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Proposition

Let D and D’ be homotopy equivalent objects of a dg-category
D. Let

be relevant data.
Then there are o and §

DD gof =1p —do’
a’OD%D’OB fog=1p —dB
—1 -1

DD foo —Bof=ds.
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HopemeHns.
We have foa — Bof € Z7'D(D, D) since

dfoa—pfof)=fo(l—gof)+(fog—1)of =0.

=z:=go(foa—pof)eZ7'D(D,D),
o =a—z=gof=1p —dd

foa/ —Bof=foa—Bof—fogo(foa—Lof)
—foa—fBof—(1—dB)o(foa—Bof) = (df)o(foa—fof)
=d[fo(foa—pFof)]=:dd.

0J
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Let C be a category. If the ordered set is N={1,2,3,...} with the
usual ordering, an inverse system (with values in the category
C) over N is often simply called an inverse system.

It consists quite simply of a pair (Mj, fir) where each M;j, i€N is
an object of C, and for each i>i’, i,i’€N a morphism

fiir : Mj — M! such that moreover fi;r o fiy = £+ whenever this
makes sense.

It is clear that in fact it suffices to give the morphisms

My — My, M3 — My, and so on. Hence an inverse system is

frequently pictured as follows M; i M, o Mj i
Moreover, we often omit the transition maps ¢; from the
notation and we simply say “let (M;) be an inverse system”.
The collection of all inverse systems with values in C forms a
category with the obvious notion of morphism.
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If C is an additive category, then the category of inverse systems
with values in C is an additive category.

If C is an abelian category, then the category of inverse systems
with values in C is an abelian category.

A sequence (K;) — (Li) — (M;) of inverse systems is exact if
and only if each K; — L; — M; is exact.

The limit of such an inverse system is denoted lim M;j, or lim; M.
If C is the category of abelian groups (or sets), then the limit
always exists and in fact can be described as follows

|igT1 M; = {(Xi) € HMi | qbi(Xi) =x_1,1=2,3,.. }
However, given a short exact sequence
0— (A) — (Bi) = (Ci)) —» 0

of inverse systems of abelian groups it is not always the case
that the associated system of limits is exact. In order to discuss
this further we introduce the following notion.
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Definition (Ymosa Mirara—J/ledepa)

Let C be an abelian category. We say the inverse system (A;)
satisfies the Mittag—Leffler condition, or for short is ML, if for
every i there exists a c=c(i)>i such that for all k>c

Im(Ak — Ai) = Im(AC — Ai).

It turns out that the Mittag-Leffler condition is good enough to
ensure that the lim-functor is exact, provided one works within
the abelian category of abelian groups, or abelian sheaves, etc.
Example

If (Ai, ¢ji) is a directed inverse system of sets or of modules and
the maps ¢; are surjective, then clearly the system is
Mittag-Leffler. Conversely, suppose (Aj, ¢5) is Mittag-Leffler.
Let A{ C A; be the stable image of ¢;i(A;) for j>i. Then

¢ji|AJf : AJ{ — Al is surjective for j>i and lim A; = lim A]. Hence
the limit of the Mittag—Leffler system (Aj, ¢ji) can also be
written as the limit of a directed inverse system over I with
surjective maps.
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Let (Aj, ¢5) be a directed inverse system over I. Suppose I is
countable. If (Aj, ¢5) is Mittag-Leffler and the A; are nonempty,
then lim A; is nonempty.
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Lemma

Let (Aj, ¢5) be a directed inverse system over I. Suppose I is
countable. If (Aj, ¢5) is Mittag-Leffler and the A; are nonempty,
then lim A; is nonempty.

JloBeieHHs.
Let iy,19,13,... be an enumeration of the elements of 1. Define
inductively a sequence of elements j, € I for n=1,2,3,... by the

conditions: j; =iy, and jn > i, and jn > jm for m<n. Then the
sequence jp is increasing and forms a cofinal subset of 1. Hence
we may assume 1 ={1,2,3,...}.

