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The authors present a review of recent muon spin rotation (mSR) studies of the vortex state in type-II
superconductors. There are significant gaps in our understanding of this unusual phase of matter,
especially in unconventional superconductors, for which the description of the vortex structure is a
subject of great controversy. The mSR technique provides a sensitive local probe of the spatially
inhomogeneous magnetic field associated with the vortex state. For the case of a regular vortex lattice,
the magnetic penetration depth l and the coherence length j can be simultaneously extracted from the
measured internal field distribution. The penetration depth is directly related to the density of
superconducting carriers in the material, and measurements of its variation with temperature,
magnetic field, and impurities can provide essential information on the symmetry of the order
parameter. The coherence length measured with mSR is the length scale for spatial variations of the
order parameter within a vortex core. A primary goal of this review article is to show that
measurements of these fundamental length scales are fairly robust with respect to the details of how
the field distribution is modeled. The reliability of the results is demonstrated by a comparison of the
mSR experiments with relevant theories and with other experimental techniques. The authors also
review mSR measurements that have focused on the study of pinning-induced spatial disorder and
vortex fluctuation phenomena. The mSR technique has proven to be a powerful tool for investigating
exotic vortex phases, where vortex transitions are directly observable from changes in the mSR line
shape. Particular emphasis is given to mSR experiments performed on high-temperature
superconductors since high-quality single crystals have become available.
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I. INTRODUCTION

The vortex state of a type-II superconductor consti-
tutes the response of the material to an applied magnetic
field greater than the lower critical field Hc1 and less
than the upper critical field Hc2 . Recent experimental
and theoretical studies of the high-temperature cuprate
superconductors have focused attention on this unique
phase of matter. This resurgence of interest stems from
numerous findings that seem inconsistent with predic-
tions based on the established pairing-state symmetry of
these materials. Studies aimed at characterizing the na-
ture of the vortex state have the potential to yield new
information essential to developing a detailed under-
standing of the microscopic pairing mechanism in un-
conventional superconductors.
7692(3)/769(43)/$23.60 ©2000 The American Physical Society
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In the presence of an applied static magnetic field H ,
a type-II superconductor responds by forming supercur-
rents that screen the field. For H,Hc1 (the so-called
Meissner state), these supercurrents flow around the pe-
rimeter of the sample in such a way as to shield the
interior of the superconductor from the magnetic field
(Meissner and Ochsenfeld, 1933). Near the surface,
where the supercurrents are greatest, there is penetra-
tion of the field. In particular, the interior magnetic-field
component parallel to the surface falls off exponentially
with distance from the surface over a characteristic
length scale, the magnetic penetration depth l. Measure-
ments of l are one way of probing low-energy electronic
excitations, as l22 is proportional to the density of su-
perconducting carriers ns (London and London, 1935).

For larger applied magnetic fields Hc1,H,Hc2 (the
so-called vortex or mixed state), the supercurrent re-
sponse is such that the field penetrates the sample in the
form of quantized flux lines, called vortices (Abrikosov,
1957). Each vortex contains one quantum of flux (F0
5hc/2e). In a conventional s-wave superconductor, the
shielding currents circulate around the individual vorti-
ces. As in the Meissner state, the screening is not per-
fect, so that the field decays outside the core region of a
vortex over the length scale l. Within the core region,
the superfluid density ns(r), the superconducting order
parameter c(r), and the supercurrent density Js(r) are
all strongly suppressed (see Fig. 1). The order parameter
rises from zero at the vortex axis (r50) to its maximum
value outside the vortex core over a length scale called
the coherence length j. Thus, in the vortex state, j is the
characteristic length scale for spatial variations of the
order parameter and is closely related to the size of the
vortex cores.

Experiments that probe the vortex state can be di-
vided into three categories, those that measure (i) ther-
mal and transport properties, (ii) electronic structure,
and (iii) the inhomogeneous magnetic field. Thermal
conductivity, resistivity, and specific-heat measurements
are included in (i) and (ii), scanning tunneling spectros-

FIG. 1. Conventional vortex core, showing dependence of the
supercurrent density Js(r) and the order parameter c(r) on
the distance r from the center of a vortex line. Js(r) is normal-
ized to its maximum value Jsmax

at a distance r5r0 , whereas
c(r) is normalized to its maximum value cmax far from the
vortex core.
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copy (STS) in (ii), and small-angle neutron scattering
and magnetic imaging with superconducting quantum
interference devices (SQUIDs) in (iii). Nuclear mag-
netic resonance (NMR) and muon spin rotation (mSR)
spectroscopy probe both (ii) and (iii). For example,
measurements of the Knight shift and T1 with NMR or
mSR are sensitive to the electronic structure of vortices,
whereas T2 measurements locally probe magnetic-field
variations in the bulk. It is mSR measurements of the
latter kind that are the main focus of this review. The
mSR technique accurately measures the internal
magnetic-field distribution associated with the vortex
lattice, which is in general a function of both space and
time. For a regular Abrikosov lattice (Abrikosov, 1957)
consisting of a periodic arrangement of vortices, the
characteristic length scales l and j can be simulta-
neously determined.

There are many other important applications of mSR
to the study of superconductivity that do not involve
measurements in the vortex state, such as studies of the
antiferromagnetic or spin-glass phases (see, for example,
Nishida et al., 1987; Brewer et al., 1988, Budnick et al.,
1988), measurement of relaxation rates associated with
phase transitions (see, for example, Kiefl et al., 1993),
and detection of spontaneous internal magnetic fields in
unconventional superconductors (Heffner et al., 1990;
Kiefl et al., 1990; Luke et al., 1993, 1998). Some of these
other topics are treated in a recent article by Amato
(1997), which reviews mSR studies of heavy-fermion su-
perconductors.

II. THE mSR TECHNIQUE

The mSR experiments reviewed in this article utilized
the so-called transverse-field technique. In a transverse
field mSR experiment, one measures the internal
magnetic-field distribution in the vortex state with a
resolution of about 0.1 mT—which is of the order of the
magnetic fields caused by nuclear dipoles. A nearly
100% spin-polarized beam of low-energy positive muons
is produced from pion decay (i.e., p1→m11nm) at rest
in the surface layer of a primary production target (C or
Be). The muons from pion decay have a kinetic energy
of 4.119 MeV and are polarized opposite to their mo-
mentum direction. They are implanted one at a time
into the bulk of the superconductor (with a mean stop-
ping range of about 120 mg/cm2 in carbon) with their
initial spin polarization perpendicular to the applied
magnetic field. For strong applied fields this requires use
of a Wien filter (consisting of crossed electric and mag-
netic fields) upstream of the sample to rotate the muon
spin from its natural orientation (antiparallel to the
beam momentum) by 90° with respect to the beam mo-
mentum and applied field (Beveridge et al., 1985). In al-
most all known cases, the positive muon stops at inter-
stitial sites due to electrostatic repulsion by atomic
nuclei. In the high-temperature superconductors there is
good evidence that the muon binds to a negatively
charged oxygen ion, which may or may not belong to the
CuO2 plane (see, for example, Brewer et al., 1990;
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Nishida and Miyatake, 1990). However, the precise lo-
cation of the muon is unimportant since the vortex lat-
tice spacing in magnetic fields typical for a transverse-
field mSR experiment (m0H,8 T) is much larger than
the dimensions of the crystallographic unit cell
(;102 –103 times). Consequently the muon stops at ran-
dom on the length scale of the vortex lattice.

Since the muon is a spin-1/2 particle with no quadru-
pole moment, there are no splittings due to quadrupolar
interactions—thus giving mSR a distinct advantage over
most NMR techniques. Also, the electric charge of the
muon is 11, so the Knight-shift contribution is greatly
reduced compared to NMR. Consequently the spectrum
for mSR is easier to relate to the distribution of local
magnetic field in the sample. Another advantage of mSR
is that it is easily performed on single crystals, whereas
conventional NMR is generally limited to polycrystalline
samples, due to the finite penetration depth of the rf
field.

The implanted muon precesses about the local mag-
netic field B(r) with a Larmor frequency

vm5gmB~r!, (1)

where gm/2p5135.5342 MHz/T is the muon gyromag-
netic ratio. After a mean lifetime tm52.197 ms, the
muon decays into a positron and two neutrinos (i.e.,
m1→e11ne1 n̄m). The distribution of decay positrons is
asymmetric with respect to the spin-polarization vector
P(t) of the muon, where the highest probability of emis-
sion is along the direction of the muon spin. Conse-
quently the time evolution of the muon spin polarization
P(t) can be monitored, since an ensemble of muons re-
veals its spin direction at the times of the decays. Scin-
tillation detectors placed around the sample are used to
detect the positrons emitted from the m1 decay.

Figure 2 shows a simple four-counter arrangement.
The number of decay positrons recorded per time bin Dt
in the ith counter is given by

FIG. 2. Four positron counters, L , R , U , and D , surrounding
the sample S . The initial muon spin polarization is denoted as
P(0) and the applied magnetic field is directed out of the page.
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Ni~ t !5Ni
+e2t/tm@11Ai

+Pi~ t !#1Bi
+ , (2)

where Ni
+ is a normalization constant, Ai

+ is the maxi-
mum precession amplitude, Bi

+ is the time-independent
random background, and Pi(t) is the time evolution of
the muon spin-polarization component in the ith direc-
tion. For the case in which all muons see the same field
B and therefore precess at the same frequency vm ,
Pi(t) is given by

Pi~ t !5cos~vmt1u i!, (3)

where u i is the initial phase of the muon spin-
polarization vector relative to the ith direction. In gen-
eral u i is nonzero, since the initial muon polarization
P(0) will rarely be perfectly aligned with any counter’s
acceptance, even in zero field, and an arriving muon will
have precessed during its flight through the magnetic
field to the sample. The muon rapidly thermalizes on
time scales of order 10210 s through interaction with the
lattice (Cox, 1987). This has no effect on the muon po-
larization.

A. Asymmetry spectra

Equation (2) can be written

Ni~ t !5Ni
+e2t/tm@11Ai~ t !#1Bi

+ , (4)

where Ai(t)5Ai
+Pi(t) is the single-counter asymmetry

function for the ith raw histogram. Rearranging Eq. (4)
gives

Ai~ t !5et/tmFNi~ t !2Bi
+

Ni
+ G21. (5)

Ai(t) is introduced to eliminate the muon lifetime (a
well-known quantity) and the overall normalization Ni

+

and the random background Bi
+ , which have no physical

significance.
As long as the muon precession period is very short

compared to the muon lifetime, Ni
+ and Bi

+ can be ob-
tained numerically by the following procedure: If one
treats Ni(t) as a continuous function (the actual discrete
sums can easily be deduced from the integrals below)
then (Riseman, 1993; Brewer, 1994)

Ni
+5

SitmEi
12RiTi

tm
2 Ei

1Ei
22Ti

2

and Bi
+5

RitmEi
22SiTi

tm
2 Ei

1Ei
22Ti

2 , (6)

where

Si[E
t i

tf
Ni~ t !dt ,

Ri[E
t i

tf
Ni~ t !exp~ t/tm!dt ,

Ei
6[6@exp~6t f /tm!2exp~6t i /tm!# ,

and Ti[t f2t i , (7)
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the time interval over which the integrals are evaluated.
This numerical procedure becomes increasingly unre-

liable in weaker magnetic fields (below about 0.05 T),
for which asymmetry spectra can be extracted from the
raw histograms for opposing pairs of counters (the so-
called two-counter asymmetry), as described by Brewer
(1994).

B. The depolarization function

In the vortex state, muons experience a spatially vary-
ing magnetic field due to the periodic arrangement of
the vortices. The field is assumed to be in the ẑ direction
everywhere. In this case, the time evolution of the x
component of the total muon polarization is

Px~ t !5
1
N (

i51

N

cos@gmB~ri!t1u# , (8)

where the sum extends over all muon sites and B(ri) is
the magnitude of the local field at site i . Ideally, the sum
is replaced by an integral, so that

Px~ t !5E
0

`

n~B !cos~gmBt1u!dB , (9)

where n(B) is the mSR line shape—i.e., n(B)dB is the
probability that the muon experiences a local magnetic
field between B and B1dB and precesses at the fre-
quency vm52pnm5gmB . The envelope of the oscillat-
ing muon spin polarization Px(t) decays or dephases
with increasing time according to the width of n(B).

In a real material, there are perturbations of the peri-
odic vortex lattice caused by random pinning of the vor-
tices and fluctuations in temperature or applied mag-
netic field. These additional sources of field
inhomogeneity can often be accounted for by multiply-
ing the muon polarization function by a depolarization
function G(t), so that

Px~ t !5G~ t !E
0

`

n~B !cos~gmBt1u!dB . (10)

According to Brandt (1988a), a Gaussian function

G~ t !5expS 2
1
2

sVL
2 t2D (11)

is a good approximation, where sVL is the muon spin-
depolarization rate due to these perturbations of the
vortex lattice.

The vortex lattice is also distorted by demagnetization
effects associated with the geometrical shape of the
sample. For a plate-shaped crystal with the field applied
perpendicular to the flat face, the average internal field
(vortex density) is reduced near the sample edges, re-
sulting in a domelike field profile over the width of the
sample (Indenbom et al., 1994). The field variation due
to the sample geometry will usually be minor relative to
the large field inhomogeneity of the vortex lattice—
especially at fields well above the lower critical field Hc1
(Forgan et al., 1997). However, if the vortex lattice is
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
highly disordered or in the melted phase, the sample
geometry can dominate the field variation of the mSR
line shape (see Sec. III.D.3).

There are other contributions to the local field Bm at
the muon site besides those associated with the vortex
lattice. For example, fields from electronic and nuclear
dipolar moments, as well as the spin polarization of the
conduction electrons at the muon site, will result in a
shift of the average field and/or broaden the mSR line
shape. The Knight shift [defined as K5(Bm
2Bext)/Bext , where Bext is the external field] originating
from the magnetic-field-induced polarization of the con-
duction electrons, is typically on the order of the experi-
mental resolution (;100 ppm). Local electronic mo-
ments can also contribute to the frequency shift by
producing an effective dipolar field and an additional
hyperfine contact field at the muon site. The latter may
arise in f-electron compounds from an indirect RKKY
(Ruderman-Kittel-Kasaya-Yosida) interaction, which
enhances the spin polarization of the conduction elec-
trons (see, for example, Amato, 1997).

A distribution of dipolar fields can increase the depo-
larization rate of the muon spin precession signal. The
muon depolarization function due to a dense system of
nuclear dipolar fields is well described by a Gaussian
function (Schenck, 1985),

G~ t !5expS 2
1
2

sdip
2 t2D . (12)

In general,

sdip
2 5gm

2 ^~DBdip!2&, (13)

where ^(DBdip)2&5^(Bdip2^Bdip&)2& is the second mo-
ment of the distribution of nuclear dipole fields at the
muon site. Typically sdip is on the order of 0.1 ms21. A
more precise expression for sdip can be obtained by tak-
ing into account the orientation of the applied magnetic
field, the location of the muon in the crystal lattice, and
the electric quadrupole interaction with nearby atomic
nuclei.

Electronic dipolar fields, which are in general not ran-
domly oriented, can also strongly influence the
muon spin-depolarization rate. For example, in the
electron-doped high-temperature superconductor
Nd1.85Ce0.15CuO42d , the large magnetic moments of the
Nd31 ions produce an additional line broadening, which
makes it difficult to separate out the field distribution
associated with the vortex lattice (Luke et al., 1997). The
depolarization function that contains both the effects of
the dipolar moments (sdip) and the perturbations of the
vortex lattice (sVL) is generally assumed to be

G~ t !5expF2
1
2

~sdip
2 1sVL

2 !t2G5expS 2
1
2

s f
2t2D ,

(14)

where s f is the net effective depolarization rate due to
sources other than the ideal vortex lattice.

If a muon diffuses rapidly in the sample within its
lifetime, it will experience the local magnetic field at
many locations in the vortex lattice—which is equivalent
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to a time-varying magnetic field at the muon site. If the
muon diffuses fast enough, these fields are averaged out,
resulting in a reduction of the depolarization rate asso-
ciated with the dephasing effect of the spatially varying
magnetic field (Schenck, 1985). This ‘‘motional averag-
ing’’ effect is analogous to the ‘‘motional narrowing’’
phenomenon in NMR (Abragam, 1970). Increasing mo-
bility of the muon first leads to a suppression of the van
Hove singularity produced by the field at the vortex cen-
ters. Contrary to naive expectations of motional narrow-
ing, a further increase in the muon diffusion rate results
in an increase in the damping rate of the muon preces-
sion signal (Brandt and Seeger, 1986). Only with still
faster diffusion, whereby the muon explores several unit
cells of the vortex lattice, does the damping rate de-
crease as expected (Brandt and Seeger, 1986). Generally
speaking, muon diffusion rates in the vortex state of a
superconductor are very small below ;100 K. Even in
high-purity Nb single crystals, only a slight smearing of
the van Hove singularities of the mSR line shape can be
attributed to muon diffusion (Schwarz et al., 1986;
Herlach et al., 1990).

C. Four-counter complex muon polarization

Now consider the complete set of four positron
counters in Fig. 2. Ignoring geometric misalignments and
differences in counter efficiency, the x component of the
muon polarization Px(t), monitored by the L and R
counters, differs from the y component of the muon po-
larization Py(t), monitored by the U and D counters, by
a phase of 90°. The two components of the muon polar-
ization can be combined to form a complex polarization
function

P̃~ t !5Px~ t !1iPy~ t !, (15)

where

Px~ t !5G~ t !E
0

`

n~B !cos~gmBt1u!dB , (16)

and

Py~ t !5G~ t !E
0

`

n~B !cos~gmBt1u2p/2!dB

5G~ t !E
0

`

n~B !sin~gmBt1u!dB . (17)

The complex asymmetry for the four-counter setup is
defined as

Ã~ t !5A°P̃~ t !5A°Px~ t !1iA°Py~ t !

5Ax~ t !1iAy~ t !, (18)

where Ax(t) and Ay(t) are the real and imaginary parts
of the complex asymmetry, respectively. Equations (5)
and (6) show how to extract the asymmetry function
Ai(t) numerically from each raw time histogram Ni(t).
In terms of the individual counters, the real asymmetry
Ax(t) and the imaginary asymmetry Ay(t) are
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
Ax~ t !5
1
2

@AR~ t !2AL~ t !# and (19)

Ay~ t !5
1
2

@AU~ t !2AD~ t !# . (20)

One can then fit the real and imaginary parts of the
asymmetry simultaneously.

D. The rotating reference frame

In magnetic fields in which the frequency of the muon
spin precession is high, it is convenient to fit the mea-
sured asymmetry spectrum in a rotating reference frame.
To do this, one multiplies the complex muon polariza-
tion P̃(t) by the function exp(ivRRFt). The rotating-
reference-frame frequency vRRF is chosen so that
uv̄m2vRRFu is small enough to produce a reasonable
number of oscillations over the fitted time interval (here
v̄m is the average muon spin precession frequency in the
laboratory frame). There are two primary benefits of
performing such a transformation. The first is that the
quality of the fit can be visually inspected. More impor-
tantly, it allows the data to be packed into fewer bins,
which greatly enhances the fitting speed.

Figure 3 shows a typical muon spin precession signal
in the normal and vortex states of YBa2Cu3O6.95 for a
magnetic field m0H50.5 T applied parallel to the ĉ axis.
The signals are displayed in a reference frame rotating
at about 3 MHz below the Larmor precession frequency
of a free muon. Dephasing of the signal arises from an
inhomogeneous distribution of magnetic fields in the
sample. Above the superconducting transition tempera-
ture Tc , at which the applied field penetrates the entire
sample, the small relaxation is mainly due to nuclear
dipolar moments. The nonrelaxing signals arising from
individual muons precessing in different local fields com-
bine to give a relaxing signal. On the other hand, below
Tc the relaxation is considerably larger due to the inho-
mogeneous field distribution associated with the vortex
lattice. Note that the error bars in Fig. 3 grow as a func-
tion of time. Because of the finite muon lifetime, there
are fewer counts in the bins at later times, resulting in an
exponential increase in the statistical error bars. For this
reason, mSR spectra rarely extend beyond 10–15 ms.

E. The fast Fourier transform

The muon time spectrum itself is not very revealing to
the eye, so a fast Fourier transform (FFT) is often per-
formed to display the distribution of frequencies (or lo-
cal fields) in the sample. The FFT is an algorithm devel-
oped by Cooley and Tukey (1965) for efficiently
computing the Fourier transform of a discrete spectrum.
A Fourier transform of the complex muon polarization
P̃(t) yields a good approximation of the actual internal
field distribution, i.e.,

n~B !5E
0

`

P̃~ t !e2i(gmBt1u)dt . (21)
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Unfortunately, there are several problems with the FFT
that confine its usefulness to visual illustrations and even
limit its effectiveness there. First, the reduced number of
counts at later times introduces noise into the frequency
spectrum. Second, the finite time range of the mSR spec-
trum produces a ‘‘ringing’’ effect in the FFT. These un-
wanted distortions are minimized through an apodiza-
tion procedure in which the asymmetry spectrum is
multiplied by a weighting function varying smoothly be-
tween one and zero (Riseman et al., 1995). For example,
the Fourier transform can be apodized with a Gaussian
function so that

nA~B !5E
0

`

P̃~ t !e2i(gmBt1u)e2sA
2 t2/2 dt . (22)

However, this apodization procedure also broadens the
output frequency spectrum of the Fourier transform,
smearing out sharp features of interest. This is clearly
seen in Fig. 4, which shows an example of a FFT with
and without apodization. The apodization parameter sA
is chosen to provide a compromise between the statisti-
cal noise in the spectrum and the additional broadening
of the spectrum that such a procedure introduces. This
inherent problem with FFT’s makes fitting in the fre-

FIG. 3. The muon spin precession signal in YBa2Cu3O6.95 [Tc

593.2(0.25) K] at m0H50.5 T, displayed in a rotating-
reference-frame frequency of 3 MHz. Top panel: in the normal
state at T5120 K. Bottom panel: in the vortex state at T
52.4 K. The solid curves are fits that are described later in this
article.
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quency domain much more difficult than in the time do-
main, where such problems are more easily avoided.
Fast Fourier transforms are nevertheless very useful in
assessing how well the theoretical field distribution fits
certain features in the spectra. This can be done by per-
forming an FFT on both the data and the best-fit theory
function.

