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the unit, and a map ux : TTX — TX — the multiplication
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Mounaan

Monads are given by endofunctors with a monoid structure on
them. We need to include data: a natural map nx : X — TX —
the unit, and a map ux : TTX — TX — the multiplication
(associative and unital).

Example

€ =k-mod, 7Z — k-algebra. Then —®7: M +— M®7Z — monad in
%. The multiplication and the unit in monad come from the
multiplication and the unit in algebra Z.

Example

The functor —X % = . &7 — 7K % = o7l — monad in
dg@at. The multiplication and the unit in monad come from
the multiplication and the unit in algebra 2.

We shall construct another example of a monad in dg%at.



Kateropia a7/Petr

2.4. To a DG category A Bondal and Kapranov associate a triangulated category
A" (or Tr*(A) in the notation of [4]). It is defined as the homotopy category of a
certain DG category AP, The idea of the definition of AP is to formally add
to A all cones, cones of morphisms between cones, etc. Here is the precise definition
from [4]. The objects of AP™ are “one-sided twisted complexes,” i.c., formal expressions
(@D;_, Cilril.q), where Ci € A, r; € Z, n 2 0, g = (gij), i € Hom(Cj, C;)[ri — r}]
is homogeneous of degree 1, g;; = 0 for i = j, dg + ¢> = 0. If C,C’ € Ob AP,
C= (@)= Clrjl.g). ' = (@~ C/lr]], ") then the Z-graded k-module Hom(C, C")
is the space of matrices f = (fi;), fij € Hom(C}, C'i')[r,.’ — r;], and the composition map
Hom(C, C") ® Hom(C’, C") — Hom(C, C") is matrix multiplication. The differential
d:Hom(C, C") — Hom(C, C") is defined by d f := dpaive f+ 4" f — (fl)’fq ifdeg fi; =1,
where dyaive f 1= (d fi}).
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Suppose ¥ is a differential graded category. Then there is a
differential graded category €P'. Explicit description of that
is given below.



Cxpyueni KOMILJIEKCH

Suppose ¥ is a differential graded category. Then there is a
differential graded category €P'. Explicit description of that
is given below.

An object X of €Pe" (twisted complex) consists of the
following data: a finite totally ordered set I, a function that
assigns to every i € I an object Xj of ¢ and an integer nj, and a
family of elements q;; € €(Xi, Xj)[nj —ni], i,j € [, 1 < j of degree
1, which satisfy Maurer-Cartan equation: for every i,j €1, i <]

(_ )nj —n; aij g1 my gy~

— Y (ax®ai)(s™ ™M @sm M) T ust T =0,
i<k<j

where m; =d and U = my are respectively the differential and
the multiplication in the original category €. Putting q;; = 0 for
1>j we may extend this equation to all pairs i,j € [. We write

briefly X = (EBieI Xi[ni]vQ)'



Mopdizmu cKpydeHuX KOMILIEKCIB

When the strictly upper-triangular matrix q has to be specified
explicitly we use the following compact notation:

Xi[ni]  aie2 q13
Xo[no]  qo3
X = X3 [ng]



Mopdizmu cKpydeHuX KOMILIEKCIB

When the strictly upper-triangular matrix q has to be specified
explicitly we use the following compact notation:

Xi[ni]  aie2 q13
Xo[no]  qo3
X = X3 [Ilg]

Let X = (Dicr Xini],q), Y = (Bje; Yj[myl,r) be objects of
¢Pet. The graded k-module of morphisms between X and Y is
defined as

Cloﬂpre_tr(X,Y) = H %(Xi,Yj)[mj —ni].

iel,jed

An element f of FP*(X,Y) is thought as a matrix with entries
fij € %(Xi,Yj)[mj —ni], iel, jel.



Kommozuriis
The composition map is matrix multiplication. More precisely,
let Z = (Brek Zk[lk],p) be another object of €P " and let g be

a morphism from Y to Z. Then fg & (f ® g)m5™™ has the entries
foriel[keK

[(f@g)m5™™ ], = ¥ (6 @gn)(s™ ™ @' ™) usl™,
jed
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Kommozuriis

The composition map is matrix multiplication. More precisely,
let Z = (Brek Zk[lk],p) be another object of €P " and let g be

a morphism from Y to Z. Then fg & (f ® g)m5™™ has the entries
foriel[keK

[(f@g)m5™™ ], = ¥ (6 @gn)(s™ ™ @' ™) usl™,
jed

Exercise

Compute (s ®@sP)~1
The differential mf§™*™ : €Pet(X,Y) — P (X,Y) is given by

[fmTre—tr] i =(—)™ 7nifij MM g™

= ) (fiy @) (7T @™ ) T s
=

) X (i ) (s ) s

uel

for everyiel, jeJ.



Let us denote by d = m[I] the naive differential in €P"(X,Y)
defined by
[fa] = fgml) = (=)™ ™fgsn My s, e T je.

. . tr . _ . .
Since the composition m5 ™ in P consists of matrix

(]

composition combined with ms, the differential d is a derivation
of it: mb**d = (1®d +d®1)m5™*"". Denoting the composition
of f € €P*¥(X,Y) and g € €P*(Y,Z) simply fg we may write
the following expressions for the Maurer-Cartan equation and
for the differential in P ((X,q),(Y,r)):

qd = 7,
fmP " = fd — fr + () qf.

Exercise: (m?*™)2 = 0.



