12. Гомотопійне відтягування. Навколо похідних категорій

Володимир Любашенко

29 квітня 2021

Власні справа модельні категорії

The model category \mathcal{M} will be called right proper if every pullback of a weak equivalence along a fibration (see Definition 7.2.10) is a weak equivalence.
Every pullback of a weak equivalence between fibrant objects along a fibration (see Definition 7.2.10) is a weak equivalence.
13.3.1. Homotopy pullbacks. If \mathcal{M} is a right proper model category (see Definition 13.1.1), then the homotopy pullback of the diagram $X \xrightarrow{g} Z \stackrel{\leftrightarrow}{\leftarrow} Y$ is constructed by replacing g and h by fibrations and then taking a pullback (see Definition 13.3.2). In order to have a well defined functor, we need to choose a fixed functor to convert our maps into fibrations. We will show, however, that any other factorization into a weak equivalence followed by a fibration yields an object naturally weakly equivalent to the homotopy pullback and that, in fact, only one of the maps must be converted to a fibration (see Proposition 13.3.7). Thus, if either of the maps is already a fibration, then the pullback is naturally weakly equivalent to the homotopy pullback (see Corollary 13.3.8).

Definition 13.3.2. Let \mathcal{M} be a right proper model category and let E be an arbitrary but fixed functorial factorization of every map $g: X \rightarrow Y$ into $X \xrightarrow{i_{g}}$ $\mathrm{E}(g) \xrightarrow{p_{g}} Y$, where i_{g} is a trivial cofibration and p_{g} is a fibration. The homotopy pullback of the diagram $X \xrightarrow{g} Z \stackrel{h}{\leftarrow} Y$ is defined to be the pullback of the diagram $\mathrm{E}(g) \xrightarrow{p_{g}} Z \xrightarrow{p_{h}} \mathrm{E}(h)$.

Lemma 13.3.3. Let \mathcal{M} be a right proper model category. If $g: X \rightarrow Y$ is a weak equivalence and $h: W \rightarrow Z$ is a fibration, then, for any map $k: Y \rightarrow Z$, the natural map from the pullback of the diagram $X \xrightarrow{k g} Z \stackrel{h}{\longleftarrow} W$ to the pullback of the diagram $Y \stackrel{k}{\rightarrow} Z \stackrel{h}{\leftarrow} W$ is a weak equivalence.

Proof. We have the commutative diagram

in which the vertical maps are all fibrations. Since g is a weak equivalence, the result follows from Proposition 7.2.14.

Гомотопійна інваріантність гомотопійного

 відтягуванняProposition 13.3.4 (Homotopy invariance of the homotopy pullback). Let \mathcal{M} be a right proper model category. If we have the diagram

in which the vertical maps are weak equivalences, then the induced map of homotopy pullbacks

$$
\mathrm{E}(\boldsymbol{g}) \times_{Z} \mathrm{E}(h) \rightarrow \mathrm{E}(\tilde{\boldsymbol{g}}) \times_{\widetilde{Z}} \mathrm{E}(\tilde{h})
$$

is a weak equivalence.
Proof. It is sufficient to show that if g, h, \tilde{g}, and \tilde{h} are fibrations, then the map of pullbacks $X \times_{Z} Y \rightarrow \widetilde{X} \times_{\tilde{Z}} \widetilde{Y}$ is a weak equivalence. This map equals the composition

$$
X \times_{Z} Y \rightarrow\left(\tilde{X} \times_{\tilde{Z}} Z\right) \times_{Z} Y \approx \tilde{X} \times_{\tilde{Z}} Y \rightarrow \tilde{X} \times_{\tilde{Z}} \tilde{Y}
$$

Since \mathcal{M} is a right proper model category, the map $X \rightarrow \tilde{X} \times_{\tilde{Z}} Z$ is a weak equivalence, and Lemma 13.3.3 implies that the last map in the composition is a weak equivalence.

