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Let us recall that when A is a small additive category, then
K(A) denotes the homotopy category of complexes. Namely, its
objects are cochain complexes of objects in A, while its
morphisms are homotopy equivalence classes of morphisms of
complexes. For A* € Ob(K(.A)), we denote by Al its i-th
component. We can then define the full subcategories KP(A),
K*(A), K~ (A) of the category K(A) whose objects are

Ob(K"(A)) = {A* € K(A) | AT =0 for all [i] >0}
Ob(K*(A)) = {A* € K(A) | A" =0 for all i < 0}
Ob(K™(A)) = {A* € K(A) | AT= 0 for all i > 0}
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objects are cochain complexes of objects in A, while its
morphisms are homotopy equivalence classes of morphisms of
complexes. For A* € Ob(K(.A)), we denote by Al its i-th
component. We can then define the full subcategories KP(A),
K*(A), K~ (A) of the category K(A) whose objects are

Ob(K"(A)) = {A* € K(A) | AT =0 for all [i] >0}
Ob(K*(A)) = {A* € K(A) | A" =0 for all i < 0}
(

Ob(K™(A)) = {A* € K(A) | AT= 0 for all i > 0}

For ? = b, +, —, 0, we single out the full subcategory

V7(A) C K?(A) consisting of objects with zero differentials. Tt
will be crucial in the rest. Here we just point out that, for an
object A* € V7(A), we will use the shorthand

P A
ez,

to remind that the object A’ € A is placed in degree i.



When A is an abelian category, the full triangulated
subcategory K’ ., (A) C K’(A) consists of acyclic complexes, i.e.
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objects in K(A) with trivial cohomology.
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When A is an abelian category, the full triangulated
subcategory szy (A) € K?(A) consists of acyclic complexes, i.e.
objects in K(A) with trivial cohomology.

The triangulated category D?(.A) is then the Verdier quotient of

K’(A) by K;Cy (A), and it comes with a quotient functor
Q: K'(A) — D(A).
We can then consider the full subcategory B’(A) C D?(A) as

B'(A) := Q(V'(A))-



[Topomkenns TpuaHTyJIbOBAHUX KaTeropiit

Definition
Let 7 be a triangulated category and let S C Ob(7"). We define

1. (S), is the collection of all direct summands of finite
coproducts of shifts of objects in S;
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Ty - T — Ty with T € <S>n and Ty € <S>1



[Topomkenns TpuaHTyJIbOBAHUX KaTeropiit

Definition
Let 7 be a triangulated category and let S C Ob(7"). We define
1. (S), is the collection of all direct summands of finite
coproducts of shifts of objects in S;
2. (8),,, consists of all direct summands of objects T € T,
for which there exists a distinguished triangle
Ty - T — Ty with T € <S>n and Ty € <S>1
We set (S), for the full subcategory consisting of all objects T
in 7 contained in (S),, for some n.



Proposition
Recall V/(A) € K’(A). For ? = b, +, —, 0, we have that
<v?(,4)>3 = K(A).
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Recall V/(A) € K’(A). For ? = b, +, —, 0, we have that
<v?(,4)>3 = K(A).

Hosenenns. Let A* € Ob(K?(A)), which we write as a complex

A2 At A? Al A?
Let K! be the kernel of the differential Al — Al*!. Then the
map AI™! — Al factors uniquely as A7 &5 K! < Al



Proposition
Recall V/(A) € K’(A). For ? = b, +, —, 0, we have that
<V?(A)>3 = K(A).

Hosenenns. Let A* € Ob(K?(A)), which we write as a complex

A2 At A? Al A?
Let K! be the kernel of the differential Al — Al*!. Then the

map A™1 — Al factors uniquely as Al™1 oK e AL
This yields the morphism

@Aifl[_i] eaiEZ o @Ki[—i]

i€z i€Z

in V’(A). Denote by C* its mapping cone. It is clear that
Cr e <V?(A)>2 and it is the direct sum over i € Z of the
complexes

i

0 Al ¢ LK 0




Now consider the cochain map

@ Ki[_i] P+ C*

i€Z

whose components, out of K'[—i], are (respectively) ¢' as below

R

A1 0




Now consider the cochain map

@ Ki[_i] P+ C*

i€Z

whose components, out of K'[—i], are (respectively) ¢' as below

0 0 K 0 0
0 A1 K 0 0

and ¢! as below
0 0 T 0
0 0

Ai Ki+1

o

o<



[Topomkenns moxiHOI KaTeropii B 3 KpoKu

It can be easily checked that the mapping cone of the morphism
@ + 1 is isomorphic to the direct sum of the complex A* and of
complexes of the form