So by previous Example we are reduced to showing that the
limit of an inverse system of non-empty sets with surjective
maps indexed by the positive integers is non-empty. This is
obvious. O
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Lemma

Let 0 — A; f—1> B; &5 C; — 0 be an exact sequence of directed
inverse systems of abelian groups over 1. Suppose I is countable.
If (A;) is Mittag—Leffler, then 0 — lim A; — limB; — limC; — 0
1s exact.
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E; — E; which make (E;) into an inverse system of nonempty
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Lemma

Let 0 — A; f—1> B; &5 C; — 0 be an exact sequence of directed
inverse systems of abelian groups over 1. Suppose I is countable.
If (A;) is Mittag—Leffler, then 0 — lim A; — limB; — limC; — 0
is exact.

Hoeenenns. Taking limits of directed inverse systems is left
exact, hence we only need to prove surjectivity of

limB; — lim C;i. So let (c;) € lim C;. For each i€l let

E; = gfl(ci), which is nonempty since g; : B; — C; is surjective.
The system of maps ¢;i : Bj — B; for (B;) restrict to maps

E; — E; which make (E;) into an inverse system of nonempty
sets.

It is enough to show that (E;) is Mittag-Leffler. For then
previous Lemma would show lim E; is nonempty, and taking any
element of lim E; would give an element of lim B; mapping to (¢;).



By the injection fj : Aj — B; we will regard A; as a subset of B;.
Since (A;) is Mittag-LefHer, if i€l then there exists j>i such that
(bki(Ak) = (bji(Aj) for k>j. We claim that also ¢ki(Ek) = (z)ji(Ej)
for k>j. Always Qbki(Ek) C iji(Ej) for k>j.
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By the injection fj : Aj — B; we will regard A; as a subset of B;.
Since (A;) is Mittag-LefHer, if i€l then there exists j>i such that
(bki(Ak) = ¢ji(Aj) for k>j. We claim that also ¢ki(Ek) = (z)ji(Ej)
for k>j. Always Qbki(Ek) C iji(Ej) for k>j.

For the reverse inclusion let e; € E;, and we need to find xi € Ey
such that qbki(xk) = qui(ej).

Let e € Ex be any element, and set e{ = ¢y;j(ef ). Then

gi(ej — ) = ¢j —¢; =0, hence ¢j — ¢; = aj € A;.

Since ¢yi(Ak) = ¢5i(A;), there exists ax € Ak such that

¢xi(ax) = ¢ji(a;). Hence

oui(el + ax) = dii(e)) + ¢iia)) = @iiley),

O

so we can take xx = e} + ay.



Lemma

Let 0 — (Aj) — (Bi) — (Ci) — 0 be a short exact sequence of
inverse systems of abelian groups. Then
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If (B;) is ML, then also (C;) is ML.

If (Aj) is ML, then 0 — lim; A;j — lim; B; — lim; C; — 0 is exact.
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Lemma

Let 0 — (Aj) — (Bi) — (Ci) — 0 be a short exact sequence of
inverse systems of abelian groups. Then

In any case the sequence 0 — lim; A; — lim; B; — lim; C; is exact.
If (B;) is ML, then also (C;) is ML.

If (Aj) is ML, then 0 — lim; A;j — lim; B; — lim; C; — 0 is exact.
Proof. (1) lim : Ab™ — Ab is right adjoint to

const : Ab — AbI” X = (X);.

(2) follows from surjectivity of all gj : B; — Cj: Vi Jj > i Vk > j

Bk L) Ck

Bj L) Cj

B —— G
Im(Ck — Cl) = gi(lm(Bk — Bi)) = gi(lm(Bj — Bi)) = Im(Cj — Cl)
Il



Lemma
Let
(A1) = (Bi) = (Ci) — (D)

be an exact sequence of inverse systems of abelian groups. If the
system (A;) is ML, then the sequence

Ii_m Bi — Ii_m Ci — Ii_m Di
i i i

1s exact.
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Lemma
Let
(A1) = (Bi) = (Ci) — (D)

be an exact sequence of inverse systems of abelian groups. If the
system (A;) is ML, then the sequence

Ii_m Bi — Ii_m Ci — Ii_m Di
i i i

1s exact.

HoBenennsd.
Let 7Z; = Ker(Ci — Di) and I; = Im(Ai — Bi). Then
limZ; = Ker(lim C; — limD;) and we get a short exact sequence

of systems
0— (L) — (Bi) = (%) =0

Moreover, by previous Lemma we see that (I;) has (ML), thus
another application of previous Lemma shows that
limB; — lim Z; is surjective which proves the lemma. O
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In this section ¥ and ¢’ will denote two abelian categories, and F: 4 — €’ an
additive functor.
We shall denote by Q the natural functor K*(€)—D*(€) or K*(¢')—»D*(%").

