Курс: Електронна структура та властивості низькорозмірних систем

Лектор: Олександр Кордюк

Лекції 10, 11: Загадка високотемпературної надпровідності

- Історія відкриття надпровідності. Чому ртуть?
- Антикореляція провідності та надпровідності.
- Мікроскопічна теорія (БКШ). Надпровідна щілина.
- "Відбитки" фононного спектру.
- Відкриття ВТНП та їх кристалічна структура.
- Електронна фазова діаграма ВТНП та псевдощілина.
- Особливості електронної структури купратів: нод та антинод.
- d-симетрія надпровідної щілини як проблема для рішення рівняння Еліашберга.
- Спарювання спіновими флуктуаціями.
- Надпровідники на основі заліза: кристалічна структура та фазові діаграми.
- Складна електронна структура як ключ до пошуку механізму ВТНП.
- Аналогія з купратами та шляхи підвищення критичної температури.

High-Tc Superconductivity and Electronic Structure

The history of superconductivity: the beginning

Why mercury?

Superconducting Metals and Alloys

Element/	I _c [K]
compound	
Al	1.19
Ве	0.026
Ga	1.09
Hg	4.15
In	3.40
La	4.8
Nb	9.2
Pb	7.2
Sn	3.72
Та	4.39
V₃Ge	6.0
V₃Si	17.1
Nb₃Ge	18.0
Nb₃Sn	23.2

E1/1

History of superconductivity: BCS

$$k_B\,T_c = 1.13 E_D\,e^{-1/N(0)\,V}$$
 $\Delta(T=0) = 1.764\,k_BT_c$

History of superconductivity: BCS $-\mathbf{k} - \mathbf{q}$ $k_y \mid k_{\rm F}$ $2\hbar\Delta k$ k + q $2\Delta k$ — q) $-\mathbf{k}$ $\Delta k/k_{\rm F} \sim \hbar \omega_{\rm D}/\varepsilon_{\rm F}, \quad \varepsilon_{\rm F} = \hbar^2 k_{\rm F}^2/2m.$ g(E) $\Delta(T ightarrow T_c) pprox 3.07 \, k_B T_c \sqrt{1 - (T/T_c)}$ 200

 $E_{\mathbf{F}}$

Energy scales: superconducting gap

Energy scales: superconducting gap

 $2\Delta = 3.5 \ k \ Tc$

Rowell PRL 1963

Історія надпровідності: ВТНП

1986

Muller & Bednorz

History of superconductivity: HTSC

Muller & Bednorz

compound	$T_{\mathcal{C}}(\mathbf{K})$	
Nd ₁₈₅ Ce ₀₁₅ CuO ₄	24	
La1 85 Sr0 15 CuO4	40	
YBa ₂ Cu ₃ O ₇	92	
Bi2Sr2Ca2Cu3O10	110	
Tl2Ba2Ca2Cu3O10	127	
$Hg_2Ba_2Ca_2Cu_3O_8$	134	

 $Bi_2Sr_2CaCu_2O_{8+\delta}$

HTSC: YBCO

Physics is complex.

The structure is simple - the CuO2 plane.

Simple electronic structure.

Smooth electronic interaction.

Competing orders relation to electronic structure?

Morosan Nature Physics 2006

Hole dopping

Doping level x

- FL Fermi Liqiud
- **MFL** Marginal Fermi Liqiud
 - **PG** Pseudo Gap state

Theories of the pseudogap

Charge carriers concentration

Pseudogap in NMR and heat capacity

Pseudogap in Resistivity

Pseudogap in Tunneling

Концентрація носіїв

Магніто-електронна взаємодія у ВТНП

BTHΠ = LDA + Власна енергія (Σ)

$BTH\Pi = LDA + \Sigma + ???$

- Що визначає власну енергію і формує спектр у нормальному стані: нод (фонони), антинод (спінові флуктуації)?
- Механізм надпровідного спарювання?
- Природа та роль псевдощілини?

