8. Гомотопічно проективні модулі. Навколо похідних категорій

Володимир Любашенко

25 березня 2021

Конус квазі-ізоморфізма - ациклічний

Let \mathcal{C} be a dg-category over a commutative ring \mathbb{k}.
Lemma (well-known)
Let $\mathrm{g}: \mathrm{A} \rightarrow \mathrm{B} \in \mathrm{Z}^{0} \mathrm{dgMod}-\mathcal{C}$. Then g is a quasi-isomorphism iff Coneg is acyclic.

Доведення.

For all $\mathrm{X} \in \mathrm{Ob} \mathcal{C}$ the functor $\mathrm{A} \mapsto \mathrm{H}^{0}(\mathrm{~A}(\mathrm{X}))$ is cohomological. The distinguished triangle $\mathrm{A} \xrightarrow{\mathrm{g}} \mathrm{B} \rightarrow$ Cone $\mathrm{g} \rightarrow$ in H^{0} dgMod- \mathcal{C} implies exact sequence

$$
\begin{aligned}
& \mathrm{H}^{\mathrm{k}-1}(\text { Cone } \mathrm{g}(\mathrm{X})) \rightarrow \mathrm{H}^{\mathrm{k}}(\mathrm{~A}(\mathrm{X})) \rightarrow \mathrm{H}^{\mathrm{k}}(\mathrm{~B}(\mathrm{X})) \\
& \quad \rightarrow \mathrm{H}^{\mathrm{k}}(\text { Cone } \mathrm{g}(\mathrm{X})) \rightarrow \mathrm{H}^{\mathrm{k}+1}(\mathrm{~A}(\mathrm{X})) \rightarrow \mathrm{H}^{\mathrm{k}+1}(\mathrm{~B}(\mathrm{X})) .
\end{aligned}
$$

Vanishing of $\mathrm{H}^{\bullet}($ Cone $\mathrm{g}(\mathrm{X}))$ is equivalent to $\mathrm{H}^{\bullet}(\mathrm{g}(\mathrm{X}))$ being an isomorphism.

Конус гомотопійно оборотного морфізма - стягуваний

Lemma (well-known)
Let $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{N} \in \mathrm{Z}^{0} \mathrm{dgMod}-\mathcal{C}$. Then f is homotopy invertible iff Conef is contractible.

Доведення. Assume that Cone $\mathrm{f}=\left(\mathrm{M}[1] \oplus \mathrm{N}, \mathrm{d}_{\text {Conef }}\right)$ is contractible,

$$
\mathrm{d}_{\text {Conef }}=\left(\begin{array}{cc}
\mathrm{d}_{\mathrm{M}}[1] & \sigma^{-1} \cdot \mathrm{f} \\
0 & \mathrm{~d}_{\mathrm{N}}
\end{array}\right)
$$

The contracting homotopy $h \in \operatorname{dgMod}-\mathcal{C}(\text { Conef, Conef) })^{-1}$ can be presented as

$$
\mathrm{h}=\left(\begin{array}{cc}
\alpha[1] & \sigma^{-1} \cdot \delta \\
\mathrm{~g} \cdot \sigma & \beta
\end{array}\right)
$$

where $\mathrm{g} \in \operatorname{dgMod}-\mathcal{C}(\mathrm{N}, \mathrm{M})^{0}, \alpha \in \operatorname{dgMod}-\mathcal{C}(\mathrm{M}, \mathrm{M})^{-1}$, $\beta \in \operatorname{dgMod}-\mathcal{C}(\mathrm{N}, \mathrm{N})^{-1}, \delta \in \operatorname{dgMod}-\mathcal{C}(\mathrm{M}, \mathrm{N})^{-2}$.

The equation $\mathrm{d}_{\text {Conef }} \mathrm{h}+\mathrm{hd}_{\text {Conef }=1_{\text {Conef }} \text { can be written as the }}$ system

$$
\begin{aligned}
\mathrm{d}_{\mathrm{N}} \mathrm{~g} & =\mathrm{gd}_{\mathrm{M}}, \\
1_{\mathrm{M}}-\mathrm{f} \cdot \mathrm{~g} & =\mathrm{d}_{\mathrm{M}} \alpha+\alpha \mathrm{d}_{\mathrm{M}}, \\
1_{\mathrm{N}}-\mathrm{g} \cdot \mathrm{f} & =\mathrm{d}_{\mathrm{N}} \beta+\beta \mathrm{d}_{\mathrm{N}}, \\
\alpha \cdot \mathrm{f}-\mathrm{f} \cdot \beta & =\delta \cdot \mathrm{d}_{\mathrm{N}}-\mathrm{d}_{\mathrm{M}} \cdot \delta \equiv[\delta, \mathrm{~d}]
\end{aligned}
$$

The first equation says that $\mathrm{g}: \mathrm{N} \rightarrow \mathrm{M} \in \mathrm{Z}^{0} \mathrm{dgMod}-\mathcal{C}$. The second and the third say that g is homotopy inverse to f .