Definition 1.8.1. Let T : D*(%) —» D*(€’) be a functor of triangulated categories,
and let s be a morphism of functors:

s:QoK'(F)>ToQ,

where K*(F): K*(€) - K*(€) is the functor naturally associated to F. Assume
that for any functor of triangulated categories G : D* (€) — D*(€"), the morphism:

Hom(T, G) — Hom(Q o K*(F),G o Q)

is an isomorphism.

Then (T, s), which is unique up to isomorphism, is called the right derived functor
of F, and denoted RF. The functor H" o RF, also denoted R"F, is called the n-th
derived functor of F.

Let us give a useful criterium which ensures the existence of RF. From now
on and until Proposition 1.8.7, we assume F is left exact.



F-in’ekTuBHA HiJKATErOpis

Definition 1.8.2. A4 full additive subcategory .# of € is called injective with respect

to F (or F-injective, for short), if

(1.7.5) for any X € Ob(¥), there exists X' € Ob(F) and an exact sequence

0-X->X".

(i) if 0> X' > X > X" - 0 is an exact sequence in €, and if X' and X are in
Ob(F), then X" is also in Ob(F),

(iii) if 0> X' > X - X" — 0 is an exact sequence in €, and if X', X, X", are in
Ob(.#), then the sequence 0 - F(X') - F(X) - F(X") — 0 is exact.

Note that under conditions (i) and (ii), the condition (iii) is equivalent to the
similar condition in which one only assumes X' € Ob(.#), because of the assump-
tion that F is left exact.

Let £ be F-injective. Then one can check easily that F transforms objects of
K*(#) quasi-isomorphic to zero into objects of K*(#') satisfying the same

property
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Note that under conditions (i) and (ii), the condition (iii) is equivalent to the
similar condition in which one only assumes X' € Ob(.#), because of the assump-
tion that F is left exact.

Let £ be F-injective. Then one can check easily that F transforms objects of
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0— 1Ty I I, I3 Iy I5
N P o P Mo S
Io Ky Ky K3 Ky €7

0— FIO — FIl — FIQ — FI3 — FI4 — FI5
A R A N A T A R
Fl FK; FK, FK3 FK4
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property. Therefore the composition of functors

K*(f) K*(‘K’) D* (%)
factors through K*(#)/A4" n Ob(K*(#)) where A" is given by

acyclic complexes. Since
K*(#£)/ A n Ob(K*(#))isequivalent to D*(%) by Proposition 1.7.7, we obtain:

Proposition 1.8.3. Assume there exists an F-injective subcategory # of 6. Then
the functor from K*(#)/A" n Ob(K*(F)) to D*(€") constructed above is the right
derived functor of F.

Remark 1.8.4. It follows from the universal property of RF that the preceding
construction does not depend on .#.

Remark 1.8.5. Let .# be the full subcategory of injective objects of € and assume
% has enough injectives, (i.e: (1.7.5) is satisfied). Then .# is F-injective with respect
to any left exact functor F, since any sequence in .# splits, (cf. Exercise 1.5). In
particular RF always exists in this case.



['omoromiiina rpannis
In a triangulated category there is a notion of derived limit.

Definition

Let D be a triangulated category. Let (Ky,f, : Ky — Ky—1) be
an inverse system of objects of D. We say an object K is a
derived limit, or a homotopy limit of the system (K;) if the
product J]K, exists and there is a distinguished triangle

K — [[Xn = [[ Ko = K[1]

where the map [[ K, — [[ K, is given by
(kn) — (kn — fu41(kny1)). If this is the case, then we sometimes
indicate this by the notation K = RlimK,,.
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Definition

Let D be a triangulated category. Let (Ky,f, : Ky — Ky—1) be
an inverse system of objects of D. We say an object K is a
derived limit, or a homotopy limit of the system (K;) if the
product J]K, exists and there is a distinguished triangle

K — [[Xn = [[ Ko = K[1]

where the map [[ K, — [[ K, is given by

(kn) — (kn — fu41(kny1)). If this is the case, then we sometimes
indicate this by the notation K = RlimK,,.