0 K K 0



[Topomkenns moxiHOI KaTeropii B 3 KpoKu

It can be easily checked that the mapping cone of the morphism
@ + 1 is isomorphic to the direct sum of the complex A* and of
complexes of the form

0 K K 0

In other words, Cone (o + 1) = A* in K’(A). Therefore, as C*
belongs to <V?(.A)>2 and ¢ + 1) is a morphism from an object of

V?(A) to C*, we have that A* € <V?(A)>3. O



[Topomkenns moxiHOI KaTeropii B 3 KpoKu

It can be easily checked that the mapping cone of the morphism
@ + 1 is isomorphic to the direct sum of the complex A* and of
complexes of the form

0 K' K' 0
In other words, Cone (o + 1) = A* in K’(A). Therefore, as C*
belongs to <V?(.A)>2 and ¢ + 1) is a morphism from an object of
V?(A) to C*, we have that A* € <V?(A)>3. O
Corollary

Recall B’(A) ¢ D’(A). For ? =b, +, —, ), we have that
(B'(A)), =D’(A).



Cone (¢ + ¢) = (Ki*! @ Al @ K', d) has the differential

0 Li+1 1
d=10 0 o'tl|. We have
0 0 0

. i . i . . i . i+1 .
(ALK ety Al =d, (K e AT 2L K =,



Cone (¢ + ¢) = (Ki*! @ Al @ K', d) has the differential

0 Li+1 1
d=10 0 o'tl|. We have
0 0 0

L a1+1

(Al o Kich Al) =, (Ki © Al Kit!) = 0.

0+t 1

0 0 ottt
00 o0
_
0 1
0—-do

0 0

0
0

There is a chain map

Ki+2 D Ai+1 D Ki+1 _

10 0
ait? 1 0
0 —/t1q

Ki+2 o Ai+1 @ Ki+1 N

KT agAlgK
1 00

(O¢1+1 1-0>J/
0 —/t1

S KtlaAlgK



Cone (¢ + ¢) = (Ki*! @ Al @ K', d) has the differential

0 Li+1 1
d=10 0 o'tl|. We have
0 0 0

L a1+1

(Al o Kich Al) =, (Ki © Al Kit!) = 0.

0+t 1
0 0 ottt
00 0
_
1 00
O¢i+1 10
0 —dJd1

(340)
SKHgAigr 000

It is invertible = Cone (¢ + ) = ((A), —d) € K7 (A).

There is a chain map

Ki+2 D Ai+1 D Ki+1 _

10 0
ait? 1 0
0 —/t1q

Ki+2 o Ai+1 @ Ki+1 N

S KflaAlgK



Mopenbna ctpykrypa na dgCat

If we consider for C the category DCAT, for W the subcategory of quasi-equivalences,
the category DCAT admits a Quillen model structure whose

weak equivalences are the quasi-equivalences.



Mojenbna crpykrypa Ha dgCat

If we consider for C the category DCAT, for W the subcategory of quasi-equivalences,
the category DCAT admits a Quillen model structure whose

weak equivalences are the quasi-equivalences.

dgCat has a model structure whose weak equivalences are
quasi-equivalences and such that every object is fibrant. We
denote by Hqe the corresponding homotopy category, namely
the localization of dgCat with respect to quasi-equivalences.
Since HY sends quasi-equivalences to equivalences, for every
morphism f: C; — Cy in Hqe there is a k-linear functor
HO(f): H(C1) — H°(Cq), which is well-defined up to
equivalences.



Mojenbna crpykrypa Ha dgCat

If we consider for C the category DCAT, for W the subcategory of quasi-equivalences,
the category DCAT admits a Quillen model structure whose

weak equivalences are the quasi-equivalences.

dgCat has a model structure whose weak equivalences are
quasi-equivalences and such that every object is fibrant. We
denote by Hqe the corresponding homotopy category, namely
the localization of dgCat with respect to quasi-equivalences.
Since HY sends quasi-equivalences to equivalences, for every
morphism f: C; — Cy in Hqe there is a k-linear functor

HO(f): H(C1) — H°(Cq), which is well-defined up to
equivalences.