Три формули для гомотопійного відтягування

Proposition 13.3.7. Let \mathcal{M} be a right proper model category. If $X \xrightarrow{\boldsymbol{j}_{g}} W_{g} \xrightarrow{q_{g}}$ Z and $Y \xrightarrow{j_{h}} W_{h} \xrightarrow{q_{h}} Z$ are factorizations of, respectively, $g: X \rightarrow Z$ and $h: Y \rightarrow Z$, j_{g} and j_{h} are weak equivalences, and q_{g} and q_{h} are fibrations, then the homotopy pullback of the diagram $X \xrightarrow{g} Z \stackrel{h}{\leftarrow} Y$ is naturally weakly equivalent to each of $W_{g} \times_{Z} W_{h}, W_{g} \times_{Z} Y$, and $X \times_{Z} W_{h}$.

Proof. If E is the natural factorization used in Definition 13.3.2, then Lemma 13.3.3 implies that the homotopy pullback $\mathrm{E}(g) \times_{Z} \mathrm{E}(h)$ is naturally weakly equivalent to both $\mathrm{E}(g) \times_{Z} Y$ and $X \times_{Z} \mathrm{E}(h)$. Lemma 13.3.3 implies that these are naturally weakly equivalent to $\mathrm{E}(g) \times_{Z} W_{h}$ and $W_{g} \times_{Z} \mathrm{E}(h)$ respectively, and that these are naturally weakly equivalent to $X \times_{Z} W_{h}$ and $W_{g} \times_{Z} Y$, respectively. Lemma 13.3.3 implies that both of these are naturally weakly equivalent to $W_{g} \times_{Z} W_{h}$.

Corollary 13.3.8. Let \mathcal{M} be a right proper model category. If at least one of the maps $g: X \rightarrow Z$ and $h: Y \rightarrow Z$ is a fibration, then the pullback $X \times_{Z} Y$ is naturally weakly equivalent to the homotopy pullback of the diagram $X \xrightarrow{g} Z \stackrel{h}{\stackrel{h}{~}} Y$.

Proposition 13.3.9. Let \mathcal{M} be a right proper model category. If the vertical maps in the diagram

are weak equivalences and at least one map in each row is a fibration, then the map of pullbacks $X \times_{Z} Y \rightarrow \widetilde{X} \times_{\tilde{Z}} \tilde{Y}$ is a weak equivalence.

Let us recall that the pullback of a diagram

$$
\mathcal{C}_{1} \xrightarrow{\mathrm{~F}_{1}} \mathcal{D} \stackrel{\mathrm{~F}_{2}}{\longleftarrow} \mathcal{C}_{2}
$$

in $\operatorname{dg} \mathcal{C}$ at is given by a dg category $\mathcal{C}_{1} \times{ }_{\mathcal{D}} \mathcal{C}_{2}$ defined in the obvious way. This notion of pullback does not behave well with respect to quasi-equivalences.

Модельна структура на dg категоріях власна справа

To overcome this issue, one has to note that, by the work of Tabuada, dg C at has a model category structure whose weak equivalences are the quasi-equivalences.
Here we content ourselves with some remarks about the special case of $\operatorname{dg} \mathcal{C}$ at. In particular, in Tabuada's model structure all dg categories are fibrant but not all of them are cofibrant.
Furthermore, such a model structure is right proper, i.e. every pullback of a weak equivalence along a fibration is a weak equivalence, thanks to the fact that all objects are fibrant. Finally, Hqe can be reinterpreted as the homotopy category of $\mathrm{dg} \mathcal{C}$ at with respect to such a model structure.

Гомотопійне відтягування dg категорій

One can consider the homotopy pullback $\mathcal{C}_{1} \times{ }_{\mathcal{D}}^{\mathrm{h}} \mathcal{C}_{2}$. By definition $\mathcal{C}_{1} \times{ }_{\mathcal{D}}^{\mathrm{h}} \mathcal{C}_{2}:=\mathcal{C}_{1}^{\prime} \times{ }_{\mathcal{D}} \mathcal{C}_{2}^{\prime}$ is the usual pullback of a diagram