Figure 5 shows the real part of the FFT for the time
spectra in Fig. 3 (which we shall often refer to as the
mSR line shape). Above Tc , the mSR line shape is sym-
metric with some broadening due to the nuclear dipolar
moments. Below Tc , the observed line shape is prima-
rily due to the vortex lattice. The latter approximately
resembles the theoretical field distribution expected for
a hexagonal Abrikosov vortex lattice (shown in Fig. 6)
but with an additional peak at 67.3 MHz due to a small
residual background signal, which is explained in the
next section. The sharp cutoff at low fields in Fig. 6 is
due to the minimum of the field distribution, which oc-
curs at the center of the triangle formed by three adja-
cent vortices. The peak is due to the van Hove singular-
ity produced by the saddle point midway between
nearest-neighbor vortices. The long tail is due to the re-
gion around the vortex core, and the high-field cutoff is
due to the maximum field at the center of the core. The
sharp features in Fig. 6 are smeared out in the FFT,
primarily from the apodization procedure, but also from
the broadening effects discussed in Sec. II.B.

Another way to display frequency spectra is the

FIG. 4. Fourier transform of the muon precession signal in the
vortex state of YBa2Cu3O6.95 : top panel, with apodization;
lower panel, without apodization.
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maximum-entropy method (Rainford and Daniell, 1994)
used extensively for analyzing mSR spectra. The
maximum-entropy algorithm produces a frequency spec-
trum that fits the data within the noise level and has
maximum entropy. The entropy S , in analogy with the
entropy in thermodynamics, is defined as

S52(
i51

N

n~v i!lnS n~v i!

b~v i!
D , (23)

where N is the number of frequency bins, the set of
values n(v i) is the output frequency spectrum, and
b(v i) is a set of default values taken to be a ‘‘flat’’ fre-
quency distribution—since the frequency spectrum with
maximum entropy is uniform. The entropy S is maxi-
mized subject to a constraint on the fit x2. This tech-
nique suppresses unwanted statistical noise and has im-
portant applications in the detection of qualitative
changes in mSR line shapes with external magnetic field
or temperature. However, it shares with apodization the

FIG. 5. Fourier transform of the precession signals in Fig. 3
using a Gaussian apodization with sA53 ms21.

FIG. 6. Theoretical magnetic field distribution for a hexagonal
vortex lattice. The inset is a contour plot of the field variation.
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flaw of subtly modifying the output frequency spectrum
in ways that depend on the ‘‘judgment calls’’ of the user,
altering precisely those subtle features that are the ob-
ject of investigation in studies of field distributions of
vortex lattices. For these reasons, analysis of mSR spec-
tra are best performed in the time domain, where all the
statistical and systematic uncertainties are better under-
stood.

F. Low-background apparatus

Early transverse-field mSR studies of superconductors
were plagued by a large background signal contributing
significant spectral weight to the measured line shape.
The background signal arose from muons that missed
the sample but were registered as ‘‘good’’ muon-decay
events. Studies of very small or thin samples require that
the decay events originating from these muons be ‘‘ve-
toed’’ (i.e., not recorded). High-quality crystals of the
high-temperature cuprate superconductors (i.e., those
with a high degree of chemical purity and homogeneity)
generally fall into this category.

To reject the unwanted muons, a ‘‘low-background’’
apparatus (see Fig. 7) was developed at the Tri-
University Meson Facility (TRIUMF), Vancouver,
Canada (Schneider et al., 1993). A similar apparatus is
now used at the Paul Scherrer Institut (PSI), Villigen,
Switzerland. The sample is mounted on a thin sheet of
aluminized Mylar that is stretched over a hollow cylin-
drical aluminum sample holder held in a horizontal gas-
flow cryostat. A small amount of low-temperature
vacuum grease is generally used to attach the crystals to
the Mylar film (with their flat faces perpendicular to
both the applied magnetic field H and the muon beam
directions). The incoming muons are detected by a thin
scintillation detector (M) placed before the sample and
are implanted with their initial spin polarization P(t
50) perpendicular to H. The signal arising from a muon
that triggers the M counter is fed through a constant-
fraction discriminator, creating a logical timing pulse
used to start a time-to-digital converter (TDC). The
TDC stops when the decay positron from the muon is
detected. The time interval for this event is digitized by
the clock and a count is added to the corresponding time
bin in the positron detector’s histogramming memory.

The unique feature of this apparatus is the placement
of a cup-shaped veto counter (V) behind the sample to
suppress the unwanted background signal from muons
that miss the sample. The decay positrons from muons
stopping in the sample are detected by overlapping cy-
lindrical forward (F) and backward (B) counters, which
are mounted outside of the cryostat. As shown in Fig. 7,
the F and B counters consist of four individual counters
F1 , F2 , F3 , F4 and B1 , B2 , B3 , B4 , respectively. Over-
lapping counters F and B subtend the solid angle de-
noted by the dashed lines in Fig. 7. A valid muon stop is
defined as M•V̄ and a valid positron event is defined as
Fi•Bi•V̄ , where i51, 2, 3, or 4. The arrangement of the
F , B , and V counters is such that decay positrons origi-
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nating from muons that miss the sample and stop in
back of the V counter are rejected. Since these ‘‘bad’’
muons register neither a valid muon stop nor a valid
decay positron, they are logically excluded from the ex-
periment.

To ensure sufficient accuracy, measured spectra typi-
cally require 15 to 30 million muon-decay events. To
clearly resolve features in the high-field tail of the mSR
line shape, more events are needed when the contribu-
tion from muons stopping in the vicinity of the vortex
cores is small—as is the case at low magnetic fields.
Since the signal-to-noise ratio scales with AN (where N
is the number of counts) and typical counting rates are 2
to 5 thousand counts/sec (depending mainly on the
sample size), it often takes an impractical amount of ad-
ditional counting time to make further improvements to
the quality of the measured spectra.

Further details of the mSR technique may be found
elsewhere (see, for example, Schenck, 1985; Cox, 1987;
Brewer, 1994; Riseman et al., 1995). The essential point
is that transverse-field mSR accurately probes the local

FIG. 7. The low-background mSR apparatus. The sample and
veto counter (V) are contained within a cryostat, which is not
shown for clarity. The lower figure shows the arrangement of
the positron and muon counters described in the text.
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distribution of magnetic field in the bulk of a supercon-
ductor. From the measured field distribution one can
extract the important parameters l and j and determine
the nature of the vortex lattice structure.

III. MODELING THE INTERNAL MAGNETIC-FIELD
DISTRIBUTION

In general, the assumptions involved in generating the
theoretical muon polarization function represent the
largest source of uncertainty in a mSR experiment. Stud-
ies of the vortex state require a comprehensive under-
standing of how the modeling procedure influences the
results. The main complication is that an accurate de-
scription of the vortex state is still being developed. Be-
low we summarize the important theoretical advances
made in modeling the spatially inhomogeneous mag-
netic field associated with the vortex state. Later we
show that many mSR measurements are fairly robust
with respect to the theory chosen to model the
magnetic-field distribution. However, in certain circum-
stances an approximate model is insufficient to reveal
the underlying physics of interest.

A. Gaussian field distribution

Traditionally, the behavior of the magnetic penetra-
tion depth in the vortex state has been related to the
variation of the second moment ^(DB)2&5^(B2^B&)2&
of the mSR line shape. In an isotropic extreme type-II
superconductor (l@j) with a hexagonal Abrikosov vor-
tex lattice (Brandt, 1988b),

^~DB !2&50.00371F0
2l24, (24)

where F05hc/2e52.07310215 T-m2 is the flux quan-
tum. To estimate ^(DB)2& one often assumes a Gaussian
distribution of local fields, where the time dependence
of the muon spin polarization is proportional to
exp(2s2t2/2), such that (Aeppli et al., 1987)

s}1/l2}ns , (25)

where s is the muon depolarization rate. This type of
analysis seemed reasonable in the early days, when only
sintered powders of the high-temperature superconduct-
ors were available—since, in general, the mSR line shape
for a randomly aligned powder is nearly Gaussian. How-
ever, this is usually not the case for high-purity single
crystals. For example, Fig. 8(a) shows a fit of the early
time portion of the muon spin precession signal in a
single crystal of NbSe2 to a Gausssian function. The
spectrum was obtained by field cooling the sample to
T52.4 K in a magnetic field m0H50.35 T applied paral-
lel to the ĉ axis. The quality of the fit is obviously poor.
The FFT of the measured time spectrum and the Gauss-
ian fit are shown in Fig. 8(b). The small peak at 47.46
MHz is due to muons that miss the sample and avoid the
background suppression system. The background signal
is typically fit to a separate Gaussian function. Clearly
the asymmetric line shape associated with the sample
signal does not fit well to a Gaussian function. It is men-
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tioned here for two reasons. First, many of the early
mSR experiments reached false conclusions regarding
the symmetry of the pairing state in the high-
temperature cuprate superconductors using this type of
analysis (see, for example, Harshman et al., 1987; Kiefl
et al., 1988; Uemura et al., 1988; Harshman et al., 1989;
Pümpin et al., 1990a)—although, as will be discussed
later (see Sec. IV.A.2), other factors may have played a
more important role in the outcome of these studies.
Second, fits to a simple Gaussian function are useful
during the experiment, since this often yields a fair
qualitative picture of the variation of l with tempera-
ture. On the other hand, this type of analysis is grossly
inaccurate if there are other sizeable contributions to
the mSR linewidth that vary in a manner different from
l. As an example we note that this method is inappro-
priate for determining the field dependence of l, since
there is a superimposed contribution due to the chang-
ing density of vortices. In particular, the decrease of the
intervortex spacing L with increasing field reduces the
mSR linewidth in a manner not accounted for by Eq.
(24).

In recent years it has become apparent that the mSR
technique has a wider application to the study of type-II
superconductors when the complete line shape is taken
into account. In particular, the high-field tail of the mea-
sured internal field distribution (which is ignored in a
simple Gaussian analysis) contains information related
to the structure of the vortex cores. Furthermore, ac-
counting for the full mSR line shape enables one to in-

FIG. 8. Title (a) The muon spin precession signal in a crystal
of NbSe2 after cooling in a field m0H50.35 T to T52.4 K. The
solid line is a fit to a Gaussian function exp(2s2t2/2). (b) Fou-
rier transform of (solid line) the measured precession signal
and (dashed line) the fit from (a).
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vestigate changes in the spatial arrangement of vortices.

B. Vortex lattice in a conventional s-wave superconductor

1. London model

The London theory (London and London, 1935) pro-
vides the simplest approach to modeling the vortex lat-
tice. The London model applies exclusively to extreme
type-II superconductors (i.e., l@j) and is independent
of the detailed mechanism responsible for superconduc-
tivity. Furthermore, the London picture is valid at all
temperatures below Tc and for internal magnetic fields
B!Bc2 . Both of these conditions are usually satisfied in
a mSR experiment. For a magnetic field H applied in the
ẑ direction parallel to the crystallographic ĉ axis, the
London equation for the internal field profile B(r) re-
sulting from vortices positioned at sites rn is

B~r!1lab
2 @“3“3B~r!#5F0(

n
d~r2rn!ẑ , (26)

where lab5(lalb)1/2 is the in-plane magnetic penetra-
tion depth and d(r) is a two-dimensional delta function.
We restrict all further discussion to the above-
mentioned orientation of the crystal lattice in the ap-
plied field. The points rn form a two-dimensional peri-
odic lattice in the â-b̂ plane, so that B(r) may be
expanded in a Fourier series. The Fourier transform BK
is

BK5nfE
cell

B~r!e2iK•r d2r, (27)

where nf is the number of vortices per unit area and K
are the reciprocal-lattice vectors of the unit cell. Com-
bining with Eq. (26), the Fourier components are

BK5
B0

11K2lab
2 ẑ , (28)

where B05nfF0 is the average internal field. Thus the
total field at the point r is given by

B~r!5(
K

BKe2iK•r5B0(
K

e2iK•r

11K2lab
2 ẑ . (29)

The use of a delta function as the source term in Eq.
(26) means that Eq. (29) does not account for the finite
size of the vortex cores. As a result, Eq. (29) has the
unphysical property that B(r) diverges on the axis of the
vortex line at rn . To correct for this, each term in Eq.
(29) can be multiplied by a cutoff factor that suppresses
the higher Fourier components and produces a smooth
increase in the field to a finite maximum value at the
center of the vortex core. A sharp cutoff at K52p/jab is
generally inappropriate because it introduces an oscilla-
tory cutoff in real space (Forgan and Lee, 1995). A
smooth cutoff may be obtained by solving the Ginzburg-
Landau equations (Ginzburg and Landau, 1950). At re-
duced fields b5B/Bc2

,0.25, Brandt (1972) derived the
Gaussian cutoff factor exp(2K2j2/2) from the isotropic
Ginzburg-Landau theory for the case l@j . Brandt’s full
modification of Eq. (29) is given by (Brandt, 1977a,
1988a, 1988b)
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B~r!5B0(
K

e2iK•re2K2jab
2 /2(12b)

11K2lab
2 /~12b !

ẑ , (30)

where lab and jab are divided by A12b to account for
the field dependence of the Ginzburg-Landau order pa-
rameter. When b!1, the cutoff factor is better
approximated by the Lorentzian function
exp(2&Kjab /A12b) (Yaouanc, de Réotier, and
Brandt, 1997). Later we shall show that Eq. (30) is a
good approximation of B(r) in a real superconductor.
However, this procedure is not completely satisfactory
since the analytical cutoff factors have a limited range of
validity. For most values of b , the cutoff factor derived
from the Ginzburg-Landau equations is numerical.

2. Vortex core structure

As shown in Fig. 1, the order parameter c(r) is
strongly suppressed in the vicinity of a vortex line.
Bardeen and Stephen (1965) described a vortex as hav-
ing a core of radius r0;j that is occupied by normal
electrons. This simple picture is really only justified in
dirty superconductors, where the mean free path l is
much smaller than the coherence length j. In a clean
s-wave superconductor, Caroli, de Gennes, and Matri-
con (1964) showed that quasiparticle states whose en-
ergy E is smaller than the bulk energy gap D0 become
localized in the core. Using the Bogoliubov–de Gennes
equations they calculated the low-energy spectrum of
quasiparticle bound states in an isolated core. The
model is conceptually similar to the quantum-
mechanical picture of a particle in a cylindrical potential
well of radius j.\vF /pD0 and depth D0 . The eigenval-
ues of the low-lying quasiparticle states may be written
as Em.mD0

2/EF;mD0 /kFj , where m5m11/2 (m is an
odd integer) are the angular momentum quantum num-
bers and EF is the Fermi energy. When the thermal en-
ergy kBT is much greater than the energy-level spacing,
the vortex core resembles the Bardeen-Stephen model.
In a dirty superconductor, the bound-state energy levels
are also broadened by impurity scattering of the quasi-
particles between the levels.

The quasiparticle states bound to the core are some-
what different from a simple particle in a potential well.
The localized core states are superpositions of electron
and hole states that are trapped in the vortex by con-
tinuous Andreev scattering from the spatially varying
order parameter. Unlike particle states bound in a po-
tential well, the Andreev core states can participate in
charge transport by transferring charge to the supercur-
rents flowing outside of the vortex core (Rainer, Sauls,
and Waxman, 1996).

A series of scanning tunneling spectroscopy (STS)
measurements on the conventional superconductor
NbSe2 have revealed the existence of localized quasipar-
ticle core states (Hess et al., 1989; Hess, Robinson, and
Waszczak, 1990; Hess, 1991; Hess, Murray, and Waszc-
zak, 1992). Well outside the vortex cores, the voltage
dependence of the differential conductance dI/dV re-
sembled the density of states predicted in Bardeen-
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
Cooper-Schrieffer (BCS) theory (Bardeen, Cooper, and
Schrieffer, 1957). However, within the vortex core the
STS spectrum showed a pronounced peak centered at
V50. Theoretical calculations showed that the peak re-
flects the local density of states for bound quasiparticles
(Shore et al., 1989; Gygi and Schlüter, 1990, 1991; Klein,
1990; Ullah, Dorsey, and Buchholtz, 1990). The discrete
quasiparticle energy levels have not yet been observed
experimentally. In the STS experiments on NbSe2, the
experimental resolution of ;0.1 meV was greater than
the expected energy-level spacing of ;0.001 meV.

3. Temperature dependence of the vortex core size

To determine the vortex structure for arbitrary tem-
perature, magnetic field, and impurity concentrations,
many efforts were made to solve numerically the quasi-
classical Eilenberger equations (Eilenberger, 1968)—
which are a reformulation of the microscopic Gor’kov
theory (Gor’kov, 1958, 1959). The Eilenberger equa-
tions are valid at temperatures well above Tc

2/EF and for
spatial variations of the Green’s functions that are slow
over atomic distances (Serene and Rainer, 1983). In the
dirty limit, the transportlike Eilenberger equations re-
duce to the simpler diffusionlike Usadel equations (Us-
adel, 1970, 1971). Kramer, Pesch, and Watts-Tobin
(1974) determined the local structure of a vortex near
Hc1 by numerically solving the Usadel equations. They
found that, with decreasing temperature, the pair poten-
tial D(r), i.e., the order parameter, rises more steeply
and the magnetic field decays more rapidly as a function
of distance from the center of the vortex.

Numerical solutions of the Eilenberger equations for
nearly isolated vortices in the clean limit were later ob-
tained (Pesch and Kramer, 1974; Kramer and Pesch,
1974). The size of the vortex core region was found to
shrink more drastically with decreasing T than in the
dirty limit. In particular, Kramer and Pesch (1974)
showed that the pair potential D(r) and the supercur-
rent density Js(r) increased with radial distance r from
the core center over a temperature-dependent length
scale given by

j1;j0

T

Tc
for Tc

2/EF!T!Tc , (31)

where

j15D0 /limr→0

D~r !

r
, (32)

D0 is the BCS energy gap, and j0 is the BCS coherence
length pertaining to the spatial extent of the Cooper
pairs. The increase in the slope of D(r) near the vortex
center with decreasing T is commonly referred to as the
‘‘Kramer-Pesch effect.’’ Kramer and Pesch (1974) were
able to reproduce these results with the Bogoliubov–de
Gennes equations (which are valid over the entire tem-
perature range), closely following the method of Caroli,
de Gennes, and Matricon (1964). Since only the bound
quasiparticle core states with m5m11/2 (m is an odd
integer) contribute via the self-consistency equations to
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the slope of D(r) [and Js(r)] near the vortex center, the
reduction of the core size is due to the thermal depopu-
lation of the bound quasiparticle energy levels. Conse-
quently the shrinking of the vortex core terminates at
low temperature, where only the lowest energy level is
populated (i.e., the quantum limit). From the
Bogoliubov–de Gennes equations Kramer and Pesch
(1974) estimated that j;kF

21 for T&Tc
2/EF . Recently,

Hayashi et al. (1998) performed a more rigorous numeri-
cal calculation of the quantum regime of a single vortex
in a clean s-wave superconductor from the
Bogoliubov–de Gennes equations. The temperature de-
pendence of j1 was found to decrease almost linearly
with T and smoothly cross over to the saturated regime
where j1;kF

21 . The shrinking of the core region leads
to a reduction in the number of bound-quasiparticle-
state energy levels.

It is customary to approximate the spatial dependence
of the pair potential within a vortex by an expression of
the form

D~r !5D0 tanhS r

j D . (33)

However, at low temperature the numerical solutions of
the Bogoliubov–de Gennes or Eilenberger equations for
the spatial dependence of D(r) are not described by this
analytical expression (see, for example, Gygi and
Schlüter, 1991). The reason is that the slope of D(r) at
the vortex center becomes very steep. Consequently the
definition of j1 is often used to quantify the changes in
the spatial dependence of the order parameter with tem-
perature. Although the slope of D(r) near the core cen-
ter increases with decreasing temperature on the length
scale j1 , D(r) reaches its asymptotic value D0 over a
distance of the order j0 . At high temperature, the val-
ues of j1 and j0 are nearly equivalent. However, j0 has
a weak temperature dependence at low T , where the
isotropic energy gap D0 exponentially cuts off the
‘‘breaking apart’’ of Cooper pairs as T→0 K. In an
s-wave superconductor, Volovik (1993) showed that
there is actually a singularity in the order parameter
within the vortex (see Fig. 9), which becomes more pro-
nounced with decreasing temperature. In unconven-
tional superconductors the kink can smooth out, but ac-
cording to Volovik it survives in layered systems.
Throughout this review article, ‘‘vortex core’’ refers to
the spatial region governed by j1 .

In a mSR experiment one is interested in how the spa-
tial variation of the supercurrent density Js(r) changes
as a function of temperature. Theoretical studies show
that uJs(r)u rises to its maximum value over a distance
of the order j1 (Gygi and Schlüter, 1991; Hayashi et al.,
1998). It will be shown later that the distance from the
center of the vortex core at which uJs(r)u reaches its
maximum value can be extracted from the mSR spec-
trum. In this way, mSR can be used as a probe of the
Kramer-Pesch effect.

4. Field dependence of the vortex core size

From numerical solutions of the Usadel equations,
Golubov and Hartmann (1994) showed that the vortex
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
core radius of an s-wave superconductor in the dirty
limit expands with decreasing magnetic field. The radius
of the vortex core was estimated from the half-width of
the calculated spatial dependence of the order param-
eter within the core. These calculations were extended
by Sonier, Kiefl, et al. (1997b) to determine the field de-
pendence of the corresponding supercurrent density
profile Js(r), which could be related to the field distri-
bution measured with mSR. The core radius r0 , defined
as the radius where uJs(r)u reaches its maximum value,
showed a similar increase with decreasing magnetic
field.

More recently, the Eilenberger equations were nu-
merically solved to determine the vortex core radius in a
clean s-wave superconductor (Ichioka, Hasegawa, and
Machida, 1999a, 1999b). The core radius determined
from the spatial dependence of the order parameter and
the supercurrent density is found to increase with de-
creasing magnetic field.

