Курс: Електронна структура та властивості низькорозмірних систем

Лектор: Олександр Кордюк

Лекції 5-6: Хвилі зарядової густини в дихалькогенідах перехідних металів та квазікристали

- Transition metal dichalcogenides: composition, structure, and applications
- Квазідвовимірність та електронна структура
- CDW in TaSe₂: переходи у співрозмірну на неспіврозмірну фази, псевдощілина
- Нестинг, автокореляція та двохчастинкова спектральна функція
- Commensurate vs Incommensurate...
- CDW band gaps
- Плитки Пенроуза та квазікристали

CDW in transition metal dichalcogenides

Various polytypes of the layer structure transition metal dichalcogenides

Transition metal dichalcogenides

н		_			Ν	/)	(₂					X =	Ch	alc	oge	en	Не
ы	Be		M = Transition Metal									в	с	N O		F	Ne
Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	Р	s	сі	Ar
к	Ca	Sc	π	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
Cs	Ва	La - Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	п	Pb	Bi	Po	At	Rn
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo

<u>Nano Convergence</u> **2**, 17 (2015)

Layered transition metal dichalcogenides 1cm ZrSe₂ TaS₂ NbSe₂ TaSe₂ WSe₂ MoTe₂ MoSe₂ MoS₂ GaSe GaS SnSe₂ SnS₂

Various transition metal dichalcogenides (T. Shimada) <u>http://van-der-waals</u>

http://van-der-waals-epitaxy.info/?attachment_id=317

Recent development of 2D transition metal dichalcogenides and their applications

Energy conversion: 5.08%

Energy Storages

materialstoday

Volume 20, Issue 3, April 2017, Pages 116-1

https://doi.org/10.1016/j.mattod.2016.10.002

Transition metal dichalcogenides: crystal structure

Electronic properties of transition-metal dichalcogenide

A. Kuc (2015) Mrs Bulletin

•DOI:<u>10.1557/MRS.2015.143</u>

Chalcogenide: X = S, Se, Te,...

Metal atom: M = Mo, W, Ti,...

CDW in transition metal dichalcogenides

Various polytypes of the layer structure transition metal dichalcogenides

J.A. Wilson & A.D. Yoffe, Advances in Physics (1969) J.A. Wilson et al. Advances in Physics, 24, 117-201 (1975) https://doi.org/10.1080/00018736900101307

З попередньої лекції...

Developed with support from NSF-IUSE #1524968.

f(1.9635, 1.9635) = 1.99671288

З попередньої лекції…

Developed with support from NSF-IUSE #1524968.

CDW in transition metal dichalcogenides

CDW in transition metal dichalcogenides

Electron diffraction plates showing superlattice formation. (i) 2H-TaS% (300°K). A crystal showing standard a o parameter. (ii) 1T-TaS% (300°K). Pattern, for well-oriented sample, from $\sim/(13)$ superlattice. (iii) 4Hb-TaS2 (300°K). Pattern indexable on 13 superlattice. Equivalent to superposifion of ~ and /~-domain patterns. (iv) 1T-TaS~ (300°K). Basically ~/(13)a o superlattice pattern (here of ~-dolnain type), but with complex 'decoration'.

117-201 (1975) 24, Advances in Physics, A. Wilson et al. —

CDW in TaSe₂: commensurate CDW state

Borisenko PRL 2008

2H-TaSe₂ crystal structure, CDW transitions

CDW in TaSe₂: commensurate CDW state

Borisenko PRL 2008

Normal state of 2H-TaSe₂

Momentum (Å⁻¹)

Commensurate CDW state of 2H-TaSe₂

Normal state 290 K

-0.3

-0.4

-0.2

0.2

0.3

0.4

-0.2

0.1

0.0

Momentum (A⁻¹)

-0.1

Comparison: IC-CDW and normal state

Pseudogap as a function of temperature

Autocorrelation – measure of nesting

AC
$$A(\mathbf{k}) = \int A(\mathbf{k})A(\mathbf{k} + \mathbf{q}) \, d\mathbf{k} = C(\mathbf{q})$$
 290 K

Fermi surface nesting and Lindhard function

$$= \sum_{\mathbf{k}} [n_{\mathbf{F}}(\epsilon_{\mathbf{k}}) - n_{\mathbf{F}}(\epsilon_{\mathbf{k}+\mathbf{q}})] / (\epsilon_{\mathbf{k}} - \epsilon_{\mathbf{k}+\mathbf{q}})$$

$$\chi = G \star G$$

Electron susceptibility

$$\chi_0(\mathbf{q},\omega) = 2 \int \frac{\mathrm{d}\mathbf{k}}{(2\pi)^d} \frac{n_{\mathrm{F}}(\epsilon_{\mathbf{k}}) - n_{\mathrm{F}}(\epsilon_{\mathbf{k}+\mathbf{q}})}{\epsilon_{\mathbf{k}} - \epsilon_{\mathbf{k}+\mathbf{q}} + \omega + \mathrm{i}\,0^+}$$