The fourth equation says that we deal with representation of Kontsevich's category!

Assume that $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{N} \in \mathrm{Z}^{0} \mathrm{dgMod}-\mathcal{C}$ is homotopy invertible. The category $\mathrm{H}^{0} \mathrm{dgMod}-\mathcal{C}$ is triangulated. The square

extends to a morphism of distinguished triangles

by property [TR3] of triangulated category $\mathrm{H}^{0} \mathrm{dgMod}-\mathcal{C}$. The morphism 0 : Conef $\rightarrow 0$ is invertible in $\mathrm{H}^{0} \mathrm{dgMod}-\mathcal{C}$, that is, Conef is contractible.

Квазі-ізоморфізм гомотопійно проективних модулів

 гомотопійно оборотнийProposition
Let $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{N}$ be a quasi-isomorphism of homotopy projective \mathcal{C}-modules. Then f is homotopy invertible.

Доведення.
Since f is a quasi-isomorphism, Conef is acyclic by Lemma 1.
On the other hand, Conef is homotopy projective. The identity morphism id : Cone $f \rightarrow$ Cone $f \in Z^{0} d g M o d-\mathcal{C}$ is a morphism from a homotopy projective \mathcal{C}-module to an acyclic \mathcal{C}-module. Hence, [id Conef] $=0 \in \mathrm{H}^{0} \mathrm{dgMod}-\mathcal{C}$, that is, Conef is contractible. By Lemma 2 f is homotopy invertible.

Lemma (see Verdier, Proposition 2.3.3)
Consider a diagram in $\mathrm{Z}^{0} \mathrm{dgMod}-\mathcal{C}$

where r is a quasi-isomorphism, $\mathrm{P} \in \mathrm{h}$-proj-C.
Then there is a morphism $g: P \rightarrow Q \in \mathrm{Z}^{0} \mathrm{dgMod}-\mathcal{C}$ such that the triangle

commutes up to homotopy.

Доведення.

Coner is acyclic by Lemma 1. The composition

$$
\mathrm{P} \xrightarrow{\mathrm{f}} \mathrm{~N} \xrightarrow{\alpha(\mathrm{r})=\left(\begin{array}{ll}
0 & 1
\end{array}\right)} \text { Cone }(\mathrm{r}: \mathrm{Q} \rightarrow \mathrm{~N})=\left(\mathrm{Q}[1] \oplus \mathrm{N}, \mathrm{~d}_{\text {Cone } \mathrm{r}}\right)
$$

is null-homotopic, being a map from a homotopy projective module to an acyclic module. Therefore, there is a homotopy $\mathrm{h} \in \operatorname{dgMod}-\mathcal{C}\left(\mathrm{P},\left(\mathrm{Q}[1] \oplus \mathrm{N}, \mathrm{d}_{\text {Coner }}\right)\right)^{-1}$ such that

$$
\begin{equation*}
\mathrm{f} \cdot \alpha(\mathrm{r})=\mathrm{d}_{\mathrm{P}} \cdot \mathrm{~h}+\mathrm{h} \cdot \mathrm{~d}_{\text {Coner }} . \tag{2}
\end{equation*}
$$

Representing the homotopy as $\mathrm{h}=(\mathrm{g} \cdot \sigma, \gamma)$, $\mathrm{g} \in \operatorname{dgMod}-\mathcal{C}(\mathrm{P}, \mathrm{Q})^{0}, \gamma \in \operatorname{dgMod}-\mathcal{C}(\mathrm{P}, \mathrm{N})^{-1}$ we see that (2) is equivalent to requirements

$$
\begin{gathered}
\mathrm{g} \in \mathrm{Z}^{0} \mathrm{dgMod}-\mathcal{C}(\mathrm{P}, \mathrm{Q}) \\
\mathrm{f}=\mathrm{g} \cdot \mathrm{r}+\mathrm{d}_{\mathrm{P}} \cdot \gamma+\gamma \cdot \mathrm{d}_{\mathrm{N}}
\end{gathered}
$$

which is the precise statement about homotopy commutativity of (1).