5. Vortex core symmetry

The symmetry of the vortices in NbSe2 was investi-
gated by Hess, Robinson, and Waszczak (1990) using
STS. In a conventional s-wave superconductor with an
isotropic energy gap, the local density of states around
an isolated vortex core is expected to exhibit circular
symmetry. However, in the STS experiment, a sixfold
star pattern was observed for the local density of states
around a single vortex. The origin of the sixfold symme-
try has been attributed to nearest-neighbor vortex inter-
actions (Ichioka, Hayashi, and Machida, 1997), anisot-
ropy of the density of states at the Fermi surface
(Hayashi, Ichioka, and Machida, 1996), anisotropy of
the s-wave energy gap (Hayashi, Ichioka, and Machida,
1997), and a combination of these effects. The precise
form of B(r) in the vortex core region will depend on
which of these interpretations is correct. For instance, if
vortex-vortex interactions are the dominant source of
this symmetry, B(r) will possess circular symmetry near

FIG. 9. The order parameter within the vortex core of an
s-wave superconductor. The length scale j1 increases as a lin-
ear function of T . From Volovik, 1993.
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the vortex center and develop a sixfold symmetry with
increasing radial distance. At low fields where the
vortex-vortex interactions are weak, the region of circu-
lar symmetry will extend further out from the vortex
center. On the other hand, if the observed sixfold sym-
metry is due to an anisotropic s-wave energy gap, B(r)
will possess sixfold symmetry even in the vortex core
region.

6. Ginzburg-Landau model

The Ginzburg-Landau theory has the spatial depen-
dence of the order parameter built in and thus provides
a phenomenological description of the magnetic-field
profile in the vortex core region. Abrikosov (1957) pre-
dicted the vortex state from a periodic solution of the
Ginzburg-Landau equations near Hc2 , and provided an
approximate analytical solution of these equations for
an isolated vortex near Hc1 . For intermediate fields the
Ginzburg-Landau equations must be solved numerically.
The magnetic-field distribution obtained from the exact
numerical solutions of the Ginzburg-Landau equations
coincides with that from the modified London model
[Eq. (30)] at low fields and arbitrary k (Fesenko et al.,
1993). Clem (1975) proposed a variational model to
solve the Ginzburg-Landau equations based upon a trial
function for the order parameter: f5r/(r21jv

2)1/2,
where jv is a variational core radius parameter. This
model solves the Ginzburg-Landau equations approxi-
mately at low magnetic fields (i.e., for isolated vortices),
yielding an analytical expression for the magnetic-field
distribution

B~r!5B0(
K

K1~jvAK21lab
22!e2iK•r

K1~jv /lab!labK
ẑ , (34)

where K1(x) is a modified Bessel function. For extreme
type-II superconductors (l@j), jv'&jab , where jab is
the Ginzburg-Landau coherence length.

Hao et al. (1991) extended the Clem model to larger
magnetic fields through the linear superposition of the
field profiles of the individual vortices. This included
multiplying the trial function for the order parameter by
a second variational parameter f` to take into account
the suppression of the order parameter due to the over-
lapping of vortices. The behavior of this parameter is
such that f`→1 as B→0, and f`→0 as B→Bc2 . Ya-
ouanc, de Réotier, and Brandt (1997) simplified Hao’s
analytical model exclusively for the case of l2Kmin

2 @1,
where Kmin is the smallest nonzero reciprocal-lattice vec-
tor. This condition is generally satisfied even at low
fields for extreme type-II superconductors, such as the
high-temperature cuprate superconductors. The result is
that the local field at any point in the â-b̂ plane due to
an applied field along the ĉ axis is

B~r!5B0~12b4!(
K

e2iK•ruK1~u !

lab
2 K2 ẑ , (35)

where K1(u) is a modified Bessel function and
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u252jab
2 K2~11b4!@122b~12b !2# . (36)

Brandt (1997) later developed an iteration method for
solving the Ginzburg-Landau equations to compute the
field profile B(r) of a vortex lattice of arbitrary symme-
try, valid for any value of the magnetic field. Equation
(35) agrees extremely well with these exact numerical
solutions of the Ginzburg-Landau equations at low re-
duced fields b .

7. Vortex lattice geometry

In employing Eq. (30) or Eq. (35), one must assume
an appropriate geometry for the vortex lattice. Theoreti-
cally, the equilibrium structure of the vortex lattice can
be found by minimizing the Gibbs free energy

GL5FL2
BH

4p
, (37)

where for instance, in the London theory, the free en-
ergy per unit volume associated with the vortices is
(Campbell, Doria, and Kogan, 1988)

FL5E @h21l2~“3h!2#d2r/8pA , (38)

where A is the area of the sample. With the field applied
along the ĉ axis of the crystal, the lowest-energy configu-
ration for an isotropic conventional s-wave supercon-
ductor was calculated to be a hexagonal vortex lattice
(Kleiner, Roth, and Autler, 1964). Numerous experi-
ments have confirmed this prediction. For instance, STS
and small-angle neutron-scattering measurements on
NbSe2 and Nb show a nearly perfect hexagonal vortex
lattice with long-range order (Hess et al., 1989; Hess,
Murray, and Waszczak, 1992; Gammel et al., 1994;
Rosov, Lynn, and Grigereit, 1994).

However, recently Yethiraj et al. (1999) have shown,
using small-angle neutron scattering, that the vortex lat-
tice in the conventional cubic superconductor V3Si well
below the superconducting transition temperature Tc
transforms from triangular to square symmetry at a field
m0H'1 T. According to the London and Ginzburg-
Landau theories, the vortex lattice should be hexagonal
in a cubic crystal for all field orientations. To explain the
appearance of a nonhexagonal vortex lattice in V3Si,
Kogan et al. (Kogan, Bullock, et al., 1997; Kogan, Mira-
nović, et al., 1997) introduced nonlocal corrections into
the London model. In Fourier space, the relation be-
tween the supercurrent density J and the vector poten-
tial A is of the form

J~K!5Q̂~K!A~K!, (39)

where Q̂ is the electromagnetic response kernel. In the
London model, Q̂(K)5l22, so that at a given point in
real space J depends only on A at that point. However,
as accounted for in the microscopic theory, the response
of a superconductor to an applied field is generally non-
local, in the sense that J(r) is determined by A(r) over a
surrounding volume of radius ;j0 . The first nonlocal
correction term has fourfold symmetry in the magnetic-
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field distribution for a field applied parallel to the ĉ axis,
which coincides with the symmetry of the underlying
crystal lattice. For other orientations of the field with
respect to the lattice, higher-order terms in the nonlocal
correction must be included to account for the symmetry
of the experimentally observed vortex lattice. The
model has also been used to describe vortex lattice sym-
metry changes in the borocarbide superconductors
RNi2Bi2C (R5Er, Lu, Y), where the vortex lattice
transforms from hexagonal to square at high field (de
Wilde et al., 1997; Eskildsem et al., 1997; Paul et al.,
1998). Since the finite size of the vortex cores is not
included, this model is strictly valid only at low fields, for
which the vortex spacing is much larger than the vortex
core size. This limits its applicability to fitting mSR spec-
tra to cases in which the vortex cores contribute very
little spectral weight to the measured line shape.

To describe the square vortex lattice that forms in the
unconventional superconductor Sr2RuO4 as a conse-
quence of a broken-time-reversal state at low T , a
Ginzburg-Landau model for a two-component odd-
parity order parameter with p-wave symmetry was de-
veloped (Agterberg, 1998; Heeb and Agterberg, 1999).
The field distribution determined from this model self-
consistently extends the fourfold symmetry into the vor-
tex core region. The precise vortex lattice symmetry, the
shape of the individual vortices, and the orientation of
the vortex lattice with respect to the underlying crystal
lattice all depend on the value of the applied field H and
the shape of the Fermi surface. For the case of Sr2RuO4,
a continuous hexagonal-to-square vortex lattice transi-
tion with increasing field is predicted.

As noted by Kogan, Miranović, et al. (1997), it is dif-
ficult to establish a simple relation between the symme-
try of the order parameter and the vortex lattice struc-
ture, since even in s-wave superconductors the latter is
sensitive to temperature, magnetic field, and orientation
with respect to the underlying crystal lattice. We next
summarize efforts to develop a model, relevant to high-
temperature superconductors, for the vortex lattice in a
dx22y2-wave superconductor.

C. Vortex lattice in a dx22y2-wave superconductor

Theoretical efforts to develop a model for vortex
structure in the high-temperature cuprate superconduct-
ors, assuming a dominant dx22y2-wave order parameter,
form a vast body of literature. In the following we out-
line some of the key advances using various theoretical
formalisms. The details of these and related theories
could very easily form the basis of a separate review
article, so a complete discussion of all the work in this
field is not possible here.

1. Two-component Ginzburg-Landau models

The problem of an isolated vortex line in a
dx22y2-wave superconductor was first seriously consid-
ered by Soininen, Kallin, and Berlinsky (1994), using a
simple microscopic model for electrons on a lattice in
the Bogoliubov–de Gennes formalism. In calculating the
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
spatial distribution of the order parameter for a single
vortex, they found that an s-wave component is induced
near the vortex core with opposite winding of phase
relative to the dx22y2-wave component. Several theoret-
ical studies (Berlinsky et al., 1995; Ren, Xu, and Ting,
1995; Xu, Ren, and Ting, 1995, 1996; Franz et al., 1996)
have considered the effect of this induced s-wave com-
ponent on both an isolated vortex and the vortex lattice,
in terms of Ginzburg-Landau equations containing both
s-wave and dx22y2-wave order parameters. In these
equations the s-wave component couples to the
dx22y2-wave component through mixed gradient terms.
Because of this coupling, the s-wave component is in-
duced by spatial variations in the dx22y2-wave order pa-
rameter that occur in the vicinity of a vortex. In a tetrag-
onal superconductor, the induced s-wave component
around the vortex reflects the fourfold symmetry of the
dx22y2-wave order parameter, whereas far from the core
the bare dx22y2-wave component exhibits circular sym-
metry. Thus, in the core region of an isolated vortex, the
magnetic-field distribution is predicted to be fourfold
symmetric, whereas outside the core region, where the
s-wave component vanishes, the field distribution has
circular symmetry.

Xu, Ren, and Ting (1996) have extended the two-
component Ginzburg-Landau theory to include the ef-
fects of anisotropy for an orthorhombic crystal
structure—which is applicable to the YBa2Cu3O72d sys-
tem. For a field applied parallel to the ĉ axis, both the
s-wave and dx22y2-wave order parameters exhibit two-
fold symmetry when g5(ma /mb)1/25la /lb5jb /ja.1
(where mi is the effective mass tensor). Heeb et al.
(1996) arrived at a similar orthorhombic reduction in
symmetry.

Near Hc2 , where the vortices are close together and
strongly interacting, the symmetry of the vortex cores is
expected to play a prevalent role in the vortex lattice
geometry. Thus at high fields the two-component
Ginzburg-Landau theory predicts that the s-wave com-
ponent near the cores induces a fourfold-symmetric vor-
tex lattice in a tetragonal superconductor, and a twofold-
symmetric vortex lattice in an orthorhombic
superconductor. However, near Tc the theory predicts
that the s-wave component becomes negligible, resulting
in a hexagonal vortex lattice.

It is important to realize that the conventional
Ginzburg-Landau equations for a dx22y2-wave super-
conductor are the same as those for an isotropic s-wave
superconductor, and thus also predict a hexagonal vor-
tex lattice geometry and circular symmetric vortex cores
(Ichioka, Enomoto, and Machida, 1997). It is the inclu-
sion of an induced s-wave component that leads to the
fourfold symmetry. On the other hand, Ichioka,
Enomoto, and Machida (1997) have argued that since
the conventional Ginzburg-Landau theory is valid only
near Tc , correction terms derived from the Gor’kov
equations must be added to extend the theory to lower
temperatures. They found that these correction terms
alone lead to a hexagonal-to-square vortex lattice tran-
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sition in a dx22y2-wave superconductor in the absence of
an induced s-wave component. Strictly speaking, the
Ginzburg-Landau theory is valid only near the
superconducting-to-normal phase boundary. For fields
further below Hc2 , additional higher-order correction
terms must be added. Alternatively, the quasiclassical
Eilenberger equations may be used, since they naturally
contain all of these additional contributions and are
valid well below the phase boundary (Ichioka, Hase-
gawa, and Machida, 1999b).

2. Quasiclassical predictions

Calculations from the quasiclassical Eilenberger
theory show that an isolated vortex in a pure
dx22y2-wave superconductor has a fourfold-symmetric
core (Schopohl and Maki, 1995; Ichioka, Hayashi, et al.,
1996b). The calculated local density of states indicates
that the low-energy quasiparticle excitations are strongly
peaked in the core but have tails extending along the
nodal directions of the dx22y2-wave order parameter.
Unlike the bound quasiparticle states in the core of an
s-wave superconductor, these states are not localized,
since the tails do not decay to zero far outside the core
region. The extended states allow for the transfer of
quasiparticles between vortices, referred to as the ‘‘vor-
tex lattice effect.’’ Above the quantum limit, the slope of
the order parameter near the core center is predicted to
decrease almost linearly with temperature (Ichioka, Ha-
yashi, et al., 1996b), analogous to the Kramer-Pesch ef-
fect in s-wave superconductors.

More recently, the full structure of the vortex lattice
in a dx22y2-wave superconductor has been studied in the
framework of the quasiclassical Eilenberger theory
(Ichioka, Hasegawa, and Machida, 1999a, 1999b). As-
suming the fourfold-symmetric vortex core structure of a
pure dx22y2-wave superconductor, it was determined
that the vortices form a square vortex lattice, except at
low fields H/Hc2,0.15, where the lower-energy con-
figuration is a hexagonal vortex lattice. At these low
fields, the vortex lattice symmetry does not reflect the
full symmetry of the vortex cores, since the core region
occupies only a small fraction of the vortex lattice unit
cell. Consequently the theoretical mSR line shape n(B)
for a dx22y2-wave superconductor is nearly identical to
that for an s-wave superconductor at low fields. In the
same studies Ichioka, Hasegawa, and Machida found
that the vortex core size increases with decreasing field
in a clean dx22y2-wave superconductor—as predicted for
an s-wave superconductor.

The Eilenberger theory has also been employed to
investigate pairing interactions, which include, in addi-
tion to the dx22y2-wave component, a component such
as s or dxy , as was first investigated with the two-
component Ginzburg-Landau theory. The second com-
ponent, which is induced by the spatial variation of the
dx22y2-wave component, results in fourfold- and
eightfold-symmetric vortex cores for the additional
s-wave and dxy-wave components, respectively (Ichioka,
Enomoto, et al., 1996a; Ichioka, Hasegawa, and
Machida, 1999b).
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3. Bogoliubov–de Gennes calculations

The vortex structure for a dx22y2-wave supercon-
ductor has been studied by a number of authors by nu-
merically solving the Bogoliubov–de Gennes equations.
Wang and MacDonald (1995) diagonalized the
Bogoliubov–de Gennes Hamiltonian for a specific lat-
tice model and determined that, unlike in the s-wave
case, the energy levels of the low-energy quasiparticle
excitations form a continuum. Later, Franz and
Tes̆anović (1998) self-consistently solved the
Bogoliubov–de Gennes theory for a single isolated vor-
tex, concluding that these quasiparticle states are not
localized in the core, but are extended along the nodal
directions of the dx22y2-wave order parameter with a
continuous energy spectrum. The result confirmed the
earlier quasiclassical calculation by Ichioka, Hayashi,
et al. (1996b), which first suggested the absence of bound
core states in a dx22y2-wave superconductor.

4. London models

Unfortunately, the above theories for a dx22y2-wave
superconductor generally contain too many independent
or unknown parameters to be used as theoretical models
for fitting mSR spectra. Affleck, Franz, and Amin (1996)
attempted to resolve this issue by generalizing the Lon-
don model to include fourfold anisotropies that could
arise from dx22y2-wave pairing in a tetragonal supercon-
ductor. Starting from a Ginzburg-Landau free-energy
density with s- and dx22y2-wave order parameters, they
derived the corresponding London equation. For a mag-
netic field applied along the ĉ axis, the field profile was
found to be

B~r!5B0(
K

e2iK•re2K2jab
2 /2

11K2lab
2 14elab

2 jab
2 ~KxKy!2 ẑ , (40)

where e is a dimensionless parameter that controls the
strength of the coupling between the s and dx22y2-wave
components. For e50, Eq. (40) reduces to Eq. (30). Un-
fortunately, the vortex lattice structure obtained by
minimizing the Gibbs free energy of Eq. (37) depends
on the choice of e, which cannot be independently de-
termined. Furthermore, the Gaussian cutoff factor
added to the London model to account for the finite size
of the vortex cores is strictly valid only at high fields.

Franz, Affleck, and Amin (1997) developed a gener-
alized London model derived from a simple microscopic
model that takes into account nonlocal electrodynamics
in a dx22y2-wave superconductor. The energy-gap func-
tion for this pairing-state symmetry is

D k̂5D0~ k̂x
22k̂y

2!, (41)

where D0 is the maximum value of the anisotropic gap.
In a tetragonal or orthorhombic system like a high-
temperature superconductor, the energy gap vanishes
along line nodes in momentum space. The nonlocal ef-
fects discussed in Sec. III.B.7 are particularly important
in a dx22y2-wave superconductor near the nodes (Kosz-
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tin and Leggett, 1997), since in general the coherence
length has an angular dependence such that

j0~ k̂ !5
\v f

pD k̂

. (42)

The divergence of j0 along the nodal directions uk̂xu
5uk̂yu means that the response of quasiparticles in the
vicinity of the nodes is highly nonlocal. The inclusion of
nonlocal effects in the dx22y2-wave London model was
shown to produce novel changes in the vortex lattice
symmetry. However, this prediction also suffers from
the use of an approximate source term, so that the influ-
ence of the vortex-core symmetry on the vortex lattice
geometry is not accounted for self-consistently.

5. Experimental observations

Experiments on the high-temperature superconduct-
ors have not provided a picture of the vortex lattice that
is entirely consistent with the theoretical models for a
dx22y2-wave superconductor. In many of these experi-
ments it has been difficult to determine how much of the
observed vortex structure is directly attributable to the
symmetry of the pairing state and how much is due to
deformations of the vortex lattice caused by extrinsic
effects. Establishing agreement with theory has also suf-
fered from the limitation that experimental techniques
used to investigate vortex structure can only probe the
low-field end of the vortex phase diagram, due to the
large values of Hc2 in the high-temperature supercon-
ductors. In the YBa2Cu3O72d system there is the added
complication of a sizable â-b̂ plane mass anisotropy, due
to the presence of CuO chains along the crystallographic
b̂ direction. Due to the orthorhombic crystal structure,
twin boundaries form along the $110% directions during
the cooldown stage of crystal growth, which separate do-
mains of interchanged â and b̂ axes. We now proceed to
discuss experiments on the high-temperature cuprate su-
perconductors performed at low temperatures with the
magnetic field applied parallel to the crystallographic ĉ
axis.

Bitter decoration experiments1 that image the vortex
lattice at the sample surface in fields of ;1023 –1022 T
have shown that the vortices form a hexagonal lattice in
YBa2Cu3O72d (Gammel et al., 1987; Dolan et al., 1989),
Bi2Sr2CaCu2O81d (Kim, Yao, and Lieber, 1996), and
Tl2Ba2CaCu2Ox (Vinnikov et al., 1989). A hexagonal
vortex lattice was also observed at higher fields in
small-angle neutron-scattering measurements on
Bi21xSr22xCaCu2O81d (Cubitt et al., 1993).

1The term ‘‘Bitter’’ refers to the conventional method of re-
vealing domain boundaries in ferromagnets by decorating the
surface with small ferromagnetic particles, which become at-
tracted by the field inhomogeneity at the domain boundaries
(Bitter, 1931). The Bitter pattern formed by the attraction of
fine ferromagnetic particles to the vortices on the surface of a
superconductor can be observed with an electron microscope.
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On the other hand, until recently small-angle neutron-
scattering measurements on large single crystals of
YBa2Cu3O72d have found that the vortex lattice has
fourfold symmetry (Forgan et al., 1990; Yethiraj et al.,
1993; Keimer et al., 1994). A fourfold-symmetric vortex
lattice was also observed at the surface of this material
at m0H56 T using STS (Maggio-Aprile et al., 1995). Al-
though fourfold symmetry is expected from vortex lat-
tice theories for a dx22y2-wave superconductor, all of
these studies were performed on heavily twinned
samples. The vortex lattice geometries observed in these
experiments can be explained by a combination of an
hexagonal lattice aligned with the twin boundaries, and
distortions caused by the â-b̂ anisotropy (Walker and
Timusk, 1995). In a more recent small-angle neutron
scattering experiment on a detwinned single crystal of
YBa2Cu3O72d , a well-ordered hexagonal vortex lattice
distorted by the â-b̂ anisotropy was observed over the
field range 0.2,m0H,4 T (Johnson et al., 1999). Hex-
agonal symmetry in this field range is consistent with
recent theoretical calculations by Ichioka, Hasegawa,
and Machida (1999b), which show that dx22y2-wave vor-
tices prefer this arrangement at low fields. However, it is
not known whether the vortex lattice that forms near Tc
persists down to low T in field-cooled samples with
strong pinning (vortex pinning is discussed in Sec.
III.D.1). This is an important issue in determining the
applicability of theories to imaging experiments.

Since high-quality single crystals have become avail-
able, the line shapes observed in mSR experiments on
high-temperature cuprate superconductors at low tem-
peratures and fields have predominantly been consistent
with the theoretical field distribution for a hexagonal
arrangement of vortices. Figure 10 shows a mSR line
shape for YBa2Cu3O72d compared to that for Sr2RuO4.
Small-angle neutron-scattering measurements show that
the vortex lattice in Sr2RuO4 has square symmetry
(Riseman et al., 1998). A square vortex lattice was in-
ferred from earlier measurements of the mSR line shape
in Sr2RuO4 single crystals (Aegerter, Lloyd, et al., 1998).
The difference between the minimum and saddle-point
fields is larger in a square lattice than in a hexagonal
lattice. Thus a large ‘‘shoulder’’ on the low-field side of
the peak of the mSR line shape is a signature of a square
vortex lattice. Strictly speaking, the difference between
the mSR line shapes for hexagonal and square vortex
lattices will depend on the values of l, j, and the applied
magnetic field. For example, with increasing l or applied
field, the line shapes for both geometries become more
symmetric due to a reduction in the field inhomogeneity.
For large l or field, the line shapes in both cases are
nearly symmetric and visually indistinguishable.