Dg functors between two dg categories C1; and Co form in a
natural way the objects of a dg category Hom(Cy, Cz). For every
dg category C we set dgMod(C) := Hom(C°P, Cqg(Mod(k))) and
call its objects (right) dg C-modules.



3cyBu B dg-Kareropii
Given an object A € A, the object A[r] is characterized (up to a DG isomorphism)
by the existence of closed morphisms f : A — A[r], g : A[r] - A of degrees —r and r,
respectively, such that fg = gf = 1. Thus, in particular, every DG functor commutes with
shifts.

Definition 4.6. The objects of AP™' are “one-sided twisted complexes,” that is, formal
expressions (b ;Ci[ri], q), where C; € Ob A, vy € Z,n > 0, g = (qi5), qij € Hom(Cj[ry],
Ci[ri]) is homogeneous of degree 1, q;; = 0 fori > j, and dq + q* = 0. If C,C’ € Ob AP,
C = (©Gj[rj],q), C' = (©C;[+{],q"), then the Z-graded k-module Hom(C, C’) is the space
of matrices f = (fi;), fij € Hom(C;[r;], C/[r/]), and the composition map Hom(C,C’) ®
Hom(C’,C"”) — Hom(C, C”) is matrix multiplication. The differential d : Hom(C,C’) —
Hom(C, C’) is defined by df := (dfy;) + q'f — (~1)'fqif degfy = L.
Notice that the DG category AP* ' is closed under formal shifts:

(o, Cifri,a)1] = (@ Ci[ri +1],—q). (4.15)



3cysu B dg-Kareropii

Given an object A € A, the object A[r] is characterized (up to a DG isomorphism)
by the existence of closed morphisms f : A — A[r], g : A[r] - A of degrees —r and r,
respectively, such that fg = gf = 1. Thus, in particular, every DG functor commutes with
shifts.

Definition 4.6. The objects of AP™' are “one-sided twisted complexes,” that is, formal
expressions (b ;Ci[ri], q), where C; € Ob A, vy € Z,n > 0, g = (qi5), qij € Hom(Cj[ry],
Ci[ri]) is homogeneous of degree 1, q;; = 0 fori > j, and dq + q* = 0. If C,C’ € Ob AP,
C = (©Gj[rj],q), C' = (©C;[+{],q"), then the Z-graded k-module Hom(C, C’) is the space
of matrices f = (fi;), fij € Hom(C;[r;], C/[r/]), and the composition map Hom(C,C’) ®
Hom(C’,C"”) — Hom(C, C”) is matrix multiplication. The differential d : Hom(C,C’) —
Hom(C, C’) is defined by df := (dfy;) + q'f — (~1)'fqif degfy = L.
Notice that the DG category AP* ' is closed under formal shifts:

(el Cifr, a)[1] = (& Ci[ri+1],—q). (4.15)
ALBiA, fg=1=gt, df =0=dg, degf= —r, degg=r,
AL CE A g =1 =gt df =0=dg, degf = —1, degg’ =1,

k=B5A50),j=CE5ALB) kjel4j=k!=B=C



Konyc B dg-kareropii
Definition 4.7. Let B be a DG category and let f € Hom(A, B) be a closed degree-zero mor-
phism in B. An object C € B is called the cone of f, denoted Cone(f), if B contains the
object A[1] and there exist degree-zero morphisms

Al c AN, B-LcC-SB, (4.16)
with the properties
pi=1, sj=1, si=0, pj=0, ipt+is=1, (4.17)

and

d(j) = d(p) =0, d(i) = jf, d(s) = —fp. (4.18)



Konyc B dg-kareropii
Definition 4.7. Let B be a DG category and let f € Hom(A, B) be a closed degree-zero mor-
phism in B. An object C € B is called the cone of f, denoted Cone(f), if B contains the
object A[1] and there exist degree-zero morphisms

Al c AN, B-LcC-SB, (4.16)
with the properties
pi=1, sj=1, si=0, Pi=0, ip+is=1, (4.17)
and
d(j) = d(p) =0, d(i) =jf,  d(s) =—fp. (4.18)
di=jofoo !, ds=—foolop,
where

o:A—A[l], dego=-1, o Al 5 A, dego ' =1.



