Гомотопічно проективні модулі. Навколо похідних категорій

Володимир Любашенко

25 березня 2021

Конус квазі-ізоморфізма – ациклічний

Let ${\mathcal C}$ be a $\mathsf{dg}\text{-}\mathrm{category}$ over a commutative ring $\Bbbk.$

Lemma (well-known)

Let $g:A\to B\in Z^0dgMod\mathchar`-\mathcal{C}.$ Then g is a quasi-isomorphism iff $\mbox{Cone}\,g$ is acyclic.

Доведення.

For all $X \in \mathsf{Ob}\mathcal{C}$ the functor $A \mapsto H^0(A(X))$ is cohomological. The distinguished triangle $A \xrightarrow{g} B \to \mathsf{Cone} g \to \mathrm{in} H^0 \mathrm{dgMod}\text{-}\mathcal{C}$ implies exact sequence

$$\begin{split} \mathrm{H}^{k-1}(\mathsf{Cone}\,\mathrm{g}(\mathrm{X})) &\to \mathrm{H}^{k}(\mathrm{A}(\mathrm{X})) \to \mathrm{H}^{k}(\mathrm{B}(\mathrm{X})) \\ &\to \mathrm{H}^{k}(\mathsf{Cone}\,\mathrm{g}(\mathrm{X})) \to \mathrm{H}^{k+1}(\mathrm{A}(\mathrm{X})) \to \mathrm{H}^{k+1}(\mathrm{B}(\mathrm{X})). \end{split}$$

Vanishing of $H^{\bullet}(\text{Cone } g(X))$ is equivalent to $H^{\bullet}(g(X))$ being an isomorphism.

Конус гомотопійно оборотного морфізма – стягуваний

Lemma (well-known)

Let $f:M\to N\in Z^0dgMod\mathchar`-\mathcal{C}.$ Then f is homotopy invertible iff $\mathsf{Cone}\,f$ is contractible.

Доведення. Assume that $Cone f = (M[1] \oplus N, d_{Cone f})$ is contractible,

$$d_{\mathsf{Cone}\,f} = \begin{pmatrix} d_M[1] & \sigma^{-1} \cdot f \\ 0 & d_N \end{pmatrix}.$$

The contracting homotopy $h \in dgMod-C(Conef, Conef)^{-1}$ can be presented as

$$\mathbf{h} = \begin{pmatrix} \alpha [1] & \sigma^{-1} \cdot \delta \\ \mathbf{g} \cdot \sigma & \beta \end{pmatrix},$$

where $g \in dgMod-\mathcal{C}(N, M)^0, \alpha \in dgMod-\mathcal{C}(M, M)^{-1}, \beta \in dgMod-\mathcal{C}(N, N)^{-1}, \delta \in dgMod-\mathcal{C}(M, N)^{-2}.$

The equation $d_{Conef} h + hd_{Conef} = 1_{Conef}$ can be written as the system

$$\begin{split} d_N g &= g d_M, \\ 1_M - f \cdot g &= d_M \alpha + \alpha d_M, \\ 1_N - g \cdot f &= d_N \beta + \beta d_N, \\ \alpha \cdot f - f \cdot \beta &= \delta \cdot d_N - d_M \cdot \delta \equiv [\delta, d] \end{split}$$

The first equation says that $g: N \to M \in Z^0 dgMod-C$. The second and the third say that g is homotopy inverse to f.

The fourth equation says that we deal with representation of Kontsevich's category!

Assume that $f: M \to N \in Z^0 dgMod-C$ is homotopy invertible. The category $H^0 dgMod-C$ is triangulated. The square

extends to a morphism of distinguished triangles

by property [TR3] of triangulated category H^0 dgMod-C. The morphism 0 : Cone $f \rightarrow 0$ is invertible in H^0 dgMod-C, that is, Cone f is contractible. Квазі-ізоморфізм гомотопійно проективних модулів гомотопійно оборотний

Proposition

Let $f: M \to N$ be a quasi-isomorphism of homotopy projective C-modules. Then f is homotopy invertible.

Доведення.

Since f is a quasi-isomorphism, **Cone**f is acyclic by Lemma 1. On the other hand, **Cone**f is homotopy projective. The identity morphism id : **Cone** $f \rightarrow$ **Cone** $f \in Z^0$ dgMod-C is a morphism from a homotopy projective C-module to an acyclic C-module. Hence, $[id_{Conef}] = 0 \in H^0$ dgMod-C, that is, **Cone**f is contractible. By Lemma 2 f is homotopy invertible.

where r is a quasi-isomorphism, $P \in h\text{-proj-}\mathcal{C}$. Then there is a morphism $g : P \to Q \in Z^0 dgMod-\mathcal{C}$ such that the triangle

commutes up to homotopy.