STS measurements on YBa2Cu3O72d showed that the
vortex cores at low temperature and moderate field are
ellipsoidal in shape, with the ratio of the principle axes
being essentially that of the â-b̂ plane anisotropy
(Maggio-Aprile et al., 1995). This implies that in the ab-
sence of anisotropy, the vortex cores are circular. More
intriguing was the observation of a double-peak struc-
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ture in the tunneling conductance within the vortex core
near zero bias. The peaks were attributed to a couple of
discrete bound quasiparticle states. However, this fea-
ture was not observed by Renner et al. (1998) in an STS
study of the vortex cores in under- and overdoped
Bi21xSr22xCaCu2O81d . Experiments of a different na-
ture performed on YBa2Cu3O72d (Karrai et al., 1992)
and Nd1.85Ce0.15CuO42d (Jiang et al., 1995) indicate that
a few bound quasiparticle states may exist in the vortex
cores of these materials.

It is still a matter of debate whether bound states exist
in the vortex cores of a pure dx22y2-wave or high-
temperature superconductor. Himeda et al. (1997) inves-
tigated the microscopic structure of a vortex core within
the framework of the two-dimensional t-J model devel-
oped by Zhang and Rice (1988) for CuO2 layered sys-
tems. For a wide range of hole dopings the order param-
eter has dx22y2-wave symmetry, and the local density of
states at the core shows a single peak at zero bias. The
latter finding is in agreement with the earlier lattice
model calculation by Wang and MacDonald (1995) us-
ing the Bogoliubov–de Gennes formalism, which
showed that the quasiparticle energy levels for a
dx22y2-wave vortex form a continuum with a single peak
in the local density of states at zero bias. On the other
hand, Himeda et al. found that in the low-doping region
an s-wave component is induced in the vicinity of the
core, which blocks the propagation of quasiparticles
along the nodal directions of the dx22y2-wave compo-
nent. This results in a localization of quasiparticles near

FIG. 10. Examples of a Fourier transform of the muon preces-
sion signal in Sr2RuO4 (Luke et al., 1999) and detwinned
YBa2Cu3O6.95 (Sonier, Brewer, et al., 1999). The sharp peak on
the right-hand side, which is clearly visible for Sr2RuO4, is the
background signal.
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the core, splitting the zero-energy peak in two—as ob-
served in the STS study of YBa2Cu3O72d . The model
was later extended to include longer-range hopping
terms, resulting in a slight enhancement of the peak
splitting (Ogata et al., 1998).

Franz and Tes̆anović (1998) attempted to explain the
possible existence of bound states in the high-
temperature superconductors in terms of a mixed
dx22y21idxy pairing state. For this symmetry there is a
finite energy gap everywhere at the Fermi surface that
permits localization of quasiparticles in the vortex core.
Although the local density of states calculated for these
bound quasiparticles was shown to resemble the vortex
core spectrum observed in the STS experiment on
YBa2Cu3O72d , the size of the dxy component required
to explain the STS experiment is inconsistent with other
experiments that should be sensitive to a large imagi-
nary component.

Yasui and Kita (1999) have put forth an alternative
explanation for the double-peak structure observed in
the STS experiment. They suggest that at high fields,
where the intervortex spacing is reduced, there is an in-
creased probability of low-energy quasiparticle hopping
between dx22y2-wave vortex cores, which produces the
double peak in the tunneling conductance. At low mag-
netic fields, the two peaks merge together to form the
single broad peak at zero bias calculated earlier by oth-
ers for a pure dx22y2-wave vortex (Wang and Mac-
Donald, 1995; Himeda et al., 1997; Franz and Tes̆anović,
1998). However, the double-peak structure calculated by
Yasui and Kita occurs at fields above 0.3 Hc2 , which is
approximately five times larger than the magnetic field
at which Maggio-Aprile et al. (1995) performed their
measurements on YBa2Cu3O72d . We note that a de-
tailed STS study of the field dependence of the differen-
tial tunneling conductance at the vortex core has not yet
been done.

Given the anomalous normal-state properties of the
high-temperature cuprate superconductors, it is reason-
able to expect that the nature of the vortex cores in
these materials is unconventional. One such novel pre-
diction from SO(5) theory is for the existence of an
antiferromagnetic vortex core in underdoped com-
pounds (Arovas et al., 1997; Zhang, 1997). It was sug-
gested that the mSR technique should be sensitive to
such magnetic ordering in the vortex cores—either by
observing steps in the high-field tail of the mSR line
shape, or by observing muon spin relaxation in a
longitudinal-field mSR experiment due to fluctuations of
the antiferromagnetic moments. However, a mSR study
of single-crystal underdoped YBa2Cu3O6.57 (Sonier
et al., 1998) using both transverse and longitudinal fields,
failed to provide any clear evidence for the existence of
antiferromagnetic cores.

As mentioned earlier, the measurements on
Bi21xSr22xCaCu2O81d by Renner et al. (1998) showed
no signature of bound quasiparticle states in the the low-
temperature STS spectrum inside the vortex core, unlike
similar measurments on YBa2Cu3O72d . More striking
was the observation that the gaplike structure found in
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the core strongly resembled the normal-state pseudogap
measured above Tc in zero field. How to interpret the
STS measurements on YBa2Cu3O72d is still an open
question. Since a pseudogap forms in the normal state of
YBa2Cu3O72d with the removal of oxygen, an STS study
of the vortex cores in underdoped samples would be of
great interest.

D. Pinning and thermal fluctuations

Only under ideal conditions will the vortices arrange
themselves in a perfect periodic array that is static in
time. In general, there will be some degree of disorder in
the vortex lattice due to pinning. Furthermore, like to
atoms in a crystal, the vortices are subject to thermal
fluctuations and zero-point motion. In layered supercon-
ductors the vortices become highly two dimensional. To-
gether, these phenomena can produce exotic vortex
phases that can be investigated with the mSR technique.

1. Vortex pinning

When the magnetic field applied to a type-II super-
conductor exceeds Hc1 , the total free energy of the sys-
tem is lowered by allowing partial flux penetration in the
form of vortices. Since the core of a vortex is essentially
normal, there is a cost in energy equivalent to the con-
densation energy per unit length (Hc

2/8p)pj2 for each
vortex formed. This energy gain is more than compen-
sated for by the decrease in magnetic energy per unit
length (Hc

2/8p)pl2 due to the region around the vortex
with nonzero magnetic field. However, the cost in en-
ergy due to the formation of the vortex core is lowered if
the vortex overlaps with a defect where the supercon-
ducting order parameter is already suppressed. In this
way spatial inhomogeneities in the superconducting or-
der parameter arising from impurities, structural defects,
chemical vacancies, grain boundaries, twin boundaries,
etc., exert an attractive force on the vortex. The effec-
tive range rp of the pinning force must be of the order of
j to adequately pin a vortex, since this is the smallest
length scale resolvable by the vortex core (Blatter,
Feigl’man, et al., 1994).

In magnetic fields where the repulsive interaction be-
tween vortex lines becomes significant, the pinning of
vortices to fixed positions in the superconductor can de-
form the vortex lattice from its ideal configuration. Such
deformations increase the elastic energy of the vortex
lattice (Brandt, 1977a, 1977b, 1977c, 1977d; Brandt and
Essmann, 1987). According to the collective-pinning
theory of Larkin and Ovchinnikov (1979), the equilib-
rium configuration is achieved by minimizing the sum of
the vortex line energy and the elastic energy of the vor-
tex lattice. At low magnetic fields, the interaction energy
between vortex lines is weak, so that random pinning
centers will cause only a small increase in the elastic
energy of the vortex lattice. This means that random
pinning of the vortex lines will be most prominent at low
fields. At high magnetic fields, weak pinning centers can-
not compete with the increased strength of the vortex-
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
vortex interactions. In this case, only strong pinning sites
will hold individual vortex lines in place.

In the high-temperature cuprate superconductors,
vortex lines are particularly susceptible to pinning be-
cause of the short coherence lengths and the weak cou-
pling between the CuO2 planes, which gives way to
highly flexible vortices (Blatter, Feigel’man, et al., 1994).
Due to this flexibility, the vortices can become twisted,
distorted, or entangled (Sudbo” and Brandt, 1991a,
1991b) (see Fig. 11). According to Brandt (1991), ran-
domly positioned stiff vortex lines will always broaden
the mSR line shape, whereas the pinning of segments of
highly flexible vortex lines will sharpen the measured
magnetic-field distribution.

In the high-temperature cuprate superconductors,
oxygen vacancies (Daeumling, Seuntjens, and Larbales-
tier, 1990) and twin boundaries (Kwok et al., 1990) are
the major sources of vortex pinning. The oxygen vacan-
cies are weak, random pointlike pinning centers. As dis-
cussed in Sec. III.C.5, twin-boundary pinning can alter
the orientation of the vortex lattice with respect to the
underlying crystal lattice. If the spacing of twins is not
commensurate with the equilibrium vortex lattice, the
latter will become distorted near the twin boundaries or
possibly throughout the sample, depending on the
strength of the vortex-vortex interactions. If the vortex
lines are rigid, pinning by rough surfaces can dominate
the vortex lattice configuration in the bulk of thin films
or powdered samples.

The strength of vortex pinning can be studied by de-
termiming the sensitivity of the mSR line shape to small
changes in magnetic field (Sonier et al., 1994). Figure
12(a) shows the FFT of the muon spin precession signal
in a detwinned crystal of YBa2Cu3O6.95 after cooling to
T55 K in a magnetic field of m0H51.50 T. When the
field is decreased by 0.02 T, the residual background
signal shifts down to the new applied field m0H51.48 T
[see Fig. 12(b)]. On the other hand, the signal originat-
ing from the sample does not shift in response to the
small change in H . This indicates that the vortex lattice
is firmly pinned by defects other than twin planes. The
absence of any detectable background peak in the un-
shifted signal implies that there are no nonsupercon-
ducting inclusions in the sample.

2. Thermal depinning and vortex lattice melting

At low temperatures, vortices are essentially frozen
into a configuration. As the temperature is increased,

FIG. 11. Vortex lines: (a) twisted; (b) distorted; (c) entangled.



786 Sonier, Brewer, and Kiefl: mSR studies of the vortex state
thermal fluctuation of the vortex positions becomes im-
portant. Thermal fluctutations in the high-temperature
cuprate superconductors are considerably stronger than
in conventional superconductors, due in part to smaller
values of j, higher values of Tc , which allow for high
thermal energies to be reached in the superconducting
state, and the layered nature of these compounds.

Strong thermal fluctuations smooth out the effective
pinning potential experienced by the vortex core, thus
greatly reducing the pinning strength (Feigel’man and

FIG. 12. Fourier transform of the muon spin precession signal
in detwinned YBa2Cu3O6.95: (a) after field cooling to T55 K in
a magnetic field m0H51.50 T; (b) after field was lowered by
0.02 T with the sample temperature kept at T55 K.
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Vinokur, 1990). The depinning of vortices results in the
so-called ‘‘irreversibility line’’ in the H-T phase dia-
gram, such that above H irr(T) the magnetic response of
the sample becomes reversible. This also coincides with
the region in which vortices are free to move in response
to the Lorentz force created by a very small applied
current. A consequence of the reversible region is that it
removes the sharp resistive transition associated with
the upper critical-field line Hc2(T). In the high-
temperature superconductors, H irr(T),Hc2(T), al-
though the precise location of the irreversibility line is
expected to depend on the nature and degree of pinning
in the sample. By contrast, H irr(T)'Hc2(T) in conven-
tional superconductors.

The shape of the FFT of YBa2Cu3O6.95 in Fig. 12(b)
changes with increasing temperature due to the increase
in the values of lab and jab . However, the sample signal
remains unshifted (see Fig. 13), which indicates that the
vortices are still strongly pinned. Eventually, the tem-
perature is large enough that thermal fluctutations depin
some of the vortex lines. Raising the temperature fur-
ther results in thermal depinning of the remaining vorti-
ces. By contrast, a mSR study of NbSe2 showed that the
pinning of vortices is weak in this material (Sonier et al.,
1997b). Even at low temperatures, a small shift in the
applied field always resulted in a simultaneous fre-
quency shift of the sample and background signals.

If the vortex fluctuations are sufficiently large, the
vortex lattice may undergo a transition into a liquid
phase above a characteristic phase line Hm(T) (Brezin,
Neslon, and Thiaville, 1985; Nelson, 1988; Houghton,
Pelcovits, and Sudbo” , 1989; Nelson and Seung, 1989). In
the liquid phase, the vortices are not pinned and the
interaction force between vortices is weak. As a result
there is a loss of long-range spatial order. Experiments
have now established that the transition from a liquid to
FIG. 13. The ‘‘field-shifted’’ mSR frequency
spectrum from Fig. 12 after warming the
sample to T50.49, 0.75, 0.86, and 0.95Tc .
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solid vortex phase is first order in clean high-
temperature cuprate superconductors (see, for example,
Safar et al., 1992; Kwok et al., 1994; Fendrich et al., 1996;
Schilling et al., 1996; Welp et al., 1996). However, in the
presence of pinning-induced disorder, the first-order
transition from the liquid phase is modified—possibly to
a ‘‘vortex-glass’’ phase (Feigel’man et al., 1989; Fisher,
1989; Fisher, Fisher, and Huse, 1991) for weak, ran-
domly distributed point defects, or to a ‘‘Bose glass’’
phase (Nelson and Vinokur, 1992) for correlated de-
fects. The precise origin of vortex lattice melting is still
open to question. The entanglement of vortex lines (see,
for example, Nonomura, Xu, and Tachiki, 1999) and the
proliferation of large vortex loops (Nguyen, Sudbo” , and
Hetzel, 1996) have been offered as possible mechanisms.

There are numerous theoretical predictions for the
temperature dependence of Hm (see, for example,
Brandt, 1989; Houghton, Pelcovits, and Sudbo” , 1989;
Nelson and Seung, 1989; Feigel’man and Vinokur, 1990;
Vinokur et al., 1990) which are based on the Lindemann
criterion (Lindemann, 1910). In this picture the vortex
lattice is expected to melt when the root-mean-square
(RMS) thermal average of the vortex displacements
from their equilibrium position ^u2&1/2 exceeds some
small fraction cL of the intervortex spacing L . Typically
the Lindemann number cL is of the order 0.1, although
experimentally some variation in this number is ex-
pected, since the Lindemann criterion does not take into
account the effects of vortex pinning in real supercon-
ductors.

In moderate magnetic fields, Hc1!H!Hc2 , the melt-
ing transition in the H-T phase diagram is reasonably
described by the power-law relation Hm(T);(Tc
2Tm)n. Brandt (1989) and at the same time Houghton,
Pelcovits, and Sudbo” (1989), considered a nonlocal elas-
tic theory for the vortex lattice and arrived at a power-
law exponent n52. Blatter and Ivlev (1993, 1994) later
argued that this result is really only valid close to Tc .
They performed a more rigorous calculation that took
into account the suppression of the order parameter
near Hc2(T), as well as quantum fluctuations, to yield a
melting line better described with a smaller value of n .
This prediction is supported by several experiments on
YBa2Cu3O72d , which report exponents with n,1.45
(Krusin-Elbaum et al., 1991; Safar et al., 1992; Schilling,
Ott and Wolf, 1992; Safar et al., 1993; Kwok et al., 1994;
Liang, Bonn, and Hardy, 1996; Welp et al., 1996; Billon
et al., 1997). Some experiments have reported values of
n'4/3, the critical exponent expected within the 3D XY
critical regime (Fisher, Fisher, and Huse, 1991).

3. Pancake vortices

Although YBa2Cu3O72d is a layered material, near
optimal doping the vortex lattice behaves essentially in a
three-dimensional (3D) manner over a significant frac-
tion of the H-T phase diagram. This is not the case for
Bi21xSr22xCaCu2O81d or underdoped YBa2Cu3O72d ,
where the coupling between planes is very weak even
well below Tc . For these materials it is useful to think of
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
a vortex line as being composed of a stack of aligned
two-dimensional (2D) ‘‘pancake’’ vortices, where the
pancakes are located within the CuO2 superconducting
layers (Clem, 1991) [see Fig. 14(a)]. The Lawrence-
Doniach model (Lawrence and Doniach, 1971) provides
a reasonable theoretical description of the situation. In
this model, adjacent superconducting layers are sepa-
rated by an insulating layer of thickness s . The vortex
pancakes in adjacent layers are coupled by Josephson
tunneling currents and electromagnetic interactions. The
relevant parameter in the Lawrence-Doniach model is
the ratio between the ĉ-axis coherence length jc and s .
When jc /s.& there is no phase difference in the order
parameter between adjacent superconducting layers, so
that in the absence of pinning, the vortex lattice exhibits
3D behavior—equivalent to the anisotropic London and
Ginzburg-Landau models. On the other hand, when
jc /s,& there is a phase difference and the Lawrence-
Doniach theory describes a quasi-2D vortex structure.
The Lawrence-Doniach model will not be an adequate
description of a superconductor in which the material
between the superconducting layers is metallic instead
of insulating, since then the ‘‘proximity effect’’ will be-
come important.

A mSR experiment performed by Kossler et al. (1998)
has provided strong evidence for pancake vortices in
Bi2Sr2CaCu2O81d single crystals. A magnetic field was
applied at an angle of 45° to the ĉ axis of the crystals
while cooling to T52 K, after which the field was turned
off. Figure 15 shows FFT’s of the muon spin precession
signals recorded before and after turning off a field of
m0H50.01 T. The positron detectors U-D measured the
field component along the ĉ-axis direction, whereas the
F-B detectors measured the field component in the
â-b̂ plane. The loss of signal in the F-B detectors and
the asymmetric line shape observed in the U-D detec-
tors after turning off the field indicate that the muons
are precessing around an internal magnetic field associ-
ated with pinned pancake vortices whose screening cur-
rents flow in the â-b̂ plane. When the same experiment
was performed on a large single crystal of
YBa2Cu3O72d , signals were observed in both pairs of
detectors with the field turned off. This is exactly what
one expects for 3D vortices pinned along the direction
of the applied field.

FIG. 14. Vortex lattice phases in layered superconductors: (a)
vortex lattice composed of perfectly aligned pancake vortices;
(b) pancake vortices ordered within the layers, but misaligned
between layers; (c) melted vortex lattice where the pancake
vortices are also decoupled between layers.
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In a clean superconductor at low temperatures, pan-
cake vortices in adjacent layers are aligned. However, in
the presence of random inhomogeneities, pinning will
displace some of the pancakes and cause a suppression
of the phase coherence between layers (Koshelev,
Glazman, and Larkin, 1996). The effects of random
pinning-induced misalignment of pancake vortices on
the measured mSR line shape have been the focus of
several studies (Brandt, 1991; Harshman et al., 1991,
1993; Lee et al., 1993; Bernhard et al., 1995; Koshelev,
Glazman, and Larkin, 1996; Kossler et al., 1997). These
effects include truncation of the high-field tail and a re-
duction in both the linewidth and the line shape asym-
metry. When the magnetic field is increased, the interac-
tion between pancake vortices within a layer will
eventually exceed the interlayer coupling strength of the
pancake vortices. In this case, random pinning in the
layers will lead to a misalignment of the pancake vorti-
ces between layers [see Fig. 14(b)]. Thus a dimensional
crossover from a 3D to a 2D vortex structure at a field
Hcr(T) can be induced by random vortex pinning.

Below the melting transition, Harshman et al. (1993)
observed a narrowing and a loss of asymmetry in the
mSR line shape for Bi21xSr22xCaCu2O81d after cooling
the sample in a high magnetic field applied parallel to
the ĉ axis (see Fig. 16). Furthermore, the observed sym-
metric line shape was centered about the average inter-
nal field, which is inconsistent with a moderately disor-
dered Abrikosov lattice. The mSR line shape could be fit
to a model assuming pancake vortices disordered along
the ĉ axis by random pinning.

To quantify the observed changes in the shape of the
measured field distribution, Lee et al. (1993) introduced
the so-called skewness parameter,

a5^~DB !3&1/3/^~DB !2&1/2, (43)

FIG. 15. Fourier transform of the muon spin precession signals
recorded in the U-D and F-B positron detectors for
Bi2Sr2CaCu2O81d single crystals: upper panels, cooled to T
52 K in a magnetic field m0H50.01 T applied 45° to the crys-
tallographic ĉ-axis direction; lower panels, with the field subse-
quently turned off. From Kossler et al., 1998.
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where ^(DB)n&5^(B2^B&)n& are the nth moments of
the mSR line shape. For a well-ordered vortex lattice,
the value of a is typically close to unity. At low tempera-
tures and high magnetic fields, a crossover from 3D to
2D was identified in Bi2.15Sr1.85CaCu2O81d by Lee et al.
from a sharp drop in a (see Fig. 17) and a simultaneous
reduction of the mSR linewidth. Transverse-field mSR
and torque magnetometry measurements show that the
crossover field depends upon the projection of the ap-
plied field along the ĉ-axis direction (Aegerter, Hofer,
et al., 1998),

Hcr~u!5Hcr~0 !/cos~u!, (44)

where u is the angle between the applied field and the ĉ
axis. Transverse-field mSR measurements have also

FIG. 16. Fourier transform of the muon spin precession signal
in Bi2Sr2CaCu2O81d crystals after cooling in a field m0H
51.5049 T to T56 K (open circles): dotted curve, the Fourier
transform expected for a hexagonal arrangement of vortex
lines; solid curve, a fit assuming random disorder of pancake
vortices along the ĉ-axis direction. From Harshman et al.,
1993.

