6. Напіввільні модулі над dg-категорією Навколо похідних категорій

Володимир Любашенко

11 березня 2021

B.1. Definition. A DG R-module F over a DG ring R is *free* if it is isomorphic to a direct sum of DG modules of the form R[n], $n \in \mathbb{Z}$. A DG R-module F is *semi-free* if the following equivalent conditions hold:

(1) F can be represented as the union of an increasing sequence of DG submodules F_i , $i = 0, 1, \ldots$, so that $F_0 = 0$ and each quotient F_i/F_{i-1} is free;

B.1. Definition. A DG *R*-module *F* over a DG ring *R* is *free* if it is isomorphic to a direct sum of DG modules of the form R[n], $n \in \mathbb{Z}$. A DG *R*-module *F* is *semi-free* if the following equivalent conditions hold:

(1) F can be represented as the union of an increasing sequence of DG submodules F_i, i = 0, 1, ..., so that F₀ = 0 and each quotient F_i/F_{i-1} is free; A complex of k-modules is semi-free if it is semi-free as a DG k-module.

B.2. Remarks.

(i) A bounded above complex of free *k*-modules is semi-free.

B.1. Definition. A DG *R*-module *F* over a DG ring *R* is *free* if it is isomorphic to a direct sum of DG modules of the form R[n], $n \in \mathbb{Z}$. A DG *R*-module *F* is *semi-free* if the following equivalent conditions hold:

(1) F can be represented as the union of an increasing sequence of DG submodules F_i, i = 0, 1, ..., so that F₀ = 0 and each quotient F_i/F_{i-1} is free; A complex of k-modules is semi-free if it is semi-free as a DG k-module.

B.2. Remarks.

(i) A bounded above complex of free *k*-modules is semi-free.

Theorem

Припустимо, що S - це множина, категорія \mathcal{C} є повною і коповною і $F: dg^S \rightleftharpoons \mathcal{C}: U$ є спряженням. Припустимо, що U зберігає фільтруючі кограниці. Для будь-якого $x \in S$ розглянемо об'єкт \mathbb{K}_x з dg^S , $\mathbb{K}_x(x) = Cone(id_k)$, $\mathbb{K}_x(y) = 0$ для $y \ne x$. Припустимо, що ланцюгове відображення $U(in_2): UA \to U(F(\mathbb{K}_x[p]) \sqcup A)$ - квазіїзоморфізм для всіх об'єктів $A \ni \mathcal{C}$ і всіх $x \in S$, $p \in \mathbb{Z}$. Оснастимо \mathcal{C} класами слабких еквівалентів (відповідно фібрацій), що складаються з морфізмів $f \ni \mathcal{C}$ таких що Uf - квазіїзоморфізм (відповідно епіморфізм). Тоді категорія \mathcal{C} - модельна категорія.

```
\begin{split} S &= \text{one-element set}, \\ \mathcal{C} &= \text{mod-}R - \text{right dg-modules over dg } \& \text{-algebra } R, \\ \mathcal{C} &\text{ is additive (even abelian)} \Rightarrow \text{for finite I } \coprod_{i \in I} = \oplus_{i \in I}. \\ \mathcal{C} &\text{ is complete and cocomplete}. \end{split}
```

```
S = one-element set,  \mathcal{C} = \mathsf{mod}\text{-}R - \mathsf{right} \ \mathsf{dg}\text{-}\mathsf{modules} \ \mathsf{over} \ \mathsf{dg} \ \Bbbk\text{-}\mathsf{algebra} \ R, \\ \mathcal{C} \ \mathsf{is} \ \mathsf{additive} \ (\mathsf{even} \ \mathsf{abelian}) \Rightarrow \mathsf{for} \ \mathsf{finite} \ \mathsf{I} \ \coprod_{i \in I} = \oplus_{i \in I}. \\ \mathcal{C} \ \mathsf{is} \ \mathsf{complete} \ \mathsf{and} \ \mathsf{cocomplete}. \\ \mathsf{Additive} \ \mathsf{functors} \ \mathsf{F} : \mathsf{dg} \rightleftarrows \mathcal{C} : \mathsf{U} \ \mathsf{are} : \\ \mathsf{free} \ \mathsf{R}\text{-}\mathsf{module} \ \mathsf{F} : \mathsf{M} \mapsto \mathsf{M} \otimes_{\Bbbk} \mathsf{R} \\ \mathsf{underlying} \ \mathsf{complex} \ (\mathsf{P}^{\bullet} \in \mathsf{dg}_{\mathbb{Z}}, \Bbbk \to \mathsf{R} \to \underline{\mathsf{dg}}_{\mathbb{Z}}(\mathsf{P}, \mathsf{P})) \longleftrightarrow \mathsf{P} : \mathsf{U}, \\ \mathsf{U} \ \mathsf{35epirae} \ \mathsf{фільтруючі} \ \mathsf{кограниці}.
```

```
S = one-element set,
\mathcal{C} = \mathsf{mod}\text{-} R - \mathsf{right} \, \mathsf{dg}\text{-}\mathsf{modules} \, \mathsf{over} \, \mathsf{dg} \, \mathbb{k}\text{-}\mathsf{algebra} \, R,
\mathcal{C} is additive (even abelian) \Rightarrow for finite I \coprod_{i \in I} = \bigoplus_{i \in I}.
\mathcal{C} is complete and cocomplete.
Additive functors F : dg \rightleftharpoons C : U are:
free R-module F: M \mapsto M \otimes_{\mathbb{k}} R
underlying complex (P^{\bullet} \in dg_{\mathbb{Z}}, \mathbb{k} \to R \to dg_{\mathbb{Z}}(P, P)) \longleftarrow P : U,
U зберігає фільтруючі кограниці.
F: dg^S \rightleftarrows C: U \in cпряженням: C(FM, P) \cong dg(M, UP) природ.
F(k[n]) = R[n]. We have
U(\mathsf{in}_2) = \mathsf{in}_2 : UP \to U(F(\mathbb{K}_x[p]) \sqcup P) = UF(\mathbb{K}[p]) \oplus UP.
```

```
S = one-element set,
\mathcal{C} = \mathsf{mod}\text{-}\,\mathrm{R} - \mathrm{right}\,\mathrm{dg}\text{-}\mathrm{modules} over dg k-algebra R,
\mathcal{C} is additive (even abelian) \Rightarrow for finite I \coprod_{i \in I} = \bigoplus_{i \in I}.
\mathcal{C} is complete and cocomplete.
Additive functors F : dg \rightleftharpoons C : U are:
free R-module F: M \mapsto M \otimes_{\mathbb{k}} R
underlying complex (P^{\bullet} \in \mathsf{dg}_{\mathbb{Z}}, \mathbb{k} \to R \to \mathsf{dg}_{\mathbb{Z}}(P, P)) \longleftrightarrow P : U,
U зберігає фільтруючі кограниці.
F: dg^S \rightleftarrows C: U \in cпряженням: C(FM, P) \cong dg(M, UP) природ.
F(k[n]) = R[n]. We have
U(\mathsf{in}_2) = \mathsf{in}_2 : UP \to U(F(\mathbb{K}_x[p]) \sqcup P) = UF(\mathbb{K}[p]) \oplus UP.
The summand U(F(\mathbb{K}[p]) = 0 \to \underset{-p}{\mathbb{R}} \xrightarrow{1} \underset{-p+1}{\mathbb{R}} \to 0 is contractible
\Rightarrow U(in<sub>2</sub>) is a quasi-isomorphism.
Conditions of the theorem are satisfied.
```