$$
\begin{equation*}
\mathcal{C}_{1}^{\prime} \xrightarrow{\mathrm{F}_{1}^{\prime}} \mathcal{D} \stackrel{\mathrm{F}_{2}^{\prime}}{\rightleftarrows} \mathcal{C}_{2}^{\prime}, \tag{1}
\end{equation*}
$$

where at least one among F_{1}^{\prime} and F_{2}^{\prime} is a fibration and (for $\mathrm{i}=1,2) \mathrm{F}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}}^{\prime} \circ \mathrm{I}_{\mathrm{i}}$ with $\mathrm{I}_{\mathrm{i}}: \mathcal{C}_{\mathrm{i}} \rightarrow \mathcal{C}_{\mathrm{i}}^{\prime}$ a quasi-equivalence. Notice that such a factorization of F_{i} always exists, and in fact one could choose I_{i} to be a cofibration as well. The homotopy pullback does not depend, up to isomorphism in Hqe, on the choice of the diagram (1).
Let us spell out an explicit description of $\mathcal{C}_{1} \times{ }_{\mathcal{D}}^{\mathrm{h}} \mathcal{C}_{2}$. We can take $\mathrm{F}_{2}^{\prime}=\mathrm{F}_{2}$ and factor only F_{1} as follows. Define \mathcal{C}_{1}^{\prime} to be the dg category whose objects are triples, $\left(\mathrm{C}_{1}, \mathrm{D}, \mathrm{f}\right)$ where $\mathrm{C}_{1} \in \mathrm{Ob}\left(\mathcal{C}_{1}\right)$, $\mathrm{D} \in \mathrm{Ob}(\mathcal{D})$ and $\mathrm{f}: \mathrm{F}_{1}\left(\mathrm{C}_{1}\right) \rightarrow \mathrm{D}$ is a strong homotopy equivalence.

Definition (Kontsevich's category again)
Objects D and D^{\prime} of a dg-category \mathcal{D} are
strongly homotopy equivalent =strongly homotopy isomorphic if there are morphisms of \mathcal{D}

$$
\begin{gathered}
\mathrm{D} \xrightarrow[0]{\mathrm{f}} \mathrm{D}^{\prime} \\
\alpha \underset{-1}{\circlearrowright} \mathrm{D} \stackrel{\mathrm{~g}}{\stackrel{\mathrm{~g}}{0}} \mathrm{D}^{\prime} \underset{-1}{\circlearrowleft} \beta \\
\mathrm{D} \xrightarrow[-2]{\delta} \mathrm{D}^{\prime}
\end{gathered}
$$

such that

$$
\begin{aligned}
\mathrm{g} \circ \mathrm{f} & =1_{\mathrm{D}}-\mathrm{d} \alpha, \\
\mathrm{f} \circ \mathrm{~g} & =1_{\mathrm{D}^{\prime}}-\mathrm{d} \beta, \\
\mathrm{f} \circ \alpha-\beta \circ \mathrm{f} & =\mathrm{d} \delta .
\end{aligned}
$$

Morphisms f and g are called strong homotopy equivalences $=$ strong homotopy isomorphisms, homotopy inverse to each other.

Exercise
Strong homotopy equivalence is an equivalence relation.
In particular, the composition of strong homotopy equivalences is a strong homotopy equivalence.
A morphism of degree n from $\left(\mathrm{C}_{1}, \mathrm{D}, \mathrm{f}\right)$ to $\left(\mathrm{C}_{1}^{\prime}, \mathrm{D}^{\prime}, \mathrm{f}^{\prime}\right)$ in \mathcal{C}_{1}^{\prime} is given by a triple $\left(\mathrm{a}_{1}, \mathrm{~b}, \mathrm{~h}\right)$ with $\mathrm{a}_{1} \in \operatorname{Hom}_{\mathcal{C}_{1}}\left(\mathrm{C}_{1}, \mathrm{C}_{1}^{\prime}\right)^{\mathrm{n}}$,
$\mathrm{b} \in \operatorname{Hom}_{\mathcal{D}}\left(\mathrm{D}, \mathrm{D}^{\prime}\right)^{\mathrm{n}}$ and $\mathrm{h} \in \operatorname{Hom}_{\mathcal{D}}\left(\mathrm{F}_{1}\left(\mathrm{C}_{1}\right), \mathrm{D}^{\prime}\right)^{\mathrm{n}-1}$.
The differential is defined by

