10. Ідемпотентне поповнення триангульованої категорії.

Навколо похідних категорій

Володимир Любашенко

8 квітня 2021

1.1. DEFINITION. An additive category K is said to be *idempotent* complete if any idempotent $e: A \to A$, $e^2 = e$, arises from a splitting of A,

$$A = \operatorname{Im}(e) \oplus \operatorname{Ker}(e).$$

1.2. DEFINITION. Let K be an additive category. The *idempotent completion* of K is the category \tilde{K} defined as follows. Objects of \tilde{K} are pairs (A,e) where A is an object of K and e: $A \to A$ is an idempotent. A morphism in \tilde{K} from (A,e) to (B,f) is a morphism α : $A \to B$ in K such that

$$\alpha e = f\alpha = \alpha$$
.

The assignment $A \mapsto (A,1)$ defines a functor ι from K to K. The following result is well-known.

1.3. Proposition. The category \tilde{K} is additive, the functor $\iota \colon K \to \tilde{K}$ is additive, and \tilde{K} is idempotent complete. Moreover, the functor ι induces an equivalence

$$\operatorname{Hom}_{\operatorname{add}}(\tilde{K}, L) \xrightarrow{\sim} \operatorname{Hom}_{\operatorname{add}}(K, L)$$

for each idempotent complete additive category L, where Hom_{add} denotes the (large) category of additive functors.

1.1. DEFINITION. An additive category K is said to be *idempotent* complete if any idempotent $e: A \to A$, $e^2 = e$, arises from a splitting of A,

$$A = \operatorname{Im}(e) \oplus \operatorname{Ker}(e).$$

1.2. DEFINITION. Let K be an additive category. The *idempotent completion* of K is the category \tilde{K} defined as follows. Objects of \tilde{K} are pairs (A,e) where A is an object of K and $e\colon A\to A$ is an idempotent. A morphism in \tilde{K} from (A,e) to (B,f) is a morphism $\alpha\colon A\to B$ in K such that

$$\alpha e = f\alpha = \alpha$$
.

The assignment $A \mapsto (A, 1)$ defines a functor ι from K to \bar{K} . The following result is well-known.

1.3. Proposition. The category \tilde{K} is additive, the functor $\iota \colon K \to \tilde{K}$ is additive, and \tilde{K} is idempotent complete. Moreover, the functor ι induces an equivalence

$$\operatorname{Hom}_{\operatorname{add}}(\tilde{K}, L) \xrightarrow{\sim} \operatorname{Hom}_{\operatorname{add}}(K, L)$$

for each idempotent complete additive category L, where Hom_{add} denotes the (large) category of additive functors.

of K as a full subcategory of \tilde{K} . We will write " $A \in K$ " to mean that A is isomorphic to an object of K.

Ідемпотентне поповнення триангульованої категорії

1.5. Theorem. Let K be a triangulated category. Then its idempotent completion \tilde{K} admits a unique structure of triangulated category such that the canonical functor ι : $K \to \tilde{K}$ becomes exact. If \tilde{K} is endowed with this structure, then for each idempotent complete triangulated category L the functor ι induces an equivalence

$$\operatorname{Hom}_{\operatorname{exact}}(\tilde{K}, L) \xrightarrow{\sim} \operatorname{Hom}_{\operatorname{exact}}(K, L),$$

where Hom_{exact} denotes the (large) category of exact functors.

Ідемпотентне поповнення триангульованої категорії

1.5. Theorem. Let K be a triangulated category. Then its idempotent completion \tilde{K} admits a unique structure of triangulated category such that the canonical functor $\iota\colon K\to \tilde{K}$ becomes exact. If \tilde{K} is endowed with this structure, then for each idempotent complete triangulated category L the functor ι induces an equivalence

$$\operatorname{Hom}_{\operatorname{exact}}(\tilde{K}, L) \xrightarrow{\sim} \operatorname{Hom}_{\operatorname{exact}}(K, L),$$

where Hom_{exact} denotes the (large) category of exact functors.

1.10. DEFINITION. Let K be a triangulated category. Let us denote by $T\colon K\to K$ its translation functor. Define $T\colon \tilde K\to \tilde K$ by T(A,e)=(T(A),T(e)). Clearly, $T\circ \iota=\iota\circ T$.