Нехай $M\in\mathsf{Obdg},\,A\in\mathsf{Ob}\,\mathcal{C},\,\alpha:M\to A^\#\in\mathsf{dg}.$ Позначимо через $C=\mathsf{Cone}\,\alpha=(M[1]\oplus UA,d_{\mathsf{Cone}})\in\mathsf{Obdg}$ конус.

Позначимо через $\bar{\imath}=\mathsf{in}_2:\mathrm{UA}\to\mathrm{C}$ очевидне вкладення.

Нехай $M \in \mathsf{Obdg}$, $A \in \mathsf{Ob}\mathcal{C}$, $\alpha : M \to A^{\#} \in \mathsf{dg}$. Позначимо через $C = \mathsf{Cone}\,\alpha = (M[1] \oplus \mathsf{UA}, \mathsf{d}_{\mathsf{Cone}}) \in \mathsf{Ob}\,\mathsf{dg}\,$ конус.

Позначимо через $\bar{\imath} = in_2 : UA \to C$ очевидне вкладення.

Означимо об'єкт $A\langle M, \alpha \rangle \in \mathsf{Ob}\,\mathcal{C}$ як виштовхування

$$\begin{array}{ccc}
A \otimes_{\mathbb{k}} R & \xrightarrow{\qquad \qquad \longrightarrow} A \\
\downarrow^{\overline{\imath} \otimes 1} & & \downarrow^{\overline{\jmath}} \\
C \otimes_{\mathbb{k}} R & \xrightarrow{\qquad \qquad g} & A/M & \alpha
\end{array}$$

Нехай $M \in \mathsf{Obdg}$, $A \in \mathsf{Ob}\mathcal{C}$, $\alpha : M \to A^{\#} \in \mathsf{dg}$. Позначимо через $C = \mathsf{Cone}\,\alpha = (M[1] \oplus \mathsf{UA}, \mathsf{d}_{\mathsf{Cone}}) \in \mathsf{Ob}\,\mathsf{dg}\,$ конус. Позначимо через $\bar{\imath}=\mathsf{in}_2:\mathrm{UA}\to\mathrm{C}$ очевидне вкладення.