$$
\mathrm{d}\left(\mathrm{a}_{1}, \mathrm{~b}, \mathrm{~h}\right):=\left(\mathrm{d}\left(\mathrm{a}_{1}\right), \mathrm{d}(\mathrm{~b}), \mathrm{d}(\mathrm{~h})+(-1)^{\mathrm{n}}\left(\mathrm{f}^{\prime} \circ \mathrm{F}_{1}\left(\mathrm{a}_{1}\right)-\mathrm{b} \circ \mathrm{f}\right)\right)
$$

and the composition by
$\left(\mathrm{a}_{1}^{\prime}, \mathrm{b}^{\prime}, \mathrm{h}^{\prime}\right) \circ\left(\mathrm{a}_{1}, \mathrm{~b}, \mathrm{~h}\right):=\left(\mathrm{a}_{1}^{\prime} \circ \mathrm{a}_{1}, \mathrm{~b}^{\prime} \circ \mathrm{b}, \mathrm{b}^{\prime} \circ \mathrm{h}+(-1)^{\mathrm{n}} \mathrm{h}^{\prime} \circ \mathrm{F}_{1}\left(\mathrm{a}_{1}\right)\right)$.
The dg functor $\mathrm{I}_{1}: \mathcal{C}_{1} \rightarrow \mathcal{C}_{1}^{\prime}$ is defined by
$\mathrm{I}_{1}\left(\mathrm{C}_{1}\right):=\left(\mathrm{C}_{1}, \mathrm{~F}_{1}\left(\mathrm{C}_{1}\right), \mathrm{id}_{\mathrm{F}_{1}\left(\mathrm{C}_{1}\right)}\right)$ on objects and
$\mathrm{I}_{1}\left(\mathrm{a}_{1}\right):=\left(\mathrm{a}_{1}, \mathrm{~F}_{1}\left(\mathrm{a}_{1}\right), 0\right)$ on morphisms. On the other hand, the dg functor $\mathrm{F}_{1}^{\prime}: \mathcal{C}_{1}^{\prime} \rightarrow \mathcal{D}$ is defined as projection on the second component both on objects and on morphisms. It is not difficult to check that I_{1} is a quasi-equivalence and F_{1}^{\prime} is a fibration.

Гомотопійна оборотність на морфізмах

Identity morphism of $\left(\mathrm{C}_{1}, \mathrm{D}, \mathrm{f}\right) \in \mathrm{Ob} \mathcal{C}_{1}^{\prime}$ is $\left(1_{\mathrm{C}_{1}}, 1_{\mathrm{D}}, 0\right)$.
I_{1} is a homotopy invertible on morphisms:

$$
\begin{aligned}
& \mathrm{I}_{1}: \mathcal{C}_{1}(\mathrm{X}, \mathrm{Y}) \rightarrow \mathcal{C}_{1}^{\prime}\left(\left(\mathrm{X}, \mathrm{~F}_{1} \mathrm{X}, 1_{\mathrm{F}_{1} \mathrm{X}}\right),\left(\mathrm{Y}, \mathrm{~F}_{1} \mathrm{Y}, 1_{\mathrm{F}_{1} \mathrm{Y}}\right)\right) \\
= & \mathcal{C}_{1}(\mathrm{X}, \mathrm{Y}) \oplus \mathcal{D}\left(\mathrm{F}_{1} \mathrm{X}, \mathrm{~F}_{1} \mathrm{Y}\right) \oplus \mathcal{D}\left(\mathrm{F}_{1} \mathrm{X}, \mathrm{~F}_{1} \mathrm{Y}\right)[-1], \mathrm{a} \mapsto\left(\mathrm{a}, \mathrm{~F}_{1} \mathrm{a}, 0\right)
\end{aligned}
$$