Ідемпотентне поповнення триангульованої категорії

1.5. Theorem. Let K be a triangulated category. Then its idempotent completion \tilde{K} admits a unique structure of triangulated category such that the canonical functor $\iota\colon K\to \tilde{K}$ becomes exact. If \tilde{K} is endowed with this structure, then for each idempotent complete triangulated category L the functor ι induces an equivalence

$$\operatorname{Hom}_{\operatorname{exact}}(\tilde{K}, L) \xrightarrow{\sim} \operatorname{Hom}_{\operatorname{exact}}(K, L),$$

where Hom_{exact} denotes the (large) category of exact functors.

1.10. DEFINITION. Let K be a triangulated category. Let us denote by $T \colon K \to K$ its translation functor. Define $T \colon \tilde{K} \to \tilde{K}$ by T(A, e) = (T(A), T(e)). Clearly, $T \circ \iota = \iota \circ T$.

Define a triangle in \tilde{K} ,

$$(\Delta) \qquad A \xrightarrow{\alpha} B \xrightarrow{\beta} C \xrightarrow{\gamma} T(A),$$

to be *exact* when it is a direct factor of an exact triangle of K, that is, when there is an exact triangle Δ' of K and triangle maps $s\colon \Delta \to \Delta'$ and $r\colon \Delta' \to \Delta$ with $r\circ s=1_\Delta$, or, equivalently, when there is a triangle Δ'' in \tilde{K} such that $\Delta \oplus \Delta''$ is isomorphic to an exact triangle in K.

1.13. Lemma. Let be given a commutative diagram in a pre-triangulated category L,

$$A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} T(A)$$

$$\downarrow^{p} \qquad \downarrow^{q} \qquad \qquad \downarrow^{T(p)}$$

$$A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} T(A),$$

in which the rows are exact triangles. Suppose $p = p^2$ and $q = q^2$ are idempotents. Then there is an idempotent $r = r^2$: $C \to C$ such that the diagram

$$(*) \qquad A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} T(A)$$

$$\downarrow^{p} \qquad \downarrow^{q} \qquad \downarrow^{r} \downarrow^{T(p)}$$

$$A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} T(A)$$

commutes.

1.14. *Proof.* By (TR3) there is a $c: C \to C$ making (*) commutative with c instead of r. Of course, c^2 also makes the above diagram commute and so the difference $h := c^2 - c$ has the trivial square

$$h^2=0.$$

This is quite classical but let us remind the reader of the proof. From $hv = (c^2 - c)v = 0$, we can factor h through w; i.e., there exists \bar{h} : $T(A) \to C$ such that $h = \bar{h}w$ and then $h^2 = \bar{h}wh = 0$ since $wh = w(c^2 - c) = 0$.

Applying the trick of lifting idempotents, we set

$$r = c + h - 2ch$$
.

Observe that c and h commute. From $h^2 = 0$, we get $r^2 = c^2 + 2ch - 4c^2h$ and then by replacing c^2 by c + h we have $r^2 = c + h + 2ch - 4ch = r$, using again $h^2 = 0$. Clearly, r can replace c in the above diagram, since hv = 0 and wh = 0. By our computation, r is an idempotent.

1.14. *Proof.* By (TR3) there is a $c: C \to C$ making (*) commutative with c instead of r. Of course, c^2 also makes the above diagram commute and so the difference $h := c^2 - c$ has the trivial square

$$h^2 = 0.$$

This is quite classical but let us remind the reader of the proof. From $hv = (c^2 - c)v = 0$, we can factor h through w; i.e., there exists \bar{h} : $T(A) \to C$ such that $h = \bar{h}w$ and then $h^2 = \bar{h}wh = 0$ since $wh = w(c^2 - c) = 0$.

Applying the trick of lifting idempotents, we set

$$r = c + h - 2ch$$
.

Observe that c and h commute. From $h^2 = 0$, we get $r^2 = c^2 + 2ch - 4c^2h$ and then by replacing c^2 by c + h we have $r^2 = c + h + 2ch - 4ch = r$, using again $h^2 = 0$. Clearly, r can replace c in the above diagram, since hv = 0 and wh = 0. By our computation, r is an idempotent.

$$L(TA, C) \xrightarrow{L(w,C)} L(C, C) \xrightarrow{L(v,C)} L(B, C)$$

$$\bar{h} \longmapsto \bar{h} \circ w = h \longmapsto h \circ v = 0$$

$$r^2 = c + h + 2ch - 4(c + h)h = c + h - 2ch = r.$$

stricte (chap. I, 1.5.11) munie d'un ensemble de triangles (chap. I, 3.2.1), appelés triangles distingués, possédant les propriétés suivantes : TRI : Tout triangle de \mathcal{D} isomorphe à un triangle distingué est un triangle