Доведення.

Coner is acyclic by Lemma 1. The composition

$$P \xrightarrow{f} N \xrightarrow{\alpha(r)=(0 \ 1)} \mathsf{Cone}(r : Q \to N) = (Q[1] \oplus N, d_{\mathsf{Cone}\,r})$$

is null-homotopic, being a map from a homotopy projective module to an acyclic module. Therefore, there is a homotopy $h \in dgMod-\mathcal{C}(P, (Q[1] \oplus N, d_{Coner}))^{-1}$ such that

$$\mathbf{f} \cdot \boldsymbol{\alpha}(\mathbf{r}) = \mathbf{d}_{\mathbf{P}} \cdot \mathbf{h} + \mathbf{h} \cdot \mathbf{d}_{\mathsf{Cone\,r}}.$$
 (2)

Representing the homotopy as $h = (g \cdot \sigma, \gamma)$, $g \in dgMod-\mathcal{C}(P, Q)^0$, $\gamma \in dgMod-\mathcal{C}(P, N)^{-1}$ we see that (2) is equivalent to requirements

$$\begin{split} g \in Z^0 dg Mod {\mathcal C}(P,Q), \\ f = g \cdot r + d_P \cdot \gamma + \gamma \cdot d_N, \end{split}$$

which is the precise statement about homotopy commutativity of (1).

Corollary

(a) Given a diagram in Z^0 dgMod- \mathcal{C}

with homotopy projective P and a quasi-isomorphism r there is a morphism $g: P \to Q \in Z^0$ dgMod- \mathcal{C} such that the square

commutes up to homotopy.

(b) If, moreover, Q is homotopy projective and t, j are quasi-isomorphisms, then g is homotopy invertible.

Доведення.

(b) The left hand side of equation $t \cdot j - d_P \cdot \gamma - \gamma \cdot d_N = g \cdot r$ is a quasi-isomorphism, since $H^{\bullet}(t \cdot j - d_P \cdot \gamma - \gamma \cdot d_N) = H^{\bullet}(t \cdot j)$. Therefore, g is a quasi-isomorphism. By Proposition 1 g is homotopy invertible.

2.3.2. Soient $F : \mathcal{C} \longrightarrow \mathcal{C}'$ un foncteur et X un objet de \mathcal{C}' . Rappelons qu'un objet Y de \mathcal{C} est dit *F*-libre à droite sur X, ou simplement libre à droite sur X, s'il existe un morphisme $u : F(Y) \longrightarrow X$ tel que pour tout morphisme $F(Z) \xrightarrow{v} X$, il existe un et un seul morphisme $w : Z \longrightarrow Y$ tel que le diagramme ci-après soit commutatif :

La flèche $u: F(Y) \longrightarrow X$ s'appelle flèche de liberté pour le couple (X, Y)(relativement au foncteur F). Celà peut encore s'interpréter, en prenant un univers dont C et C' soient des éléments, en disant que Y est libre à droite sur X s'il existe un isomorphisme entre les foncteurs $Z \mapsto \operatorname{Hom}_{\mathcal{C}}(Z,Y)$ et $Z \mapsto \operatorname{Hom}_{\mathcal{C}'}(F(Z), X)$. Nous dirons qu'un objet Y de C est F-libre à droite s'il existe un objet X de C' tel que Y soit libre à droite sur X. Nous dirons qu'un objet X de C' est F-libérable à droite s'il existe un objet Y de C libre à droite sur X. On définit de façon analogue, par passage aux catégories opposées, les notions d'objet libre ou libérable à gauche.

Властивості гомотопійно проективних модулів

Proposition 2.3.3. Soient \mathcal{D} une catégorie triangulée, \mathcal{B} une sous-catégorie triangulée pleine, $Q : \mathcal{D} \longrightarrow \mathcal{D}/\mathcal{B}$ le foncteur de passage au quotient (2.2.10), $S_{\mathcal{D}}(\mathcal{B})$ le système multiplicatif de \mathcal{D} associé à \mathcal{B} (2.1.8).

a) Pour tout objet Y de D, les conditions suivantes sont équivalentes :

i) L'objet Y est Q-libre à droite.

ii) Pour tout morphisme $s \in S_{\mathcal{D}}(\mathcal{B})$, $s : S \longrightarrow T$, l'application :

$$\operatorname{Hom}_{\mathcal{D}}(s,Y): \operatorname{Hom}_{\mathcal{D}}(T,Y) \longrightarrow \operatorname{Hom}_{\mathcal{D}}(S,Y)$$

est une bijection.