has a homotopy inverse pr_{1}.
In fact, $\mathrm{pr}_{1}\left(\mathrm{I}_{1} \mathrm{a}\right)=\mathrm{a}$, and $\mathrm{I}_{1}\left(\mathrm{pr}_{1}(\mathrm{a}, \mathrm{b}, \mathrm{h})\right)=\left(\mathrm{a}, \mathrm{F}_{1} \mathrm{a}, 0\right)$, $\left(\mathrm{id}-\mathrm{I}_{1} \circ \mathrm{pr}_{1}\right)(\mathrm{a}, \mathrm{b}, \mathrm{h})=\left(0, \mathrm{~b}-\mathrm{F}_{1} \mathrm{a}, \mathrm{h}\right)$ coincides with $(\mathrm{dz}+\mathrm{zd})(\mathrm{a}, \mathrm{b}, \mathrm{h})$, the homotopy is

$$
\begin{aligned}
& \mathrm{z}: \mathcal{C}_{1}(\mathrm{X}, \mathrm{Y})^{\mathrm{n}} \oplus \mathcal{D}\left(\mathrm{~F}_{1} \mathrm{X}, \mathrm{~F}_{1} \mathrm{Y}\right)^{\mathrm{n}} \oplus \mathcal{D}\left(\mathrm{~F}_{1} \mathrm{X}, \mathrm{~F}_{1} \mathrm{Y}\right)^{\mathrm{n}-1} \\
& \quad \rightarrow \mathcal{C}_{1}(\mathrm{X}, \mathrm{Y})^{\mathrm{n}-1} \oplus \mathcal{D}\left(\mathrm{~F}_{1} \mathrm{X}, \mathrm{~F}_{1} \mathrm{Y}\right)^{\mathrm{n}-1} \oplus \mathcal{D}\left(\mathrm{~F}_{1} \mathrm{X}, \mathrm{~F}_{1} \mathrm{Y}\right)^{\mathrm{n}-2} \\
& \quad(\mathrm{a}, \mathrm{~b}, \mathrm{~h}) \mapsto\left(0,(-1)^{\mathrm{n}} \mathrm{~h}, 0\right)
\end{aligned}
$$

Деякі сильні гомотопійні еквівалентності

For any object $\left(\mathrm{C}, \mathrm{D}, \mathrm{f}: \mathrm{F}_{1} \mathrm{C} \rightarrow \mathrm{D}\right)$ of \mathcal{C}_{1}^{\prime} there exists a strong homotopy equivalence $\tilde{f}:\left(\mathrm{C}, \mathrm{F}_{1} \mathrm{C}, 1_{\mathrm{F}_{1} \mathrm{C}}\right) \rightarrow(\mathrm{C}, \mathrm{D}, \mathrm{f}) \in \mathcal{C}_{1}^{\prime}$. It is given by $\tilde{\mathrm{f}}=\left(1_{\mathrm{C}}, \mathrm{f}, 0\right) \in \mathcal{C}_{1}(\mathrm{C}, \mathrm{C})^{0} \oplus \mathcal{D}\left(\mathrm{~F}_{1} \mathrm{C}, \mathrm{D}\right)^{0} \oplus \mathcal{D}\left(\mathrm{~F}_{1} \mathrm{C}, \mathrm{D}\right)^{-1}$, accompanied with $\tilde{\mathrm{g}}:(\mathrm{C}, \mathrm{D}, \mathrm{f}) \rightarrow\left(\mathrm{C}, \mathrm{F}_{1} \mathrm{C}, 1_{\mathrm{F}_{1} \mathrm{C}}\right) \in \mathcal{C}_{1}^{\prime}$, $\tilde{\mathrm{g}}=\left(1_{\mathrm{C}}, \mathrm{g},-\alpha\right) \in \mathcal{C}_{1}(\mathrm{C}, \mathrm{C})^{0} \oplus \mathcal{D}\left(\mathrm{D}, \mathrm{F}_{1} \mathrm{C}\right)^{0} \oplus \mathcal{D}\left(\mathrm{~F}_{1} \mathrm{C}, \mathrm{F}_{1} \mathrm{C}\right)^{-1}$, $\tilde{\alpha}=(0, \alpha, 0) \in \mathcal{C}_{1}(\mathrm{C}, \mathrm{C})^{-1} \oplus \mathcal{D}\left(\mathrm{~F}_{1} \mathrm{C}, \mathrm{F}_{1} \mathrm{C}\right)^{-1} \oplus \mathcal{D}\left(\mathrm{~F}_{1} \mathrm{C}, \mathrm{F}_{1} \mathrm{C}\right)^{-2}$, $\tilde{\beta}=(0, \beta, \delta) \in \mathcal{C}_{1}(\mathrm{C}, \mathrm{C})^{-1} \oplus \mathcal{D}(\mathrm{D}, \mathrm{D})^{-1} \oplus \mathcal{D}\left(\mathrm{~F}_{1} \mathrm{C}, \mathrm{D}\right)^{-2}$, $\tilde{\delta}=(0, \delta, 0) \in \mathcal{C}_{1}(\mathrm{C}, \mathrm{C})^{-2} \oplus \mathcal{D}\left(\mathrm{~F}_{1} \mathrm{C}, \mathrm{D}\right)^{-2} \oplus \mathcal{D}\left(\mathrm{~F}_{1} \mathrm{C}, \mathrm{D}\right)^{-3}$, satisfying