Définition 1.1.1. Une catégorie triangulée \mathcal{D} est une **Z**-catégorie additive

distingué. Pour tout objet X de \mathcal{D} , le triangle $X \xrightarrow{\mathsf{id}_X} X \to 0 \to X[1]$ est

distingué. Tout morphisme $u:X\to Y$ de $\mathcal D$ est contenu dans un triangle distingué $X \stackrel{u}{\to} Y \stackrel{v}{\to} Z \stackrel{w}{\to} X[1]$. TRII : Un triangle de $\mathcal{D}: X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1]$ est distingué si et seulement si le triangle $Y \stackrel{v}{\rightarrow} Z \stackrel{w}{\rightarrow} X[1] \stackrel{-u[1]}{\longrightarrow} Y[1]$ est distingué. TRIII: Pour tout couple de triangles distingués:

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1]$$
 ,
$$X' \xrightarrow{u'} Y' \xrightarrow{v'} Z' \xrightarrow{w'} X'[1]$$

et tout diagramme commutatif:

$$f \bigvee_{f} Y \bigvee_{g} g$$

$$X' \xrightarrow{u'} Y' \quad ,$$
 il existe un morphisme $h: Z \to Z'$ tel que (f,g,h) soit un morphisme de

triangle, i.e. tel que le diagramme ci-après soit commutatif : $\begin{array}{cccc}
X & \xrightarrow{-} & Y & \xrightarrow{-} & Z & \xrightarrow{\omega} & X[1] \\
f \downarrow & g \downarrow & h \downarrow & \downarrow f[1] \\
X' & \xrightarrow{u'} & Y' & \xrightarrow{v'} & Z' & \xrightarrow{w'} & X'[1]
\end{array}$

(TR1) Any triangle isomorphic to an exact triangle is exact. This follows directly from the definition. If A is an object of \tilde{K} , there exists A' such that $A \oplus A' \in K$ (namely, if A = (B, e) take A' = (B, 1 - e) and check that $A \oplus A' \cong \iota(B)$). Then exactness of

$$A \oplus A' \xrightarrow{1} A \oplus A' \longrightarrow 0 \longrightarrow T(A) \oplus T(A')$$

in K insures the exactness of $A \xrightarrow{1} A \longrightarrow 0 \longrightarrow T(A)$ in \tilde{K} , by definition. We still have to check that any morphism fits into an exact triangle.

Let $\alpha: A \to B$ be a morphism in K. Let A' and B' be such that $A \oplus A' \in K$ and $B \oplus B' \in K$. Let

$$A \oplus A' \xrightarrow{a} B \oplus B' \xrightarrow{a_1} D \xrightarrow{a_2} T(A \oplus A')$$
 (1)

be an exact triangle in K, where $a = \binom{a \ 0}{0}$. Now, using Lemma 1.13 in K, we complete the following left commutative square into a morphism of exact triangles in K such that $p = p^2$: $D \to D$ is an idempotent:

Then $A \xrightarrow{a} B \xrightarrow{pa_1} \text{Im}(p) \xrightarrow{a_2 p} T(A)$ is an exact triangle as it is a direct factor of (1).

(TR2) This is direct from the definition.

(TR3) Consider a partial map (α, β) : $\Delta \to \Gamma$ of exact triangles in \tilde{K} (the left square commutes):

By definition, there are maps of triangles $i: \Delta \to \Delta', p: \Delta' \to \Delta, j: \Gamma \to \Gamma', q: \Gamma' \to \Gamma$ such that $pi = 1_{\Delta}, qj = 1_{\Gamma}$, and such that Δ' and Γ' are exact triangles in K. The partial map of triangles (α, β) induces a partial map of triangles $j \circ (\alpha, \beta) \circ p$ from Δ' to Γ' . Since the two latter triangles are exact in K we can apply (TR3) to extend the partial map of triangles $j \circ (\alpha, \beta) \circ p$ to a real map $a: \Delta' \to \Gamma'$ of triangles. Then $q \circ a \circ i$: $\Delta \to \Gamma$ is a map of triangles extending (α, β) .