Означимо об'єкт $A\langle M, \alpha \rangle \in \mathsf{Ob}\,\mathcal{C}$ як виштовхування

$$\begin{array}{ccc} A \otimes_{\Bbbk} R & \xrightarrow{action} & A \\ & & \downarrow_{\overline{\imath} \otimes 1} & & \downarrow_{\overline{\jmath}} \\ C \otimes_{\Bbbk} R & \xrightarrow{g} & A\langle M, \alpha \rangle \end{array}$$

Отже, $A\langle M, \alpha \rangle = ((M[1] \otimes_{\mathbb{k}} R) \oplus UA, d)$, де

$$d = \begin{pmatrix} d_{M[1] \otimes_{\mathbb{k}} R} & M[1] \otimes_{\mathbb{k}} R \xrightarrow{\sigma^{-1} \otimes 1} M \otimes_{\mathbb{k}} R \xrightarrow{\alpha \otimes 1} A \otimes_{\mathbb{k}} R \xrightarrow{\operatorname{action}} A \end{pmatrix}.$$

Нехай $M \in \mathsf{Obdg}, \ A \in \mathsf{Ob}\,\mathcal{C}, \ \alpha : M \to A^\# \in \mathsf{dg}.$ Позначимо через $C = \mathsf{Cone}\,\alpha = (M[1] \oplus \mathrm{UA}, \mathrm{d}_{\mathsf{Cone}}) \in \mathsf{Obdg}$ конус. Позначимо через $\overline{\imath} = \mathsf{in}_2 : \mathrm{UA} \to \mathrm{C}$ очевидне вкладення.

Означимо об'єкт $\mathrm{A}\langle\mathrm{M},lpha
angle\in\mathsf{Ob}\,\mathcal{C}$ як виштовхування

$$\begin{array}{ccc} A \otimes_{\Bbbk} R & \xrightarrow{\operatorname{action}} & A \\ & & \downarrow_{\overline{\imath} \otimes 1} & & \downarrow_{\overline{\jmath}} \\ C \otimes_{\Bbbk} R & \xrightarrow{g} & A \langle M, \alpha \rangle \end{array}$$

Отже, $A\langle M, \alpha \rangle = ((M[1] \otimes_{\mathbb{k}} R) \oplus UA, d)$, де

$$d = \begin{pmatrix} d_{M[1] \otimes_{\mathbb{k}} R} & M[1] \otimes_{\mathbb{k}} R \xrightarrow{\sigma^{-1} \otimes 1} M \otimes_{\mathbb{k}} R \xrightarrow{\alpha \otimes 1} A \otimes_{\mathbb{k}} R \xrightarrow{action} A \\ 0 & d_{A} \end{pmatrix}.$$

Отже, $0 \to A \to A\langle M, \alpha \rangle \to M[1] \otimes_{\mathbb{k}} R \to 0$ точна в dg mod- R і напіврозщеплювана = розщеплювана в gr mod- R.

Нехай $M \in \mathsf{Obdg}$, $A \in \mathsf{Ob}\,\mathcal{C}$, $\alpha : M \to A^\# \in \mathsf{dg}$. Позначимо через $C = \mathsf{Cone}\,\alpha = (M[1] \oplus \mathrm{UA}, \mathrm{d}_{\mathsf{Cone}}) \in \mathsf{Obdg}$ конус. Позначимо через $\overline{\imath} = \mathsf{in}_2 : \mathrm{UA} \to \mathrm{C}$ очевидне вкладення.

Позначимо через $i=\operatorname{In}_2:\operatorname{UA}\to\operatorname{C}$ очевидне вкладення. Означимо об'єкт $\operatorname{A}\langle\operatorname{M},\alpha\rangle\in\operatorname{\mathsf{Ob}}\mathcal{C}$ як виштовхування

$$\begin{array}{ccc} A \otimes_{\mathbb{k}} R & \xrightarrow{\operatorname{action}} & A \\ & & \downarrow_{\overline{\imath} \otimes 1} & & \downarrow_{\overline{\jmath}} \\ C \otimes_{\mathbb{k}} R & \xrightarrow{g} & A \langle M, \alpha \rangle \end{array}$$

Отже, $A\langle M, \alpha \rangle = ((M[1] \otimes_{\mathbb{k}} R) \oplus UA, d)$, де

Отже,
$$0 \to A \to A\langle M, \alpha \rangle \to M[1] \otimes_{\mathbb{k}} R \to 0$$
 точна в dg mod-R і напіврозщеплювана = розщеплювана в gr mod-R.

 $d = \begin{pmatrix} d_{M[1] \otimes_{\mathbb{k}} R} & M[1] \otimes_{\mathbb{k}} R \xrightarrow{\sigma^{-1} \otimes 1} M \otimes_{\mathbb{k}} R \xrightarrow{\alpha \otimes 1} A \otimes_{\mathbb{k}} R \xrightarrow{\operatorname{action}} A \end{pmatrix}.$

Нам потрібен M з $d_M = 0$. Тоді $d_{M[1] \otimes_k R} = 1_{M[1]} \otimes d_R$. $\Rightarrow \mathcal{C}$ has model structure in which semi-free modules are cofibrant.

dg-категорії зі скінченною множиною об'єктів

A dg k-algebra R is associated with a dg-category $\mathcal A$ with finite $\mathsf{Ob}\,\mathcal A$:

$$R = \bigoplus_{i,j \in \mathsf{Ob}\,\mathcal{A}} \mathcal{A}(i,j) \qquad \text{(with } \mathcal{A}(i,j) \cdot \mathcal{A}(k,l) = 0 \text{ if } j \neq k\text{)}.$$

dg-категорії зі скінченною множиною об'єктів

A dg k-algebra R is associated with a dg-category $\mathcal A$ with finite $\mathsf{Ob}\,\mathcal A$:

$$R = \bigoplus_{i,j \in \mathsf{Ob}\,\mathcal{A}} \mathcal{A}(i,j) \qquad (\mathrm{with}\ \mathcal{A}(i,j) \cdot \mathcal{A}(k,l) = 0 \ \mathrm{if}\ j \neq k).$$

This algebra has a family of pairwise orthogonal idempotents $(e_i = id_i)_{i \in Ob \mathcal{A}}$ such that $\sum_{i \in Ob \mathcal{A}} e_i = 1$ and $e_id = 0$. \Rightarrow Any R-module P splits into dg \mathbb{k} -subcomplexes $P_i = Pe_i$ with the action $P_i \otimes_{\mathbb{k}} \mathcal{A}(i,j) \to P_i$.