$$
\begin{aligned}
\tilde{\mathrm{g}} \circ \tilde{\mathrm{f}} & =1-\mathrm{d} \tilde{\alpha}, \\
\tilde{\mathrm{f}} \circ \tilde{\mathrm{~g}} & =1-\mathrm{d} \tilde{\beta}, \\
\tilde{\mathrm{f}} \circ \tilde{\alpha}-\tilde{\beta} \circ \tilde{\mathrm{f}} & =\mathrm{d} \tilde{\delta} .
\end{aligned}
$$

Гомотопійні еквів-сті в передтриангульованій dg-кат.

Lemma (likely known)
Let \mathcal{D} be a pretriangulated dg-category. Let $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{N} \in \mathrm{Z}^{0} \mathcal{D}$. Then f is homotopy invertible iff Conef is contractible iff f is strongly homotopy invertible.
Доведення. Assume that $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{N} \in \mathrm{Z}^{0} \mathcal{D}$ is homotopy invertible. The category $\mathrm{H}^{0} \mathcal{D}$ is triangulated. The square

extends to a morphism of distinguished triangles

by property [TR3] of triangulated category $\mathrm{H}^{0} \mathcal{D}$.
The morphism 0 : Cone $\mathrm{f} \rightarrow 0$ is invertible in $\mathrm{H}^{0} \mathcal{D}$, that is,
$\mathrm{C}=$ Conef is contractible ($1_{\mathrm{C}}=\mathrm{dh}$ for some $\left.\mathrm{h} \in \mathcal{D}(\mathrm{C}, \mathrm{C})^{-1}\right)$.
C is accompanied by morphisms $\sigma \in \mathcal{D}(\mathrm{M}, \mathrm{M}[1])^{-1}, \mathrm{~d} \sigma=0$, $\sigma^{-1} \in \mathcal{D}(\mathrm{M}[1], \mathrm{M})^{1} ; \mathrm{M}[1] \xrightarrow{\mathrm{i}} \mathrm{C} \xrightarrow{\mathrm{p}} \mathrm{M}[1], \mathrm{N} \xrightarrow{\mathrm{j}} \mathrm{C} \xrightarrow{\mathrm{s}} \mathrm{N}$ of degree 0 ; such that $\mathrm{p} \circ \mathrm{i}=1, \mathrm{~s} \circ \mathrm{j}=1, \mathrm{~s} \circ \mathrm{i}=0, \mathrm{p} \circ \mathrm{j}=0, \mathrm{i} \circ \mathrm{p}+\mathrm{j} \circ \mathrm{s}=1$, $\mathrm{dp}=0, \mathrm{dj}=0, \mathrm{di}=\mathrm{j} \circ \mathrm{f} \circ \sigma^{-1}, \mathrm{ds}=-\mathrm{f} \circ \sigma^{-1} \circ \mathrm{p}$.
Clearly, h can be recovered from morphisms
$\mathrm{g}=\sigma^{-1} \circ \mathrm{p} \circ \mathrm{h} \circ \mathrm{j} \in \mathcal{D}(\mathrm{N}, \mathrm{M})^{0}$,
$\alpha=-\sigma^{-1} \circ \mathrm{p} \circ \mathrm{h} \circ \mathrm{i} \circ \sigma \in \mathcal{D}(\mathrm{M}, \mathrm{M})^{-1}, \beta=\mathrm{s} \circ \mathrm{h} \circ \mathrm{j} \in \mathcal{D}(\mathrm{N}, \mathrm{N})^{-1}$,
$\delta=\mathrm{s} \circ \mathrm{h} \circ \mathrm{i} \circ \sigma \in \mathcal{D}(\mathrm{M}, \mathrm{N})^{-2}$ as
$\mathrm{h}=\mathrm{i} \circ \sigma \circ \mathrm{g} \circ \mathrm{s}-\mathrm{i} \circ \sigma \circ \alpha \circ \sigma^{-1} \circ \mathrm{p}+\mathrm{j} \circ \beta \circ \mathrm{s}+\mathrm{j} \circ \delta \circ \sigma^{-1} \circ \mathrm{p}$.
The equation $\mathrm{dh}=1_{\mathrm{C}}$ can be written as the system