Lemma 4.8. The cone of a closed degree-zero morphism is uniquely defined up to a DG
isomorphism. O

Proof. Note that the first set of conditions means that C is the direct sum of A[1] and B
in the corresponding graded category B&". Thus for any object E in A, there are isomor-
phisms of graded k-modules

Hom(E, C) = Hom (E, A[1]) ©® Hom(E, B),
.19
Hom(C, E) = Hom (A[1],E) @ Hom(B, E), (&19)

which are given by composing with i and j (or with p and s). Then the second set of con-
ditions determines the differentials in Hom(E, C) and Hom(C, E). u



Lemma 4.8. The cone of a closed degree-zero morphism is uniquely defined up to a DG

isomorphism. O

Proof. Note that the first set of conditions means that C is the direct sum of A[1] and B
in the corresponding graded category B&". Thus for any object E in A, there are isomor-
phisms of graded k-modules

Hom(E, C) = Hom (E, A[1]) ® Hom(E, B),
(4.19)

Hom(C, E) = Hom (A[1],E) @ Hom(B, E),
which are given by composing with i and j (or with p and s). Then the second set of con-

ditions determines the differentials in Hom(E, C) and Hom(C, E). u
We have a right dg-module M : B°? — dg,
E — (B(E, A[1]) @ B(E, B),d), where dy comes from the
decomposition g =io(pog)+jo(sog): E — C, namely,
dug=jofoo o (pog)+iod(pog)+jod(sop)
du(pog@sog) =d(pog)@[foo " o(pog)+d(sog),

d 0

dum = foo-lo? d — left matrix.



Lemma 4.8. The cone of a closed degree-zero morphism is uniquely defined up to a DG
isomorphism. O
Proof. Note that the first set of conditions means that C is the direct sum of A[1] and B

in the corresponding graded category B&". Thus for any object E in A, there are isomor-

phisms of graded k-modules

Hom(E, C) = Hom (E, A[1]) ® Hom(E, B),
Hom(C, E) = Hom (A[1],E) & Hom(B, E), (.19)

which are given by composing with i and j (or with p and s). Then the second set of con-

ditions determines the differentials in Hom(E, C) and Hom(C, E). | |
We have a right dg-module M : B°? — dg,
E — (B(E, A[1]) @ B(E, B),d), where dy comes from the
decomposition g =io(pog)+jo(sog): E — C, namely,
dug=jofoo o (pog)+iod(pog)+jod(sop)
du(pog@sog) =d(pog)@[foo " o(pog)+d(sog),

d 0

foo-lo? d — left matrix.

dy =

M = B(E, C) is representable (by C) iff 3Conef € B (= C).



dg-Brnasenns Hounesa

Lemma 7.3.5 (V-Yoneda lemma). Given a small ‘V-category D, and object d € D,
and a ‘V-functor F: D — V, the canonical map is a ‘V-natural isomorphism

Fd 5 V2D, -), F).



dg-Bknayenns Monena
Lemma 7.3.5 (V-Yoneda lemma). Given a small ‘V-category D, and object d € D,
and a ‘V-functor F: D — V, the canonical map is a ‘V-natural isomorphism

Fd 5 V2D, -), F).

Corollary
For every dg category € the map defined on objects by A+ C(—, A) extends to a fully faithful

dg functor Ygg: € — dgMod(€) (the dg Yoneda embedding). dtmisseasymto-seestiFttieimagesof
C(X,Y) — dgMod(C)(C(_,X),C(_,Y)), f —--1.



dg-Bknayenns Monena
Lemma 7.3.5 (V-Yoneda lemma). Given a small ‘V-category D, and object d € D,

and a V-functor F: D — V, the canonical map is a ‘V-natural isomorphism

Fd 5 V2D, -), F).

Corollary
For every dg category C the map defined on objects by A — €(—, A) extends to a fully faithful
dg functor Ygg: € — dgMod(€C) (the dg Yoneda embedding). dimissgasymtonscestiittierimagesob

C(X,Y) — dgMod(C)(C(_,X),C(_,Y)), - 1.