So far, we have established that \vec{K} is a pretriangulated category, in the sense that it satisfies all the axioms but the octahedron axiom (TR4).

TRIV: Pour tout diagramme commutatif:

et tout triplet de triangles distingués :

$$X_1 \xrightarrow{u_3} X_2 \xrightarrow{v_3} Z_3 \xrightarrow{w_3} X_1[1]$$
 , $X_2 \xrightarrow{u_1} X_3 \xrightarrow{v_1} Z_1 \xrightarrow{w_1} X_2[1]$, $X_1 \xrightarrow{u_2} X_3 \xrightarrow{v_2} Z_2 \xrightarrow{w_2} X_1[1]$,

il existe deux morphismes :

$$m_1: Z_3 \longrightarrow Z_2$$
,
 $m_3: Z_2 \longrightarrow Z_1$,

tels que $(\mathsf{id}_{X_1}, u_1, m_1)$ et $(u_3, \mathsf{id}_{X_3}, m_3)$ soient des morphismes de triangles, et tels que le triangle :

$$Z_3 \xrightarrow{m_1} Z_2 \xrightarrow{m_3} Z_1 \xrightarrow{v_3[1]w_1} Z_3[1]$$

soit distingué.

(TR4) Octahedron. Let $u: X \to Y$ and $v: Y \to Z$ be two composable morphisms. Let $w = v \circ u$ and choose exact triangles on u, v, and w in \tilde{K} :

$$X \xrightarrow{u} Y \xrightarrow{u_1} U \xrightarrow{u_2} T(X) \tag{1}$$
$$Y \xrightarrow{v} Z \xrightarrow{v_1} V \xrightarrow{v_2} T(Y) \tag{2}$$

$$X \xrightarrow{w} Z \xrightarrow{w_1} W \xrightarrow{w_2} T(X). \tag{3}$$

Choose A, B, and C in \tilde{K} such that $X \oplus A \in K$, $Y \oplus B \in K$, and $Z \oplus C \in K$. Add to (1) the trivial triangles $A \longrightarrow 0 \longrightarrow T(A) \stackrel{1}{\longrightarrow} T(A)$ and $0 \longrightarrow B \stackrel{1}{\longrightarrow} B \longrightarrow 0$ to obtain the following triangle which is exact in \tilde{K} (cf. Lemma 1.6):

$$X \oplus A \xrightarrow{\begin{pmatrix} u & 0 \\ 0 & 0 \end{pmatrix}} Y \oplus B \xrightarrow{\begin{pmatrix} u_1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}} U \oplus B \oplus T(A)$$

$$\xrightarrow{\begin{pmatrix} u_2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}} T(X) \oplus T(A). \tag{4}$$

Observe that the first morphism of (4) is in K and therefore fits into an exact triangle of K which is, via ι , an exact triangle of \tilde{K} . Those two triangles are isomorphic since \tilde{K} is pretriangulated. Therefore, (4) is isomorphic to an exact triangle of K.

Similarly, the two following triangles are isomorphic to exact triangles of K.

$$Y \oplus B \xrightarrow{\begin{pmatrix} v & 0 \\ 0 & 0 \end{pmatrix}} Z \oplus C \xrightarrow{\begin{pmatrix} v_1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}} V \oplus C \oplus T(B)$$

$$\xrightarrow{\begin{pmatrix} v_2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}} T(Y) \oplus T(B) \tag{5}$$

$$X \oplus A \xrightarrow{\begin{pmatrix} w & 0 \\ 0 & 0 \end{pmatrix}} Z \oplus C \xrightarrow{\begin{pmatrix} w_1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}} W \oplus C \oplus T(A)$$

$$\xrightarrow{\begin{pmatrix} w_2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}} T(X) \oplus T(A) \tag{6}$$

Let us put them into an octahedron (cf. Fig. 1). The octahedron exists because it is isomorphic to an octahedron in K. In particular, we find $f: U \oplus B \oplus T(A) \to W \oplus C \oplus T(A)$ and $g: W \oplus C \oplus T(A) \to V \oplus C \oplus T(B)$ which fit into the diagram of Fig. 1. The 0's and 1's appearing in f and g come from the commutativities required by the octahedron axiom.

