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Âèïðàâëåííÿ

Proposition

Let D and D′ be homotopy equivalent objects of a dg-category
D. Let

D
f

0
→ D′ g ◦ f = 1D − dα

α �
−1

D←g

0
D′ 	
−1
β f ◦ g = 1D′ − dβ

be relevant data.
Then there are α′ and δ

D
f

0
→ D′ g ◦ f = 1D − dα′

α′ �
−1

D←g

0
D′ 	
−1
β f ◦ g = 1D′ − dβ

D
δ

−2
→ D′ f ◦ α′ − β ◦ f = dδ.



Äîâåäåííÿ.

We have f ◦ α− β ◦ f ∈ Z−1D(D,D′) since

d(f ◦ α− β ◦ f) = f ◦ (1− g ◦ f) + (f ◦ g − 1) ◦ f = 0.

⇒ z := g ◦ (f ◦ α− β ◦ f) ∈ Z−1D(D,D),
α′ := α− z ⇒ g ◦ f = 1D − dα′

f ◦ α′ − β ◦ f = f ◦ α− β ◦ f − f ◦ g ◦ (f ◦ α− β ◦ f)
= f ◦ α− β ◦ f − (1− dβ) ◦ (f ◦ α− β ◦ f) = (dβ) ◦ (f ◦ α− β ◦ f)

= d[β ◦ (f ◦ α− β ◦ f)] =: dδ.



Çâîðîòíi ñèñòåìè

Let C be a category. If the ordered set is N={1,2,3,. . . } with the
usual ordering, an inverse system (with values in the category
C) over N is often simply called an inverse system.
It consists quite simply of a pair (Mi, fii′) where each Mi, i∈N is
an object of C, and for each i>i′, i,i′∈N a morphism
fii′ : Mi → M′i such that moreover fi′i′′ ◦ fii′ = fii′′ whenever this
makes sense.
It is clear that in fact it su�ces to give the morphisms
M2 → M1, M3 → M2, and so on. Hence an inverse system is

frequently pictured as follows M1 ←
φ2

M2 ←
φ3

M3 ←
φ4

. . .
Moreover, we often omit the transition maps φi from the
notation and we simply say �let (Mi) be an inverse system�.
The collection of all inverse systems with values in C forms a
category with the obvious notion of morphism.



If C is an additive category, then the category of inverse systems
with values in C is an additive category.
If C is an abelian category, then the category of inverse systems
with values in C is an abelian category.
A sequence (Ki)→ (Li)→ (Mi) of inverse systems is exact if
and only if each Ki → Li → Mi is exact.
The limit of such an inverse system is denoted limMi, or limiMi.
If C is the category of abelian groups (or sets), then the limit
always exists and in fact can be described as follows

lim
i
Mi = {(xi) ∈

∏
Mi | φi(xi) = xi−1, i = 2, 3, . . .}.

However, given a short exact sequence

0→ (Ai)→ (Bi)→ (Ci)→ 0

of inverse systems of abelian groups it is not always the case
that the associated system of limits is exact. In order to discuss
this further we introduce the following notion.



De�nition (Óìîâà Ìiòàãà�Ëåôëåðà)

Let C be an abelian category. We say the inverse system (Ai)
satis�es the Mittag�Le�er condition, or for short is ML, if for
every i there exists a c=c(i)≥i such that for all k≥c

Im(Ak → Ai) = Im(Ac → Ai).

It turns out that the Mittag-Le�er condition is good enough to
ensure that the lim-functor is exact, provided one works within
the abelian category of abelian groups, or abelian sheaves, etc.

Example

If (Ai, φji) is a directed inverse system of sets or of modules and
the maps φji are surjective, then clearly the system is
Mittag�Le�er. Conversely, suppose (Ai, φji) is Mittag�Le�er.
Let A′i ⊂ Ai be the stable image of φji(Aj) for j≥i. Then
φji|A′j : A′j → A′i is surjective for j≥i and limAi = limA′i. Hence
the limit of the Mittag�Le�er system (Ai, φji) can also be
written as the limit of a directed inverse system over I with
surjective maps.