We now give a definition of representable functor in the present situation. Let
E be an object in the DG-category &/ . It determines a contravariant DG-functor
hg: & — C(«/b) that takes F € Obs/ into the complex Hom (F, E). The
assignment E — h, gives a covariant DG-functor

h: & — DG-Fun’(& , C(« b)).

As in the “classical” case (see [18]), one verifies that the functor 4 is fully strict, i.e.,
that there exist isomorphisms of complexes

Hom,(E,E') ~ Homp,; oo ey (e Ber)- (1.3)

A contravariant DG-functor h: & — C(&b) will be called representable if it is
isomorphic (as a DG-functor) to a functor of the form A, for some E € Obs/ .



Bruagenns: Pre-Tr(A) B dgMod(.A)

DerINITION 3. Let & be a DG-category. We define an imbedding of DG-
categories

a: Pre-Tr() — DG-Fun’(& , C( b)).

The imbedding assigns to an object K = {E,, g, j} € ObPre-Tr(%) the following
DG-functor a(K): & — C(&b). For each E € Ob&/ the value o(K)(E) is the
graded abelian group @ Hom_, (E, E,)[f] provided with the differential d+Q, where
Q =||g;,|| and d is the differential in €@ Hom_,(E, E)i].

PRroPOSITION 3. (a) The functor a is an imbedding of Pre-Tr(&/) into DG-
Funo(M , C(&' b)) as a full DG-subcategory, and it takes the cone of a closed mor-
phism [ in Pre-Tr(s/) into the cone of the morphism o(f) in DG-Fun®(& , C(&«/ b)).



Bruagenns: Pre-Tr(A) B dgMod(.A)

DerINITION 3. Let & be a DG-category. We define an imbedding of DG-
categories
a: Pre-Tr(&/) — DG-FunO(M , C(¥b)).

The imbedding assigns to an object K = {E,, g, j} € ObPre-Tr(%) the following
DG-functor a(K): & — C(&b). For each E € Ob/ the value o(K)(E) is the
graded abelian group @ Hom_, (£, E,.)["z‘] provided with the differential d+Q , where
0 =|lg;l|l and d is the differential in ¢p Hom_, (E, Ei)ﬁ].

PRroPOSITION 3. (a) The functor a- is an imbedding of Pre-Tr(&/) into DG-
Funo(M , C(&' b)) as a full DG-subcategory, and it takes the cone of a closed mor-
phism [ in Pre-Tr(s/) into the cone of the morphism o(f) in DG-Fun®(& , C(&«/ b)).

loBeeHHS.

Morphisms in Pre-Tr(A) are given by rectangular matrix with
entries in A(E;, Ef)[n] — ni]. Morphisms in dgMod(.A) are given
by rectangular matrix of the same size with entries in
dgMod(A)(A(_, Ei)[ni], A(_, E{)[nj]). Differentials agree. O



TpukyTnuku B dg-KaTeropii 3 KOHycaMu

Given a closed degree-zero morphism f: A — B, the diagram
A -5 B L cone(f) 25 A[1] (4.20)

is called a pre-exact triangle.

Remark 4.9. It is clear that any DG functor preserves cones of closed degree-zero mor-
phisms and preserves pre-exact triangles.



Bamknenicts AP crocoBno Komycis
Proposition 4.10 [5]. Let A be a DG category. Then

a) the DG category AP™ ' is closed under taking cones of closed degree-zero mor-
gory g g
phisms;
b) every object in AP can be obtained from objects in A by taking successive
Y obj ) Y g

cones of closed degree-zero morphisms. O

Proof. (a) Given a closed morphism of degree zero
f: (@ Ci[ri], a) — (@ Cf[rj)a’), (@21)

its cone is the twisted complex (©C/[r;] @ Ci[ri +1],(q’, —q + f)). For example, if A, B € A
and f : A — B is a closed morphism of degree zero, then Cone(f) is the twisted complex
(B @ A[1],(0,f)) € APretr,

