
proof here (QTS, p. 223). Essentially it is a question of phase cancellation; the
contributions of different nonextremal orbits cancel, but near the extrema
the phase varies only slowly and there is a net signal from these orbits. Sharp
resonances are obtained even from complicated Fermi surfaces because the
experiment selects the extermal orbits.

Fermi Surface of Copper. The Fermi surface of copper (Fig. 29) is distinctly
nonspherical: eight necks make contact with the hexagonal faces of the first
Brillouin zone of the fcc lattice. The electron concentration in a monovalent
metal with an fee structure is n = 4/a>; there are four electrons in a cube of
volume a”. The radius of a free electron Fermi sphere is

kp = (37 n)"® = (127%/a°)"" = (4.90/a) , (38)

and the diameter is 9.80/a.

The shortest distance across the Brillouin zone (the distance between
hexagonal faces) is (277/a)(3)"? = 10.88/a, somewhat larger than the diameter
of the free electron sphere. The sphere does not touch the zone boundary, but
we know that the presence of a zone boundary tends to lower the band energy
near the boundary. Thus it is plausible that the Fermi surface should neck out
to meet the closest (hexagonal) faces of the zone (Figs. 18 and 29).

The square faces of the zone are more distant, with separation 12.57/a,
and the Fermi surface does not neck out to meet these faces.

EXAMPLE: Fermi Surface of Gold. In gold for quite a wide range of field directions
Shoenberg finds the magnetic moment has a period of 2 X 107°
corresponds to an extremal orbit of area

gauss . This period

2meltc _ 9.55 X 107 6 -9
§= = =48%10%cem 2 .
A(/B)  2x10° o

From Table 6.1, we have k; = 1.2 X 10%cm ™! for a free electron Fermi sphere for

gold, or an extremal area of 4.5 X 10" ¢cm™?

, in general agreement with the experi-
mental value. The actual periods reported by Shoenberg are 2.05 X 10~° gauss ' and
1.95 X 107 gauss~'. In the [111] direction in Au a large period of 6 X 107 gauss ™' is
also found; the corresponding orbital area is 1.6 X 10'> cm ™2 This is the “neck” orbit
N. Another extremal orbit, the “dog’s bone,” is shown in Fig. 30; its area in Au is about
0.4 of the belly area. Experimental results are shown in Fig. 31. To do the example in

SL, drop ¢ from the relation for S and use as the period 2 X 107° tesla™".
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Figure 29 Fermi surface of copper, after Pippard. The Figure 30 Dog’s bone orbit of an electron on
Brillouin zone of the fcc structure is the truncated octa- the Fermi surface of copper or gold in a mag-
hedron derived in Chapter 2. The Fermi surface makes netic field. This orbit is classified as holelike be-
contact with the boundary at the center of the hexagonal cause the energy increases toward the interior of
faces of the zone, in the [111] directions in k space. Two the orbit.

“belly” extremal orbits are shown, denoted by B; the
extremal “neck” orbit is denoted by N.

45.0 kG 45.5 kG 46.0 kG

Figure 31 De Haas-van Alphen effect in gold with B Il [110]. The oscillation is from the dog’s
bone orbit of Fig. 30. The signal is related to the second derivative of the magnetic moment with
respect to field. The results were obtained by a field modulation technique in a high-homogeneity
superconducting solenoid at about 1.2 K. (Courtesy of I. M. Templeton.)

The free electron Fermi sphere of aluminum fills the first zone entirely
and has a large overlap into the second and third zones, Fig. 1. The third zone
Fermi surface is quite complicated, even though it is just made up of certain
pieces of the surface of the free electron sphere. The free electron model also
gives small pockets of holes in the fourth zone, but when the lattice potential is
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Figure 32 Multiply-connected hole surface of magnesium in
bands 1 and 2, according to L. M. Falicov. (Drawing by Marta
Puebla.)

High magnetic field Weak magnetic field

(a) (b)
Figure 33 Breakdown of band structure by a strong magnetic field. Brillouin zone boundaries
are the light lines. The free electron orbits (a) in a strong field change connectivity in a weak field
(b) to become open orbits in the first band and electron orbits in the second band. Both bands are
mapped together.

taken into account these empty out, the electrons being added to the third
zone. The general features of the predicted Fermi surface of aluminum are
quite well verified by experiment. Figure 32 shows part of the free electron
Fermi surface of magnesium.