Íåïîðîæíiñòü ãðàíèöi ñèñòåìè Ìiòàãà�Ëåôëåðà

Lemma
Let (Ai, φji) be a directed inverse system over I. Suppose I is
countable. If (Ai, φji) is Mittag�Le�er and the Ai are nonempty,
then limAi is nonempty.

Äîâåäåííÿ.

Let i1, i2, i3, . . . be an enumeration of the elements of I. De�ne
inductively a sequence of elements jn ∈ I for n=1,2,3,. . . by the
conditions: j1 = i1, and jn ≥ in and jn > jm for m<n. Then the
sequence jn is increasing and forms a co�nal subset of I. Hence
we may assume I = {1, 2, 3, . . .}.
So by previous Example we are reduced to showing that the
limit of an inverse system of non-empty sets with surjective
maps indexed by the positive integers is non-empty. This is
obvious.



Ñèñòåìà Ìiòàãà�Ëåôëåðà i êîðîòêà òî÷íà

ïîñëiäîâíiñòü ãðàíèöü

Lemma
Let 0→ Ai

fi−→ Bi
gi−→ Ci → 0 be an exact sequence of directed

inverse systems of abelian groups over I. Suppose I is countable.
If (Ai) is Mittag�Le�er, then 0→ limAi → limBi → limCi → 0
is exact.

Äîâåäåííÿ. Taking limits of directed inverse systems is left
exact, hence we only need to prove surjectivity of
limBi → limCi. So let (ci) ∈ limCi. For each i∈I, let
Ei = g−1i (ci), which is nonempty since gi : Bi → Ci is surjective.
The system of maps φji : Bj → Bi for (Bi) restrict to maps
Ej → Ei which make (Ei) into an inverse system of nonempty
sets.
It is enough to show that (Ei) is Mittag-Le�er. For then
previous Lemma would show limEi is nonempty, and taking any
element of limEi would give an element of limBi mapping to (ci).



By the injection fi : Ai → Bi we will regard Ai as a subset of Bi.
Since (Ai) is Mittag-Le�er, if i∈I then there exists j≥i such that
φki(Ak) = φji(Aj) for k≥j. We claim that also φki(Ek) = φji(Ej)
for k≥j. Always φki(Ek) ⊂ φji(Ej) for k≥j.
For the reverse inclusion let ej ∈ Ej, and we need to �nd xk ∈ Ek

such that φki(xk) = φji(ej).
Let e′k ∈ Ek be any element, and set e′j = φkj(e′k). Then
gj(ej − e′j) = cj − cj = 0, hence ej − e′j = aj ∈ Aj.
Since φki(Ak) = φji(Aj), there exists ak ∈ Ak such that
φki(ak) = φji(aj). Hence

φki(e′k + ak) = φji(e′j) + φji(aj) = φji(ej),

so we can take xk = e′k + ak.



Lemma
Let 0→ (Ai)→ (Bi)→ (Ci)→ 0 be a short exact sequence of
inverse systems of abelian groups. Then
In any case the sequence 0→ limiAi → limi Bi → limiCi is exact.
If (Bi) is ML, then also (Ci) is ML.
If (Ai) is ML, then 0→ limiAi → limi Bi → limiCi → 0 is exact.

Proof. (1) lim : AbIop → Ab is right adjoint to
const : Ab→ AbI

op
, X 7→ (X)i.

(2) follows from surjectivity of all gi : Bi → Ci: ∀i ∃j ≥ i ∀k ≥ j

Bk
gk → Ck

Bj

↓
gj → Cj

↓

Bi

↓
gi → Ci

↓

Im(Ck → Ci) = gi(Im(Bk → Bi)) = gi(Im(Bj → Bi)) = Im(Cj → Ci).

�



Lemma
Let

(Ai)→ (Bi)→ (Ci)→ (Di)

be an exact sequence of inverse systems of abelian groups. If the
system (Ai) is ML, then the sequence

lim
i
Bi → lim

i
Ci → lim

i
Di

is exact.

Äîâåäåííÿ.