Нод

Антинод

Нод

Антинод

Kordyuk et al. *PRL*Kordyuk et al. *PRB*Kordyuk et al. *PRB*Kordyuk et al. *PRL*Borisenko et al. *PRL*Inosov et al. *PRL*Inosov et al. *PRB* Kordyuk et al. *PRL*Borisenko et al. *PRL*Kim et al. *PRL*Borisenko et al. *PRL*Inosov et al. *PRB*Kordyuk et al. *PRB*

Kordyuk & Borisenko *FNT* 2006 Dahm et al. *Nature Phys* 2009 Kordyuk et al. *EPJ ST* 2010

Історія про "відбитки пальців" (fingerprints)

$$\Delta(\omega) = \frac{1}{Z(\omega)} \int_0^{\omega_c} d\omega' \operatorname{Re}\left\{\frac{\Delta(\omega')}{(\omega'^2 - \Delta^2(\omega'))^{1/2}}\right\} \left[K_+(\omega', \omega) - N(0)U_c\right]$$

$$\begin{bmatrix} 1 - Z(\omega) \end{bmatrix} \omega = \int_0^\infty d\omega' \operatorname{Re} \left\{ \frac{\omega'}{(\omega'^2 - \Delta^2(\omega'))^{1/2}} \right\} K_-(\omega', \omega)$$

$$K_{\pm}(\omega,\omega') = \sum_{\lambda} \int_{0}^{\infty} d\nu \, \alpha_{\lambda}^{2}(\nu) F_{\lambda}(\nu) \left[\frac{1}{\omega' + \omega + \nu + i\delta} \pm \frac{1}{\omega' - \omega + \nu - i\delta} \right]$$

el-ph coupling constant

phonon DOS

Scalapino PR 1966

d-wave superconducting gap

https://arpes.stanford.edu/research/quantum-materials/cuprate-superconductors

d-wave order: tri-crystal experiment

C

Pairing is d symmetry.

Phase sensitive measurements.

$$\left\langle c_{\mathbf{k}\uparrow}c_{-\mathbf{k}\downarrow}\right\rangle \propto \Psi(\mathbf{k})$$

$$\Delta_{d_{x^{2}-y^{2}}}(\mathbf{k}) = \Delta_{d_{x^{2}-y^{2}}}^{0}(\cos k_{x} - \cos k_{y})$$

 $\Delta_{d_{xy}}(\mathbf{k}) = \Delta_{d_{xy}}^{0}(\sin k_x \sin k_y)$

Tsuei and Kirtley Rev Mod Phys 2000.

Patrick Lee and T. Senthil

- tri-crystal experiment, IBM 1993. ¹/₂ flux vortex at the junction. Standard hc/2e votex everywhere else.
- 2. Corner SQUID.

Wollman et al 1993.

Spin susceptibility structure

Spin susceptibility structure

Hinkov Nature 2004

Спінові флуктуації — медіатор високотемпературної надпровідності

Схематична формула купратів: $G_0^{-1} + \alpha^2 G \star \chi = G^{-1}$ $G_0^{-1} + \alpha^2 G \star G \star G = G^{-1}$

1. Шляхом порівняння ARPES та нейтронних (INS) спектрів показано, що основною причиною ренормалізації в купратах є взаємодія електронів зі спіновими флуктуаціями, спектр яких визначаеться сприйнятливістю електронів провідності.

2. За наявними експериментальними параметрамии, магнітний механізм парування передбачає *T_c* ~ 150 К.

G₀, G — функції Гріна «голих» електронів та квазічастинок (одночастинкові спектри), Σ — власна енергія, χ — спектр спінових флуктуацій (двохчастинковий спекр), α — константа зв'язку, ★ — операція типу кореляції.

D. Inosov et al., <u>PRB 2007</u> T. Dahm et al., <u>Nature Phys 2009</u> A. Kordyuk et al., <u>EPJ ST 2010</u>

New history of superconductivity: Iron Age

Hideo Hosono

LaFeAs(OF), *T*_c **= 26K**, up to **56K**

High-temperature superconductivity, HTSC

Iron-based superconductors (FeSC)

Iron-based superconductors

Hai-Hu Wen and Shiliang Li, Annu. Rev. Condens. Matter Phys. 2011

Phase diagrams

N.Katayama et al. arXiv:1003.4525

Y.J.Yan et al. arXiv:1104.4941

Basov & Chubukov Nature Phys. 2011

Non-scientific conclusion

Among many theories of HTSC there is no one to predict new superconductors with higher Tc's.

