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Bracui cipaBa MojiesibHi KaTeropii

The model category M will be called right proper if every pullback of
a weak equivalence along a fibration (see Definition 7.2.10) is a weak
equivalence.

Every pullback of a weak equivalence between fibrant objects along a
fibration (see Definition 7.2.10) is a weak equivalence.

13.3.1. Homotopy pullbacks. If M is a right proper model category (see
Definition 13.1.1), then the homotopy pullback of the diagram X 5L zEy5s
constructed by replacing g and h by fibrations and then taking a pullback (see
Definition 13.3.2). In order to have a well defined functor, we need to choose a
fixed functor to convert our maps into fibrations. We will show, however, that any
other factorization into a weak equivalence followed by a fibration yields an object
naturally weakly equivalent to the homotopy pullback and that, in fact, only one of
the maps must be converted to a fibration (see Proposition 13.3.7). Thus, if either
of the maps is already a fibration, then the pullback is naturally weakly equivalent
to the homotopy pullback (see Corollary 13.3.8).

DEFINITION 13.3.2. Let M be a right proper model category and let E be an
arbitrary but fixed functorial factorization of every map ¢g: X — Y into X e,
E(g) 25, Y, where ig is a trivial cofibration and p, is a fibration. The homotopy
pullback of the diagram X 9, 7 & vy is defined to be the pullback of the diagram
E(g) 2% Z &~ E(h).



LEMMA 13.3.3. Let M be a right proper model category. If g: X — Y is a
weak equivalence and h: W — Z is a fibration, then, for any map k:Y — Z, the

natural map from the pullback of the diagram X 5,722 Wto the pullback of
the diagram Y 5 Z & Wis a weak equivalence.

PROOF. We have the commutative diagram
X Xz LV—)YXZVV——)VV

T

X 9 Y P

in which the vertical maps are all fibrations. Since g is a weak equivalence, the
result follows from Proposition 7.2.14. O



['omotromiiina iHBapiaHTHICTb TOMOTOIIHOIO

BLITSATYBAHHS
PROPOSITION 13.3.4 (Homotopy invariance of the homotopy pullback). Let M
be a right proper model category. If we have the diagram

X2z vy

R

X 5 z <—h— Y
in which the vertical maps are weak equivalences, then the induced map of homo-
topy pullbacks
E(g) xz E(h) — E(g) x5 E(h)
is a weak equivalence.
PROOF. It is sufficient to show that if g, h, g, and h are fibrations, then the

map of pullbacks X xz Y — X x 7 Y is a weak equivalence. This map equals the
composition

XxzY = (X x;2) %z Y X x3Y — X x; V.
Since M is a right proper model category, the map X — X Xz Z is a weak equiv-

alence, and Lemma 13.3.3 implies that the last map in the composition is a weak
equivalence. Q0



Tpu popmysu Jijiss FOMOTOIIHHOIO BIJITATY BAHHS

PROPOSITION 13.3.7. Let M be a right proper model category. If X ELR Wy s,

Z andY 2% Wy 2 Z are factorizations of, respectively, g: X — Z andh: Y — Z,
jo and ji, are weak equivalences, and qq and gy, are fibrations, then the homotopy

pullback of the diagram X Lz vy naturally weakly equivalent to each of
Wg Xz Wh, Wg Xz Y, and X Xz I/Vh.

Proor. If E is the natural factorization used in Definition 13.3.2, then
Lemma 13.3.3 implies that the homotopy pullback E(g) xz E(h) is naturally weakly
equivalent to both E{g) xz Y and X xz E(h). Lemma 13.3.3 implies that these
are naturally weakly equivalent to E(g) xz Wy, and W, xz E(h) respectively, and
that these are naturally weakly equivalent to X xz Wy and W, xz Y, respec-
tively. Lemma 13.3.3 implies that both of these are naturally weakly equivalent to
Wg Xz Wh.

a

COROLLARY 13.3.8. Let M be a right proper model category. If at least one
of the maps g: X — Z and h: Y — Z is a fibration, then the pullback X xz Y is

naturally weakly equivalent to the homotopy pullback of the diagram X SLzly.



PROPOSITION 13.3.9. Let M be a right proper model category. If the vertical
maps in the diagram
X—Z+——Y

|l

X—Z+—Y
are weak equivalences and at least one map in each row is a fibration, then the map
of pullbacks X xz Y — X x3Y is a weak equivalence.



PROPOSITION 13.3.9. Let M be a right proper model category. If the vertical

maps in the diagram
X—Z+——Y

|l

X—Z+—Y
are weak equivalences and at least one map in each row is a fibration, then the map
of pullbacks X xz Y — X x3Y is a weak equivalence.