Magnetic Breakdown. Electrons in sufficiently high magnetic fields will
move in free particle orbits, the circular cyclotron orbits of Fig. 33a. Here the
magnetic forces are dominant, and the lattice potential is a slight perturbation.
In this limit the classification of the orbitals into bands may have little impor-
tance. However, we know that at low magnetic fields the motion is described by
(8.7) with the band structure € that obtains in the absence of a magnetic field.
The eventual breakdown of this description as the magnetic field is in-
creased is called magnetic breakdown. The passage to strong magnetic fields
may drastically change the connectivity of the orbits, as in the figure. The
onset of magnetic breakdown will be revealed by physical properties such as



252

magnetoresistance that depend sensitively on the connectivity. The condition
for magnetic breakdown is that iw.e, > E, approximately. Here €; is the free
electron Fermi energy and E, is the energy gap. This condition is much milder,
especially in metals with small gaps, than the naive condition that the mag-
netic splitting fw, exceed the gap.

Small gaps may be found in hep metals where the gap across the hexagonal
face of the zone would be zero except for a small splitting introduced by the
spin-orbit interaction. In Mg the splitting is of the order of 1072 eV: for this gap
and €; ~ 10 eV the breakdown condition is iw, > 10~ eV, or B > 1000 G.

SUMMARY

e A Fermi surface is the surface in k space of constant energy equal to €;. The
Fermi surface separates filled states from empty states at absolute zero.
The form of the Fermi surface is usually exhibited best in the reduced zone
scheme, but the connectivity of the surfaces is clearest in the periodic zone
scheme.

* An energy band is a single branch of the €, versus k surface.

* The cohesion of simple metals is accounted for by the lowering of energy of
the k = 0 conduction band orbital when the boundary conditions on the
wavefunction are changed from Schrédinger to Wigner-Seitz.

e The periodicity in the de Haas-van Alphen effect measures the extremal
cross-section area S in k space of the Fermi surface, the cross section being
taken perpendicular to B:

1) _ 2me
(CGS) A<E>_th .
Problems

1. Brillouin zones of rectangular lattice. Make a plot of the first two Brillouin
zones of a primitive rectangular two-dimensional lattice with axes a, b = 3a.

2. Brillouin zone, rectangular lattice. A two-dimensional metal has one atom of
valency one in a simple rectangular primitive cell ¢ = 2 A;b =4 A. (a) Draw the
first Brillouin zone. Give its dimensions, in em ™. (b) Calculate the radius of the

free electron Fermi sphere, in cm ™

. (¢) Draw this sphere to scale on a drawing of
the first Brillouin zone. Make another sketch to show the first few periods of the
free electron band in the periodic zone scheme, for both the first and second en-

ergy bands. Assume there is a small energy gap at the zone boundary.

3. Hexagonal close-packed structure. Consider the first Brillouin zone of a crystal
with a simple hexagonal lattice in three dimensions with lattice constants a and c.
Let G, denote the shortest reciprocal lattice vector parallel to the ¢ axis of the
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crystal lattice. (a) Show that for a hexagonal-close-packed crystal structure the
Fourier component U(G,) of the crystal potential U(r) is zero. (b) Is U(2G,) also
zero? (¢) Why is it possible in principle to obtain an insulator made up of divalent
atoms at the lattice points of a simple hexagonal lattice? (d) Why is it not possible
to obtain an insulator made up of monovalent atoms in a hexagonal-close-packed
structure?

4. Brillouin zones of two-dimensional divalent metal. A two-dimensional metal
in the form of a square lattice has two conduction electrons per atom. In the al-
most free electron approximation, sketch carefully the electron and hole energy
surfaces. For the electrons choose a zone scheme such that the Fermi surface is
shown as closed.

5. Open orbits. An open orbit in a monovalent tetragonal metal connects
opposite faces of the boundary of a Brillouin zone. The faces are separated by G
=2 % 10° em™". A magnetic field B = 10 gauss = 107" tesla is normal to the
plane of the open orbit. (a) What is the order of magnitude of the period of the
motion in k space? Take v = 10° cm/sec. (b) Describe in real space the motion of
an electron on this orbit in the presence of the magnetic field.

6. Cohesive energy for a square well potential. (a) Find an expression for the
binding energy of an electron in one dimension in a single square well of depth U,
and width a. (This is the standard first problem in elementary quantum mechan-
ics.) Assume that the solution is symmetric about the midpoint of the well. (b)
Find a numerical result for the binding energy in terms of U, for the special case
|U,| = 27i%ma® and compare with the appropriate limit of Fig. 20. In this limit of
widely separated wells the band width goes to zero, so the energy for k = 0 is the
same as the energy for any other k in the lowest energy band. Other bands are
formed from the excited states of the well, in this limit.

7. De Haas-van Alphen period of potassium. (a) Calculate the period A(1/B) ex-
pected for potassium on the free electron model. (b) What is the area in real
space of the extremal orbit, for B = 10 kG = 1 T? The same period applies to os-
cillations in the electrical resistivity, known as the Shubnikow-de Haas effect.