FIG. 17. Magnetic-field dependence of the skewness param-
eter a [defined in Eq. (43)] in single-crystal
Bi2.15Sr1.85CaCu2O81d after field cooling to T55 K. The sharp
drop in a at m0H;50 mT is attributed to a 3D to 2D crossover
in the vortex lattice. From Lee et al., 1993.
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shown that the crossover field Hcr shifts to higher fields
in the presence of columnar defects formed by irradition
with fast heavy ions (Lee et al., 1998). The pinning intro-
duced along the length of the columnar defects provides
an additional mechanism to couple the pancake vortices
from adjacent layers.

Although a ‘‘dimensional crossover’’ is a reasonable
interpretation, there are other possible explanations for
the observed changes of the mSR line shape in
Bi21xSr22xCaCu2O81d as the applied field is increased
across Hcr . For example, it has been proposed that the
Abrikosov lattice transforms to a phase of entangled
vortices at high field (Marchetti and Nelson, 1990). A
pinning-induced transition from a weakly disordered
Bragg glass phase (Giamarchi and Le Doussal, 1995) to
a strongly disordered vortex glass (or pinned liquid)
phase (Fisher, Fisher, and Huse, 1991) is another pos-
sible explanation. Recently, Menon, Dasgupta, and Ra-
makrishnan (1999) showed that the small mSR line-
widths observed in Bi21xSr22xCaCu2O81d at low
temperatures and high fields are consistent with a glassy
phase in which the short-range positional correlations of
the vortices resemble those just above the melting tran-
sition.

A mSR study of Bi2.15Sr1.85CaCu2O81d single crystals
with different oxygen stoichiometries showed that the
crossover field obeys the relation (see Fig. 18, Aegerter
et al., 1996)

Bcr5F0 /lab
2 , (45)

where Bcr was determined from the drop in a and lab
was determined from the London expression

B02Bsad5
2
3

F0

4plab
2 ln~2 !, (46)

where B02Bsad is the difference between the average

FIG. 18. The crossover field Bcr as a function of lab
22: s, from

mSR measurements in Bi2.15Sr1.85CaCu2O81d (BSCCO); l,
from magnetization measurements in BSCCO; d, from mag-
netization measurements in Tl2Sr2CaCu2O81d (Tl-2212). The
solid line represents the relation Bcr5F0 /lab

2 . From Aegerter
et al., 1996.
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internal field and the saddle-point field of an ideal vor-
tex lattice. The results agree well with magnetization
measurements, which are also shown in Fig. 18. Equa-
tion (45) is consistent with a vortex state in which the
interlayer coupling of pancake vortices is dominated by
electromagnetic interactions rather than Josephson cou-
pling. Electromagnetic interactions are expected to
dominate in highly anisotropic compounds in which g
.lab /s , where s is the interlayer spacing and g
5lc /lab . This is the case in the Bi21xSr22xCaCu2O81y
and Tl2Sr2CaCu2O81d systems, but not in the less aniso-
tropic system HgBa2Ca3Cu4O101d (Aegerter et al.,
1996). In the latter compound the crossover field is bet-
ter approximated by

Bcr5F0 /~gs !2, (47)

as expected for a vortex system dominated by interlayer
Josephson coupling.

A high-field crossover has also been observed in the
mSR line shape of underdoped YBa2Cu3O6.60 at low
temperatures (Sonier et al., 2000). Figure 19 shows the
mSR line shape after cooling the sample in a field m0H
'2.89 T to T52.5 K, followed by an increase in the field
m0DH'0.01 T. The small background signal is posi-
tioned at the internal field B52.90 T, whereas the signal
originating from the sample looks as though the external
field is still m0H52.89 T—indicating that the vortex lat-

FIG. 19. Fourier transform of the muon precession signal in
twinned YBa2Cu3O6.60 after field cooling at m0H'2.89 T to
T52.5 K followed by an increase in the field to 2.90 T. The
middle and bottom panels are the mSR line shapes upon warm-
ing the crystal to T519.8 and 23.0 K, respectively (Sonier
et al., 2000).
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tice is strongly pinned. However, the mSR line shape
displays a low-field tail rather than the high-field tail as-
sociated with an ordered or moderately disordered 3D
structure. Numerical calculations performed by
Schneider, Schafroth, and Meier (1995), which account
for the sample geometry (see Sec. II.B), show that such
a line shape can originate from a system of 2D pancake
vortices that are ordered within the CuO2 layers, but
disordered between adjacent layers. As in the case for
Bi21xSr22xCaCu2O81d , there are several other disor-
dered vortex lattice phases that may explain the ob-
served changes of the mSR line shape in YBa2Cu3O6.60
at low temperatures and high fields.

Misalignment of pancake vortices can also occur via
thermal fluctuations [see Fig. 14(c)], which is opposed by
Josephson and electromagnetic coupling between pan-
cake vortices in adjacent superconducting layers. Be-
cause the strength of the intralayer vortex-vortex inter-
actions increases with increasing magnetic field, the
effect of thermal fluctuations on the vortex lattice in a
highly anisotropic material is expected to be very differ-
ent in the regions of weak and strong magnetic fields.
The muon detects the field averaged over the fluctua-
tions, since the typical time scale for thermal fluctuations
of the vortices is ;10210 s (Song et al., 1993), much
shorter than the time range 2p/gmdB , where gm is the
muon gyromagnetic ratio and dB is the range of the field
fluctuation at the muon site. The rapid fluctutation of a
vortex about its average position smears the magnetic
field out over an effective radius ^u2&1/2 (Brandt, 1991),
thus increasing the size of the vortex cores measured
with mSR. The smearing effect reduces the average
value of the field in the vortex core, leading to a prema-
ture truncation of the high-field tail of the mSR line
shape. A similar effect will result from the quantum-
mechanical motion of vortices, which are expected to
dominate fluctuations at extremely low temperatures.

Lee et al. (1993, 1995; Lee, Aegerter, et al., 1997,
1998) have performed several mSR studies of thermal
fluctuation effects on the vortex lattice in
Bi21xSr22xCaCu2O81d . The melting transition was de-
termined by observing simultaneous sharp reductions in
a and the second moment ^DB2&1/2 of the field distribu-
tion as a function of temperature (see Fig. 20). The
negative values of a above Tm result from the presence
of a low-field tail in the mSR line shape associated with
the sample geometry. Good agreement has been ob-
tained between numerical calculations of the mSR line
shape for a 2D vortex liquid in a platelike sample
(Schneider, Schafroth, and Meier, 1995) and the line
shapes measured by Lee et al. in the melted phase. The
value of Tm is reduced with increasing applied magnetic
field, because ^u2&1/2 increases relative to the intervortex
spacing. On the other hand, a mSR study by Lee, Ae-
gerter, et al. (1998) showed that thermal fluctuations of
the vortices are strongly suppressed by the addition of
columnar defects, such that Tm is independent of the
value of the applied field.

The phase line measured by Lee, Aegerter, et al.
(1997) in Bi2.15Sr1.85CaCu2O81d is shown in Fig. 21. For
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
T,Tem the data suggest that electromagnetic coupling
between the pancake vortices in adjacent superconduct-
ing layers controls the form of the melting line, as indi-
cated by a fit to the theoretical prediction of Blatter

FIG. 20. Temperature dependence of the skewness parameter
a (at m0H530 mT) and the line width ^(DB)2&, at m0H510
and 30 mT, in Bi2.15Sr1.85CaCu2O81d crystals after field cooling.
The simultaneous sharp drop in both parameters at Tm is evi-
dence for a vortex lattice melting transition. From Lee, Ae-
gerter, et al., 1997.

FIG. 21. Vortex B-T phase diagram for Bi2.15Sr1.85CaCu2O81d

determined by Lee, Aegerter, et al. (1997): solid curve, a fit to
the melting line predicted by Blatter et al. (1996) for the case
in which the coupling between pancake vortices is predomi-
nantly electromagnetic; dashed curve, a fit to the predicted
decoupling transition (Blatter et al., 1996) in which the vortex
lines break apart into 2D (pancake) vortices.



791Sonier, Brewer, and Kiefl: mSR studies of the vortex state
FIG. 22. Temperature dependence of the
skewness parameter a and the second mo-
ment ^(DB)2& in overdoped, optimally
doped, and underdoped Bi2Sr2CaCu2O81d

single crystals after cooling in fields of m0H
5100, 27.5, and 5 mT to T55 K. Tm and TIL
denote the temperatures of the intraplanar
melting and the interplanar decoupling tran-
sitions, respectively. From Blasius et al., 1999.
et al. (1996). On the other hand, for T.Tem the data
were better fit with the theoretical curve for decoupling
of the pancake vortices in adjacent layers (Blatter et al.,
1996). Since the location of the phase line measured by
mSR was close to where small-angle neutron-scattering
experiments determined the loss of a vortex lattice to
be, it was concluded that the intralayer melting and the
interlayer decoupling transitions occurred either simul-
taneously or very close together. However, more recent
mSR measurements by Blasius et al. (1999) on under-
doped to overdoped Bi21xSr22xCaCu2O81d have been
interpreted as evidence for a two-stage melting transi-
tion in which the intralayer coupling is first overcome by
thermal fluctuations, followed by interlayer decoupling
(see Fig. 22). Furthermore, the intralayer melting transi-
tion is found to fall below the irreversibility line,
whereas the interlayer decoupling of pancake vortices
coincides with the irreversibility line.

The melted phase in underdoped YBa2Cu3O6.60 has
been observed with mSR in twinned and detwinned
samples (Sonier et al., 2000). Figure 23 shows the tem-
perature dependence of a and lab

22 . The latter was ex-
tracted assuming the field profile of Eq. (35) for an Abri-
kosov lattice. Below the melting temperature Tm , lab

22 is
roughly proportional to the mSR linewidth. However,
above Tm the vortex lattice cannot be modeled with Eq.
(35), as shown by the unphysical decrease in lab

22 to zero.
The failure of Eq. (35) to describe the measured field
distribution above Tm and the sharp drop in the value of
a provide strong evidence for a melting transition. Al-
though there appears to be only a single transition sig-
nifying the onset of the melted phase, more data points
in the vicinity of this transition are needed to confirm
this. The results of this study are summarized in the
phase diagram of Fig. 24. The low-field phase transition
is best fit to a decoupling curve, as was the case for
Bi21xSr22xCaCu2O81d (Lee, Aegerter, et al., 1997).
Thus at low fields the melted phase of underdoped
YBa2Cu3O6.60 appears to consist of a liquid of 2D vorti-
ces, rather than a liquid of 3D vortex lines.

A mSR investigation of the organic superconductor
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k-(BEDT-TTF)2Cu(SCN)2 was the first experiment to
clearly identify the existence of an Abrikosov lattice in
this material (Lee, Pratt, et al., 1997). At low fields and
temperatures the existence of this structure was evident
from the mSR line shape, which showed the characteris-
tic high-field tail. Upon increasing the field, a transition
to a symmetric line shape was observed and identified as
a dimensional crossover in the vortex structure at
m0Hcr(T)'7 mT. An additional crossover was observed

FIG. 23. Temperature dependence of a and lab
22: * , in de-

twinned YBa2Cu3O6.60 single crystals after cooling in a field
m0H51.25 T; s, in twinned single crystals at m0H50.74 T; d,
twinned single crystals at m0H51.49 T. From Sonier, Brewer,
et al., 2000.
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at low fields with increasing temperature. This transition
was found to be consistent with Clem’s (1991) prediction
for the thermally induced breakup of vortex lines com-
prising weakly coupled pancake vortices.

4. The peak effect

In some low- and high-Tc superconductors, the
magnetic-field dependence of the critical current density
Jc(H) approaches an anomalous maximum value at
some intermediate field. The phenomenon known as the
‘‘peak effect’’ arises from an increase in pinning due to a
decrease in the rigidity of the vortex lattice. In conven-
tional low-Tc superconductors the peak effect is ob-
served near the upper critical field Hc2 and has been
attributed to an elastic softening of the vortex lattice due
to a reduction in the value of the order parameter as the
normal state is approached (Crabtree and Nelson, 1997).

A mSR study of NbSe2 (Rao et al., 1998) showed that
the peak effect in this material is accompanied by a
sharp change in the internal magnetic-field distribution.
In particular, a sudden drop of the skewness parameter
a as a function of temperature was observed, indicating
a sharp reduction in the spatial order of the vortex lat-
tice. The temperature at which the transition occurred
coincided with the onset of the peak-effect region ob-
served in ac magnetic susceptibility measurements as a
function of temperature. Similar findings were reported
in a study of CeRu2 (Yamashita et al., 1997), in which
the mSR line shape showed a sudden decrease in width
at a field coinciding with the emergence of the peak ef-
fect.

IV. THE MAGNETIC PENETRATION DEPTH

A. Temperature dependence

1. Meissner state

The precise nature of the supercurrent response to an
applied magnetic field depends on the relative sizes of

FIG. 24. The vortex B-T phase diagram for YBa2Cu3O6.60: d ,
detwinnned single crystals; s, twinned single crystals; solid
curve Bdc

J (T), a fit to the theoretical decoupling transition pre-
dicted by Blatter et al. (1996) for B,Bcr . From Sonier,
Brewer, et al., 2000.
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the characteristic length scales l and j and the angular
dependence of the energy gap function D k̂ . As discussed
in Sec. III.B.7, the supercurrent response is local when
l.j , in which case the supercurrent density Js is essen-
tially uniform on the scale of j. The supercurrent re-
sponse is linear when Js scales exactly with the super-
fluid velocity vs , such that Js52ensvs .

In the conventional London model (London and Lon-
don, 1935) the supercurrent response is both local and
linear. For a static magnetic field B(0) applied parallel
to a planar vacuum-superconductor interface, the mag-
netic penetration depth may be defined as (Tinkham,
1996)

l5
1

B~0 !
E

0

`

B~r !dr , (48)

where r is the distance into the superconductor mea-
sured from the surface, and B(r) is a function describing
the decay of the magnetic field into the superconducting
region. In the London model B(r) and Js(r) decay ex-
ponentially with distance inside the superconductor,
such that at T50 K

1

lL
2 5

4pnse
2

m* c2 , (49)

where lL is the London penetration depth, and ns and
m* are the local density and effective mass of the super-
conducting carriers, respectively. Within this simple pic-
ture, lL is independent of magnetic field. As the tem-
perature T is increased, quasiparticle excitations reduce
ns , so that the magnetic penetration depth increases
with T such that lL→` as T→Tc . In a pure s-wave
superconductor in which there is an isotropic energy gap
D(T) at the Fermi surface, the precise form of the tem-
perature dependence at low T was predicted from BCS
theory. In particular, for a clean superconductor in
which T!Tc , the number of quasiparticles excited to
energy states above the gap is exponentially activated,
such that (Muhlschlegel, 1959)

l~T !2l~0 !.ApD~0 !/2kBT exp@2D~0 !/kBT# .
(50)

On the other hand, if there are line or point nodes in the
energy gap function D k̂ , a power-law dependence is ex-
pected, where l(T)2l(0)}Tn, n51, 2, 3, or 4 (Gross
et al., 1964; Annett, Goldenfeld, and Renn, 1991). The
nodes provide a conduit for extremely-low-energy qua-
siparticle excitations, so that significant pair breaking
may occur at very low T .

Hirschfeld and Goldenfeld (1993) derived an approxi-
mate analytical expression for the magnetic penetration
depth at low temperatures in a dx22y2-wave supercon-
ductor, namely,

l~T !2l~0 !.l~0 !C
T

D~0 !
, (51)

where C5ln(2) for a circular Fermi surface. There is
now considerable evidence for limiting T behavior for
Dl(T) in hole-doped high-temperature superconduct-
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ors. Following the first such finding by Hardy et al.
(1993) from microwave measurements performed in the
Meissner state of high-quality crystals of YBa2Cu3O6.95 ,
there have been reports of a strong linear-T term in
clean single crystals of YBa2Cu3O72d (Mao et al., 1995;
Srikanth et al., 1997), Bi21xSr22xCaCu2O81d (Jacobs
et al., 1995;Lee et al., 1996; Shibauchi et al., 1996; Wald-
mann et al., 1996), Tl2Ba2CuO61d (Broun et al., 1997),
and magnetically aligned powders of crystalline
HgBa2Ca2Cu3O81d (Panagopoulos et al., 1996). A linear
variation of l with temperature has also been reported
in detwinned single crystals (Zhang et al., 1994) and thin
films (de Vaulchier et al., 1996) of YBa2Cu3O72d .

Experiments on high-temperature cuprate supercon-
ductors that show T dependences other than linear are
often explained in terms of extrinsic effects. A conse-
quence of the nodes in the superconducting energy gap
is that the physical properties of these materials are ex-
tremely sensitive to impurities and crystalline defects
(Annett, Goldenfeld, and Leggett, 1996). A model of
impurity scattering in a dx22y2-wave superconductor
predicts a disorder-induced crossover of the low-
temperature behavior of l(T) from T to T2 depen-
dence, due to the finite density of states at the Fermi
level induced by the impurities (Annett, Goldenfeld,
and Renn, 1991; Prohammer and Carbotte, 1991; Hir-
schfeld and Goldenfeld, 1993; Hirschfeld, 1995; Sun and
Maki, 1995). The residual density of states accounts for
the low-temperature penetration depth of experiments
involving substitution of copper in the CuO2 planes of
YBa2Cu3O6.95 with small quantities of the nonmagnetic
impurity Zn and the magnetic impurity Ni (Bonn et al.,
1994)—assuming Ni is a much weaker scatterer than Zn
(i.e., the Zn scattering is in the unitary limit, whereas the
Ni scattering is in the Born limit). However, the model
fails to describe the temperature dependence of micro-
wave conductivity at low temperatures. Franz, Kallin
et al. (1997) have pointed out that the suppression of the
order parameter in the vicinity of the impurity sites must
be taken into account in any theory. Recently, Hettler
and Hirschfeld (1999) have developed a theory that in-
cludes the strong suppression of the order parameter
around nonmagnetic impurity sites. The new model
gives the correct low-temperature behavior of the micro-
wave conductivity and predicts a larger enhancement of
the low-temperature penetration depth. On the other
hand, there is little change in the temperature depen-
dence of the penetration depth compared to the dirty
dx22y2-wave model, which neglects the suppression of
the order parameter.

The penetration depth and Tc in the high-temperature
superconductors are very sensitive to irradiation-
induced point defects. In particular, defects introduced
by the displacement of Cu or O atoms in the CuO2 lay-
ers strongly suppress superconductivity (see, for ex-
ample, Legris et al., 1993). In general, samples with a
high degree of chemical purity and homogeneity are
needed to observe the intrinsic behavior of l. The qual-
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
ity of the sample surface is also important for Meissner-
state measurements, since the supercurrents flow within
;103 Å from the surface.

An exception in the high-temperature superconductor
family appears to be the electron-doped compounds.
For instance, measurements of lab(T) in
Nd1.85Ce0.15CuO4 single crystals are consistent with
s-wave BCS theory and show no evidence of a linear-T
term (Wu et al., 1993; Anlage et al., 1994). Furthermore,
in contrast to the hole-doped systems, Zn substitution of
Cu has little effect, whereas Ni substitution drastically
suppresses superconductivity (see, for example, Felner
et al., 1990). Recently, Maki and Puchkaryov (1998)
have proposed that the strong effect of Ni substitution
can be described by the Abrikosov-Gor’kov theory of
magnetic impurities in an s-wave superconductor (Abri-
kosov and Gor’kov, 1961).

Nevertheless, Cooper (1996) has shown that the mea-
sured low-T penetration depth can be greatly affected
by the strong Nd moments in Nd1.85Ce0.15CuO4. Further-
more, impurities and chemical inhomogeneity may play
a significant role in many of the experiments performed
on electron-doped superconductors. It is known that a
small amount of excess oxygen is detrimental for super-
conductivity in these systems (Fortune et al., 1991; Zhu
and Manthiram, 1994) and removal of oxygen via a high-
temperature reduction process usually results in evapo-
ration of Cu from the surface (Brinkmann et al., 1996).
To properly address whether or not the electron-doped
compounds are dx22y2-wave superconductors will re-
quire samples with a high degree of oxygen homogene-
ity and an experimental technique that probes the bulk,
such as mSR.

2. Vortex state

Measurements of the temperature dependence of l
with mSR are unique in that the magnetic penetration
depth is determined in the vortex state. This is in con-
trast to excluded-volume techniques such as microwave
cavity perturbation, inductive methods, and far-infrared
reflectivity, which measure l(T) [or Dl(T)] in the
Meissner state. With mSR one measures the length scale
l associated with decay of the field from the normal
vortex core into the surrounding superconducting
medium—rather than decay of the field from vacuum
into the surface of the superconductor. A natural conse-
quence is that l measured by mSR is a length scale char-
acteristic of the bulk material. We note that mSR cannot
directly measure l along a single crystallographic direc-
tion. Thus measurements are limited to mixed quanti-
ties, such as lab5(lalb)1/2. However, a simple scaling
argument can be used to show that the mSR line shape is
unaffected by anisotropy unless defect pinning is also
involved (Sonier, Kiefl, et al., 1997a).

Recent advancements in the development of ultralow-
energy (,30 keV) muon beams (Morenzoni et al., 1994)
has made it possible to implant muons near the surface
of a sample. Niedermayer et al. (1999) have observed
changes in the mSR line shape across the surface of a
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YBa2Cu3O72d thin film, which are consistent with theo-
retical calculations based on the London model for the
emergence of vortex lines through the surface. The
value of lab extracted from the data was found to agree
with that determined from other techniques. Ultralow-
energy muons have also been used to measure lab in the
Meissner state. Measurements on a YBa2Cu3O72d thin
film (Jackson et al., 2000) show that the field exponen-
tially decays inward from the sample surface, as pre-
dicted by London theory. Increasing the intensity of the
low-energy muon beam is the next technical obstacle to
overcome before performing a full study of lab at the
surface. We restrict further discussion in this review ar-
ticle to ‘‘conventional’’ mSR measurements performed
in the bulk.