The latter is equivalent to a chain map $\mathcal{A}(i,j) \to \underline{\mathsf{dg}}^r(P_i,P_j)$. Together with the function $i \mapsto Pe_i$ these define a dg-functor $P^*: \mathcal{A} \to \mathsf{dg}_k$.

dg-категорії зі скінченною множиною об'єктів

A dg k-algebra R is associated with a dg-category $\mathcal A$ with finite $\mathsf{Ob}\,\mathcal A$:

$$R = \bigoplus_{i,j \in \mathsf{Ob}\,\mathcal{A}} \mathcal{A}(i,j) \qquad \text{(with } \mathcal{A}(i,j) \cdot \mathcal{A}(k,l) = 0 \text{ if } j \neq k\text{)}.$$

This algebra has a family of pairwise orthogonal idempotents $(e_i = \mathsf{id}_i)_{i \in \mathsf{Ob}\,\mathcal{A}} \text{ such that } \sum_{i \in \mathsf{Ob}\,\mathcal{A}} e_i = 1 \text{ and } e_i d = 0. \\ \Rightarrow \text{Any R-module P splits into dg } \&\text{-subcomplexes } P_i = Pe_i \text{ with the action } P_i \otimes_{\Bbbk} \mathcal{A}(i,j) \to P_j.$

The latter is equivalent to a chain map $\mathcal{A}(i,j) \to \underline{\mathsf{dg}}^r(P_i,P_j)$. Together with the function $i \mapsto Pe_i$ these define a dg-functor $P^*: \mathcal{A} \to \mathsf{dg}_k$.

The correspondence $P\mapsto P^*$ extends to an equivalence $\operatorname{\mathsf{mod-R}}=\operatorname{\mathsf{dg}}\operatorname{\mathsf{mod-R}}\to\operatorname{\mathsf{dg}}\operatorname{\mathcal{C}\mathsf{at}}(\mathcal{A},\operatorname{\mathsf{dg}})=\operatorname{\mathsf{dg}}\operatorname{Mod}(\mathcal{A}).$ For instance, take the R-module $P=jR=e_jR$. Then $P^*(i)=e_jRe_i=\mathcal{A}(j,i).\Rightarrow (e_jR)^*=\tilde{h}_j, \text{ where } \tilde{h}_j(i)=\mathcal{A}(j,i).$

Модулі над dg-категорією

C.1. Let \mathcal{A} be a DG category. A *left DG A-module* is a DG functor from \mathcal{A} to the DG category of complexes of k-modules. Sometimes left DG \mathcal{A} -modules will be called simply DG \mathcal{A} -modules. If \mathcal{A} has a single object \mathcal{U} with $\operatorname{End}_{\mathcal{A}}\mathcal{U}=R$ then a DG \mathcal{A} -module is the same as a DG \mathcal{A} -module. A *right DG \mathcal{A}-module* is a left DG module over the dual DG category \mathcal{A}° . The DG category of DG \mathcal{A} -modules is denoted by \mathcal{A} -DGmod. In particular, k-DGmod is the DG category of complexes of k-modules.

C.2. Let A be a DG category. Then the complex

$$Alg_{\mathcal{A}} := \bigoplus_{X,Y \in Ob \mathcal{A}} Hom(X,Y)$$

has a natural DG algebra structure (interpret elements of $\operatorname{Alg}_{\mathcal{A}}$ as matrices (f_{XY}) , $f_{XY} \in \operatorname{Hom}(Y,X)$, whose rows and columns are labeled by $\operatorname{Ob} \mathcal{A}$). The DG algebra $\operatorname{Alg}_{\mathcal{A}}$ has the following property: every finite subset of $\operatorname{Alg}_{\mathcal{A}}$ is contained in $e \operatorname{Alg}_{\mathcal{A}} e$ for some idempotent $e \in \operatorname{Alg}_{\mathcal{A}}$ such that $\operatorname{d} e = 0$ and $\operatorname{deg} e = 0$. We say that a module M over $\operatorname{Alg}_{\mathcal{A}}$ is $\operatorname{quasi-unital}$ if every element of M belongs to eM for some idempotent $e \in \operatorname{Alg}_{\mathcal{A}}$ (which may be assumed closed of degree 0 without loss of generality). If Φ is a DG A-module then $M_{\Phi} := \bigoplus_{X \in \operatorname{Ob}_{\mathcal{A}}} \Phi(X)$ is a DG module over $\operatorname{Alg}_{\mathcal{A}}$ (to define multiplication write elements of $\operatorname{Alg}_{\mathcal{A}}$ as matrices and elements of M_{Φ} as columns). Thus, we get a DG equivalence between the DG category of DG A-modules and that of quasi-unital DG modules over $\operatorname{Alg}_{\mathcal{A}}$.