Corollary

(a) Given a diagram in $\mathrm{Z}^{0} \mathrm{dgMod}-\mathcal{C}$

with homotopy projective P and a quasi-isomorphism r there is a morphism $\mathrm{g}: \mathrm{P} \rightarrow \mathrm{Q} \in \mathrm{Z}^{0} \mathrm{dgMod}-\mathcal{C}$ such that the square

commutes up to homotopy.
(b) If, moreover, Q is homotopy projective and t, j are quasi-isomorphisms, then g is homotopy invertible.

Доведення.

(b) The left hand side of equation $\mathrm{t} \cdot \mathrm{j}-\mathrm{d}_{\mathrm{P}} \cdot \gamma-\gamma \cdot \mathrm{d}_{\mathrm{N}}=\mathrm{g} \cdot \mathrm{r}$ is a quasi-isomorphism, since $\mathrm{H}^{\bullet}\left(\mathrm{t} \cdot \mathrm{j}-\mathrm{d}_{\mathrm{P}} \cdot \gamma-\gamma \cdot \mathrm{d}_{\mathrm{N}}\right)=\mathrm{H}^{\bullet}(\mathrm{t} \cdot \mathrm{j})$. Therefore, g is a quasi-isomorphism. By Proposition 1 g is homotopy invertible.
2.3.2. Soient $F: \mathcal{C} \longrightarrow \mathcal{C}^{\prime}$ un foncteur et X un objet de \mathcal{C}^{\prime}. Rappelons qu'un objet Y de \mathcal{C} est dit F-libre à droite sur X, ou simplement libre à droite sur X, s'il existe un morphisme $u: F(Y) \longrightarrow X$ tel que pour tout morphisme $F(Z) \xrightarrow{v} X$, il existe un et un seul morphisme $w: Z \longrightarrow Y$ tel que le diagramme ci-après soit commutatif :

Об’єкти вільні зліва

La flèche $u: F(Y) \longrightarrow X$ s'appelle flèche de liberté pour le couple (X, Y) (relativement au foncteur F). Celà peut encore s'interpréter, en prenant un univers dont \mathcal{C} et \mathcal{C}^{\prime} soient des éléments, en disant que Y est libre à droite sur X s'il existe un isomorphisme entre les foncteurs $Z \mapsto \operatorname{Hom}_{\mathcal{C}}(Z, Y)$ et $Z \mapsto \operatorname{Hom}_{\mathcal{C}^{\prime}}(F(Z), X)$. Nous dirons qu'un objet Y de \mathcal{C} est F-libre à droite s'il existe un objet X de \mathcal{C}^{\prime} tel que Y soit libre à droite sur X. Nous dirons qu'un objet X de \mathcal{C}^{\prime} est F-libérable à droite s'il existe un objet Y de \mathcal{C} libre à droite sur X. On définit de façon analogue, par passage aux catégories opposées, les notions d'objet libre ou libérable à gauche.

Властивості гомотопійно проективних модулів

Proposition 2.3.3. Soient \mathcal{D} une catégorie triangulée, \mathcal{B} une sous-catégorie triangulée pleine, $Q: \mathcal{D} \longrightarrow \mathcal{D} / \mathcal{B}$ le foncteur de passage au quotient (2.2.10), $S_{\mathcal{D}}(\mathcal{B})$ le système multiplicatif de \mathcal{D} associé à \mathcal{B} (2.1.8).
a) Pour tout objet Y de \mathcal{D}, les conditions suivantes sont équivalentes :
i) L'objet Y est Q-libre à droite.
ii) Pour tout morphisme $s \in S_{\mathcal{D}}(\mathcal{B})$, $s: S \longrightarrow T$, l'application :

$$
\operatorname{Hom}_{\mathcal{D}}(s, Y): \operatorname{Hom}_{\mathcal{D}}(T, Y) \longrightarrow \operatorname{Hom}_{\mathcal{D}}(S, Y)
$$

est une bijection.
iii) Pour tout objet B de $\mathcal{B}, \operatorname{Hom}_{\mathcal{D}}(B, Y)=0$.
iv) Tout morphisme $Y \xrightarrow{s} Z$, avec $s \in S_{\mathcal{D}}(\mathcal{B})$, admet une rétraction.
v) Pour tout objet X de \mathcal{D}, l'application :

$$
\operatorname{Hom}_{\mathcal{D}}(X, Y) \longrightarrow \operatorname{Hom}_{\mathcal{D} / \mathcal{B}}(Q(X), Q(Y))
$$