$$
\begin{aligned}
\mathrm{dg} & =0 \\
\mathrm{~d} \alpha & =1_{\mathrm{M}}-\mathrm{g} \circ \mathrm{f}, \\
\mathrm{~d} \beta & =1_{\mathrm{N}}-\mathrm{f} \circ \mathrm{~g}, \\
\mathrm{~d} \delta & =\mathrm{f} \circ \alpha-\beta \circ \mathrm{f} .
\end{aligned}
$$

The first equation says that $g \in \mathrm{Z}^{0} \mathcal{D}(\mathrm{~N}, \mathrm{M})$. The second and the third say that g is homotopy inverse to f.
The fourth equation says that we deal with representation of Kontsevich's category, that is, M and N are strongly homotopy equivalent.
peut montrer aisément que pour la structure obtenue, tout objet est fibrant et qu'un dg-foncteur F de \mathcal{C} vers \mathcal{D} est une fibration si et seulement si :

- pour tous objects c_{1} et c_{2} dans \mathcal{C}, le morphisme de complexes de $\operatorname{Hom}_{\mathcal{C}}\left(c_{1}, c_{2}\right)$ vers $\operatorname{Hom}_{\mathcal{D}}\left(F\left(c_{1}\right), F\left(c_{2}\right)\right)$ est surjectif en chaque composante et
- pour tout objet c_{1} dans \mathcal{C} et tout isomorphisme v de $F\left(c_{1}\right)$ vers d dans $\mathrm{H}^{0}(\mathcal{D})$, il existe un isomorphisme u de c_{1} vers c_{2} dans $\mathrm{H}^{0}(\mathcal{C})$ tel que $F(u)=v$.
$\mathrm{F}_{1}^{\prime}:(\mathrm{a}, \mathrm{b}, \mathrm{h}) \mapsto \mathrm{b}$ is surjective on morphisms.

Lemma

Let \mathcal{D} be a pretriangulated dg-category. Then $\mathrm{F}_{1}^{\prime}: \mathcal{C}_{1}^{\prime} \rightarrow \mathcal{D}$ is a fibration in Tabuada's model structure.

Доведення.

An isomorphism $\mathrm{v}: \mathrm{D} \rightarrow \mathrm{D}^{\prime} \in \mathrm{H}^{0} \mathcal{D}$ lifts to a strong homotopy isomorphism $\mathrm{v}: \mathrm{D} \rightarrow \mathrm{D}^{\prime} \in \mathcal{D}$. It is lifted to a morphism $\left(1_{\mathrm{C}}, \mathrm{v}, 0\right):(\mathrm{C}, \mathrm{D}, \mathrm{f}) \rightarrow\left(\mathrm{C}, \mathrm{D}^{\prime}, \mathrm{v} \circ \mathrm{f}\right) \in \mathcal{C}_{1}^{\prime}($ notice that $\mathrm{v} \circ \mathrm{f}$ is a strong homotopy isomorphism) whose second projection is v .