Представлювані модулі

C.3. Let $F: A \to k$ -DGmod be a left DG A-module and $G: A \to k$ -DGmod a right DG A-module. A DG pairing $G \times F \to C$, $C \in k$ -DGmod, is a DG morphism from the DG bifunctor $(X, Y) \mapsto \operatorname{Hom}(X, Y)$ to the DG bifunctor $(X, Y) \mapsto \operatorname{Hom}(G(Y) \otimes F(X), C)$. It can be equivalently defined as a DG morphism $F \to \operatorname{Hom}(G, C)$ or as a DG morphism $G \to \operatorname{Hom}(F, C)$, where $\operatorname{Hom}(G, C)$ is the DG functor $X \mapsto \operatorname{Hom}(G(X), C)$, $X \in A$. There is a universal DG pairing $G \times F \to C_0$. We say that C_0 is the tensor product of G and F, and we write $C_0 = G \otimes_{\mathcal{A}} F$. Explicitly, $G \otimes_{\mathcal{A}} F$ is the quotient of $\bigoplus_{X \in \mathcal{A}} G(X) \otimes F(X)$ by the following relations: for every morphism $f: X \to Y$ in \mathcal{A} and every $u \in G(Y)$, $v \in F(X)$ one should identify $f^*(u) \otimes v$ and $u \otimes f_*(v)$. In terms of [39, §IX.6], $G \otimes_{\mathcal{A}} F = \int_{-K}^{X} G(X) \otimes F(X)$, i.e., $G \otimes_{\mathcal{A}} F$ is the coend of the functor $A^{\circ} \times A \to k$ -DGmod defined by $(Y, X) \mapsto G(Y) \otimes F(X)$. In terms of C.2, a DG pairing $G \times F \to C$ is the same as a DG pairing $M_G \times M_F \to C$, so $G \otimes_{\mathcal{A}} F = M_G \otimes_{\operatorname{Alg}_A} M_F$.

Представлювані модулі

C.3. Let $F: A \to k$ -DGmod be a left DG A-module and $G: A \to k$ -DGmod a right DG A-module. A DG pairing $G \times F \to C$, $C \in k$ -DGmod, is a DG morphism from the DG bifunctor $(X, Y) \mapsto \operatorname{Hom}(X, Y)$ to the DG bifunctor $(X, Y) \mapsto \operatorname{Hom}(G(Y) \otimes F(X), C)$. It can be equivalently defined as a DG morphism $F \to \operatorname{Hom}(G, C)$ or as a DG morphism $G \to \operatorname{Hom}(F, C)$, where $\operatorname{Hom}(G, C)$ is the DG functor $X \mapsto \operatorname{Hom}(G(X), C)$, $X \in A$. There is a universal DG pairing $G \times F \to C_0$. We say that C_0 is the tensor product of G and F, and we write $C_0 = G \otimes_A F$. Explicitly, $G \otimes_A F$ is the quotient of $\bigoplus_{X \in A} G(X) \otimes F(X)$ by the following relations: for every morphism $f: X \to Y$ in A and every $u \in G(Y)$, $v \in F(X)$ one should identify $f^*(u) \otimes v$ and $u \otimes f_*(v)$. In terms of [39, §IX.6], $G \otimes_A F = \int_0^X G(X) \otimes F(X)$, i.e., $G \otimes_A F$ is the coend of the functor $A^\circ \times A \to k$ -DGmod defined by $(Y, X) \mapsto G(Y) \otimes F(X)$. In terms of C.2, a DG pairing $G \times F \to C$ is the same as a DG pairing $M_G \times M_F \to C$, so $G \otimes_A F = M_G \otimes_{\operatorname{Alg}_A} M_F$.

C.4. Example. For every $Y \in \mathcal{A}$ one has the right DG \mathcal{A} -module h_Y and the left DG \mathcal{A} -module \tilde{h}_Y defined by $h_Y(Z) := \operatorname{Hom}(Z, Y)$, $\tilde{h}_Y(Z) := \operatorname{Hom}(Y, Z)$, $Z \in \mathcal{A}$. One has the canonical isomorphisms

$$G \otimes_{\mathcal{A}} \tilde{h}_Y = G(Y),$$
 (C.1)

$$h_Y \otimes_{\mathcal{A}} F = F(Y) \tag{C.2}$$

induced by the maps $G(Z) \otimes \operatorname{Hom}(Y, Z) \to G(Y)$, $\operatorname{Hom}(Z, Y) \otimes F(Z) \to F(Y)$, $Z \in \mathcal{A}$.