The limiting T behavior of l(T) that is expected for a
dx22y2-wave superconductor with nodes in the energy
gap has been observed with mSR in the high-
temperature cuprate superconductors. The first unam-
biguous report was a mSR study on high-quality twinned
single crystals of YBa2Cu3O6.95 (Sonier et al., 1994). In
this study, the modified London model [see Eq. (30)]
and hexagonal symmetry were assumed for the field pro-
file B(r) of the vortex lattice. Although this result
clearly showed that lab changed linearly as a function of
temperature at low T , it was later realized that the cho-
sen sum over reciprocal-lattice vectors in Eq. (30) was
too small. Figure 25 shows the temperature dependence
of lab

22 obtained by refitting the mSR time spectra at
m0H50.5 T from Sonier et al. (1994) with the analytical
Ginzburg-Landau model [see Eq. (35)]. The solid curve
in Fig. 25 represents the zero-field microwave measure-
ments of Dlab(T)5lab(T)2lab(1.35 K) performed by
Hardy et al. (1993) on similar high-quality twinned
YBa2Cu3O6.95 crystals. To plot lab

22(T) for the micro-
wave data, the extrapolated value of lab(1.35 K) from
the mSR experiment was used. The excellent agreement

FIG. 25. Temperature dependence of lab
22 in single-crystal

YBa2Cu3O6.95 at m0H50.5 T (solid circles): solid curve, the mi-
crowave measurements of Dlab by Hardy et al. (1993) con-
verted to lab

22 using the mSR value of lab(0); dashed curve,
the variation with temperature expected for a conventional
s-wave superconductor.
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between the measurements in the vortex state and those
in the Meissner state indicate that the variation of the
superfluid denisty ns as a function of temperature is
identical in both phases. It also suggests that thermal
fluctuations of the vortices play a minor role in the tem-
perature dependence of lab

22 measured with mSR. This is
not surprising given the strong pinning at low T in this
material.

Despite the good agreement with the microwave mea-
surements, it is perhaps necessary to address the follow-
ing questions: How sensitive are the mSR measurements
of lab(T) to (i) the assumed model for B(r), (ii) the
assumed geometry of the vortex lattice, and (iii) the
presence of twin boundaries in the crystal? Figure 26
shows the temperature dependence of lab

22 in
YBa2Cu3O6.95 determined from fits to the modified Lon-
don and Ginzburg-Landau models for B(r), assuming a
hexagonal arrangement of vortices. Although the quality
of the fits is comparable for the two models, the absolute
value of lab is significantly different. Fitting the data in
Fig. 26 to a linear relation gives lab(0)'1185(17) Å
and 1115(15) Å for the modified London and Ginzburg-
Landau models, respectively. Despite this difference, the
coefficient of the term linear in T is comparable for the
two models. Thus dlab /dT can be determined with rea-
sonable accuracy, independent of the model for B(r).

Figure 26 also shows the temperature dependence of
lab

22 for fits to the modified London model, assuming a
square vortex lattice. The quality of the fits to the mSR
time spectra was found to be slightly worse than for the
hexagonal case. A fit to a linear relation gives lab(0)
'1185(17) Å and 1333(24) Å for the hexagonal and
square vortex lattice geometries, respectively. On the
other hand, the coefficient of the term linear in T agrees
for the two geometries. This result is consistent with the
theoretical work by Affleck, Franz, and Amin (1996),
who showed that including additional terms in the free

FIG. 26. Temperature dependence of lab
22 in single-crystal

YBa2Cu3O6.95 at m0H50.19 T determined from fits to the
modified London model [Eq. (30)] and the Ginzburg-Landau
(GL) model [Eq. (35)] for the field profile B(r). Fits to the
modified London model are shown assuming a hexagonal
(Hex.) and square (Sq.) geometry for the vortex lattice. The
linear fits are discussed in the text.



795Sonier, Brewer, and Kiefl: mSR studies of the vortex state
energy of the vortex state produces only minor changes
in the internal field distribution. Thus reliable informa-
tion concerning l(T) and j(T) can still be obtained in a
mSR experiment even when the vortex lattice geometry
is unknown.

Figure 27 shows the temperature dependence of lab
22

in a twinned and detwinned crystal of YBa2Cu3O6.95 at
m0H50.5 T. The presence of the twins does not seem to
affect the qualitative behavior of lab(T). There are
however, differences in the absolute value of lab be-
tween the twinned and detwinned crystal. This is likely
due to distortions of the vortex lattice caused by the
combination of the â-b̂ anisotropy and the twin-
boundary pinning. As before, differences in the assumed
and actual geometry of the vortex lattice lead to larger
uncertainty in the absolute value of lab , but do not
greatly affect the determined value of dlab /dT .

Since lab
22 is not the only quantity that contributes to

the width of the mSR line shape, we mention here the
behavior of the additional broadening parameter s f pre-
sented in Eq. (14). The temperature dependence of this
quantity in YBa2Cu3O6.95 at two different magnetic
fields is shown in Fig. 28(a). The behavior of s f as a
function of T is similar to that of lab

22 . To determine the
degree of disorder in the vortex lattice, one can subtract
in quadrature the contribution of the nuclear moments
to the muon depolarization rate,

sdis
2 5s f

22sdip
2 . (52)

The contribution from the nuclear dipolar moments sdip
is approximately the muon depolarization rate in the
normal state. An upper limit for the root-mean-square
displacement ^s2&1/2 of the vortices from their ideal po-
sitions in the vortex lattice due to random pinning can
be obtained from sdis through the relation (Riseman
et al., 1995)

^s2&1/2'
sdis

B0
&S (

K

K2

@11K2lab
2 /~12b !#2D 2 1/2

. (53)

Figure 28(b) shows the temperature dependence of

FIG. 27. Temperature dependence of lab
22 in a single crystal of

YBa2Cu3O6.95 at m0H50.5 T: s, twinned; j, detwinned.
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^s2&1/2 in YBa2Cu3O6.95 plotted as a percentage of the
intervortex spacing L5(2f0 /)B0)1/2 in a ‘‘disorder-
free’’ hexagonal Abrikosov vortex lattice. The small dis-
order in the vortex lattice is essentially temperature in-
dependent and, as expected, larger at m0H50.2 T than
at m0H51.5 T. Moreover, the agreement as a percent-
age of L suggests that the disorder scales with the
nearest-neighbor distance between vortex lines. This re-
sult is inconsistent with a dramatic change in the vortex
lattice geometry over this narrow field range. Similar re-
sults are found in NbSe2.

A limiting T behavior has been observed for lab
22 in

mSR studies on other high-temperature superconduct-
ors. In particular, Luke et al. (1997) found that lab

22 var-
ied as a linear function of T at low temperature in
La1.85Sr0.15CuO4 single crystals (see Fig. 29). A linear T
dependence has also been reported for the muon depo-
larization rate s in unoriented polycrystalline samples of
Ca- and La-doped YBa2Cu4O8 (Shengelaya et al., 1998;
see Fig. 30) and more recently by Panagopoulos et al.
(1999) in polycrystalline samples of La22xSrxCuO4 and
HgBa2CuO41d . In the polycrystalline studies, a Gauss-
ian distribution of local fields was assumed in the analy-
sis of the mSR spectra. Although one can assume that a
Gaussian approximation in a clean polycrystalline
sample roughly gives s(T)}l22(T), we shall show in
the next section that s(H) cannot be considered a mea-
sure of l22(H).

FIG. 28. Temperature dependence of (a) the additional broad-
ening parameter s f and (b) the RMS displacement ^s2&1/2 of
the vortices from their ideal positions expressed as a percent-
age of the intervortex spacing L , in YBa2Cu3O6.95: s, at
m0H50.2 T; d, at m0H51.5 T.
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It is still an open question why a linear T dependence
of s was not clearly observed in previous mSR studies on
polycrystalline samples. It is likely that some of the early
attempts at measuring s(T) resulted in misleading con-
clusions, partly because of problems with sample quality.
On the other hand, many of the early studies clearly
suffered from a lack of sufficient data points at low tem-
perature. For example, Ansaldo et al. (1991) observed a
clear departure of s(T) from conventional BCS behav-
ior in YBa2Cu4O8, which they attributed to the existence
of two energy gaps corresponding to electronic states in
the double chains and in the CuO2 layers. However, no
measurements were taken below 10 K, where the effect
of the nodes in the superconducting energy gap on the
temperature dependence of the superfluid density is
most distinguishable from conventional behavior.

Aegerter, Lloyd, et al. (1998) estimated the tempera-
ture dependence of lab in single-crystal Sr2RuO4 from

FIG. 29. Temperature dependence of lab
22 in La1.85Sr0.15CuO4

single crystals: s, at m0H50.20 T; j, at m0H50.35 T. From
Luke et al., 1997.

FIG. 30. Temperature dependence of the muon depolarization
rate s in polycrystalline samples of pure, Ca-doped, and La-
doped YBa2Cu4O8. From Shengelaya et al., 1998.
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the second moment ^DB2&1/2 of the measured field dis-
tribution. The temperature dependence of lab

22 at low T
could be represented by a linear function, indicating the
presence of nodes in the energy gap function. However,
the scatter of the data was such that results were also
consistent with a saturation of lab at low T , as expected
in the absence of nodes.

It is interesting to note that Uemura et al. (1988) ob-
served a clearly linear T dependence of s in powdered
samples of YBa2Cu3O6.95 and YBa2Cu3O6.66 . Unfortu-
nately, the authors concluded that the increase of l (cal-
culated from s) with increasing temperature at low T
was not fast enough to arise from nodes at the Fermi
surface in the energy gap.

Very recently, Luke et al. (1999) determined lab(T)
in Sr2RuO4 single crystals from fits to the measured
muon spin precession signal, which assumed the field
distribution of the orbital Ginzburg-Landau supercon-
ductivity model described in Sec. III.B.7 (Agterberg,
1998; Heeb and Agterberg, 1999). As shown in Fig. 31,
lab

22 was found to be nearly independent of T at low
temperatures. This result is consistent with a supercon-
ducting energy gap with no nodes, as expected for a
p-wave (odd-parity) E2u state. This state, which breaks
time-reversal symmetry and has only one superconduct-
ing transition, was inferred from an earlier zero-field
mSR study (Luke et al., 1998).

B. Magnetic-field dependence

1. Nonlinear effects

In general, the response of a superconductor to an
applied magnetic field is nonlinear. Bardeen (1954) first
considered a nonlinear supercurrent response for a con-
ventional s-wave superconductor, arising from the ther-
mal population of quasiparticles. The superflow vs in-
duced by the magnetic field results in a semiclassical
Doppler shift of the quasiparticle energy levels by an
amount proportional to vs•vf , where vf is the Fermi ve-

FIG. 31. Temperature dependence of lab
22 in Sr2RuO4 single

crystals at m0H512 mT. From Luke et al., 1999.
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locity. The quasiparticle levels with velocity vf in oppo-
site direction to vs are shifted to lower energies. These
quasiparticle excitations form a backward-flowing cur-
rent, which produces a ‘‘nonlinear’’ relationship be-
tween Js and vs . This weakening of the supercurrent
response results in an increased penetration of the field,
i.e., a field dependence for l. In particular, at low tem-
peratures in the Meissner state, l is predicted to change
quadratically with H ,

l~H ,T !

l~0,T !
511b1~T !F H

H0~T !G
2

, (54)

where H0(T) is a characteristic field on the order of the
thermodynamic critical field Hc(T), and b1(T) is a
thermally activated prefactor that decreases as
exp(2D/T) for T→0 K. The nonlinear effects are rel-
evant at fields above H0(T) and below a characteristic
crossover temperature T* (H). The field dependence is
typically weak in an s-wave superconductor because the
finite gap prevents the shifted levels from being occu-
pied at low T .

Yip and Sauls (1992) proposed that the field depen-
dence of l in the Meissner state could be used to deter-
mine the angular position of nodes in the energy gap.
The excited quasiparticle levels near the nodes with vf in
the opposite direction to vs are shifted by the field to
energies below the Fermi level EF , resulting in a strong
field dependence of l. In a dx22y2-wave superconductor
at T50 K, l is predicted to change linearly with H at
low T (Yip and Sauls, 1992; Stojković and Valls, 1995;
Xu, Yip, and Sauls, 1995),

l~H ,T !

l~0,T !
511b2~T !F H

H0~T !G , (55)

where b2(T) is a temperature-dependent coefficient
that remains finite at T50 K due to the nodes in the
gap. The absolute value of b2(T) depends on the direc-
tion of the field relative to the nodes, with the strongest
field dependence occurring for vs flowing along the di-
rection of the nodes. According to this theory, l(H ,T)
is a linear function of H and a quadratic function of T
below T* (H), and a quadratic function of H and a lin-
ear function of I above T* (H).

Maeda et al. (1995) observed a linear H dependence
of lab in Bi2Sr2CaCu2O8 thin films, but at relatively high
temperatures where the Yip and Sauls theory predicts
an H2 behavior. Similar findings were reported in
YBa2Cu3O72d and Tl2Ba2CaCu2Oy (Maeda et al., 1996).
The nonlinear effects observed in these studies have
since been attributed to extrinsic effects. More recent
measurements by Bidinosti et al. (1999) using a novel ac
susceptometer show that Dl(H) in YBa2Cu3O6.95 does
not exhibit the temperature dependence or directional
field dependence predicted by Yip and Sauls. Recently,
Li, Hirschfeld, and Wölfe (1998) have shown that the
expected linear H dependence can be modified by non-
local effects not considered in the original Yip and Sauls
theory.
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2. Nonlocal effects

Nonlocal effects were discussed in Sec. III.B.7 and
Sec. III.C.4. In a dx22y2-wave superconductor, nonlocal
effects are most important at low temperatures, where
the quasiparticles predominantly occupy regions near
the gap nodes. Kosztin and Legget (1997) determined
that, in the Meissner state, this small fraction of the
Fermi surface governed by nonlocal electrodynamics re-
sults in a crossover from T to T2 dependence for l at
extremely low T . Thus either nonlinear or nonlocal ef-
fects modify the linear T dependence of l to a quadratic
T dependence below a characteristic temperature T* .
To observe this experimentally, one must distinguish
these effects from the T2 dependence that can arise
from sample impurities.

The presence of nonlocal effects at low T also modi-
fies the linear H dependence of l expected solely from
nonlinear effects—since the supercurrent response is
weakened by the nonlocal electrodynamics of quasipar-
ticle excitations near the nodes in the superconducting
energy gap.

3. Extension to the vortex state

Observing nonlinear and nonlocal effects in the vortex
state is complicated by the fact that the relative spacing
between vortices is reduced when the applied field is
increased. Thus the measured field dependence of l will
be strongly influenced by the nature of the vortex-vortex
interactions. The associated change in the spatial varia-
tion of field between neighboring vortices means that
mSR measurements of l(H) are more sensitive to the
model used for B(r) than measurements of l(T).

To illustrate this point, Fig. 32 shows the field depen-

FIG. 32. Magnetic-field dependence of lab in NbSe2 at T
52.3 K, determined from fits to three different models for the
field profile B(r) of the vortex lattice, i.e., the London model
[Eq. (30)], with Gaussian and Lorentzian cutoff factors, and
the analytical Ginzburg-Landau model [Eq. (35)]. The solid
lines are fits to lab(H)5lab(0)@11bh# where lab(0), b are
m, 1659(16) Å, 1.85(7); s, 1323(11) Å, 1.62(6); j, 1398(24) Å,
0.8(1).
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dence of lab in NbSe2 at T52.3 K over the range 0.03
,H/Hc2,0.31, obtained by fitting the mSR time spectra
with a polarization function assuming one of three dif-
ferent models for B(r). A linear H dependence for
lab(H) is clearly observed in all three cases; however,
both the absolute value of lab and the slope dlab /dH
are different. This suggests that lab(H) partially reflects
the uncertainty of the theoretical model used for B(r).
At low fields there is good agreement between the modi-
fied London model using a Lorentzian cutoff factor and
the Ginzburg-Landau model. This is reasonable since
the Lorentzian cutoff is strictly valid only at low reduced
fields b5B/Bc2 . On the other hand, the modified Lon-
don model using a Gaussian cutoff gives a significantly
higher value for lab and a stronger field dependence.
The Gaussian cutoff, however, is derived from the solu-
tion of the Ginzburg-Landau equations near Hc2 and is
thus not really appropriate for measurements at low b .
Apart from this model dependence, lab appears to have
a residual field dependence of intrinsic origin—possibly
associated with nonlinear effects.

The field dependence of lab in YBa2Cu3O6.95 was in-
vestigated by Sonier, Kiefl et al. (1997a) using the modi-
fied London model for B(r). Here we have reanalyzed
the experimental data using the more appropriate
Ginzburg-Landau model [see Eq. (35)], which properly
accounts for the finite size of the vortex cores. Figure 33
shows a comparison of the normalized field dependence
of lab in YBa2Cu3O6.95 to that in NbSe2 (Sonier, Kiefl,
et al., 1997b), at T50.33 Tc . As expected, the field de-
pendence of lab is considerably stronger in
YBa2Cu3O6.95 due to the nonlinear and nonlocal electro-
dynamics of the quasiparticle excitations near the gap
nodes. A field dependence for lab

22 at low T was also
observed by Luke et al. (1997) in a mSR experiment on
single crystals of La1.85Sr0.15CuO4 (see Fig. 29).

Recently, a new experiment was performed by Sonier,
Brewer, et al. (1999) on YBa2Cu3O6.95 to precisely deter-
mine the behavior of lab as a function of H . A novel
high-magnetic-field spectrometer was developed to ex-
tend the measurements well above m0H52 T. At m0H
54 T and 6 T, lab

22(T) was found to be nearly indepen-
dent of temperature at low T [see Fig. 34]. The well-

FIG. 33. Magnetic-field dependence of lab(H/Hc2)/lab(0) at
T50.33Tc : d, in YBa2Cu3O6.95 where Hc2(0.33Tc)595 T; s,
in NbSe2 where Hc2(0.33Tc)52.9 T.
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established linear T dependence of lab is expected to be
observed only at temperatures above the energy scale of
the nonlinear and nonlocal effects. Amin, Affleck, and
Franz (1998) numerically calculated the influence of
these effects on the vortex state of a dx22y2-wave super-
conductor. They found that the nonlocal response to the
applied field alters the spatial dependence of the local
magnetic field by suppressing the local maximum of
B(r) at the vortex center. The effect on the magnetic-
field distribution is enhanced at higher fields due to the
increased vortex density. With increasing field there is
greater overlap of the regions in the vicinity of the vor-
tex cores modified by the nonlocal effects. Because non-
local effects are not incorporated into the analysis of the
mSR experiment, deviations from the fitted model for
B(r) (which assumes lab is independent of H) result in
a field dependence for the extracted lab This does not
imply a change of the superconducting carrier density.
There is also an additional, but smaller, contribution to
lab(H) from nonlinear effects. Amin, Affleck, and
Franz (1998) calculated the field dependence of the ef-
fective penetration depth in almost the same way it was
determined from the mSR experiment. Their results for
the combined calculation of both nonlinear and nonlocal
effects are shown in Fig. 35, compared to the measured
field dependence of lab in YBa2Cu3O6.95 extrapolated to
T50 K (Sonier, Brewer, et al., 1999). The agreement is
remarkable and offers strong support for the present
theoretical picture of how the magnetic field influences
the low-lying quasiparticle excitations in the vortex state
of a high-temperature cuprate superconductor. More re-
cently, the temperature dependence of lab has been cal-
culated from this model taking into account only the
nonlocal corrections (Amin, Franz, and Affleck, 2000).
Although good agreement with the mSR measurements
is obtained at high magnetic fields, the theoretical result

FIG. 34. Temperature dependence of lab
22 in detwinned single

crystals of YBa2Cu3O6.95 at m0H50.5 T and 6.0 T. At interme-
diate temperatures the two data sets agree. The difference be-
tween these sets at T'65 K is attributed to vortex lattice melt-
ing at m0H56.0 T. The low-T behavior is attributed to
nonlocal and nonlinear effects as discussed in the text. From
Sonier, Brewer, et al., 1999.
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does not exhibit the limiting T behavior observed at low
fields.

Recently, Wang and MacDonald (1999) performed a
microscopic calculation of the field dependence of the
penetration depth in the vortex state of s- and
dx22y2-wave superconductors. They found that the effec-
tive penetration depth measured in a mSR experiment
increases with increasing magnetic field for both types of
superconductors. However, consistent with the work of
Amin, Affleck, and Franz (1998), they found a stronger
field dependence in the dx22y2-wave case due to the
nonlinear and nonlocal supercurrent response. Further-
more, the linear T dependence of l at low temperature
(which is a signature of dx22y2-wave superconductivity)
was predicted to cross over to a T2 dependence at
kBT* ;(H/Hc2)1/2D0 , where D0 is the maximum of the
superconducting energy gap in the Meissner state.
Agreement with the data in Fig. 34 can be obtained as-
suming reasonable values of the upper critical field Hc2
and D0 .

The effective lab(H) measured with mSR can of
course also be influenced by changes in the vortex lattice
geometry, since this also alters the functional form of
B(r). The neutron experiment by Johnson et al. (1999)
on detwinned YBa2Cu3O6.95 appears to rule out any
change in vortex lattice geometry over the field range
considered in the mSR experiment. As discussed in Sec.
III.C.2, this does not necessarily imply that the symme-
try of the individual vortices is unchanged—since the
vortex lattice will reflect the symmetry of the individual
vortices only at higher fields, where the vortices strongly
interact.

Finally, it should be clear that the correct field depen-
dence of lab cannot be obtained in a mSR experiment by
assuming a Gaussian distribution of local fields. Even in
the absence of nonlinear and nonlocal effects, the shape
of the field distribution n(B) changes with increasing

FIG. 35. Magnetic-field dependence of lab(0,H)/lab(0,0) in
detwinned single crystals of YBa2Cu3O6.95: s, extrapolated to
T50 K; l, predicted behavior (Amin, Affleck, and Franz,
1998) for the combination of nonlinear and nonlocal effects in
the vortex state of a dx22y2-wave superconductor. From So-
nier, Brewer, et al., 1999.
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field due to the changing vortex density. We emphasize
the shortcomings of the simple Gaussian analysis by not-
ing that the experimental data of Sonier, Brewer, et al.
(1999) showed only a small dip in the Gaussian depolar-
ization rate s at high field and low temperature, but no
crossover to a nearly T-independent region as found in
the full analysis of the mSR line shape.

