11. dg фактор-категорія Дрінфельда. Навколо похідних категорій

Володимир Любашенко

15 квітня 2021

dg категорія Дрінфельда

Let \mathcal{A} be a DG category and $\mathcal{B} \subset \mathcal{A}$ a full DG subcategory. We denote by \mathcal{A}/\mathcal{B} the DG category obtained from \mathcal{A} by adding for every object $U \in \mathcal{B}$ a morphism $\varepsilon_U : U \to U$ of degree -1 such that $d(\varepsilon_U) = \mathrm{id}_U$ (we add neither new objects nor new relations between the morphisms).

So for $X, Y \in \mathcal{A}$ we have an isomorphism of graded k-modules (but not an isomorphism of complexes)

$$\bigoplus_{n=0}^{\infty} \operatorname{Hom}_{\mathcal{A}/\mathcal{B}}^{n}(X,Y) \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{A}/\mathcal{B}}(X,Y), \tag{3.1}$$

where $\operatorname{Hom}_{\mathcal{A}/\mathcal{B}}^{n}(X,Y)$ is the direct sum of tensor products $\operatorname{Hom}_{\mathcal{A}}(U_n,U_{n+1})\otimes k[1]\otimes \operatorname{Hom}_{\mathcal{A}}(U_{n-1},U_n)\otimes k[1]\otimes \cdots \otimes k[1]\otimes \cdots \otimes \operatorname{Hom}_{\mathcal{A}}(U_0,U_1), U_0:=X, U_{n+1}:=Y, U_i\in \mathcal{B}$ for $1\leqslant i\leqslant n$ (in particular, $\operatorname{Hom}_{\mathcal{A}/\mathcal{B}}^{0}(X,Y)=\operatorname{Hom}_{\mathcal{A}}(X,Y)$); the morphism (3.1) maps $f_n\otimes \varepsilon\otimes f_{n-1}\otimes \cdots \otimes \varepsilon\otimes f_0$ to $f_n\varepsilon_{U_n}f_{n-1}\cdots \varepsilon_{U_1}f_0$, where ε is the canonical generator of k[1]. Using the formula $\operatorname{d}(\varepsilon_U)=\operatorname{id}_U$ one can easily find the differential on the l.h.s. of (3.1) corresponding to the one on the r.h.s. The image of $\bigoplus_{n=0}^N\operatorname{Hom}_{\mathcal{A}/\mathcal{B}}^{n}(X,Y)$ is a subcomplex of $\operatorname{Hom}_{\mathcal{A}/\mathcal{B}}(X,Y)$, so we get a filtration on $\operatorname{Hom}_{\mathcal{A}/\mathcal{B}}(X,Y)$. The map (3.1) induces an isomorphism of complexes

$$\bigoplus_{n=0}^{\infty} \operatorname{Hom}_{\mathcal{A}/\mathcal{B}}^{n}(X,Y) \xrightarrow{\sim} \operatorname{gr} \operatorname{Hom}_{\mathcal{A}/\mathcal{B}}(X,Y). \tag{3.2}$$

Узгодкеність фактор-категорій Дрінфельда та Верд'є

- **3.2. Example.** If \mathcal{A} has a single object U with $\operatorname{End}_{\mathcal{A}}U=R$ then \mathcal{A}/\mathcal{A} has a single object U with $\operatorname{End}_{\mathcal{A}/\mathcal{A}}U=\widetilde{R}$, where the DG algebra \widetilde{R} is obtained from the DG algebra R by adding a new generator ε of degree -1 with $d\varepsilon=1$. As a DG R-bimodule, \widetilde{R} equals $\operatorname{Cone}(\operatorname{Bar}(R)\to R)$, where $\operatorname{Bar}(R)$ is the bar resolution of the DG R-bimodule R. Both descriptions of \widetilde{R} show that it has zero cohomology.
- 3.3. The triangulated functor $\mathcal{A}^{\text{tr}} \to (\mathcal{A}/\mathcal{B})^{\text{tr}}$ maps \mathcal{B}^{tr} to zero and therefore induces a triangulated functor $\Phi: \mathcal{A}^{\text{tr}}/\mathcal{B}^{\text{tr}} \to (\mathcal{A}/\mathcal{B})^{\text{tr}}$. Here $\mathcal{A}^{\text{tr}}/\mathcal{B}^{\text{tr}}$ denotes Verdier's quotient (see Appendix A). We will prove that if k is a field then Φ is an equivalence. For a general ring k this is true under an additional assumption. E.g., it is enough to assume that \mathcal{A} is homotopically flat over k (we prefer to use the name "homotopically flat" instead of Spaltenstein's name "K-flat" which is probably due to the notation $K(\mathcal{C})$ for the homotopy category of complexes in an additive category \mathcal{C}). A DG category \mathcal{A} is said to be homotopically flat over k if for every $X, Y \in \mathcal{A}$ the complex Hom(X, Y) is homotopically flat over k in Spaltenstein's sense [50], i.e., for every acyclic complex \mathcal{C} of k-modules $\mathcal{C} \otimes_k Hom(X, Y)$ is acyclic. In fact, homotopical flatness of \mathcal{A} can be replaced by one of the following weaker assumptions:

$$\operatorname{Hom}(X, U)$$
 is homotopically flat over k for all $X \in \mathcal{A}, U \in \mathcal{B}$; (3.3)

$$\operatorname{Hom}(U, X)$$
 is homotopically flat over k for all $X \in \mathcal{A}, U \in \mathcal{B}$. (3.4)

3.4. Theorem. Let A be a DG category and $B \subset A$ a full DG subcategory. If either (3.3) or (3.4) holds then $\Phi : A^{tr}/B^{tr} \to (A/B)^{tr}$ is an equivalence.

3.5. If (3.3) and (3.4) are not satisfied one can construct a diagram (1.1) by choosing a homotopically flat resolution $\widetilde{\mathcal{A}} \stackrel{\approx}{\longrightarrow} \mathcal{A}$ and putting $\mathcal{C} := \widetilde{\mathcal{A}}/\widetilde{\mathcal{B}}$, where $\widetilde{\mathcal{B}} \subset \widetilde{\mathcal{A}}$ is the full

subcategory of objects whose image in A is homotopy equivalent to an object of B. Here A follows from Lemma B.5.

"homotopically flat resolution" means that $\widetilde{\mathcal{A}}$ is homotopically flat and the DG functor $\widetilde{\mathcal{A}} \to \mathcal{A}$ is a quasi-equivalence (see 2.3). The existence of homotopically flat resolutions of (ii) Let $\widetilde{\mathcal{A}}$ and $\widetilde{\mathcal{B}}$ be as in 3.5 and suppose that (3.3) or (3.4) holds for both $\mathcal{B} \subset \mathcal{A}$ and $\widetilde{\mathcal{B}} \subset \widetilde{\mathcal{A}}$. Then the DG functor $\widetilde{\mathcal{A}}/\widetilde{\mathcal{B}} \to \mathcal{A}/\mathcal{B}$ is a quasi-equivalence, i.e., it

induces an equivalence of the corresponding homotopy categories. This follows

from Theorem 3.4. One can also directly show that if $X, Y \in \mathrm{Ob}(\mathcal{A}/\mathcal{B}) = \mathrm{Ob}\,\mathcal{A}$ are the images of $\widetilde{X}, \widetilde{Y} \in \mathrm{Ob}(\widetilde{\mathcal{A}}/\widetilde{\mathcal{B}}) = \mathrm{Ob}\,\widetilde{\mathcal{A}}$ then the morphism $\mathrm{Hom}_{\widetilde{\mathcal{A}}/\widetilde{\mathcal{B}}}(\widetilde{X},\widetilde{Y}) \to$

 $\operatorname{Hom}_{\mathcal{A}/\mathcal{B}}(X,Y)$ is a quasi-isomorphism (use (3.2) and notice that the morphism $\operatorname{Hom}_{A/B}^{n}(\widetilde{X},\widetilde{Y}) \to \operatorname{Hom}_{A/B}^{n}(X,Y)$ is a quasi-isomorphism for every n; this follows directly from the definition of Homⁿ and the fact that (3.3) or (3.4) holds for $\mathcal{B} \subset \mathcal{A}$

and $\widetilde{\mathcal{B}} \subset \widetilde{\mathcal{A}}$).