est bijective.
Для нас $\mathcal{D}=\mathrm{H}^{0}$ dgMod- $\mathcal{C}^{\mathrm{op}}, \mathcal{B}=\mathrm{H}^{0}$ dgAcyc- $\mathcal{C}^{\mathrm{op}}$,
$S_{\mathcal{D}}(\mathcal{B})=\{q i s\}^{\circ}$.
2.3.4. Démonstration de la proposition 2.3.3 : Démontrons a). Tout d'abord, si Y est Q-libre à droite, le foncteur $X \mapsto \operatorname{Hom}_{\mathcal{D}}(X, Y)$ est isomorphe au foncteur $X \mapsto \operatorname{Hom}_{\mathcal{D} / \mathcal{B}}(Q(X), Z)$, pour un objet Z convenable de $\mathcal{D} / \mathcal{B}$. Par suite, le foncteur $X \mapsto \operatorname{Hom}_{\mathcal{D}}(X, Y)$ transforme les morphismes de $S_{\mathcal{D}}(\mathcal{B})$ en isomorphismes. Ceci démontre l'implication $\left.i\right) \Rightarrow i i$). L'implication $i i) \Rightarrow i i i)$ résulte de ce que le morphisme $B \longrightarrow 0$ est un morphisme de $S_{\mathcal{D}}(\mathcal{B})$. L'implication $\left.\left.i i i\right) \Rightarrow i v\right)$ résulte de la définition de $S_{\mathcal{D}}(\mathcal{B})$ et de (1.2.6). L'implication $i v) \Rightarrow v$) résulte de l'isomorphisme (2.2.4) :

$$
\operatorname{Hom}_{\mathcal{D} / \mathcal{B}}(Q(X), Q(Y)) \xrightarrow{\sim} \underset{Y \backslash S_{\mathcal{D}}(\mathcal{B})}{\lim } \operatorname{Hom}_{\mathcal{D}}(X, .)
$$

Enfin, l'implication $v) \Rightarrow i$) est évidente : Y est libre à droite sur $Q(Y)$.

Кодобутки і добутки в похідній категорії

Lemma

Let \mathcal{A} be a small abelian category and let $\left\{\mathrm{A}_{\mathrm{n}}^{*}\right\}_{\mathrm{n} \geq 0} \subseteq \mathrm{Ob}\left(\mathrm{D}^{?}(\mathcal{A})\right)$.
(1) If $\mathrm{A}_{\mathrm{n}}^{\mathrm{i}}=0$ for all $\mathrm{i}>-\mathrm{n}$ and $?=-, \emptyset$, then $\bigoplus_{\mathrm{n}=0}^{\infty} \mathrm{A}_{\mathrm{n}}^{*}$ is a coproduct in $\mathrm{D}^{?}(\mathcal{A})$, i.e. there is a canonical isomorphism

$$
\bigoplus_{n=0}^{\infty} A_{n}^{*} \cong \coprod_{n=0}^{\infty} A_{n}^{*}
$$

(2) If $A_{n}^{i}=0$ for all $\mathrm{i}<\mathrm{n}$ and $?=+, \emptyset$, then $\bigoplus_{\mathrm{n}=0}^{\infty} A_{\mathrm{n}}^{*}$ is a product in $\mathrm{D}^{?}(\mathcal{A})$, i.e. there is a canonical isomorphism

Corollary

$$
\bigoplus_{\mathrm{n}=0}^{\infty} \mathrm{A}_{\mathrm{n}}^{*} \cong \prod_{\mathrm{n}=0}^{\infty} \mathrm{A}_{\mathrm{n}}^{*}
$$

Let \mathcal{A} be a small abelian category and let $\left\{\mathrm{A}^{\mathrm{i}}\right\}_{\mathrm{i} \geq 0} \subseteq \mathrm{Ob}(\mathcal{A})$. Then $\bigoplus_{\mathrm{i}=0}^{\infty} \mathrm{A}^{\mathrm{i}}[\mathrm{k}+\mathrm{i}]$ is a coproduct in $\mathrm{D}^{-}(\mathcal{A})$ and $\mathrm{D}(\mathcal{A})$, while $\bigoplus_{\mathrm{i}=0}^{\infty} \mathrm{A}^{\mathrm{i}}[\mathrm{k}-\mathrm{i}]$ is a product in $\mathrm{D}^{+}(\mathcal{A})$ and $\mathrm{D}(\mathcal{A})$, for all $\mathrm{k} \in \mathbb{Z}$.

嗇 Alberto Canonaco, Amnon Neeman, and Paolo Stellari, Uniqueness of enhancements for derived and geometric categories, 2021, arXiv:2101.04404 §1.5-§1.6
嗇 Jean-Louis Verdier, Des catégories dérivées des catégories abéliennes, Astérisque (1996), no. 239, xii +253 pp., With a preface by Luc Illusie, Edited and with a note by Georges Maltsiniotis. §2.3.2 - §2.3.4