4. Charge and impurity doping

There have been numerous transverse-field mSR stud-
ies of the dependence of l on charge or impurity doping
in high-temperature cuprate superconductors. The ma-
jority of these experiments were performed on polycrys-
talline samples, assuming a Gaussian distribution of
muon precession frequencies and that the depolarization
rate from the fitted Gaussian relaxation function
exp(2s2t2/2) obeys the simple relationship s}l22

}ns /m* . Generally speaking, this a reasonable approxi-
mation at low temperatures and magnetic fields in clean
polycrystalline samples, where ‘‘clean’’ means free of
impurities. Nevertheless, the reader should be aware
that, in unoriented polycrystalline samples, s contains
contributions from la , lb , and lc , and thus partially
reflects changes in coupling strength between supercon-
ducting layers.

In a series of mSR experiments on samples with dif-
ferent charge-carrier concentrations, Uemura et al.
(1988, 1989, 1991, 1993) established universal behavior
for the variation of Tc with s(0), where s(0) is the
muon depolarization rate extrapolated to T50 K. In the
high-temperature superconductors the slope of Tc vs
s(0) was found to increase in the underdoped regime,
saturate for optimal doping, and then decrease in the
overdoped regime (see Fig. 36). Organic
(BEDT-TTF)2Cu(SCN)2, alkali-doped C60, and some
other superconductors were found to fall on the same
universal curve. Studies of overdoped Tl2Ba2CuO61d
showed that s(0) tends toward zero and Tc is strongly
suppressed with increased hole doping (Niedermayer
et al., 1993; Uemura et al., 1993). Assuming that s(0)
}l(0)22}ns /m* , Uemura (1995a, 1995b, 1997) pro-
posed that the universal correlation between Tc and
ns /m* in high-temperature cuprate superconductors
arises from an evolution from Bose-Einstein to BCS
condensation with increasing carrier concentration ns .
For low values of ns , singlet pairs form above Tc at the
so-called pseudogap temperature T* and then upon
cooling undergo Bose-Einstein condensation at Tc . On
the other hand, with increasing ns , Tc increases whereas
T* decreases. At optimal doping, the value of Tc is
equivalent to T* , so that pair formation and condensa-
tion occur simultaneously (i.e., BCS condensation).

It has been pointed out that not all of the high-
temperature superconductors follow the ‘‘Uemura line.’’
Tallon et al. (1995) showed that s(0) in polycrystalline
samples of YBa2Cu3O72d , Y2Ba4Cu7O152d , and
YBa2Cu4O8 is enhanced above the Uemura line when
d→0 (see Fig. 37). These compounds differ from the
other high-temperature superconductors in that they



800 Sonier, Brewer, and Kiefl: mSR studies of the vortex state
contain CuO chains in addition to the CuO2 planes. As
d→0, the chains become free of disorder, so it was con-
cluded that the enhanced values of s(0) are due to an
additional contribution to ns from carriers on the chains
participating in superconductivity.

The temperature dependence of lab
22 determined from

mSR measurements on single-crystal YBa2Cu3O6.60 (So-
nier, Brewer, et al., 1997, 2000) is shown in Fig. 23(b).
Above the vortex lattice melting transition Tm(H) it is
not straightforward to extract lab . The observed rapid
reduction of lab

22 above Tm(H) is an artifact of the mod-
eling procedure (which assumes a regular Abrikosov
vortex lattice) and arises from a sudden loss of asymme-
try in the mSR line shape in the melted region. At low
temperatures, where lab

22 is observed to vary as a linear
function of T , the slope d@lab /lab(0)#/d(T/Tc) is
weaker than in the optimally doped compound. These
measurements show excellent agreement with micro-
wave cavity measurements (Bonn et al., 1996) of
Dlab(T)5lab(T)2lab (1.25 K) in zero dc magnetic
field (see Sonier, Brewer, et al., 1997). The microwave
measurements show that the strength of the term linear
in T/Tc changes substantially as a function of oxygen
doping only in the b̂ direction, i.e., the direction of the
CuO chains. One possible interpretation of this result is
that disorder in the CuO chains causes pair breaking
(Atkinson, 1999).

The substitution of Zn for planar Cu in the high-
temperature superconductors has attracted considerable
attention. Small concentrations of Zn drastically reduce

FIG. 36. Tc vs muon depolarization rate s(0) in (i)
the high-temperature superconductors: YBa2Cu3O72d

(123), La22xSrxCuO4 (214), Bi2Sr2CaCu2O8, and
Tl0.5Pb0.5Sr2CaCu2O7 (2212), and Bi22xPbxSr2Ca2Cu3O10 ,
Tl2Ba2Ca2Cu3O10, and Tl0.5Pb0.5Sr2Ca2Cu3O9 (2223) [note:
hole doping increases with increasing s(0)]; (ii) Ba12xKxBiO3
(BKBO); (iii) the Chevrel-phase systems LaMo6Se8, LaMo6S8,
and PbMo6S8; (iv) the organic superconductor
(BEDT-TTF)2Cu(SCN)2; (v) the conventional supercon-
ductor Nb; and (vi) the heavy-fermion superconductors UPt3
and UBe13. From Uemura et al., 1991.
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
Tc and alter the temperature dependence of l at low T
(Bonn et al., 1994). In the normal state, Zn induces a
weak magnetic moment, which affects the magnetism as-
sociated with neighboring Cu atoms (Alloul et al., 1991;
Mahajan et al., 1994). However, in the superconducting
state these moments may be screened by quasiparticles,
so their role in the superconducting state is still under
investigation.

Bernhard, Tallon, et al. (1996) measured the decrease
of s(0) due to Zn substitution in polycrystalline samples
of Y0.8Ca0.2Ba2(Cu12yZny)3O72d and overdoped
La0.79Sr0.21Cu12yZnyO4. They observed a reduction of
s(0) with increasing Zn concentration, which they at-
tributed to pair breaking in a dx22y2-wave supercon-
ductor due to unitary scattering by the Zn impurities
(see Sec. IV.A.1).

A similar mSR study by Nachumi et al. (1996) on
La22xSrx(Cu12yZny)O4 and YBa2(Cu12yZny)3O6.63
yielded qualitatively similar data, but was interpreted in
the context of their so-called ‘‘swiss cheese’’ model—
whereby the suppression of the superconducting order
parameter in the region of the Zn impurity leads to the
exclusion of superconducting charge carriers within an
area pjab around the Zn atom. Spontaneous phase
separation into charged regions, similar to the swiss
cheese model, was offered as a possible explanation for
the observed decrease in Tc vs s(0) in the overdoped
regime of the Uemura plot. Currently, there is growing

FIG. 37. Tc vs the zero-temperature muon depolarization rate
s(0). (a) ‘‘Universal’’ behavior of underdoped La-214 (open
circles), Y-123 (solid circles), and Bi-2223 (open circle)
systems (Uemura et al., 1991), and behavior of the overdoped
Tl-2201 (open squares) system (Niedermayer et al., 1993; Ue-
mura et al., 1993). (b) Complete oxygen doping range for d,
Y-123 (Pümpin et al., 1990b; Uemura et al., 1991); n, Y-247;
,, (Y,Ca/La)-124 and YBa2(Cu, Zn)O8. From Tallon et al.,
1995.
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evidence that all high-temperature cuprate supercon-
ductors possess either static or dynamic phase separa-
tion into charge-rich and antiferromagnetic charge-poor
regions—also known as stripes.

An interesting finding in the study by Nachumi et al.
was that the Zn-impurity-doped samples fell on the
same universal curve as the pure samples with various
hole dopings (different oxygen concentrations), as
shown in Fig. 38. This implies that the relationship be-
tween Tc and the ratio ns /m* does not depend on the
nature of doping—in particular, whether the materials
are charge or impurity doped. However, Bernhard et al.
(1998) pointed out that their own measurements on
heavily Zn-substituted Y0.8Ca2(Cu12yZny)3O72d lie pre-
dominantly to the left of the universal line in Fig. 38,
consistent with the model for impurity scattering in a
dx22y2-wave superconductor. Nachumi et al. (1998) re-
sponded to this comment by suggesting that large con-
centrations of Zn could result in semimacroscopic phase
separation in which a large fraction of the sample vol-
ume is not superconducting. Furthermore, they argued
that in dirty samples (i.e., large Zn concentration) where
the mean free path becomes comparable to the size of
the superconducting coherence length, s is no longer
approximately proportional to l22 (or ns). Either of
these factors could explain why the data for heavily Zn-
doped samples fall to the left of the universal Tc vs s(0)
plot.

Another point of contention in these studies is the
suppression of Tc with increasing disorder. That is, the
dx22y2-wave impurity model overestimates the suppres-
sion of Tc with increasing Zn concentration. However,
as shown previously by Franz, Kallin, et al. (1997) and
discussed in Sec. IV.A.1, the problem is alleviated by
taking into account the suppression of the dx22y2-wave
order parameter in the vicinity of the Zn impurities. The
swiss cheese model is conceptually the same as this latter
picture.

FIG. 38. Tc vs muon depolarization rate s(0) in La-214 and
Y-123 systems, and the overdoped Tl-2201 system: solid sym-
bols: Zn-substituted; open symbols, pure. The solid line is the
universal behavior found in the underdoped cuprate supercon-
ductors. The Zn-substituted systems show the same behavior
as the oxygen-doped pure systems. From Nachumi et al., 1996.
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
V. THE VORTEX CORE SIZE

Recently, mSR has been used to determine the size of
the vortex cores in single-crystal superconductors (So-
nier et al., 1997b; Sonier, Brewer, et al., 1997, 1999; So-
nier, Kiefl, et al., 1999). The mSR technique has several
distinct advantages over STS, which has also been used
to measure the size of vortex cores (Hartmann,
Drechsler, and Heiden, 1993; Volodin, Golubov, and
Aarts, 1997). First, since mSR is a bulk technique, it is
insensitive to most effects the sample surface has on the
vortices. For instance, calculations by Kirtley et al.
(1999) show that the apparent size of a vortex can in-
crease by as much as 30% at the sample surface. Recent
measurements of the mSR line shape across the surface
of a YBa2Cu3O72d thin film using ultralow-energy
muons has confirmed this effect (Niedermayer et al.,
1999; see Sec. IV.A.2). The enhanced pinning effects at
the sample surface can disorder the vortex lattice,
changing the nature of the vortex-vortex interactions,
which certainly play some role in the core size. Only for
the case of rigid vortex lines will pinning at the surface
influence the vortex structure in the bulk. Second, mSR
measurements can be performed deep in the supercon-
ducting state at low temperatures (using a dilution re-
frigerator) and at low magnetic fields. On the other
hand, STS measurements are typically performed at
higher fields where the vortices are easy to locate. STS is
also technically difficult to perform at temperatures well
below T'2 K. To date, mSR is the only technique that
has been able to measure the effective core size deep in
the superconducting state of a high-temperature super-
conductor.

The definition of the vortex core size is not well estab-
lished, since there exists no discontinuity in the spatial
dependence of theoretical quantities between the core
and the surrounding superconducting medium. A com-
monly used definition comes from Ginzburg-Landau
theory, where the core radius r0 is defined as the dis-
tance from the vortex axis to where the superconducting
order parameter rises to 1/& of its maximum value. This
is essentially where the supercurrent density uJs(r)u
reaches its maximum value (see Fig. 1). In a mSR experi-
ment, the supercurrent density Js(r) is obtained from
the fitted field profile B(r) using the Maxwell relation
J(r)5(c/4p)“3B(r). The core size r0 is then the dis-
tance from r50 (i.e., the core center) to the value of r
where uJs(r)u reaches its maximum value. As discussed
in Sec. III.B.3, the behavior of r0 is similar to j1 , which
is related to the slope of the order parameter at the
vortex core center. Thus a change in the value of r0
reflects a change in the length scale for spatial variations
of the supercurrent density near the center of the vortex.
Outside the vortex core (i.e., r.r0), Js(r) decays alge-
braically as 1/r , and at distances beyond r.l , Js(r) de-
cays exponentially with increasing radial distance r .

Because mSR measures an ensemble-averaged polar-
ization function, r0 represents the average size of the
vortex cores in the sample, whereas STS probes indi-
vidual vortices. The accuracy of the measurement hinges
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upon the following important detail: The correct Js(r)
profile only requires that a good fit to the data is obtained,
independent of the theoretical model used for B(r). This
is because the curl of any function B(r) that fits the data
well gives the same Js(r) profile. In practice, the finite
number of counts in the core region, coupled with the
fact that a ‘‘perfect’’ fit of the measured field distribution
is never achieved, leads to some uncertainty in the value
of r0 .

A. Magnetic-field dependence

The dependence of r0 on magnetic field has been
measured with mSR in single-crystal NbSe2 (Sonier
et al., 1997b), which has a well-ordered hexagonal Abri-
kosov vortex lattice at fields above ;25 G (Hess et al.,
1989; Hess, Murray, and Waszczak, 1992; Gammel et al.,
1994; Volodin et al., 1998). An example of a fit to the
measured muon spin precession signal taken from this
study is shown in Fig. 39. The theoretical polarization
function was generated assuming that the field profile
B(r) is given by the analytical Ginzburg-Landau model

FIG. 39. Transverse-field mSR measurement in the vortex
state. Upper panel, muon spin precession signal in NbSe2 after
cooling in a field m0H50.19 T to T52.3 K. The solid curve is a
fit assuming Eq. (35) for the field profile B(r) of the vortex
lattice. Lower panel: solid curve, Fourier transform of the mea-
sured muon spin precession signal; and the Fourier transform
of the fit to the muon spin precession signal. The shaded region
is the background signal. Inset: Theoretical field distribution
n(B) corresponding to the function B(r) used to fit the time
spectrum.
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[see Eq. (35)]. The magnetic-field distribution n(B) cor-
responding to the fit function B(r) is shown in the inset,
and the FFT’s of the measured muon spin precession
signal and the fitted theoretical muon polarization func-
tion are shown in the lower panel. The broadening ef-
fects associated with the FFT (see Sec. II.E) are appar-
ent in a comparison of n(B) with the FFT of the fitted
polarization function. The deviation of the fit on the
low-field side of the mSR line shape is attributed to the
sample geometry effect discussed in Sec. III.D.3. As de-
scribed in Sec. V, r0 is extracted from the peak of the
supercurrent density profile corresponding to the fitted
B(r) (see Fig. 40). Figure 41 shows the magnetic-field
dependence of r0 in NbSe2 and its sensitivity to the
model of B(r) used to generate the Js(r) profile. There
is only a weak model dependence, indicating that all of
the models fit the vortex core reasonably well. The re-
sults obtained using the Ginzburg-Landau model are be-
lieved to be the most accurate, since this model self-
consistently accounts for the finite size of the vortex
cores.

The field dependence of the fitted value of the
Ginzburg-Landau coherence length jab [from Eq. (35)]
is shown in Fig. 42. At high field the value of jab is
comparable to r0 . The length scale jab characterizes the
spatial variation of the order parameter within the vor-

FIG. 40. The magnetic field and supercurrent density as a
function of radial distance from the vortex center in NbSe2 for
applied fields m0H50.1, 0.2, and 0.6 T. The magnetic field is
plotted as the difference between B and the minimum field
Bmin . The supercurrent density is normalized to its maximum
value.
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tex core. This is different from the BCS coherence
length j0 , which characterizes the spatial extent of the
Cooper pair wave function in the pure superconducting
medium and is directly related to the energy-gap func-
tion [see Eq. (42)]. In a mSR experiment, the extracted
value of jab will depend on the model assumed for
B(r). On the other hand, as discussed in Sec. V and
shown in Fig. 41, r0 is fairly robust with respect to the
model for B(r).

A strong magnetic-field dependence of r0 (and jab)
has also been measured in detwinned single crystals of
optimally-doped YBa2Cu3O6.95 (Sonier, Kiefl, et al.,
1999; Sonier, Brewer, et al., 1999) and underdoped
YBa2Cu3O6.60 (Sonier, Brewer, et al., 1997). Figure 43
shows the measurements in the optimally doped crystals.

FIG. 41. Magnetic-field dependence of the core radius r0 in
NbSe2 at T52.3 K obtained from the Js(r) profiles generated
from fits to three different models for B(r): solid curve, a fit to
the results for the Ginzburg-Landau model (solid circles)
which depends only on the intervortex spacing. From Sonier,
Kiefl, et al., 1997b.

FIG. 42. Magnetic-field dependence in NbSe2 at T52.3 K: s,
of the Ginzburg-Landau coherence length jab ; d, of the vor-
tex core radius r0 .
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At high field the size of the vortex cores saturates at
jab'18.5 Å, implying a value of Hc2(0)596.3 T for the
upper critical field at T50 K. These values agree quan-
titatively with estimates from other experimental tech-
niques. However, mSR is the only technique that has
directly measured jab deep in the superconducting state.

Several theoretical studies predict that r0 shrinks with
increasing magnetic field (Golubov and Hartmann, 1994;
Ichioka, Hasegawa, and Machida, 1999a, 1999b; see Sec.
III.B.4 and Sec. III.C.2). In these studies r0 was obtained
from the self-consistent supercurrent density distribu-
tion of the Eilenberger (or Usadel) equations. The
variation of r0 with magnetic field is found to be similar
to the field dependence of the length scale j1 , defined
from the initial slope of the order parameter at the vor-
tex center [see Eq. (32)]. The reduction of the supercon-
ducting order parameter within a vortex costs condensa-
tion energy. This energy cost increases with increasing
magnetic field, because the density of vortices in the
sample increases, i.e., nf5B0 /F0 . A consequence of the

FIG. 43. Magnetic-field dependence jab in detwinned single
crystals of YBa2Cu3O6.95 extrapolated to T50 K: m, of the
Ginzburg-Landau coherence length jab ; s, of the vortex core
radius r0 . From Sonier, Brewer, et al., 1999.

FIG. 44. Magnetic-field dependence of the core size r0 normal-
ized to the extrapolated value r0(m0H50): s, for single-
crystal NbSe2 at T52.3 K; d, for YBa2Cu3O6.95 extrapolated
to T50 K.
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shrinking vortex cores with increasing magnetic field is
that some of the energy lost due to the formation of
additional vortices is saved.

The strength of the field dependence of the core size
in NbSe2 is compared with that in YBa2Cu3O6.95 in Fig.
44. At low field, the value of r0 in YBa2Cu3O6.95 de-
creases more rapidly with increasing magnetic field than
in NbSe2. The theoretical calculations of Ichioka, Hase-
gawa, and Machida (1999b) predict precisely this differ-
ence between an s-wave and dx22y2-wave supercon-
ductor.

It might be argued that the field dependence of r0
measured by mSR could have some other origin, unre-
lated to an actual change in the slope of the supercur-
rent density (or order parameter) within the vortex core.
A possible explanation is that, in the layered systems
studied, the weak interactions between vortices at low
fields allow for strong random pinning of individual pan-
cake vortices. For this case, the muons detect an en-
larged effective core size associated with the random
wandering of the vortex lines. This effect decreases the
length of the high-field tail of the mSR line shape. Fur-
thermore, the field distribution becomes symmetric at an
external field that is substantially smaller than the de-
coupling field at which the vortex lines are completely
destroyed by pinning (Koshelev, Glazman, and Larkin,
1996). However, the field dependence of the skewness
parameter a (see Fig. 45) measured in NbSe2 and
YBa2Cu3O72d at low temperatures agrees well with the
quasiclassical predictions for an ideal vortex lattice in an
s-wave and dx22y2-wave superconductor, respectively
(Ichioka, Hasegawa, and Machida, 1999b). In particular,
the value of a is greater than unity at all fields consid-
ered, as expected for an ideal lattice of straight vortex
lines.

An alternative explanation for the field dependence of
r0 may be that the muons detect the field averaged over
the zero-point motion of the vortices at low magnetic
fields. However, a sizable contribution from this effect
would also reduce the asymmetry of the mSR line shape.

Hartmann, Drechsler, and Heiden (1993) measured
the spatial variation of the tunneling current across indi-

FIG. 45. Magnetic-field dependence of the skewness param-
eter a: s, in NbSe2 at T52.3 K; d, at 4.2 K; m, in
YBa2Cu3O6.95 extrapolated to T50 K.
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vidual vortices at the surface of NbSe2 with an STS
probe. The tunneling current profile, which reflects the
local density of states at the sample surface, is roughly
Gaussian-shaped due to the spatial variation of the lo-
calized quasiparticle core states. The half-width of the
tunneling current profile was found to increase with de-
creasing field, implying an increase of the vortex core
radius. STS does not probe deep enough into the surface
to be sensitive to vortex line wandering. On the other
hand, because the STS tip scans across the vortices at a
rate considerably slower than vortex fluctuations, the
STS measurements (like mSR) are sensitive to zero-
point motion of the vortices.

Although there may be several possible origins for the
field dependence of the core size reported in the mSR
and STS experiments, many of these ideas are incompat-
ible with a recent specific-heat study that has established
a direct link between the quasiparticle excitation spec-
trum of the vortex cores and the mSR measurements
(Sonier, Hundley, et al., 1999). In an s-wave supercon-
ductor, there is a contribution to the linear-T term of
the electronic specific heat C(H) that is proportional to
the density of localized quasiparticle states in the vortex
core. Since the density of vortices increases linearly as a
function of magnetic field, this term is expected to be
proportional to H . However, the magnetic-field depen-
dence of C(H)/T in NbSe2 was observed to have a cur-
vature at low fields. It was shown that this low-field cur-
vature is precisely accounted for by the expansion of the
vortex cores measured with mSR and the field depen-
dence of the magnetic induction B above Hc1 . The in-
creased size of the vortices at low fields produces a cor-
responding increase in the density of bound
quasiparticle states in the vortex cores, which in turn
results in the observed low-field curvature of C(H)/T .
Since neither vortex fluctuations nor random wandering
of the vortex lines should change the electronic structure
of the vortex cores in this way, this study strongly sug-
gests that mSR is sensitive to intrinsic changes in vortex
core size. As discussed by Sonier, Hundley, et al. (1999),
there have been many reports of similar curvature of
C(H)/T at low magnetic fields in other s-wave super-
conductors. In some of these studies the variation with
field was found to be hysteretic—presumably due to dis-
order of the vortex lattice. This suggests that the field
dependence of the core size is somehow related to the
nature of the vortex-vortex interactions.