Ациклічні модулі

- C.5. Given DG categories \mathcal{A} , \mathcal{B} , $\overline{\mathcal{B}}$, a DG $\mathcal{A} \otimes \mathcal{B}$ -module F, and a DG $(\mathcal{A}^{\circ} \otimes \overline{\mathcal{B}})$ -module G, one defines the DG $\overline{\mathcal{B}} \otimes \mathcal{B}$ -module $G \otimes_{\mathcal{A}} F$ as follows. We consider F as a DG functor from \mathcal{B} to the DG category of DG \mathcal{A} -modules, so F(X) is a DG \mathcal{A} -module for every $X \in \mathcal{B}$. Quite similarly, G(Y) is a DG $(\mathcal{A})^{\circ}$ -module for every $Y \in \overline{\mathcal{B}}$. Now $G \otimes_{\mathcal{A}} F$ is the DG functor $Y \otimes X \mapsto G(Y) \otimes_{\mathcal{A}} F(X)$, $X \in \mathcal{B}$, $Y \in \overline{\mathcal{B}}$.
- C.6. Denote by $Hom_{\mathcal{A}}$ the DG $\mathcal{A} \otimes \mathcal{A}^{\circ}$ -module $(X, Y) \mapsto Hom(Y, X)$, $X, Y \in \mathcal{A}$. E.g., if \mathcal{A} has a single object and R is its DG algebra of endomorphisms then $Hom_{\mathcal{A}}$ is the DG R-bimodule R. For any DG category \mathcal{A} the isomorphisms (C.1) and (C.2) induce canonical isomorphisms

$$Hom_{\mathcal{A}} \otimes_{\mathcal{A}} F = F, \qquad G \otimes_{\mathcal{A}} Hom_{\mathcal{A}} = G$$
 (C.3)

for every left DG A-module F and right DG A-module G

Ациклічні модулі

- C.5. Given DG categories $\mathcal{A}, \mathcal{B}, \overline{\mathcal{B}}$, a DG $\mathcal{A} \otimes \mathcal{B}$ -module F, and a DG $(\mathcal{A}^{\circ} \otimes \overline{\mathcal{B}})$ -module G, one defines the DG $\overline{\mathcal{B}} \otimes \mathcal{B}$ -module $G \otimes_{\mathcal{A}} F$ as follows. We consider F as a DG functor from \mathcal{B} to the DG category of DG \mathcal{A} -modules, so F(X) is a DG \mathcal{A} -module for every $X \in \mathcal{B}$. Quite similarly, G(Y) is a DG $(\mathcal{A})^{\circ}$ -module for every $Y \in \overline{\mathcal{B}}$. Now $G \otimes_{\mathcal{A}} F$ is the DG functor $Y \otimes X \mapsto G(Y) \otimes_{\mathcal{A}} F(X), X \in \mathcal{B}, Y \in \overline{\mathcal{B}}$.
- C.6. Denote by $Hom_{\mathcal{A}}$ the DG $\mathcal{A} \otimes \mathcal{A}^{\circ}$ -module $(X, Y) \mapsto Hom(Y, X)$, $X, Y \in \mathcal{A}$. E.g., if \mathcal{A} has a single object and R is its DG algebra of endomorphisms then $Hom_{\mathcal{A}}$ is the DG R-bimodule R. For any DG category \mathcal{A} the isomorphisms (C.1) and (C.2) induce canonical isomorphisms

$$Hom_{\mathcal{A}} \otimes_{\mathcal{A}} F = F, \qquad G \otimes_{\mathcal{A}} Hom_{\mathcal{A}} = G$$
 (C.3)

for every left DG A-module F and right DG A-module G

C.7. A left or right DG \mathcal{A} -module $F:\mathcal{A}\to k$ -DGmod is said to be *acyclic* if the complex F(X) is acyclic for every $X\in\mathcal{A}$. A left DG \mathcal{A} -module F is said to be *homotopically flat* if $G\otimes_{\mathcal{A}} F$ is acyclic for every acyclic right DG \mathcal{A} -module G. A right DG \mathcal{A} -module is said to be homotopically flat if it is homotopically flat as a left DG \mathcal{A}° -module. It follows from (C.1) and (C.2) that h_Y and \tilde{h}_Y are homotopically flat.

DEFINITION. A complex A' (in $\mathfrak C$ or $\mathfrak R$) is K-projective (resp. K-injective) if for every acyclic complex $S' \in \mathfrak C$, the complex Hom'(A', S') (resp. Hom'(S', A')) is acyclic.

DEFINITION. A complex A' (in $\mathfrak C$ or $\mathfrak R$) is K-projective (resp. K-injective) if for every acyclic complex $S \in \mathbb{C}$, the complex Hom(A, S) (resp. Hom (S', A') is acyclic.

- 1.2. Proposition. Let $A' \in \mathfrak{C}$ be such that A' = 0 for $i \neq 0$. Then A' is K-projective (resp. K-injective) if and only if A^0 is a projective (resp. injective) object of \mathfrak{A} .

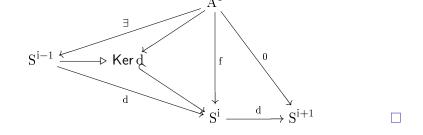
DEFINITION. A complex A (in $\mathfrak C$ or $\mathfrak R$) is K-projective (resp. K-injective) if for every acyclic complex $S \in \mathfrak C$, the complex $Hom^+(A^+, S^+)$ (resp. $Hom^+(S^+, A^+)$) is acyclic.

1.2. Proposition. Let $A' \in \mathfrak{C}$ be such that A' = 0 for $i \neq 0$. Then A' is K-projective (resp. K-injective) if and only if A^0 is a projective (resp. injective) object of \mathfrak{A} .