Let Zi = Ker(Ci → Di) and Ii = Im(Ai → Bi). Then
limZi = Ker(limCi → limDi) and we get a short exact sequence
of systems

0→ (Ii)→ (Bi)→ (Zi)→ 0

Moreover, by previous Lemma we see that (Ii) has (ML), thus
another application of previous Lemma shows that
limBi → limZi is surjective which proves the lemma.



Ïðàâèé ïîõiäíèé ôóíêòîð



F-ií'¹êòèâíà ïiäêàòåãîðiÿ

property

0 → I0 → I1 → I2 → I3 → I4 → I5

I0
⊂→

==
K1

⊂→.
K2

⊂→.
K3

⊂→.
K4

⊂→.
∈ I

0 → FI0 → FI1 → FI2 → FI3 → FI4 → FI5

FI0
⊂→=

FK1

⊂→.
FK2

⊂→.
FK3

⊂→.
FK4

⊂→.



Iñíóâàííÿ ïðàâîãî ïîõiäíîãî ôóíêòîðà

acyclic complexes. Since



Ãîìîòîïiéíà ãðàíèöÿ

In a triangulated category there is a notion of derived limit.

De�nition
Let D be a triangulated category. Let (Kn, fn : Kn → Kn−1) be
an inverse system of objects of D. We say an object K is a
derived limit, or a homotopy limit of the system (Kn) if the
product

∏
Kn exists and there is a distinguished triangle

K→
∏

Kn →
∏

Kn → K[1]

where the map
∏
Kn →

∏
Kn is given by

(kn) 7→ (kn − fn+1(kn+1)). If this is the case, then we sometimes
indicate this by the notation K = R limKn.

By TR3 a derived limit, if it exists, is unique up to (non-unique)
isomorphism. Moreover, by TR1 a derived limit R limKn exists
as soon as

∏
Kn exists. The derived category D(Ab) of the

category of abelian groups is an example of a triangulated
category where all derived limits exist.



Lemma
Let A be an abelian category with countable products and
enough injectives. Let (Kn) be an inverse system of D+(A).
Then R limKn exists.

Äîâåäåííÿ.

It su�ces to show that
∏
Kn exists in D(A). For every n we can

represent Kn by a bounded below complex I•n of injectives. Then∏
Kn is represented by

∏
I•n.



Lemma
The functor lim : AbNop → Ab has a right derived functor

R lim : D(AbNop) −→ D(Ab)

As usual we set Rp lim(K) = Hp(R lim(K)). Moreover, we have

1. for any (An) in AbN
op
we have Rp limAn = 0 for p>1,

2. the object R limAn of D(Ab) is represented by the complex∏
An →

∏
An, (xn) 7→ (xn − fn+1(xn+1))

sitting in degrees 0 and 1,

3. if (An) is Mittag�Le�er, then R1 limAn = 0, i.e., (An) is
right acyclic for lim,

4. every K• ∈ D(AbNop) is quasi-isomorphic to a complex
whose terms are right acyclic for lim, and

5. if each Kp = (Kp
n) is right acyclic for lim, i.e., of

R1 limnK
p
n = 0, then R limK is represented by the complex

whose term in degree p is limnK
p
n.



Proof. Let (An) be an arbitrary inverse system. Let (Bn) be the
inverse system with

Bn = An ⊕An−1 ⊕ . . .⊕A1

and transition maps given by projections. Let An → Bn be given
by (1, fn, fn−1 ◦ fn, . . . , f2 ◦ . . . ◦ fn) where fi : Ai → Ai−1 are the
transition maps. In this way we see that every inverse system is
a subobject of a ML system. It follows that every ML system is
right acyclic for lim, i.e., (3) holds. This already implies that RF
is de�ned on D+(AbNop). Set Cn = An−1 ⊕ . . .⊕A1 for n>1 and
C1 = 0 with transition maps given by projections as well.
Then there is a short exact sequence of inverse systems
0→ (An)→ (Bn)→ (Cn)→ 0 where Bn → Cn is given by
(xi) 7→ (xi − fi+1(xi+1)). Since (Cn) is ML as well, we conclude
that (2) holds which also implies (1).
Finally, this implies that R lim is in fact de�ned on all of
D(AbNop). In fact, one proceeds by proving assertions (4) and
(5). �



Let S be a triangulated category. Suppose Xi, i ∈ N, is a
sequence of objects in S, together with maps fi : Xi+1 → Xi.
Then ∀n ∈ N there is a split exact sequence in S

0→ Xn+1
q→

n+1∏
i=1

Xi
pr−shift→

n∏
i=1

Xi → 0,

shift =
(
n+1∏
i=1

Xi
pr−→

n+1∏
i=2

Xi

∏n

i=1
fi→

n∏
i=1

Xi

)
,

pr−shift =



1
−f1 1

−f2 1 0

0
. . .