Let $A \in \mathsf{dg}$. The map $\sigma : A \to A[1]$ graded commutes with the differential:

 $(A \otimes B)[1] \xrightarrow{\sigma^{-1}} A \otimes B \xrightarrow{1 \otimes \sigma} A \otimes (B[1])$

$$\begin{array}{ccc}
d & - & \downarrow d \\
A & \xrightarrow{\sigma} & A[1]
\end{array}$$

Let $A, B \in dg$. We have isomorphisms of complexes

$$\begin{array}{c}
d \downarrow & - & \downarrow d & - & \downarrow d \\
(A \otimes B)[1] \xrightarrow{\sigma^{-1}} A \otimes B \xrightarrow{1 \otimes \sigma} A \otimes (B[1]) \\
(A \otimes B)[1] \xrightarrow{\sigma^{-1}} A \otimes B \xrightarrow{\sigma \otimes 1} A[1] \otimes B \\
\downarrow d \downarrow & - & \downarrow d & - & \downarrow d \\
(A \otimes B)[1] \xrightarrow{\sigma^{-1}} A \otimes B \xrightarrow{\sigma \otimes 1} A[1] \otimes B
\end{array}$$

 $\{(A\otimes B)[1]\}^n=\oplus_{k+p=n+1}A^k\otimes B^p$

On components $\sigma^{-1} \cdot (1 \otimes \sigma)$ is the identity map:

 $= \oplus_{k+p-1=n} A^k \otimes B^p = \oplus_{k+m=n} A^k \otimes B^{1+m} = \{A \otimes (B[1])\}^n.$

Lemma

Let $p: B \to C \in dg$, $A \in dg$. Then there is an isomorphism of complexes $Cone(1_A \otimes p) \cong A \otimes Cone p$.

Доведення. $\mathsf{Cone}(1_A \otimes p) = \mathsf{I}(A \otimes B)[1] \oplus A \otimes C, \begin{pmatrix} d_{(A \otimes B)[1]} & \sigma^{-1}(1_A \otimes p) \\ 0 & d_{A \otimes C} \end{pmatrix}$

$$\mathsf{Cone}(1_{\mathsf{A}} \otimes \mathsf{p}) = \left((\mathsf{A} \otimes \mathsf{B})[1] \oplus \mathsf{A} \otimes \mathsf{C}, \left(\begin{array}{c} (\mathsf{A} \otimes \mathsf{B})[1] & \mathsf{C} & \mathsf{C} & \mathsf{C} \\ 0 & \mathsf{d}_{\mathsf{A} \otimes \mathsf{C}} \end{array} \right) \right)$$

$$\sigma^{-1} \cdot (1 \otimes \sigma) \oplus 1 \downarrow \cong$$

$$\left(\mathsf{A} \otimes (\mathsf{B}[1]) \oplus \mathsf{A} \otimes \mathsf{C}, \left(\begin{array}{c} \mathsf{d}_{\mathsf{A}} \otimes 1_{\mathsf{B}[1]} + 1_{\mathsf{A}} \otimes \mathsf{d}_{\mathsf{B}[1]} & 1_{\mathsf{A}} \otimes \sigma^{-1} \mathsf{p} \\ 0 & \mathsf{d}_{\mathsf{A}} \otimes 1_{\mathsf{C}} + 1_{\mathsf{A}} \otimes \mathsf{d}_{\mathsf{C}} \end{array} \right) \right)$$

$$\begin{split} \left(A \otimes \left(B[1] \right) \oplus A \otimes C, \begin{pmatrix} d_A \otimes 1_{B[1]} + 1_A \otimes d_{B[1]} & 1_A \otimes \sigma^{-1} p \\ 0 & d_A \otimes 1_C + 1_A \otimes d_C \end{pmatrix} \right) \\ & \downarrow \cong \\ A \otimes \mathsf{Cone} \, p = \left(A \otimes \left(B[1] \oplus C \right), d_A \otimes \begin{pmatrix} 1_{B[1]} & 0 \\ 0 & 1_C \end{pmatrix} + 1_A \otimes \begin{pmatrix} d_{B[1]} & \sigma^{-1} p \\ 0 & d_C \end{pmatrix} \right) \end{split}$$

Lemma

Let $q: A \to C \in dg$, $B \in dg$. Then there is an isomorphism of complexes $Cone(q \otimes 1_B) \cong (Cone q) \otimes B$.

Доведення. $\mathsf{Cone}(q \otimes 1_B) = \left((A \otimes B)[1] \oplus C \otimes B, \begin{pmatrix} d_{(A \otimes B)[1]} & \sigma^{-1}(q \otimes 1_B) \\ 0 & d_{C \otimes B} \end{pmatrix} \right)$

$$\sigma^{-1} \cdot (\sigma \otimes 1) \oplus 1 = \left((1 \otimes B)[1] \oplus C \otimes B, \left(0 \otimes B \right) \oplus 1 \right) \cong$$

$$\left(\mathbf{A}[1] \otimes \mathbf{B} \oplus \mathbf{C} \otimes \mathbf{B}, \begin{pmatrix} \mathbf{d}_{\mathbf{A}[1]} \otimes \mathbf{1}_{\mathbf{B}} + \mathbf{1}_{\mathbf{A}[1]} \otimes \mathbf{d}_{\mathbf{B}} & (\sigma^{-1}\mathbf{q}) \otimes \mathbf{1}_{\mathbf{B}} \\ \mathbf{0} & \mathbf{d}_{\mathbf{C}} \otimes \mathbf{1}_{\mathbf{B}} + \mathbf{1}_{\mathbf{C}} \otimes \mathbf{d}_{\mathbf{B}} \end{pmatrix}\right)$$