Доведення. Let A^0 be a projective module, Then $0 \to A^0 \to 0$ is homotopy projective: Let ... $\to S^{i-1} \to S^i \to S^{i+1} \to \ldots$ be acyclic. We have to prove that

$$\ldots \to \mathbb{k}\operatorname{\mathsf{-mod}}(A^0,S^{i-1}) \to \mathbb{k}\operatorname{\mathsf{-mod}}(A^0,S^i) \to \mathbb{k}\operatorname{\mathsf{-mod}}(A^0,S^{i+1}) \to \ldots$$

is acyclic. This follows from projectivity of ${\bf A}^0$ and diagram



Напіввільні модулі гомотопічно проективні

Over the dg ring R

As noticed in [1,19], a semi-free DG module F is homotopically projective, which means that for every acyclic DG module N every morphism $f: F \to N$ is homotopic to 0 (we prefer to use the name "homotopically projective" instead of Spaltenstein's name "K-projective"). Indeed, if $\{F_i\}$ is a filtration on F satisfying the condition from B.1, then every homotopy between $f|_{F_{i-1}}$ and 0 can be extended to a homotopy between $f|_{F_i}$ and 0. This also follows from Lemma 4.4 applied to the triangulated

Напіввільні модулі гомотопічно проективні

Over the dg ring R

As noticed in [1,19], a semi-free DG module F is homotopically projective, which means that for every acyclic DG module N every morphism $f: F \to N$ is homotopic to 0 (we prefer to use the name "homotopically projective" instead of Spaltenstein's name "K-projective"). Indeed, if $\{F_i\}$ is a filtration on F satisfying the condition from B.1, then every homotopy between $f|_{F_{i-1}}$ and 0 can be extended to a homotopy between $f|_{F_i}$ and 0. This also follows from Lemma 4.4 applied to the triangulated

Proposition

A semi-free DG R-module F is homotopically projective.

Напіввільні модулі гомотопічно проективні

Over the dg ring R

As noticed in [1,19], a semi-free DG module F is homotopically projective, which means that for every acyclic DG module N every morphism $f: F \to N$ is homotopic to 0 (we prefer to use the name "homotopically projective" instead of Spaltenstein's name "K-projective"). Indeed, if $\{F_i\}$ is a filtration on F satisfying the condition from B.1, then every homotopy between $f|_{F_{i-1}}$ and 0 can be extended to a homotopy between $f|_{F_i}$ and 0. This also follows from Lemma 4.4 applied to the triangulated

Proposition

A semi-free DG R-module F is homotopically projective.

Доведення. Indeed, if $\{F_i\}$ is a filtration on F, then every homotopy between $f|_{F_{i-1}}$ and 0 can be extended to a homotopy between $f|_{F_i}$ and 0. The exact sequence

$$\begin{array}{l} 0 \to F_{i-1} \to F_{i} \stackrel{\psi}{\longmapsto} P \to 0 \ \text{in dg mod-} R \ (\text{where} \\ P = \oplus_{j \in J} R[n_j] = \{p_j \mid j \in J\} R, \ \text{deg} \ p_j = -n_j) \ \text{is semisplit, that} \\ \text{is, split by a map} \ k : P \to F_i \in \text{gr mod-} R \ \text{commuting with the} \\ \text{action of} \ R, \ \text{but not with the differential.} \ We \ \text{are given} \\ \text{f} : F_i \to N \in \text{dg mod-} R \ \text{with acyclic} \ N \ \text{and homotopy} \\ \text{h}' : F_{i-1} \to N \in \text{gr mod-} R \ \text{such that} \ f|_{F_{i-1}} = d \cdot h' + h' \cdot d. \end{array}$$

Напіввільні модулі над dg-категорією

We look for degree -1 map $h: F_i \to N \in \operatorname{\mathsf{gr}\,\mathsf{mod}}
olimits R$ such that $h|_{F_{i-1}} = h'$ and $f = d \cdot h + h \cdot d$. It suffices to specify h on $p_j k$. Notice that $p_i k d \psi = p_i k \psi d = p_i d = 0$ implies $p_i k d \in F_{i-1}$.

Напіввільні модулі над dg-категорією

We look for degree -1 map $h: F_i \to N \in \operatorname{\mathsf{gr}}\operatorname{\mathsf{mod}}$ -R such that $h|_{F_{i-1}} = h'$ and $f = d \cdot h + h \cdot d$. It suffices to specify h on $p_j k$. Notice that $p_j k d\psi = p_j k \psi d = p_j d = 0$ implies $p_j k d \in F_{i-1}$.

One can find $p_j kh \in N$ which solves $p_j k(f - d \cdot h') = (p_j kh)d$ since

$$p_j k(f - d \cdot h') d = p_j k d(f - h' \cdot d) = p_j k d(f|_{F_{i-1}} - h' \cdot d) = p_j k d dh' = 0.$$

The homotopy $h: F \to N \in \operatorname{\mathsf{gr}}\nolimits \operatorname{\mathsf{mod-}}\nolimits R$ is constructed by induction.