Recently, Nohara et al. (1999) measured the
magnetic-field dependence of the specific heat in pure
and alloyed Y(Ni12xPtx)2B2C and Nb12xTaxSe2 single
crystals. They observed a low-field curvature of C(H)/T
in the pure (x50) samples. However, in the alloyed
(x50.2) samples C(H)/T was found to be proportional
to H . The authors attribute the low-field curvature in
the pure sample to the shrinking of the vortex cores with
increasing magnetic field. They speculate that the core
shrinking arises from a repulsive vortex-vortex interac-
tion mediated by a coherent transfer of quasiparticles
between the cores. Impurity scattering would disrupt the
coherent motion of these quasiparticles, thus eliminating
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the field dependence of the core size in dirty supercon-
ductors. In the same study Nohara et al. show that the
temperature dependence of the upper critical field Hc2
shows positive curvature near Tc only in the pure
samples. Using the relation Hc25F0/2pj2 they remark
that the positive curvature is evidence that the core size
shrinks with increasing field, since this enhances Hc2 .

In summary, although results to date are highly sug-
gestive of an intrinsic mechanism responsible for the
field dependence of the effective core size measured
with mSR, it is unclear as to how far the vortex lattice at
low fields deviates from the ideal Abrikosov lattice. Cer-
tainly, both flux-lattice disorder and the wandering of
vortex lines play some role in these measurements. Stud-
ies of isotropic (i.e., nonlayered) systems and direct
measurements with other experimental techniques com-
prise future endeavors needed to resolve this issue.

B. Temperature dependence

As explained in Sec. III.D.3, thermal fluctuations of
the vortices can increase the effective core size mea-
sured with mSR. This must be taken into account when
interpreting measurements of the temperature depen-
dence of r0 . Despite this complication, a number of im-
portant trends have been established.

For NbSe2, mSR studies of single crystals show that
the value of r0 decreases with decreasing temperature
and becomes independent of temperature at T&1 K
(Sonier, Brewer, et al., 1997; Miller et al., 1999; see Fig.
46). Both of these features of the mSR data are pre-
dicted for the Kramer-Pesch effect, discussed in Sec.
III.B.3. However, the strength of the temperature de-
pendence of r0 is weaker than predicted. This cannot be
due to thermal fluctuations of the vortices, since fluctua-
tions increase the effective core size measured with
mSR. Thus the data shown in Fig. 46 represent an upper
limit for the strength of the temperature dependence of
r0 .

FIG. 46. Temperature dependence of the vortex core size r0 in
NbSe2 at m0H50.5 T. From Miller et al., 1999.
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Another important discrepancy is that the saturation
of r0 occurs at a temperature higher than expected from
theory. For example, Hayashi et al. (1998) predict that
the reduction of the core size in NbSe2 should saturate
below 100 mK. There are several possible origins for the
quantitative differences between the mSR results and
the theoretical calculations of the Kramer-Pesch effect
for NbSe2. For instance, existing theories do not include
the effect of vortex-vortex interactions. Naively, one ex-
pects the Kramer-Pesch effect to have a strong field de-
pendence, if the core size varies with field. A complete
mSR study of the magnetic-field dependence of the
Kramer-Pesch effect has not yet been carried out. It is
also possible that zero-point motion of the vortices may
limit the low-temperature value of r0 . The importance
of zero-point motion of vortices in real materials is at
present unknown.

Scanning tunneling spectroscopy measurements car-
ried out on NbSe2 over the temperature range 1.8&T
&6 K clearly show that the size of the vortex cores (es-
timated from the spatial dependence of the tunneling
current) is reduced with decreasing temperature (Volo-
din, Golubov, and Aarts, 1997). Furthermore, this same
study shows that the size of the vortex cores at low T
also depends on the value of the bias voltage. Volodin,
Golubov, and Aarts (1997) attributed the energy depen-
dence to the BCS coherence factors for an s-wave super-
conductor.

The temperature dependence of r0 measured with
mSR in single crystals of YBa2Cu3O72d (Sonier, Kiefl,
et al., 1997b, 1999) is found to be considerably weaker
than in NbSe2 (see Fig. 47). Thermal fluctuations are
expected to be larger in the high-temperature supercon-
ductors, so the actual temperature dependence of r0 in
YBa2Cu3O72d is likely to be even weaker than that
shown in Fig. 47. Hayashi, et al. (1998) have argued that
the quantum-limit temperature in YBa2Cu3O72d is
much higher than in NbSe2, resulting in a weak Kramer-
Pesch effect. To date, the Kramer-Pesch effect for a
dx22y2-wave superconductor has not been calculated in
the quantum limit.

FIG. 47. Temperature dependence of the core size
r0(T)/r0(0) in NbSe2 , Tc57 K (Miller et al., 1999),
YBa2Cu3O6.95 , Tc593.2 K (Sonier, Kiefl, et al., 1999), and
YBa2Cu3O6.60 , Tc559 K (Sonier, Brewer, et al., 1997) at
m0H50.5 T.
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The mSR measurements on YBa2Cu3O6.95 (Tc
593.2 K) are in agreement with microwave power ab-
sorption measurements in the vortex state of Tc590 K,
YBa2Cu3O72d single crystals (Matsuda et al., 1994),
which show no evidence for the Kramer-Pesch effect.
However, in this microwave study the derivative of the
field with respect to the surface resistance in Tc560 K
single crystals is found to be proportional to ln(Tc /T).
This temperature dependence is predicted from the
Kramer-Pesch effect (Doettinger, Huebener, and Kittel-
berger, 1997). This result contradicts the mSR measure-
ments on YBa2Cu3O6.60 (Tc559 K) single crystals
(Sonier, Brewer, et al., 1997), which show a weak tem-
perature dependence for r0 , comparable to that mea-
sured in YBa2Cu3O6.95 (see Fig. 47). The difference is an
important one, since there is still some debate as to
whether the vortex cores of the high-temperature super-
conductors contain bound quasiparticle states and thus
whether a Kramer-Pesch effect exists in these materials.

Finally, we note that flux-flow resistance measure-
ments performed on thin films of the electron-doped
compound Nd1.85Ce0.15CuO42d (Doettinger, Huebener,
and Kittelberger, 1997) indirectly show evidence for a
Kramer-Pesch effect, in a logarithmic dependence of
voltage on current. The Kramer-Pesch effect in this case
arises from the excitation of quasiparticle core states
due to the current-induced electric field, rather than
from thermal excitations as in the case of a static vortex.
On the other hand, no logarithmic dependence was
found in the I-V characteristics of thin films of the hole-
doped compound La1.85Sr0.15CuO42d . The pairing sym-
metries in the electron- and hole-doped high-
temperature cuprate superconductors are generally
believed to be those of s waves and dx22y2-waves, re-
spectively. The absence of a Kramer-Pesch effect in the
hole-doped compound may be due to the delocalized
quasiparticles associated with the cores, which dominate
the energy dissipation for a moving vortex. Depopula-
tion of these quasiparticle states has therefore little ef-
fect on the vortex core size.

VI. SUMMARY

In this review, we have shown that transverse-field
mSR measurements of the magnetic-field distribution in
the vortex state of a type-II superconductor provide a
unique way of obtaining reliable information about the
behavior of the characteristic length scales deep in the
superconducting state. Although it is certainly desirable
to have prior knowledge of the vortex structure, it is not
an absolute requirement for employing the mSR tech-
nique. In the high-temperature cuprate superconductors
and other unconventional systems, for which a consen-
sus concerning the structure of the vortex lattice is not
well established, mSR has found clear differences from
conventional low-Tc superconductors in the behavior of
l and the effective vortex core size r0 . We have demon-
strated through a number of examples that mSR is also a
powerful tool for investigating exotic vortex phases.
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
We have argued that the temperature dependence of
the magnetic penetration depth l can be measured ac-
curately with mSR—as borne out by the good agreement
with microwave cavity perturbation measurements on
similar crystals. At low magnetic fields, mSR has estab-
lished that the supercurrent response in the bulk of a
superconductor is similar to that at the sample’s surface.
When the measured field distribution is inaccurately
modeled, however, the absolute value of l becomes un-
certain. Thus one must be cautious when using absolute
values of l reported from a mSR experiment.

We have pointed out that measurements of the
magnetic-field dependence of l are generally more dif-
ficult in the vortex state, because the positions of the
vortices change with field. In this case, both the variation
and the absolute value of l as a function of magnetic
field depend strongly on the manner in which the mea-
sured field distribution is modeled. Nevertheless, upper
and lower limits on the strength of the field dependence
can usually be established. In the present review article
we have shown that there is some intrinsic field depen-
dence of l in both conventional and high-temperature
superconductors. The considerably stronger field depen-
dence in the latter is undoubtedly related to the nodes in
the superconducting energy gap.

We have shown that the variation of the effective vor-
tex core size with temperature and magnetic field in the
bulk of a sample can be measured with mSR. The results
of mSR studies of the core size exhibit the general trends
predicted by theory. However, there are important
quantitative discrepancies between experiment and
theory, which at present are only partially understood.

Finally, we remark that despite the tremendous ad-
vancements in mSR measurements of the vortex state in
recent years, future efforts will undoubtedly lead to ex-
citing new findings. In particular, the development of
new spectrometers capable of greatly enhancing the
counting rates (thus increasing the sensistivity to the
vortex core region), advancements in modeling mSR
spectra, improvements in the general understanding of
the vortex structure through other techniques, and the
further development of ultralow-energy muon beams
will make possible future endeavours that will certainly
lead to a deeper understanding of the vortex state.

ACKNOWLEDGMENTS

We would like to thank our many long-term experi-
mental collaborators who continue to provide valuable
assistance in our ongoing projects. We have benefited
from discussions and exchange of ideas with K.
Machida, I. Affleck, D. F. Agterberg, M. H. S. Amin, A.
J. Berlinsky, and M. Franz. We thank those members of
the mSR community who graciously provided both fig-
ures and further insight into their work. The writing of
this review article was supported by the Natural Sci-
ences and Engineering Research Council of Canada, the
Canadian Institute for Advanced Research, and at Los
Alamos National Laboratory by the U.S. Department of
Energy.



807Sonier, Brewer, and Kiefl: mSR studies of the vortex state
REFERENCES

Abragam, A., 1970, The Principles of Nuclear Magnetism (Ox-
ford, Clarendon).

Abrikosov, A. A., 1957, Sov. Phys. JETP 5, 1174.
Abrikosov, A. A., and L. P. Gor’kov, 1961, Sov. Phys. JETP

12, 1243.
Aegerter, C. M., J. Hofer, I. M. Savı́c, H. Keller, S. L. Lee, C.

Ager, S. H. Lloyd, and E. M. Forgan, 1998, Phys. Rev. B 57,
1253.

Aegerter, C. M., S. L. Lee, H. Keller, E. M. Forgan, and S. H.
Lloyd, 1996, Phys. Rev. B 54, R15 661.

Aegerter, C. M., S. H. Lloyd, C. Ager, S. L. Lee, S. Romer, H.
Keller, and E. M. Forgan, 1998, J. Phys.: Condens. Matter 10,
7445.

Aeppli, G., R. J. Cava, E. J. Ansaldo, J. H. Brewer, S. R.
Kreitzman, G. M. Luke, D. R. Noakes, and R. F. Kiefl, 1987,
Phys. Rev. B 35, 7129.

Affleck, I., M. Franz, and M. H. Amin, 1996, Phys. Rev. B 55,
R704.

Agterberg, D. F., 1998, Phys. Rev. B 58, 14 484.
Alloul, H., P. Mendels, H. Casalta, J. F. Marucco, and J. Ar-

abski, 1991, Phys. Rev. Lett. 67, 3140.
Amato, A., 1997, Rev. Mod. Phys. 69, 1119.
Amin, M. H. S., I. Affleck, and M. Franz, 1998, Phys. Rev. B

58, 5848.
Amin, M. H. S., M. Franz, and I. Affleck, 2000, Phys. Rev.

Lett. 84, 5864.
Anlage Steven, M., Dong Ho Wu, Jian Mao, S. N. Mao, X. X.

Xi, T. Venkatesan, J. L. Peng, and R. L. Greene, 1994, Phys.
Rev. B 50, 523.

Annett, J. F., N. D. Goldenfeld, and A. J. Leggett, 1996, in
Physical Properties of High-Temperature Superconductors V,
edited by D. M. Ginsberg (World Scientific, Singapore), p.
375.

Annett, J. F., N. D. Goldenfeld, and S. R. Renn, 1991, Phys.
Rev. B 43, 2778.

Ansaldo, E. J., Ch. Niedermayer, J. L. Tallon, D. M. Pooke, J.
H. Brewer, and G. D. Morris, 1991, Phys. Lett. A 158, 479.

Arovas, D. P., A. J. Berlinsky, C. Kallin, and Shou-Cheng
Zhang, 1997, Phys. Rev. Lett. 79, 2867.

Atkinson, W. A., 1999, Phys. Rev. B 59, 3377.
Bardeen, J., 1954, Phys. Rev. 94, 554.
Bardeen, J., L. N. Cooper, and J. R. Schrieffer, 1957, Phys.

Rev. 108, 1175.
Bardeen, J., and M. J. Stephen, 1965, Phys. Rev. 140, A1197.
Berlinsky, A. J., A. L. Fetter, M. Franz, C. Kallin, and P. I.

Soininen, 1995, Phys. Rev. Lett. 75, 2200.
Bernhard, C., Ch. Niedermayer, et al., 1995, Phys. Rev. B 52,

R7050.
Bernhard, C., Ch. Niedermayer, et al., 1996, Phys. Rev. B 53,

8790.
Bernhard, C., J. L. Tallon, C. Bucci, R. De Renzi, G. Guidi, G.

V. M. Williams, and Ch. Niedermayer, 1996, Phys. Rev. Lett.
77, 2304.

Bernhard, C., J. L. Tallon, C. Bucci, R. De Renzi, G. Guidi, G.
V. M. Williams, and Ch. Niedermayer, 1998, Phys. Rev. Lett.
80, 205.

Beveridge, J. L., J. Doornbos, D. M. Garner, D. J. Arseneau, I.
D. Reid, and M. Senba, 1985, Nucl. Instrum. Methods Phys.
Res. A 240, 316.

Bidinosti, C. P., W. N. Hardy, D. A. Bonn, and Ruixing Liang,
1999, Phys. Rev. Lett. 83, 3277.
Rev. Mod. Phys., Vol. 72, No. 3, July 2000
Billon, B., M. Charalambous, J. Chaussy, R. Koch, and R. Li-
ang, 1997, Phys. Rev. B 55, R14 753.

Bitter, F., 1931, Phys. Rev. 38, 1903.
Blasius, T., Ch. Niedermayer, J. L. Tallon, D. M. Pooke, A.

Golnik, and C. Bernhard, 1999, Phys. Rev. Lett. 82, 4926.
Blatter, G., M. V. Feigel’man, V. B. Geshkenbein, A. I. Lar-

kin, and V. M. Vinokur, 1994, Rev. Mod. Phys. 66, 1125.
Blatter, G., V. Geshkebein, A. Larkin, and H. Nordberg, 1996,

Phys. Rev. B 54, 72.
Blatter, G., and B. I. Ivlev, 1993, Phys. Rev. Lett. 70, 2621.
Blatter, G., and B. I. Ivlev, 1994, Phys. Rev. B 50, 10 272.
Bonn, D. A., S. Kamal, A. Bonakdarpour, Ruixing Liang, W.

N. Hardy, C. C. Homes, D. N. Basov, and T. Timusk, 1996,
Czech. J. Phys. 46, 3195.

Bonn, D. A., S. Kamal, K. Zhang, R. Liang, D. J. Barr, E.
Klein, and W. N. Hardy, 1994, Phys. Rev. B 50, 4051.

Brandt, E. H., 1972, Phys. Status Solidi B 51, 345.
Brandt, E. H., 1977a, J. Low Temp. Phys. 26, 709.
Brandt, E. H., 1977b, J. Low Temp. Phys. 26, 735.
Brandt, E. H., 1977c, J. Low Temp. Phys. 28, 263.
Brandt, E. H., 1977d, J. Low Temp. Phys. 28, 291.
Brandt, E. H., 1988a, J. Low Temp. Phys. 73, 355.
Brandt, E. H., 1988b, Phys. Rev. B 37, 2349.
Brandt, E. H., 1989, Phys. Rev. Lett. 63, 1106.
Brandt, E. H., 1991, Phys. Rev. Lett. 66, 3213.
Brandt, E. H., 1997, Phys. Rev. Lett. 78, 2208.
Brandt, E. H., and A. Seeger, 1986, Adv. Phys. 35, 189.
Brandt, E. H., and U. Essmann, 1987, Phys. Status Solidi B

144, 13.
Brewer, J. H., 1994, in Encyclopedia of Applied Physics, edited

by G. L. Trigg (VCH, New York), Vol. 11, p. 23.
Brewer, J. H., E. J. Ansaldo, et al., 1988, Phys. Rev. Lett. 60,

1073.
Brewer, J. H., R. F. Kiefl, et al., 1990, Hyperfine Interact. 63,

177.
Brezin, E., D. R. Nelson, and A. Thiaville, 1985, Phys. Rev. B

31, 7124.
Brinkmann, M., T. Rex., H. Bach, and K. Westerholt, 1996, J.

Cryst. Growth 163, 369.
Broun, D. M., D. C. Morgan, R. J. Ormeno, S. F. Lee, A. W.

Tyler, A. P. Mackenzie, and J. R. Waldram, 1997, Phys. Rev.
B 56, R11 443.

Budnick, J. I., B. Chamberland, D. P. Yang, C. Niedermayer,
A. Golnik, E. Recknagel, M. Rossmanith, and A. Weidinger,
1988, Europhys. Lett. 5, 651.

Campbell, L. J., M. M. Doria, and V. G. Kogan, 1988, Phys.
Rev. B 38, 2439.

Caroli, C., P. G. de Gennes, and J. Matricon, 1964, Phys. Lett.
9, 307.

Clem, J. R., 1975, J. Low Temp. Phys. 18, 427.
Clem, J. R., 1991, Phys. Rev. B 43, 7837.
Cooley, J. W., and J. W. Tukey, 1965, Math. Comput. 19, 297.
Cooper, J. R., 1996, Phys. Rev. B 54, R3753.
Cox, S. F. J., 1987, J. Phys. C 20, 3107.
Crabtree, D. W., and D. Nelson, 1997, Phys. Today 50 (4), 38.
Cubitt, R., et al., 1993, Nature (London) 365, 407.
Daemen, L. L., L. J. Campbell, and V. G. Kogan, 1992, Phys.

Rev. B 46, 3631.
Daeumling, M., J. M. Seuntjens, and D. C. Larbalestier, 1990,

Nature (London) 346, 6282.
de Vaulchier, L. A., J. P. Vieren, Y. Guldner, N. Bontemps, R.

Combescot, Y. Lemaitre, and J. C. Mage, 1996, Europhys.
Lett. 33, 153.



808 Sonier, Brewer, and Kiefl: mSR studies of the vortex state
de Wilde, Y., M. Iavarone, U. Welp, V. Metlushko, A. E. Ko-
shelev, I. Aranson, G. W. Crabtree, and P. C. Canfield, 1997,
Phys. Rev. Lett. 78, 4273.

Doettinger, S. G., R. P. Huebener, and S. Kittelberger, 1997,
Phys. Rev. B 55, 6044.

Dolan, G. J., F. Holtzberg, C. Feild, and T. R. Dinger, 1989,
Phys. Rev. Lett. 62, 218.

Drulis, H., Z. G. Xu, J. W. Brill, L. E. De Long, and J. C. Hou,
1991, Phys. Rev. B 44, 4731.

Eilenberger, G., 1968, Z. Phys. 214, 195.
Eskildsen, M. R., et al., 1997, Phys. Rev. Lett. 78, 1968.
Feigel’man, M. V., V. B. Geshkenbein, A. I. Larkin, and V. M.

Vinokur, 1989, Phys. Rev. Lett. 63, 2303.
Feigel’man, M. V., and V. M. Vinokur, 1990, Phys. Rev. B 41,

8986.
Felner, I., D. Hechel, and U. Yaron, 1990, Physica C 165, 247.
Fendrich, J. A., U. Welp, W. K. Kwok, A. E. Koshelev, G. W.

Crabtree, and B. W. Veal, 1996, Phys. Rev. Lett. 77, 2073.
Fesenko, V., V. Gorbunov, A. Sidorenko, and V. Smilga, 1993,

Physica C 211, 343.
Fisher, D. S., M. P. A. Fisher, and D. A. Huse, 1991, Phys.

Rev. B 43, 130.
Fisher, M. P. A., 1989, Phys. Rev. Lett. 62, 1415.
Forgan, E. M., and S. L. Lee, 1995, Phys. Rev. Lett. 75, 1422.
Forgan, E. M., D. M. Paul, H. A. Mook, P. A. Timmins, H.

Keller, S. Sutton, and J. S. Abell, 1990, Nature (London) 343,
735.

Forgan, E. M., M. T. Wylie, S. Lloyd, M. P. Nutley, S. L. Lee,
R. Cubitt, C. Aegerter, H. Keller, and T. W. Li, 1997, Hyper-
fine Interact. 105, 61.

Fortune, N. A., K. Murata, M. Ishibashi, Y. Yokoyama, and Y.
Nishihara, 1991, Phys. Rev. B 43, 12 930.

Franz, M., I. Affleck, and M. H. S. Amin, 1997, Phys. Rev.
Lett. 79, 1555.

Franz, M., C. Kallin, A. J. Berlinsky, and M. L. Salkola, 1997,
Phys. Rev. B 56, 7882.

Franz, M., C. Kallin, P. I. Soininen, A. J. Berlinsky, and A. L.
Fetter, 1996, Phys. Rev. B 53, 5795.
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