 $v_2g_1=T(u)w_2.$

(10)

From the relation gf = 0 we obtain

$$g_1 f_2 + g_2 = 0$$
 (11)
 $g_3 f_1 + f_3 = 0$ (12)
 $g_3 f_2 + f_4 + g_4 = 0$. (13)

We shall now use the endomorphism of $W \oplus C \oplus T(A)$,

$$\sigma := \begin{pmatrix} 1 & 0 & -f_2 \\ g_3 & 1 & g_4 \\ 0 & 0 & 1 \end{pmatrix},$$

as presented in Fig. 1, in order to modify our octahedron. Direct computation gives

$$\begin{pmatrix} 1 & 0 & f_2 \\ -g_3 & 1 & f_4 \\ 0 & 0 & 1 \end{pmatrix} \cdot \sigma = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & g_3 f_2 + g_4 + f_4 \\ 0 & 0 & 1 \end{pmatrix} \stackrel{\text{(13)}}{=} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

and similarly

which implies that
$$\sigma$$
 is an automorphism with the inver

which implies that σ is an automorphism with the inverse

 $\sigma^{-1} = \left[\begin{array}{ccc} 1 & 0 & f_2 \\ -g_3 & 1 & f_4 \\ 0 & 0 & 1 \end{array} \right].$ (14)

 $\sigma \cdot \begin{pmatrix} 1 & 0 & f_2 \\ -g_3 & 1 & f_4 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & g_3 f_2 + f_4 + g_4 \\ 0 & 0 & 1 \end{pmatrix} \stackrel{\text{(13)}}{=} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$

Let us modify up to isomorphism the foreground triangle of Fig. 1 by using this automorphism σ to obtain the candidate triangle

$$U \oplus B \oplus T(A) \xrightarrow{\sigma f} W \oplus C \oplus T(A) \xrightarrow{g\sigma^{-1}} V \oplus C \oplus T(B)$$

$$\xrightarrow{\begin{pmatrix} T(u_1)v_2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}} T(U) \oplus T(B) \oplus T^2(A), \quad (15)$$

which by its construction is isomorphic to an exact triangle of K. We compute directly

$$\sigma f = \begin{pmatrix} 1 & 0 & -J_2 \\ g_3 & 1 & g_4 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} J_1 & 0 & J_2 \\ f_3 & 0 & f_4 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} f_1 & 0 & 0 \\ g_3 f_1 + f_3 & 0 & g_3 f_2 + f_4 + g_4 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} f_1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

by (12) and (13). Similarly, we have

$$g\sigma^{-1} \stackrel{(14)}{=} \begin{pmatrix} g_1 & 0 & g_2 \\ g_3 & 1 & g_4 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & f_2 \\ -g_3 & 1 & f_4 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} g_1 & 0 & g_1 f_2 + g_2 \\ 0 & 1 & g_3 f_2 + f_4 + g_4 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} g_1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

by (11) and (13). Putting all this together, we obtain the picture in \tilde{K}

in which all commutativities to be an octahedron are satisfied (use relations (7)–(10)). The only point is to check that the triangle

$$U \xrightarrow{f_1} W \xrightarrow{g_1} V \xrightarrow{T(u_1)v_2} T(U)$$

is exact in \tilde{K} . But this is immediate from the exact triangle (15), the explicit computations of σf , and $g\sigma^{-1}$, and from Definition 1.10.

1.17. Proof of Theorem 1.5. Clearly, by construction of the triangula-

tion on \tilde{K} , the functor $\iota: K \to \tilde{K}$ is exact (see Remark 1.11). By Lemma 1.6, any triangulation on \tilde{K} has to contain the class of exact triangles given in Definition 1.10. It is a well-known fact that there cannot exist two different triangulated structures on an additive category such that one of them contains the other (easy consequence of TR1-TR3). This proves the

uniqueness of the triangulated structure. The rest follows from Proposition 1.3 once we have shown that any additive functor $f: \tilde{K} \to L$ is exact as soon as $f \circ \iota$ is exact. But this is an immediate consequence of Lemma 1.6 and Definition 1.10.

- Paul Balmer and Marco Schlichting, Idempotent completion of triangulated categories, J. Algebra 236 (2001), no. 2, 819–834. §1
- of triangulated categories, J. Algebra 236 (2001), no. 2, 819–834. §1

 Jean-Louis Verdier, Des catégories dérivées des catégories abéliennes, Astérisque (1996), no. 239, xii+253 pp., With a

preface by Luc Illusie, Edited and with a note by Georges

Maltsiniotis. Chap. II, Définition 1.1.1.