By TR3 a derived limit, if it exists, is unique up to (non-unique)
isomorphism. Moreover, by TR1 a derived limit R lim K, exists
as soon as [[ K, exists. The derived category D(Ab) of the
category of abelian groups is an example of a triangulated
category where all derived limits exist.
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Let A be an abelian category with countable products and
enough injectives. Let (Ky) be an inverse system of DT (A).
Then Rlim K, exists.



Lemma

Let A be an abelian category with countable products and
enough injectives. Let (Ky) be an inverse system of DT (A).
Then Rlim K, exists.

JoBeienns.

It suffices to show that [] K, exists in D(A). For every n we can
represent K, by a bounded below complex I? of injectives. Then
1K, is represented by []1I2. O
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Lemma
The functor lim : AbY" — Ab has a right derived functor

R lim : D(ABY™) — D(Ab)

As usual we set RP lim(K) = HP(R lim(K)). Moreover, we have
1. for any (A;) in AbN” we have RP lim A, = 0 for p>1,
2. the object Rlim A, of D(ADb) is represented by the complex

HAH — HAm (Xn) — (Xn - n+1(Xn+1))

sitting in degrees 0 and 1,

3. if (A,) is Mittag—Leffler, then R' lim A, = 0, i.e., (A,) is
right acyclic for lim,

4. every K®* € D(AbN) is quasi-isomorphic to a complex
whose terms are right acyclic for lim, and

5. if each KP = (KP) is right acyclic for lim, i.e., of
R!lim, KP = 0, then RIimK is represented by the complex
whose term in degree p is lim, KP.



Proof. Let (A,) be an arbitrary inverse system. Let (By,) be the
inverse system with

B,=A, A, 10...0A

and transition maps given by projections. Let A, — By be given
by (1,fn,fn—10fn,...,fo0...0f,) where f; : A; — A;_; are the
transition maps. In this way we see that every inverse system is
a subobject of a ML system. It follows that every ML system is
right acyclic for lim, i.e.; (3) holds. This already implies that RF
is defined on D¥(AbN™). Set C, = A, 1 @ ... @ A; for n>1 and
C1 = 0 with transition maps given by projections as well.



Proof. Let (A,) be an arbitrary inverse system. Let (By,) be the
inverse system with

B,=A, A, 10...0A

and transition maps given by projections. Let A, — By be given
by (1,fn,fn—10fn,...,fo0...0f,) where f; : A; — A;_; are the
transition maps. In this way we see that every inverse system is
a subobject of a ML system. It follows that every ML system is
right acyclic for lim, i.e.; (3) holds. This already implies that RF
is defined on D¥(AbN™). Set C, = A, 1 @ ... @ A; for n>1 and
C1 = 0 with transition maps given by projections as well.

Then there is a short exact sequence of inverse systems

0 — (An) — (Bn) = (Cu) — 0 where B, — Cy, is given by

(xi) = (xi — fix1(xi+1))- Since (Cy) is ML as well, we conclude
that (2) holds which also implies (1).



Proof. Let (A,) be an arbitrary inverse system. Let (By,) be the
inverse system with

B,=A, A, 10...0A

and transition maps given by projections. Let A, — By be given
by (1,fn,fn—10fn,...,fo0...0f,) where f; : A; — A;_; are the
transition maps. In this way we see that every inverse system is
a subobject of a ML system. It follows that every ML system is
right acyclic for lim, i.e.; (3) holds. This already implies that RF
is defined on D¥(AbN™). Set C, = A, 1 @ ... @ A; for n>1 and
C1 = 0 with transition maps given by projections as well.

Then there is a short exact sequence of inverse systems

0 — (An) — (Bn) = (Cu) — 0 where B, — Cy, is given by

(xi) = (xi — fix1(xi+1))- Since (Cy) is ML as well, we conclude
that (2) holds which also implies (1).

Finally, this implies that R lim is in fact defined on all of
D(AbN™). In fact, one proceeds by proving assertions (4) and
(5). O
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Let S be a triangulated category. Suppose Xi, i € N, is a
sequence of objects in S, together with maps f; : Xj11 — X;.
Then Vn € N there is a split exact sequence in S

n+1 X n
pr —shift
0— Xnp1 —s [Ixi—— [[Xi—0o,
i=1 i=1

n+1 n+1 H .
shift:<HX = HX Bk HX>

1
—f; 1
i —f, 1 0
pr —shift 0 ;
—In-1 1
—f,

q= (fn . .fl,...,fnfn_l,fn,l).