Let us recall that the pullback of a diagram
€ D&

in dgCat is given by a dg category C; xp Co defined in the
obvious way. This notion of pullback does not behave well with
respect to quasi-equivalences.
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Mojenbaa cTpykTypa Ha dg KaTeropisx BjacHa CIpaBa

To overcome this issue, one has to note that, by the work of
Tabuada, dgCat has a model category structure whose weak
equivalences are the quasi-equivalences.

Here we content ourselves with some remarks about the special
case of dgCat. In particular, in Tabuada’s model structure all dg
categories are fibrant but not all of them are cofibrant.
Furthermore, such a model structure is right proper, i.e. every
pullback of a weak equivalence along a fibration is a weak
equivalence, thanks to the fact that all objects are fibrant.
Finally, Hge can be reinterpreted as the homotopy category of
dgCat with respect to such a model structure.
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One can consider the homotopy pullback C; x% Cy. By definition
C1 x% Cy 1= C} xp C} is the usual pullback of a diagram

C; —>D P 2 Ch, (1)

where at least one among F} and F} is a fibration and (for
i=1,2) F; =F/ol; with I;: C; — C/ a quasi-equivalence.

Notice that such a factorization of F; always exists, and in fact
one could choose I; to be a cofibration as well. The homotopy
pullback does not depend, up to isomorphism in Hqge, on the
choice of the diagram (1).

Let us spell out an explicit description of C; x% Cy. We can take
F, = Fy and factor only Fy as follows. Define C; to be the dg
category whose objects are triples, (Cq,D,f) where C; € Ob(Cy),
D € Ob(D) and f: F1(Cy1) — D is a strong homotopy
equivalence.



Definition (Kontsevich’s category again)

Objects D and D’ of a dg-category D are

strongly homotopy equivalent =strongly homotopy isomorphic
if there are morphisms of D

D{gv

aOD+-D 8
] 0 -1

DD
such that

gof=1p —da,

fog=1p —dp,

foa—pBof=dé



Definition (Kontsevich’s category again)
Objects D and D’ of a dg-category D are

strongly homotopy equivalent =strongly homotopy isomorphic
if there are morphisms of D

7
D%D’ \_—?*(D
aOD+-D 8
] 0 -1

DD

such that
gof=1p —da,
fog=1p —dp,

foa—pBof=dé

Morphisms f and g are called strong homotopy equivalences =
strong homotopy isomorphisms, homotopy inverse to each other.
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Exercise

Strong homotopy equivalence is an equivalence relation.

In particular, the composition of strong homotopy equivalences
is a strong homotopy equivalence.

A morphism of degree n from (Cy,D,f) to (C},D’,f') in Cj is
given by a triple (a1, b,h) with a; € Hom¢, (Cy, C))?,

b € Homp(D,D’)® and h € Homp(F{(Cy),D’)* L.

The differential is defined by

d(a1,b,h) := (d(ar),d(b),d(h) + (=1)"(f' 0 F1(a1) — b o))
and the composition by
(a},b’,h') o (as,b,h) :=(a} ocas,b’ ob, b’ oh + (—=1)"h' o Fy(ay)).

The dg functor I : C; — Cj is defined by

[1(Cq) := (C1,F1(Cy),idp,(¢,)) on objects and

Ii(a1) := (a1, Fi(a1),0) on morphisms. On the other hand, the
dg functor F| : C{ — D is defined as projection on the second
component both on objects and on morphisms. It is not difficult
to check that I is a quasi-equivalence and F} is a fibration.
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['omoTomniiina 0bopoTHICTD Ha MOpdI3Max

Identity morphism of (Cy,D,f) € Ob(] is (1¢,, 1p,0).

I; is a homotopy invertible on morphisms:

Il : Cl(X,Y) — C{((X, F1X, 1le), (Y, FlY, 1ply))
=C(X,Y)oD(F1X,F1Y)eD(F1X,F1Y)[-1], a+ (a,F1a,0)
has a homotopy inverse pry.
In fact, pr;(I;a) = a, and I;(pri(a,b,h)) = (a, F1a,0),

(id =I; o pry)(a,b,h) = (0,b — Fya,h) coincides with
(dz + zd)(a, b, h), the homotopy is

7:C1(X,Y)' @ D(FX,F YY) @ D(F X, FY)* !
=X, Y)" ' e D(FIX,FY)" " @ D(F1X,F,Y) 2
(a,b,h) — (0,(—1)"h,0).