Напіввільні модулі над dg-категорією

We look for degree -1 map $h: F_i \to N \in \operatorname{\mathsf{gr}}\operatorname{\mathsf{mod}}
ends{-}R$ such that $h|_{F_{i-1}} = h'$ and $f = d \cdot h + h \cdot d$. It suffices to specify h on p_jk . Notice that $p_jkd\psi = p_jk\psi d = p_jd = 0$ implies $p_jkd \in F_{i-1}$. One can find $p_jkh \in N$ which solves $p_jk(f - d \cdot h') = (p_jkh)d$ since

$$p_j k(f-d\cdot h')d = p_j kd(f-h'\cdot d) = p_j kd(f|_{F_{i-1}}-h'\cdot d) = p_j kddh' = 0.$$

The homotopy $h: F \to N \in \operatorname{\mathsf{gr}}\nolimits \operatorname{\mathsf{mod-}}\nolimits R$ is constructed by induction.

C.8. Let \mathcal{A} be a DG category. A DG \mathcal{A} -module is said to be *free* if it is isomorphic to a direct sum of complexes of the form $\tilde{h}_X[n]$, $X \in \mathcal{A}$, $n \in \mathbb{Z}$. The notion of semi-free DG \mathcal{A} -module is quite similar to that of semi-free module over a DG algebra (see Definition B.1): an \mathcal{A} -module $\mathcal{\Phi}$ is said to be *semi-free* if it can be represented as the union of an increasing sequence of DG submodules $\mathcal{\Phi}_i$, $i=0,1,\ldots$, so that $\mathcal{\Phi}_0=0$ and each quotient $\mathcal{\Phi}_i/\mathcal{\Phi}_{i-1}$ is free. Clearly, a semi-free DG \mathcal{A} -module is homotopically flat. For every DG \mathcal{A} -module $\mathcal{\Phi}_i$ there is a quasi-isomorphism $F \to \mathcal{\Phi}$ such that F is a semi-free DG \mathcal{A} -module; this is proved just as in the case that \mathcal{A} has a single object (see Lemma B.3). Just as in Remarks B.2, one shows that a semi-free DG \mathcal{A} -module is homotopically projective (i.e., the complex Hom(F, N) is acyclic for every acyclic DG \mathcal{A} -module N) and that the functor from the homotopy category of semi-free DG \mathcal{A} -modules to the derived category $\mathcal{D}(\mathcal{A}^\circ)$ of \mathcal{A} -modules is an equivalence.

Proposition

A semi-free A-module F is homotopy flat.

Proposition

A semi-free A-module F is homotopy flat.

Доведення. Let $\{F_i\}$ be a filtration on F. Since the exact sequence $0 \to F_{i-1} \to F_i \to P \to 0$ $(P = \bigoplus_{j \in J} \tilde{h}_{Y_j}[n_j])$ is semisplit, the sequence

$$0 \to G \otimes_{\mathcal{A}} F_{i-1} \to G \otimes_{\mathcal{A}} F_i \to G \otimes_{\mathcal{A}} P \to 0$$

is semisplit as well.

Proposition

A semi-free A-module F is homotopy flat.

Доведення. Let $\{F_i\}$ be a filtration on F. Since the exact sequence $0 \to F_{i-1} \to F_i \to P \to 0$ $(P = \bigoplus_{j \in J} \tilde{h}_{Y_j}[n_j])$ is semisplit, the sequence

$$0 \to G \otimes_{\mathcal{A}} F_{i-1} \to G \otimes_{\mathcal{A}} F_i \to G \otimes_{\mathcal{A}} P \to 0$$

is semisplit as well.

 \Rightarrow It is an exact sequence of complexes of k-modules.

Proposition

A semi-free A-module F is homotopy flat.

Доведення. Let $\{F_i\}$ be a filtration on F. Since the exact sequence $0 \to F_{i-1} \to F_i \to P \to 0 \ (P = \bigoplus_{j \in J} \tilde{h}_{Y_j}[n_j])$ is semisplit, the sequence

$$0 \to G \otimes_{\mathcal{A}} F_{i-1} \to G \otimes_{\mathcal{A}} F_{i} \to G \otimes_{\mathcal{A}} P \to 0$$

is semisplit as well.

- \Rightarrow It is an exact sequence of complexes of k-modules.
- \Rightarrow From the associated long sequence of cohomology groups one concludes:
- $(G \otimes_{\mathcal{A}} F_{i-1} \text{ and } G \otimes_{\mathcal{A}} P \text{ are acyclic} \Rightarrow G \otimes_{\mathcal{A}} F_i \text{ is acyclic}).$
- \Rightarrow G $\otimes_{\mathcal{A}}$ F is acyclic by induction.

- Vladimir G. Drinfeld, DG quotients of DG categories, J. Algebra 272 (2004), no. 2, 643–691,
- агХіv:math.KT/0210114 §В.1-В.2, §С.1-С.8

 В. В. Любашенко, Модельна структура на категоріях пов'язаних з категоріями комплексів, Український
- пов'язаних з категоріями комплексів, Український математичний журнал 72 (2020), по. 2, 232–244, http://umj.imath.kiev.ua/index.php/umj/article/view/682.

Теорема 1.2

N. Spaltenstein, Resolutions of unbounded complexes, Compositio Math. 65 (1988), no. 2, 121–154. §1.1, Prop. 1.2