Splitting is determined by pr,; : H?jll X — Xpa1



The diagram commutes

n+1

. n
0 X — s T 2 T —— 0
i=1 =1
. |
- ¢ —shift
0 Xu 4 HXi i H Xy —0

i=1 i=1



The diagram commutes

n+1

. n
I | T | ¢
i=1 =1
. |
- ¢ —shift
0 Xn 4 HXi e H Xy —0
i=1 i=1

If S = D(A), where abelian category satisfies AB5*), the filtered
limit of rows would be an exact sequence in C(A)

oo 9]
. 1—shift
0—IlimX; — [[Xi —— [[Xi =0,
ieN =1 =1

However, Ab and R-mod do not satisfy AB5%*).
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For any chain map f : X — Y there are

—_— _1 .
Cone(—f: X —=Y) = <X[1] DY, (dx[1] “ f)),
0 dy

Cone(Y — Cone(—f: X —=Y))

dY 1] O (o E
= (Y[l] D X[l] DY, 0 dX[l] —o 1.t )7
0 0 dy

Z = Cone(Y — Cone(—f: X = Y))[-1]
dY 0 —0 E
:<Y@X@Y[—1], 0 dx f-o°! )
0 0 dyq

dY[—ll =—0-dy - o L.



OO

(f10) dy 0 o )()

X?(Y@X@Y[—l], 0 dx f-o || 25,
/ 0 0 dypg



(f10) dy 0 o7 )(é)

X<:><Y@X@Y[—1], 0 dx f-o '] %Y.
(?) 0 0 d
! Y[-1]

Morphisms on the left are homotopy inverse to each other since

0
£ 1 0)-[1]=1,
1) :

—_
/N

(£ 1 O):1z+hdz+dzh,

where h = VA NA degh = —1.

qQ © o
o O O
o O O
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The map f decomposes into homotopy equivalence and a
fibration (surjection in all degrees)

1
f:(XMz@»Y).

Iterating this procedure we can replace the sequence (f;) of
chain maps of complexes of abelian groups

f. f: fs f
4 X, 3 X, 2 X, 1 X,

= hy J{Z = hs J{Z = ho JZ = hi

4 .
g Z4 g3 Z3 g2 ZQ g1 Z1

with a sequence (g;) of fibrations such that the vertical maps
(h;) are homotopy equivalences.

By definition, in the sense of model categories

holimi(fi) = holimi(gi) = Ii{‘n(gi).



Since the sequence (g;i) is Mittag—Leffler we have a short exact
sequence of complexes

0 = lim(g)) — [z =% [z o,
i=1 i=1

which implies that in the sense of triangulated categories
K’ = holim;(g;) comes from a triangle in D(Ab)

1 shift

K/:!ierlg(gi)—)l:[Z HZ — K'[1]
isomorphic in D(AD) to
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Since the sequence (g;i) is Mittag—Leffler we have a short exact
sequence of complexes

0 = lim(g)) — [z =% [z o,
i=1 i=1

which implies that in the sense of triangulated categories
K’ = holim;(g;) comes from a triangle in D(Ab)

1 shift

K/:!ierlg(gi)—)HZ HZ — K'[1]

isomorphic in D(AD) to

K = holimien(f; —>HX 1oshily HX — K[1].

Hence, in the sense of triangulated categories

K = holimjen(fi) 2 K’ = limijen(gi) in D(ADb). The same
conclusion for any diagram (1) with quasi-isomorphisms h; and
fibrations g;. Thus, the two approaches to holim agree.



) B ) A

The Stacks project 12.31 Inverse systems

The Stacks project 10.86 Mittag-Leffler systems
The Stacks project 13.34 Derived limits

The Stacks project Lemma 15.85.1

Alberto Canonaco, Amnon Neeman, and Paolo Stellari,
Uniqueness of enhancements for derived and geometric
categories, 2021, arXiv:2101.04404. §3.3

Masaki Kashiwara and Pierre Schapira, Sheaves on
manifolds, Grundlehren der mathematischen
Wissenschaften, vol. 292, Springer-Verlag, Berlin, New York,
1990. Def 1.8.1, Def 1.8.2, Prop 1.8.3