Jleski cuyibHI TOMOTOMINH] €eKBIBAJEHTHOCTI

For any object (C,D,f : F1C — D) of C] there exists a strong
homotopy equivalence f : (C,F1C, 1p,c) — (C,D,f) € C}. It is
given by f = (1¢,f,0) € €1(C,C)° @ D(F,C,D)° @ D(F,C, D)1,
accompanied with g : (C,D,f) — (C,F,1C, 1p,c) € C1,
g=(lc,g —a) € C1(C,0) @ D(D,FC)° ® D(F,C,F1C) 71,
&= (0,a,0) € C1(C,C)"' @ D(F,C, F1C)~L @ D(F,C, F1C)~2,
B3=(0,8,6) € Ci(C,C)"' @ D(D,D)"! & D(F,C,D) 2,

6 =(0,6,0) € C1(C,C) 2@ D(F,C,D)~2 @ D(F,C,D) 3,
satisfying

— da,

1
1—dj,
do.

—hY o
O
2
Il

=
(o)
o))
|
=™
o) o
=y O
Il



['omoToriiini eKBiB-CTi B MepeTpuaHryaboBatiil dg-Kkar.

Lemma (likely known)

Let D be a pretriangulated dg-category. Let f : M — N € ZD.
Then f is homotopy invertible iff Conef is contractible iff f is
strongly homotopy invertible.
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Lemma (likely known)

Let D be a pretriangulated dg-category. Let f : M — N € ZD.
Then f is homotopy invertible iff Conef is contractible iff f is
strongly homotopy invertible.

Jlosenennst. Assume that f: M — N € Z9D is homotopy
invertible. The category H%D is triangulated. The square

M-— N

| - |

N N

extends to a morphism of distinguished triangles

M- N s Conef —— MJ1]

T

N N 0 N[1]




by property [TR3] of triangulated category H'D.
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by property [TR3] of triangulated category H'D.

The morphism 0 : Conef — 0 is invertible in HOD, that is,

C = Conef is contractible (1¢ = dh for some h € D(C, C)™1).

C is accompanied by morphisms o € D(M,M[1])~!, do = 0,
ot e DM[1],M)}; M[1] = C & M[1], N &+ C 3 N of degree 0;
such that poi=1,s0j=1,80i=0,poj=0,iop+jos=1,
dp=0,dj=0,di=jofoo !, ds=—foo top.

Clearly, h can be recovered from morphisms

g=ocltopohoje DN,M)

a=-0c"lopohoios € D(M,M)™!, B=sohoje D(N,N)!,
§=sohoioo € D(M,N)~? as
h:ioaogos—ioaoaoa‘lop—i—joﬁos—i—joéoo_lop_
The equation dh = 1¢ can be written as the system

dg =0,
da =1y —gof,
d =1y —fog,

dd=foa—pBof.
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equivalent. ]
peut montrer aisément que pour la structure obtenue, tout objet est fibrant et qu’un dg-foncteur F de C vers D est
une fibration si et seulement si :

— pour tous objects ¢ et ¢z dans C, le morphisme de complexes de Home (c1, ¢2) vers Homp (F(c1), F(c2)) est
surjectif en chaque composante et

— pour tout objet ¢ dans C et tout isomorphisme v de F(c;) vers d dans HO(D), il existe un isomorphisme u de
¢ vers ¢ dans HO(C) tel que F(u) =v.

F} : (a,b,h) — b is surjective on morphisms.
Lemma

Let D be a pretriangulated dg-category. Then F| : C{ — D is a
fibration in Tabuada’s model structure.

JloBeieHHs.

An isomorphism v : D — D’ € H%D lifts to a strong homotopy
isomorphism v : D — D’ € D. It is lifted to a morphism
(1c,v,0): (C,D,f) = (C,D',vof) € C] (notice that vofisa
strong homotopy isomorphism) whose second projection is v. [
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Let D be a pretriangulated dg-category. With the above choice,
C1 x1 Cy can be identified with the dg category whose objects
are triples (Cq, Ca,f), where C; € Ob(C;), for i = 1,2, and

f: F1(C1) — F2(C2) is a strong homotopy equivalence.

A morphism of degree n from (Cy, Co,f) to (C}, Ch,f’) in

Cy x% Cy is given by a triple (aj,as,h) with a; € Home, (Ci, CI)",
fori= 1,2, and h € HomD(Fl(Cl),Fg(Cé))nfl.

The differential is defined by

d(al, a9, h) = (d(al), d(ag), d(h) + (—1)n(f/ (¢] Fl(al) — FQ(aQ) e} f))
and the composition by

(a), a5, h')o(ar,az, h) := (a)oa, ahoas, Fo(a))oh+(—1)"h'oF (ay)).
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