Явний вираз для гомотопійного відтягування dg

 категорійLet \mathcal{D} be a pretriangulated dg-category. With the above choice, $\mathcal{C}_{1} \times{ }_{\mathcal{D}}^{\mathrm{h}} \mathcal{C}_{2}$ can be identified with the dg category whose objects are triples $\left(\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{f}\right)$, where $\mathrm{C}_{\mathrm{i}} \in \mathrm{Ob}\left(\mathcal{C}_{\mathrm{i}}\right)$, for $\mathrm{i}=1,2$, and $\mathrm{f}: \mathrm{F}_{1}\left(\mathrm{C}_{1}\right) \rightarrow \mathrm{F}_{2}\left(\mathrm{C}_{2}\right)$ is a strong homotopy equivalence. A morphism of degree n from ($\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{f}$) to $\left(\mathrm{C}_{1}^{\prime}, \mathrm{C}_{2}^{\prime}, \mathrm{f}^{\prime}\right)$ in $\mathcal{C}_{1} \times{ }_{\mathcal{D}}^{\mathrm{h}} \mathcal{C}_{2}$ is given by a triple $\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{~h}\right)$ with $\mathrm{a}_{\mathrm{i}} \in \operatorname{Hom}_{\mathcal{C}_{\mathrm{i}}}\left(\mathrm{C}_{\mathrm{i}}, \mathrm{C}_{\mathrm{i}}^{\prime}\right)^{\mathrm{n}}$, for $\mathrm{i}=1,2$, and $\mathrm{h} \in \operatorname{Hom}_{\mathcal{D}}\left(\mathrm{F}_{1}\left(\mathrm{C}_{1}\right), \mathrm{F}_{2}\left(\mathrm{C}_{2}^{\prime}\right)\right)^{\mathrm{n}-1}$.
The differential is defined by
$\mathrm{d}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{~h}\right):=\left(\mathrm{d}\left(\mathrm{a}_{1}\right), \mathrm{d}\left(\mathrm{a}_{2}\right), \mathrm{d}(\mathrm{h})+(-1)^{\mathrm{n}}\left(\mathrm{f}^{\prime} \circ \mathrm{F}_{1}\left(\mathrm{a}_{1}\right)-\mathrm{F}_{2}\left(\mathrm{a}_{2}\right) \circ \mathrm{f}\right)\right)$
and the composition by
$\left(\mathrm{a}_{1}^{\prime}, \mathrm{a}_{2}^{\prime}, \mathrm{h}^{\prime}\right) \circ\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{~h}\right):=\left(\mathrm{a}_{1}^{\prime} \circ \mathrm{a}_{1}, \mathrm{a}_{2}^{\prime} \circ \mathrm{a}_{2}, \mathrm{~F}_{2}\left(\mathrm{a}_{2}^{\prime}\right) \circ \mathrm{h}+(-1)^{\mathrm{n}} \mathrm{h}^{\prime} \circ \mathrm{F}_{1}\left(\mathrm{a}_{1}\right)\right)$.

嗇 Alberto Canonaco，Amnon Neeman，and Paolo Stellari， Uniqueness of enhancements for derived and geometric categories，2021，arXiv：2101．04404．§3．3
围 Philip S．Hirschhorn，Model categories and their localizations，Mathematical Surveys and Monographs， vol．99，American Mathematical Society，Providence，RI， 2003．Chapter 13：§1．1，1．2，3．1－3．3，3．4，3．7－3．9
围 Gonçalo Tabuada，Une structure de catégorie de modèles de Quillen sur la catégorie des dg－catégories，C．R．Math． Acad．Sci．Paris 340 （2005），no．1，15－19， arXiv：math．KT／0407338．Remarque 1