(b) Let C = (®!*,Ci[ri], a) be a twisted complex. Consider its twisted subcomplex
C' = (@{;1 Ci[ri],q’), where q' = q — ®iqin. Then C is the cone of the closed degree-zero
morphism CD-“}‘ Gin : (Cnfran —1],0) = C'. [ ]

i=



Bamknenicts AP crocoBno Komycis
Proposition 4.10 [5]. Let A be a DG category. Then

a) the DG category AP™ ' is closed under taking cones of closed degree-zero mor-
gory g g
phisms;
b) every object in AP can be obtained from objects in A by taking successive
Y obj ) Y g

cones of closed degree-zero morphisms. O

Proof. (a) Given a closed morphism of degree zero
f: (@ Ci[ri], a) — (@ Cf[rj)a’), (@21)

its cone is the twisted complex (©C/[r;] @ Ci[ri +1],(q’, —q + f)). For example, if A, B € A
and f : A — B is a closed morphism of degree zero, then Cone(f) is the twisted complex
(B @ A[1],(0,f)) € APretr,

(b) Let C = (®!*,Ci[ri], a) be a twisted complex. Consider its twisted subcomplex
C' = (@{;1 Ci[ri],q’), where q' = q — ®iqin. Then C is the cone of the closed degree-zero
morphism CD-“}‘ Gin : (Cnfran —1],0) = C'. [ ]

i=

q 0
foo™t —q



(CusibHO) mepenTpuaHryiboBati dg-Kareropil

A DG category A is said to be pretriangulated if for every A € A, k € Z, the object
Alk] € AP™' js homotopy-equivalent to an object of A and for every closed morphism of
degree-zero f in A, the object Cone(f) € AP is homotopy-equivalent to an object of A.
We say that A is strongly pretriangulated if the same is true with “homotopy-equivalent”
replaced by “DG isomorphic.” Actually, if A is pretriangulated (resp., strongly pretrian-
gulated), then every object of AP* ¥ ig homotopy-equivalent (resp., DG isomorphic) to an
object of A [9]. Thus, A is pretriangulated (resp., strongly pretriangulated) if and only if
the embedding Ho(A) < Ho(AP*Y) is an equivalence (resp., the embedding A — APt

is a DG equivalence).



(CusibHO) mepenTpuaHryiboBati dg-Kareropil

A DG category A is said to be pretriangulated if for every A € A, k € Z, the object
Alk] € AP™' js homotopy-equivalent to an object of A and for every closed morphism of
degree-zero f in A, the object Cone(f) € AP is homotopy-equivalent to an object of A.
We say that A is strongly pretriangulated if the same is true with “homotopy-equivalent”
replaced by “DG isomorphic.” Actually, if A is pretriangulated (resp., strongly pretrian-
gulated), then every object of AP* ¥ ig homotopy-equivalent (resp., DG isomorphic) to an
object of A [9]. Thus, A is pretriangulated (resp., strongly pretriangulated) if and only if
the embedding Ho(A) < Ho(AP*Y) is an equivalence (resp., the embedding A — APt
is a DG equivalence).
Definition 3.3. A dg category C is strongly pretriangulated if Aln] and Cone (f) exist (in €), for
every n € Z, every object A of € and every morphism f of Z%(C).
A dg category C is pretriangulated if there exists a quasi-equivalence € — €’ with € strongly
pretriangulated.



dgMod(C) — cubHO nepeaTpuanryiboBata dg-KaTeropis

Let ¢ : M — N € Z%gMod(C). It is given by the family
#(X) : M(X) — N(X) € dg such that for all f € C(X,Y)*

M),

M(X) —— M(Y)

3(X) = (Y

N(X) D N(Y)



dgMod(C) — cubHO nepeaTpuanryiboBata dg-KaTeropis

Let ¢ : M — N € Z%gMod(C). It is given by the family
#(X) : M(X) — N(X) € dg such that for all f € C(X,Y)*

Define C-module Cone ¢ by

(Cone ¢)(X) = Cone(¢(X)) = Cone ¢(X) = (M(X)[1] ® N(X),d)
and C°P(X,Y) — dg(Cone ¢(X), Cone ¢(Y)), f — M(f)[1] & N(f).



dgMod(C) — cubHO nepeaTpuanryiboBata dg-KaTeropis

Let ¢ : M — N € Z%gMod(C). It is given by the family
#(X) : M(X) — N(X) € dg such that for all f € C(X,Y)*

M(X) —= M(Y)

w| = o

N(X) —~5 N(Y)

M),

Define C-module Cone ¢ by

(Cone ¢)(X) = Cone(¢(X)) = Cone ¢(X) = (M(X)[1] ® N(X),d)
and C°P(X,Y) — dg(Cone ¢(X), Cone ¢(Y)), f — M(f)[1] & N(f).