Empirical approaches should be used.

Поверхня Фермі ВКFA

Tesanovic *Physics* 2009

Shimojima Science 2011

Hu & Ding arXiv:1107.1334

V. Zabolotnyy Nature 2009

Borisenko PRL 2010

BFA: density of states

FeSC: electronic structure and superconductivity

Електронна структура феро-пніктидів та надпровідність

ЗАСТОСУВАННЯ: Виявлення ясного зв'язку між електронною структурою та надпровідністтю у феро-пніктидах вказує на новий механізм високотемпературної надпровідності (де ключовими є багатозонність і орбітальні резонанси) та дає емпіричний метод для збільшення температури надпровідного переходу.

> A. A. Kordyuk, *J. Supercond. Nov. Magn.* (2012) A. A. Kordyuk et al., *Phys. Rev. B* **83**, 134513 (2011)

BKFA: Fermi surface and gaps

D. Evtushinsky PRB 2014

1111

Charnukha et al. Sci. Rep. 5, 10392 (2015)

- The band structure of Fe-SC is well captured by LDA but do not take it too literally. The calculated Fermi surface is usually bad starting point for theory.
- T_c's for different compounds almost 100% correlate with the position of the Van Hove singuliarities (Lifshitz transitions) for the xz- and yz-bands.

"Topological" superconductivity in Fe-SC

LTP 38, 888 (2012); JSNM 26, 2837-2841 (2013); PRB 88, 134501 (2013); PRB 89, 064514 (2014), <u>LTP (2018)</u>...

back to HTSC cuprates

"Topological" superconductivity in Cu-SC

A. A. Kordyuk Low Temp. Phys. (2015)

Pseudogap in cuprates

There are at least **three** mechanisms that form the pseudogap in the hole doped cuprates:

- 1 the preformed pairing;
- the incommensurate CDW due to nesting of the straight parallel Fermi surface sections around (π,0) and (0,π);
- **3 SDW** which is **dominant** constituent of the pseudogap assosiated with *T** and is either causing or caused by the Mott localization.

These phases occupy different parts of the phase diagram and gap different parts of the Fermi surface competing for it.

SDW in electron-doped cuprates

H. Matsui et al., *PRL* **94**, 047005 (2005) S. R. Park et al., *PRB* **75**, 060501 (2007)

Nodal nesting

SDW and superconductivity

A. A. Kordyuk Low Temp. Phys. (2018)

Pb–Bi2201 *T*c = 34 K, *T** = 125 K

M. Hashimoto et al. Nat. Phys. 6, 414 (2010)

Pseudogap in cuprates

Temperature evolution of the hot spot EDC for underdoped BSCCO (Tc = 77 K).

T* - the pseudogap starts to increase rapidly, the spectral weight starts to decrease;

Tp - the spectral weight starts to increase;

Tc - the superconducting gap opens, the spectral weight continues to increase up to T_{sc} . The examples of non-normalized EDC's at 160 K, 120 K, and 30 K (right) illustrate the spectral weight evolution.

Low Temp. Phys. (2015)

Pseudogap in hole-doped cuprates

Фундаментальна проблема: механізм ВТНП

Інтерфейсна надпровідність

S. Tan, Nature Materials 2013

FeSe

S. Tan, Nature Materials 2013

Temperature developed circuits

Temperature developed circuits

Enhanced superconductivity in surfaceelectron-doped Ba(Fe_{1.94}Co_{0.06})₂As₂

100 1.0 - OP OPD (a.u.) 80 0.5 $\overset{\circ}{\varkappa}$ OP Temperature (K) 0.0 60 0.0 0.5 1.0 1.5 Surface $q_x(\pi/a)$ doping 40 AFM NV $T_c = 0$ 20 -Bulk doping SC K coverage (ML) 0.0 0 14 18 0 8 10 12 16 2 Bulk doping level (%)

Kyung, Nature Materials (2016)

High-temperature superconductivity in K-coated multilayer FeSe thin films

Miyata Nature Materials (2015)