- iii) Pour tout objet B de \mathcal{B} , $\operatorname{Hom}_{\mathcal{D}}(B,Y) = 0$.
- iv) Tout morphisme $Y \xrightarrow{s} Z$, avec $s \in S_{\mathcal{D}}(\mathcal{B})$, admet une rétraction.

v) Pour tout objet X de D, l'application :

$$\operatorname{Hom}_{\mathcal{D}}(X,Y) \longrightarrow \operatorname{Hom}_{\mathcal{D}/\mathcal{B}}(Q(X),Q(Y))$$

est bijective.

Для нас
$$\mathcal{D} = \mathrm{H}^{0}\mathrm{dgMod}$$
- $\mathcal{C}^{\mathsf{op}}$, $\mathcal{B} = \mathrm{H}^{0}\mathrm{dgAcyc}$ - $\mathcal{C}^{\mathsf{op}}$, $\mathrm{S}_{\mathcal{D}}(\mathcal{B}) = {\mathrm{qis}}^{\mathsf{op}}$.

2.3.4. Démonstration de la proposition 2.3.3 : Démontrons a). Tout d'abord, si Y est Q-libre à droite, le foncteur $X \mapsto \operatorname{Hom}_{\mathcal{D}}(X,Y)$ est isomorphe au foncteur $X \mapsto \operatorname{Hom}_{\mathcal{D}/\mathcal{B}}(Q(X),Z)$, pour un objet Z convenable de \mathcal{D}/\mathcal{B} . Par suite, le foncteur $X \mapsto \operatorname{Hom}_{\mathcal{D}/\mathcal{B}}(Q(X),Z)$ transforme les morphismes de $S_{\mathcal{D}}(\mathcal{B})$ en isomorphismes. Ceci démontre l'implication $i) \Rightarrow ii$. L'implication $ii) \Rightarrow iii$) résulte de ce que le morphisme $B \longrightarrow 0$ est un morphisme de $S_{\mathcal{D}}(\mathcal{B})$. L'implication $iii) \Rightarrow iv$) résulte de la définition de $S_{\mathcal{D}}(\mathcal{B})$ et de (1.2.6). L'implication $iv) \Rightarrow v$) résulte de l'isomorphisme (2.2.4) :

$$\operatorname{Hom}_{\mathcal{D}/\mathcal{B}}(Q(X),Q(Y)) \xrightarrow{\sim} \varinjlim_{Y \setminus S_{\mathcal{D}}(\mathcal{B})} \operatorname{Hom}_{\mathcal{D}}(X,\,.\,)$$

Enfin, l'implication $v \Rightarrow i$) est évidente : Y est libre à droite sur Q(Y).

Кодобутки і добутки в похідній категорії

Lemma

Let \mathcal{A} be a small abelian category and let $\{A_n^*\}_{n>0} \subseteq \mathsf{Ob}(D^?(\mathcal{A})).$

(1) If $A_n^i = 0$ for all i > -n and $? = -, \emptyset$, then $\bigoplus_{n=0}^{\infty} A_n^*$ is a coproduct in $D^?(\mathcal{A})$, i.e. there is a canonical isomorphism

$$\bigoplus_{n=0}^{\infty} A_n^* \cong \prod_{n=0}^{\infty} A_n^*.$$

(2) If $A_n^i = 0$ for all i < n and $? = +, \emptyset$, then $\bigoplus_{n=0}^{\infty} A_n^*$ is a product in $D^?(\mathcal{A})$, i.e. there is a canonical isomorphism

Corollary

$$\bigoplus_{n=0}^{\infty} A_n^* \cong \prod_{n=0}^{\infty} A_n^*.$$

Let \mathcal{A} be a small abelian category and let $\{A^i\}_{i\geq 0} \subseteq \mathsf{Ob}(\mathcal{A})$. Then $\bigoplus_{i=0}^{\infty} A^i[k+i]$ is a coproduct in $D^-(\mathcal{A})$ and $D(\mathcal{A})$, while $\bigoplus_{i=0}^{\infty} A^i[k-i]$ is a product in $D^+(\mathcal{A})$ and $D(\mathcal{A})$, for all $k \in \mathbb{Z}$.

Alberto Canonaco, Amnon Neeman, and Paolo Stellari, Uniqueness of enhancements for derived and geometric categories, 2021, arXiv:2101.04404 §1.5 - §1.6

■ Jean-Louis Verdier, Des catégories dérivées des catégories abéliennes, Astérisque (1996), no. 239, xii+253 pp., With a preface by Luc Illusie, Edited and with a note by Georges Maltsiniotis. §2.3.2 - §2.3.4