Corollary

Let $p: B \to C \in dg$, $A, D \in dg$. Then there is an isomorphism of complexes Cone($1_A \otimes p \otimes 1_D$) $\cong A \otimes (Cone p) \otimes D$.

 $(\mathsf{Cone}\, q) \otimes B = \left((A[1] \oplus C) \otimes B, \begin{pmatrix} d_{A[1]} & \sigma^{-1}q \\ 0 & d_C \end{pmatrix} \otimes 1_B + \begin{pmatrix} 1_{A[1]} & 0 \\ 0 & 1_C \end{pmatrix} \otimes d_B \right)$

Corollary

Let $p: B \to C \in \mathsf{dg}$ be a quasi-isomorphism and let $A, D \in \mathsf{dg}$ be homotopy flat. Then $1_A \otimes p \otimes 1_D$ is a quasi-isomorphism.

Proposition

Let \mathcal{A} be a locally homotopy flat dg-category. Then $\mathcal{C} = \mathcal{A}\langle f_i, \mathrm{d} f_i \in \mathcal{A}^{\bullet} \mid i \in I \rangle$ is locally homotopy flat.

Доведення.

 $\mathsf{Ob}\,\mathcal{C} = \mathsf{Ob}\,\mathcal{A},\,\mathcal{C}(X,Y) = \bigoplus_{n=0}^{\infty}\mathsf{Hom}_{\mathcal{C}}^{n}(X,Y),\,\text{where }\mathsf{Hom}_{\mathcal{C}}^{0} = \mathcal{A},$

$$\mathsf{Hom}^{\mathrm{n}}_{\mathcal{C}}(\mathrm{X},\mathrm{Y}) = \oplus_{\mathrm{i}_1,\ldots,\mathrm{i}_\mathrm{n}\in\mathrm{I}}\mathcal{A}(\mathrm{X},\mathsf{src}\,\mathrm{f}_{\mathrm{i}_1})\otimes \Bbbk \mathrm{f}_{\mathrm{i}_1}\otimes \mathcal{A}(\mathsf{tgt}\,\mathrm{f}_{\mathrm{i}_1},\mathsf{src}\,\mathrm{f}_{\mathrm{i}_2}) \ \otimes \Bbbk \mathrm{f}_{\mathrm{i}_2}\otimes \mathcal{A}(\mathsf{tgt}\,\mathrm{f}_{\mathrm{i}_2},\mathsf{src}\,\mathrm{f}_{\mathrm{i}_3})\otimes \cdots \otimes \Bbbk \mathrm{f}_{\mathrm{i}_\mathrm{n}}\otimes \mathcal{A}(\mathsf{tgt}\,\mathrm{f}_{\mathrm{i}_\mathrm{n}},\mathrm{Y}).$$

 \mathcal{A} – locally homotopy flat \Rightarrow complex $\mathsf{Hom}^n_{\mathcal{C}}(X,Y)$ is http://link.

 $0 \to \bigoplus_{n=0}^{N-1} \mathsf{Hom}^n_{\mathcal{C}}(X,Y) \to \bigoplus_{n=0}^N \mathsf{Hom}^n_{\mathcal{C}}(X,Y) \to \mathsf{Hom}^N_{\mathcal{C}}(X,Y) \to 0$

is a semi-split exact sequence.
$$\Rightarrow$$
 For any acyclic $C \in dg$

is a semi-split exact sequence. \Rightarrow for any acyclic $C \in \mathbf{dg}$

$$0 \to C \otimes \bigoplus_{n=0}^{N-1} \mathsf{Hom}^n_{\mathcal{C}}(X,Y) \to C \otimes \bigoplus_{n=0}^N \mathsf{Hom}^n_{\mathcal{C}}(X,Y) \to C \otimes \mathsf{Hom}^N_{\mathcal{C}}(X,Y) \to 0$$

is a semi-split exact sequence.