’8. Band edge structure on k - p perturbation theory. Consider a nondegenerate
orbital ¢, at k = 0 in the band n of a cubic crystal. Use second-order perturba-
tion theory to find the result

B B2 o, KnOlk - plj0)P
= + e M PP
e,(k) = €,0) + - o3 ,E o0 -0 (39)
where the sum is over all other orbitals i, at k = 0. The effective mass at this
point is
L 2 KnOlpljO)F
— —_—— . 40
w1 20— ) 1o

"This problem is somewhat difficult.
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10.

11.

The mass at the conduction band edge in a narrow gap semiconductor is often
dominated by the effect of the valence band edge, whence

m __ 2 9
m = mE, 2lelph)f . (41)
where the sum is over the valence bands; E, is the energy gap. For given matrix
elements, small gaps lead to small masses.

Wannier functions. The Wannier functions of a band are defined in terms of
the Bloch functions of the same band by

wr—r,) =N 1~ Eexp(* ik - r,) Yn(r) , (42)
k

where r, is a lattice point. (a) Prove that Wannier functions about different lattice
points n,m are orthogonal:

J[dVwi(r—r)wlr—rx,)=0, n#Fm . (43)

This orthogonality property makes the functions often of greater use than atomic
orbitals centered on different lattice sites, because the latter are not generally or-
thogonal. (b) The Wannier functions are peaked around the lattice sites. Show
that for ¢, = N™"2 ¢ 44 (x) the Wannier function is
sin 7(x — x,)/a

(= x,) = ulx
wl ) = tolx) m(x —x,)/a

for N atoms on a line of lattice constant a.

Open orbits and magnetoresistance. We considered the transverse magneto-
resistance of free electrons in Problem 6.9 and of electrons and holes in Problem
8.5. In some crystals the magnetoresistance saturates except in special crystal ori-
entations. An open orbit carries current only in a single direction in the plane
normal to the magnetic field; such carriers are not deflected by the field. In the
arrangement of Fig. 6.14, let the open orbits be parallel to k,; in real space these
orbits carry current parallel to the y axis. Let o, = so be the conductivity of the
open orbits; this defines the constant s. The magnetoconductivity tensor in the
high field limit w,7 > 1 is

Q—Z _Q—l 0
a| Q71 s 0],
0 0 1

with Q = w,7. (a) Show that the Hall field is E, = —E/sQ. (b) Show that the ef-
fective resistivity in the x direction is p = (QZ/UO)(S/S + 1), so that the resistivity
does not saturate, but increases as B>.

Landau levels. The vector potential of a uniform magnetic field Bz is A =
—Byx in the Landau gauge. The hamiltonian of a free electron without spin is

H= *(h2/2m)(62/6y2 + 9%9z%) + (1/2m)[—iho/dx — eyB/c]2 .
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We will look for an eigenfunction of the wave equation Hy = e in the form
U= xly) explitkx + kz)] .
(a) Show that x(y) satisfies the equation
(HB2m)dPx/dy® + [e — (h*kZ2m) — émwf(y 4o’ Ix=0,

where o, = eB/me and y, = chik /eB. (b) Show that this is the wave equation of a
harmonic oscillator with frequency w,, where

€, = (n + Dho, + H2%k>2m .
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Figure 1 Resistance in ohms of a specimen of mercury versus absolute temperature. This plot by
Kamerlingh Onnes marked the discovery of superconductivity.
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CHAPTER 10: SUPERCONDUCTIVITY

The electrical resistivity of many metals and alloys drops suddenly to zero
when the specimen is cooled to a sufficiently low temperature, often a temper-
ature in the liquid helium range. This phenomenon, called superconductivity,
was observed first by Kamerlingh Onnes in Leiden in 1911, three years after
he first liquified helium. At a critical temperature T, the specimen undergoes
a phase transition from a state of normal electrical resistivity to a supercon-
ducting state, Fig. 1.

Superconductivity is now very well understood. It is a field with many
practical and theoretical aspects. The length of this chapter and the relevant
appendices reflect the richness and subtleties of the field.

EXPERIMENTAL SURVEY

In the superconducting state the dc electrical resistivity is zero, or so close
to zero that persistent electrical currents have been observed to flow without
attenuation in superconducting rings for more than a year, until at last the ex-
perimentalist wearied of the experiment.

The decay of supercurrents in a solenoid was studied by File and Mills
using precision nuclear magnetic resonance methods to measure the magnetic
field associated with the supercurrent. They concluded that the decay time of
the supercurrent is not less than 100,000 years. We estimate the decay time
below. In some superconducting materials, particularly those used for super-
conducting magnets, finite decay times are observed because of an irreversible
redistribution of magnetic flux in the material.

The magnetic properties exhibited by superconductors are as dramatic as
their electrical properties. The magnetic properties cannot be accounted for
by