Exercise
Verify that this is a chain map.



OproronaJibHi Kareropii

6-2_Proposition : Soit N une sous-catégorie triangulée d'une catégorie
triangulée A . La catégorie pleinz Nl‘ (respj“ N) engendrée par les objets
X de A tels que pour tout objet Y de N on ait HomA(Y,X) =0

(resp HomA(X,Y) = 0), est une sous-catégorie dpaisse de A . La catégorie

Nt est appelée par abus de langage, l'orthogonale & droite de N .
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objet de B, la source de f et le but de f sont des objets de B .



OproronaJibHi Kareropii

6-2_Proposition : Soit N une sous-catégorie triangulée d'une catégorie
triangulée A . La catégorie pleinz 1\3“L (respl“N) engendrée par les objets

X de A tels que pour tout objet Y de N on ait HomA(Y,X) =0
(resp HomA(X,Y) = 0), est une sous-catégorie dpaisse de A . La catégorie

Nt est appelée par abus de langage, l'orthogonale & droite de N .

1-1 Définition ; Une sous-catégorie B d'une catégorie triangulée A est
dite épaisse si B est une sous~-catégorie triangulde pleine de A et si

de plus B possdde la propriété suivante @

Pour tout morphisme f : X —s Y , se factorisant par un objet

de B et contenu dans un triangle distingué (X,Y,2,f,g,h) ob 2Z est wn

objet de B, la source de f et le but de f sont des objets de B .

(ii) For any W € Ob(%), Hom(W, -) and Hom(-, W) are cohomological

functors.



Proof of Proposition 6-2.

Let NV C A be a full subcategory closed wrt shifts. Let a full
subcategory £ = “A consist of X € Ob.A s/t A(X,N) = 0.

VYN € N and for any distinguished triangle X - Y — Z — in A
there is an exact sequence

A(X,N[-1]) = A(Z,N) = A(Y,N) = A(X,N) = A(Z,N[1]).
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If two of three vertices of the triangle are in £ so is the third.
Thus L is a triangulated subcategory of A.
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subcategory £ = “A consist of X € Ob.A s/t A(X,N) = 0.

VYN € N and for any distinguished triangle X - Y — Z — in A
there is an exact sequence

A(X,N[-1]) = A(Z,N) = A(Y,N) = A(X,N) = A(Z,N[1]).

If two of three vertices of the triangle are in £ so is the third.
Thus L is a triangulated subcategory of A.

Assume that Z € £, N € N and f : X — Y factorises through
L € L. Then the exact sequence implies that

A(f,N) : A(Y,N) — A(X,N) is a bijection. On the other hand,

A(f,N) = (A(Y,N) = A(L,N) = A(X,N)) = 0.



Proof of Proposition 6-2.

Let NV C A be a full subcategory closed wrt shifts. Let a full
subcategory £ = “A consist of X € Ob.A s/t A(X,N) = 0.

VYN € N and for any distinguished triangle X - Y — Z — in A
there is an exact sequence

A(X,N[-1]) = A(Z,N) = A(Y,N) = A(X,N) = A(Z,N[1]).

If two of three vertices of the triangle are in £ so is the third.
Thus L is a triangulated subcategory of A.

Assume that Z € £, N € N and f : X — Y factorises through
L € L. Then the exact sequence implies that

A(f,N) : A(Y,N) — A(X,N) is a bijection. On the other hand,

A(f,N) = (A(Y,N) = A(L,N) = A(X,N)) = 0.

Hence, A(X,N) =0 and A(Y,N) = 0. Therefore, L is
épaisse. L]



Hockonasi Moy

If C is a dg category, dgMod(C), dgAcy(C) and h-proj(€) are strongly pretriangulated dg cate-
gories. Moreover, the (triangulated) categories H°(dgMod(€C)), H°(dgAcy(€)) and H(h-proj(C))
have arbitrary coproducts, and there is a semi-orthogonal decomposition

(3.1) H'(dgMod(€)) = (H"(dgAcy(€)), H"(h-proj(€)).