. . .

−fn−1 1
−fn


,

q = (fn . . . f1, . . . , fnfn−1, fn, 1).

Splitting is determined by prn+1 :
∏n+1

i=1 Xi → Xn+1.



The diagram commutes

0 → Xn+1
q→

n+1∏
i=1

Xi
pr−shift→

n∏
i=1

Xi → 0

0 → Xn

fn

↓
q →

n∏
i=1

Xi

`

pr−shift→
n−1∏
i=1

Xi

`

→ 0

If S = D(A), where abelian category satis�es AB5*), the �ltered
limit of rows would be an exact sequence in C(A)

0→ lim
i∈N

Xi →
∞∏
i=1

Xi
1−shift→

∞∏
i=1

Xi → 0,

However, Ab and R-mod do not satisfy AB5*).



For any chain map f : X→ Y there are

Cone(−f : X→ Y) =
(
X[1]⊕Y,

(
dX[1] −σ−1 · f
0 dY

))
,

Cone(Y → Cone(−f : X→ Y))

=
(
Y[1]⊕X[1]⊕Y,

dY[1] 0 σ−1

0 dX[1] −σ−1 · f
0 0 dY

),

Z = Cone(Y → Cone(−f : X→ Y))[−1]

=
(
Y ⊕X⊕Y[−1],

dY 0 −σ−1
0 dX f · σ−1
0 0 dY[−1]

),
dY[−1] = −σ · dY · σ−1.



X
( f 1 0 )→←(

0
1
0

)
(
Y ⊕X⊕Y[−1],

dY 0 −σ−1
0 dX f · σ−1
0 0 dY[−1]

)
(
1
0
0

)
→ Y.

Morphisms on the left are homotopy inverse to each other since

(
f 1 0

)
·

01
0

 = 1,

01
0

 · (f 1 0
)

= 1Z + hdZ + dZh,

where h =

0 0 0
0 0 0
σ 0 0

 : Z→ Z, deg h = −1.



The map f decomposes into homotopy equivalence and a
�bration (surjection in all degrees)

f =
(
X

( f 1 0 )
∼
→ Z

(
1
0
0

)
� Y

)
.

Iterating this procedure we can replace the sequence (fi) of
chain maps of complexes of abelian groups

f4 → X4
f3 → X3

f2 → X2
f1 → X1

= = = =
g4 � Z4

h4 o↓
g3 � Z3

h3 o↓
g2 � Z2

h2 o↓
g1 � Z1

h1

wwwwww (1)

with a sequence (gi) of �brations such that the vertical maps
(hi) are homotopy equivalences.
By de�nition, in the sense of model categories

holimi(fi) = holimi(gi) = lim
i

(gi).



Since the sequence (gi) is Mittag�Le�er we have a short exact
sequence of complexes

0→ lim
i∈N

(gi) →
∞∏
i=1

Zi
1−shift→

∞∏
i=1

Zi → 0,

which implies that in the sense of triangulated categories
K′ = holimi(gi) comes from a triangle in D(Ab)

K′ = lim
i∈N

(gi)→
∏
i

Zi
1−shift→

∏
i

Zi → K′[1]

isomorphic in D(Ab) to

K = holimi∈N(fi)→
∏
i

Xi
1−shift→

∏
i

Xi → K[1].

Hence, in the sense of triangulated categories
K = holimi∈N(fi) ∼= K′ = limi∈N(gi) in D(Ab). The same
conclusion for any diagram (1) with quasi-isomorphisms hi and
�brations gi. Thus, the two approaches to holim agree.
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