Lindhard functions at $\omega \rightarrow 0$

$$\begin{split} \chi_{\mathbf{q}} &= \sum_{\mathbf{k}} \frac{n_{\mathbf{F}}(\epsilon_{\mathbf{k}}^{a}) - n_{\mathbf{F}}(\epsilon_{\mathbf{k}+\mathbf{q}}^{a})}{\epsilon_{\mathbf{k}}^{a} - \epsilon_{\mathbf{k}+\mathbf{q}}^{a}} + \sum_{\mathbf{k}} \frac{n_{\mathbf{F}}(\epsilon_{\mathbf{k}}^{a}) - n_{\mathbf{F}}(\epsilon_{\mathbf{k}+\mathbf{q}}^{b})}{\epsilon_{\mathbf{k}}^{a} - \epsilon_{\mathbf{k}+\mathbf{q}}^{b}} \\ &+ \sum_{\mathbf{k}} \frac{n_{\mathbf{F}}(\epsilon_{\mathbf{k}}^{b}) - n_{\mathbf{F}}(\epsilon_{\mathbf{k}+\mathbf{q}}^{a})}{\epsilon_{\mathbf{k}}^{b} - \epsilon_{\mathbf{k}+\mathbf{q}}^{a}} + \sum_{\mathbf{k}} \frac{n_{\mathbf{F}}(\epsilon_{\mathbf{k}}^{b}) - n_{\mathbf{F}}(\epsilon_{\mathbf{k}+\mathbf{q}}^{b})}{\epsilon_{\mathbf{k}}^{b} - \epsilon_{\mathbf{k}+\mathbf{q}}^{b}} \end{split}$$

Inosov arXiv:0805.4105, arXiv:0807.3929

Temperatuire variations

Inosov arXiv:0805.4105, arXiv:0807.3929

 $K = 2\pi/a$

CDW band gaps

CDW band gaps

Hall coefficient of 2H-TaSe₂ from ARPES

Evtushinsky PRL 2008

Figure S2. Real part of the Lindhard function at $\omega \rightarrow 0$ as a function of momentum and corresponding profile along high-symmetry directions, with the dominant nesting vector marked by the red arrow. The same vectors can be seen in left panel as white spots.

Quasicrystals

Квазікристал [ред. | ред. код]

Матеріал з Вікіпедії — вільної енциклопедії.

Квазікристал — це тверде тіло, атоми якого впорядковані так, що не утворюють кристалічної ґратки (тобто ця структура не є періодичною, позбавлена трансляційної симетрії), але в той же час можуть когерентно розсіювати випромінювання.

Найважливішою рисою квазікристалів є те, що вони дають чіткі бреґґівські піки при дифракції рентгенівських променів і електронів, причому осі симетрії цих піків мають заборонені для кристалів порядки, наприклад 5-ий. В загальному ж випадку неперіодична структура (наприклад, аморфне тіло, рідина тощо), не обов'язково дає чіткі бреґґвські піки.

Є два типи квазікисталів: 1) структура періодична по одній осі, а у площині перпендикулярній до цій осі — квазікристалічна; 2) структура квазікристалічна в усіх трьох напрямках.

Здебільшого квазікристали утворюються при швидкому охолодженні розплавлених сплавів металів (Al-Li-Cu, Al-Mn-Si, Al-Ni-Co, Al-Pd-Mn, Al-Cu-Fe, Al-Cu-V, Cd-Yb, Ti-Zr-Na, Zn-Mg-Ho, Zn-Mg-Sc, In-Ag-Yb, Pd-U-Si тощо), і є нестабільними, однак виявлені також стабільні квазікристалічні речовини.

Історія [ред. | ред. код]

Математично можливість заповнення простору кількома простими комірками з утворенням неперіодичної структури відкрив у 1970-их Роджер Пенроуз. Квазікристали були відкриті в 1984 році Даном Шехтманом.

Дифракційна картина розсіяння електронів на ікосаедричній структурі квазікристалу Zn-Mg-Ho. Видно 10 точок по колу.

Деякі приклади нерекурсивної математики

Рис. 4.8. Периодическое замощение и его параллелограмм периодов

Пенроуз Р. Новый ум короля.djvu

Рис. 4.10. Набор Рафазля Робинсона из шести плиток, который покрывает плоскость только непериодически

Рис. 4.12. Две пары плиток, которые покрывают плоскость только непериодически («плитки Пенроуза»). Также показано замощение плоскости каждой из этих пар

Figure 1. (a). A patch of a Penrose tiling. (b). The diffraction diagram of the vertex set V of (a) is essentially discrete; thus F is an aperiodic crystal, according to the new definition.

Atomic model of an aluminium-palladium-manganese (Al-Pd-Mn) quasicrystal surface.

Дифракційна картина розсіяння електонів на ікосаедричній структурі квазікристалу Zn-Mg-Ho. Видно 10 точок по колу.