 $\Rightarrow \text{ By induction } \oplus_{n=0}^{N} \mathsf{Hom}_{\mathcal{C}}^{n}(X,Y) \text{ is homotopy flat.} \\ \Rightarrow \mathcal{C}(X,Y) = \oplus_{n=0}^{\infty} \mathsf{Hom}_{\mathcal{C}}^{n}(X,Y) \text{ is homotopy flat.}$

Corollary

Any semi-free dg-category $\tilde{\mathcal{A}}$ is locally homotopy flat.

 $\forall \text{ small } \mathcal{A} \in \mathsf{dg}\mathcal{C}\mathsf{at} \; \exists \text{ semi-free } \tilde{\mathcal{A}} \text{ with } \mathsf{Ob}\,\tilde{\mathcal{A}} = \mathsf{Ob}\,\mathcal{A},$

 \exists dg-functor $p : \tilde{\mathcal{A}} \to \mathcal{A}$ with $Ob p = id_{Ob \mathcal{A}}$, p - surjective quasi-isomorphism on morphisms.

Having full $\mathcal{B} \subset \mathcal{A}$ define $\tilde{\mathcal{B}} \subset \tilde{\mathcal{A}}$ by $\mathsf{Ob}\,\tilde{\mathcal{B}} = \mathsf{Ob}\,\mathcal{B}$. Corollary 4 implies that $\mathsf{p} \otimes \mathsf{1} \otimes \mathsf{p} \otimes \mathsf{1} \otimes \cdots \otimes \mathsf{p} : \mathsf{Hom}^{\mathsf{n}}_{\tilde{\mathcal{A}}/\tilde{\mathcal{B}}}(\mathsf{X},\mathsf{Y}) \to \mathsf{Hom}^{\mathsf{n}}_{\mathcal{A}/\mathcal{B}}(\mathsf{X},\mathsf{Y})$ is a

$$p\otimes 1\otimes p\otimes 1\otimes \cdots \otimes p: \mathsf{Hom}^n_{\tilde{\mathcal{A}}/\tilde{\mathcal{B}}}(X,Y) \to \mathsf{Hom}^n_{\mathcal{A}/\mathcal{B}}(X,Y)$$
 is a quasi-isomorphism. From

 $\neg \oplus_{n=0} \operatorname{Hom}_{\mathcal{A}/\mathcal{B}}(X, 1) \xrightarrow{} \oplus_{n=0} \operatorname{Hom}_{\mathcal{A}/\mathcal{B}}(X, 1) \xrightarrow{} \operatorname{Hom}_{\mathcal{A}/\mathcal{B}}(X, 1)$ we deduce that the middle vertical map is a quasi-isomorphism.

3.7.1. Let A_0 be the DG category with two objects X_1 , X_2 freely generated by a mor-

phism $f: X_1 \to X_2$ of degree 0 with df = 0 (so $Hom(X_i, X_i) = k$, $Hom(X_1, X_2)$ is the free module kf and $\text{Hom}(X_2, X_1) = 0$). Put $\mathcal{A} := \mathcal{A}_0^{\text{pre-tr}}$. Let $\mathcal{B} \subset \mathcal{A}$ be the full DG subcategory with a single object Cone(f). Instead of describing the whole DG quotient

 \mathcal{A}/\mathcal{B} , we will describe only the full DG subcategory $(\mathcal{A}/\mathcal{B})_0 \subset \mathcal{A}/\mathcal{B}$ with objects X_1 and X_2 (the DG functor $(A/B)_0^{\text{pre-tr}} \to (A/B)^{\text{pre-tr}}$ is a DG equivalence in the sense of 2.3, so \mathcal{A}/\mathcal{B} can be considered as a full DG subcategory of $(\mathcal{A}/\mathcal{B})_0^{\text{pre-tr}}$). Directly using the

definition of A/B (see 3.1), one shows that $(A/B)_0$ equals the DG category K freely generated by our original $f: X_1 \to X_2$ and also a morphism $g: X_2 \to X_1$ of degree 0, morphisms $\alpha_i: X_i \to X_i$ of degree -1, and a morphism $u: X_1 \to X_2$ of degree -2 with the differential given by df = dg = 0, $d\alpha_1 = gf - 1$, $d\alpha_2 = fg - 1$, $du = f\alpha_1 - \alpha_2 f$. On

the other hand, one has the following description of Ho $((A/B)_0)$.

Vladimir G. Drinfeld, DG quotients of DG categories, J. Algebra 272 (2004), no. 2, 643–691,

arXiv:math.KT/0210114 §3.1 - 3.5, 3.6(ii), 3.7.1