This clearly implies that there is an exact equivalence between H(h-proj(€)) and the Verdier
quotient D(€) := H’(dgMod(€))/H(dgAcy(€)) (which is by definition the derived category of ).

For every dg category € we will denote by Pretr(C) (respectively, Perf(€)) the smallest full
dg subcategory of h-proj(€) containing Ygg((?) and closed under homotopy equivalences, shifts,
cones (respectively, also direct summands in H°(h-proj(C))). It is easy to see that Pretr(C) and
Perf(C) are strongly pretriangulated and that € is pretriangulated if and only if Ygg: C — Pretr(€)
is a quasi-equivalence. Moreover, Pretr(C) C Perf(€) and H°(Perf(C)) can be identified with
the idempotent completion HO(Pretr(€))’® of H(Pretr(C)). Hence Ygg: C — Perf(C) is a quasi-

equivalence if and only if € is pretriangulated and H°(€) is idempotent complete.

Remark 3.5. Recall that an additive category A is idempotent complete if every idempotent
(namely, a morphism e: A — A in A such that e? = e) splits, or, equivalently, has a kernel.
Every additive category A admits a fully faithful and additive embedding A < A'®, where A is
an idempotent complete additive category, with the property that every object of A is a direct
summand of an object from A. The category A® (or, better, the functor A — A°) is called the
idempotent completion of A. It can be proved (see [2]) that, if T is a triangulated category, then
T is triangulated as well (and T < T is exact).
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idempotent completion of A. It can be proved (see [2]) that, if T is a triangulated category, then
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VYN € dgMod(C) IM € h-proj(C) IM LN Conef, € dgAcy(C)



JlockonaJi KoMILeKkcn
A perfect complex of modules over a commutative ring k is an
object in the derived category of k-modules that is
quasi-isomorphic to a bounded complex of finitely generated
projective k-modules.
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commutes with filtered colimits, i.e., if the natural map
colimC(X,Y;) — C(X, colim; Y;)

is a bijection for any filtered system of objects Y; in C.



JlockonaJi KoMILeKkcn
A perfect complex of modules over a commutative ring k is an
object in the derived category of k-modules that is
quasi-isomorphic to a bounded complex of finitely generated
projective k-modules.
Perfect complexes are precisely the compact objects in the
unbounded derived category D(k) of k-modules.
An object X in a category C which admits all filtered colimits is
called compact if the functor

C(X,:):C — Sets,Y — C(X,Y)
commutes with filtered colimits, i.e., if the natural map
colimC(X,Y;) — C(X, colim; Y;)

is a bijection for any filtered system of objects Y; in C.

Since elements in the filtered colimit at the left are represented
by maps X — Yj, for some i, the surjectivity of the above map
amounts to requiring that a map X — colim; Y; factors over
some Yj.



Jlobpe 1nopoJizKeHi TpUaHIyJIbOBaHI KaTeropii

Let T be a triangulated category with small coproducts. For a
cardinal o, an object S of T is a-small if every map S — [[;; Xi
in 7 (where I is a small set) factors through [[;cj X, for some

J C T with |J| < a. A cardinal « is called regular if it is not the
sum of fewer than « cardinals, all of them smaller than c.



Jlobpe 1nopoJizKeHi TpUaHIyJIbOBaHI KaTeropii

Let T be a triangulated category with small coproducts. For a
cardinal o, an object S of T is a-small if every map S — [[;; Xi
in 7 (where I is a small set) factors through [[;cj X, for some

J C T with |J| < a. A cardinal « is called regular if it is not the
sum of fewer than « cardinals, all of them smaller than c.

Definition
The category T is well generated if there exists a small set S of
objects in T satisfying the following properties:

(G1) An object X € T is isomorphic to 0, if and only if
T(S,X][j]) =0, for all S € § and all j € Z;

(G2) For every small set of maps {X; — Yi}ier in 7, the induced
map T(S,I1; Xi) — T(S,11; Yi) is surjective for all S € S, if
T(S,Xi) = T(S,Yi) is surjective, for alli € I and all S € S;

(G3) There exists a regular cardinal « such that every object of
S is a-small.
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