Let us denote by d = m[I] the naive differential in €P"(X,Y)
defined by

[fa] = fgml) = (=)™ ™fgsn My s, e T je.

. . tr . _ . .
Since the composition m5 ™ in P consists of matrix

(]

composition combined with ms, the differential d is a derivation
of it: mb**d = (1®d +d®1)m5™*"". Denoting the composition
of f € €P*¥(X,Y) and g € €P*(Y,Z) simply fg we may write
the following expressions for the Maurer-Cartan equation and
for the differential in P ((X,q),(Y,r)):

qd = ¢’
fmP " = fd — fr + () qf.
Exercise: (m?*™)2 = 0.
IfX,Y€Ob¥% and f: X = Y is a closed morphism of degree 0
one defines Cone(f) to be the object (X[1]@Y,(3§)) of €Pe™
with f € (X, Y)".
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The category ¢ is embedded into €P" as a full differential
graded subcategory via X — (X][0],0) and we identify € with its
image.
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[lepenrpuanrynboBani dg-kareropii

The category ¢ is embedded into €P" as a full differential
graded subcategory via X — (X][0],0) and we identify € with its
image.

Definition
We say that a dg-category ¥ is pretriangulated if every object
X of €Ptr is isomorphic in HY€P®* to some object Y of H%.

The differential graded category € is pretriangulated if for every
X € Ob¥, k € Z the object X[k] of H*(€P) is isomorphic to
an object of H(%) and for every closed morphism f in € of
degree 0 the object Cone(f) € Ob€P" is isomorphic in
HO(€P) to an object of HY(%). The first condition implies
that € is closed under shifts. |

|‘Q




Claim

Let € be a dg-category. Then the dg-category €
pretriangulated. The dg-functors

Upre-tr, U l;:g :: gpre-tr _y copre-trpre-tr 4.
grretrpretr _y @Pretr are equivalences, quasi-inverse to

pre-tr is

Mpre-tr -
each other.
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Claim

Let € be a dg-category. Then the dg-category €Pe* is

pretriangulated. The dg-functors

upre-traug:g:g . qgpre-tr _y qopre-trpre-tr 4.,

Mpre.tr : GPETPE 5 GPrEt are equivalences, quasi-inverse to

each other.

Tr(€) = HO(EPetr), €% = H(€Pet), Pre-Tr(€) = €P=.
DEFINITION 2. Let & be a DG-category, C = {E[,,”;]q,.j} and C' = {E]}q];} two

objects in Pre-Tr(%/), and f = {f, i E - E]'.} a twisted morphism from C to C’.

1
By the cone of this morphism we mean the object Cone f = {E;, g;;} for which

! r " L i
E/=E®E_,, ;= ‘ 04" ’
1

We have in Pre-Tr(&/) the natural closed morphisms
c L ¢
+1N ) (L.1)
Cone f

inducing also morphisms in Tr(%/).
By the distinguished triangles in Tr(%/) we shall mean the triangles isomorphic to
those of the form (1.1).



—s*mﬁ&r—deﬁn—r&eﬂ—gi-ves—us the DG-category DG-FunO(M , ") consisting of the con-
travariant DG-functors.
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similardefinition-gives-us-the DG-category DG-FunO(M , ") consisting of the con-
travariant DG-functors.
Let &/ be a DG-category. We examine the contravariant DG-functors from &/
to the DG-category C(&'b) of complexes of abelian groups. Eor-any—DG-functor-
plexes: The category of Oth cohomology of the DG-category DG -Funo(.sv , C(& D))
we denote by Hot(&/). If &/ has a single object and trivial DG-structure, i.e., if
it amounts simply to a ring, then Hot(%) is the homotopy category of complexes of
modules over that ring.
Let & ¢ — v be a DG-transformation of contravariant DG-functors & —
C(«/b). We define a new DG-functor, Cone(?): & — C(&/b), assigning to an
object £ € Ob/ the complex Cone{t.: ¢(E) — w(E)}.

We have in DG -Fun®(&/ , C( b))

9 - v
+IN T (1.2)
Cone(?)
determining also a triangle in Hot(2/).

By the distinguished triangles in Hot(%/) we shall mean the triangles isomorphic
to those obtained from triangles of the form (1.2).



similar-definition-gives-us the DG-category DG-FunO(M , ") consisting of the con-
travariant DG-functors.
Let &/ be a DG-category. We examine the contravariant DG-functors from &/
to the DG-category C(&/b) of complexes of abelian groups. For-any—PG-functor
plexes- The category of Oth cohomology of the DG-category DG -Funo(.sv , C(& D))
we denote by Hot(&/). If &/ has a single object and trivial DG-structure, i.e., if
it amounts simply to a ring, then Hot(%) is the homotopy category of complexes of
modules over that ring.
Let & ¢ — v be a DG-transformation of contravariant DG-functors & —
C(«/b). We define a new DG-functor, Cone(?): & — C(&/b), assigning to an
object £ € Ob/ the complex Cone{t.: ¢(E) — w(E)}.

We have in DG -Fun®(&/ , C( b))

9 — v
NN 7 (1.2)
Cone(?)

determining also a triangle in Hot(2/).

By the distinguished triangles in Hot(%/) we shall mean the triangles isomorphic
to those obtained from triangles of the form (1.2).

PROPOSITION 2. The category Hot(&/) with the above-described set of distinguished
triangles and componentwise translation functor is a triangulated category.

Proor. The verification of Verdier’s axioms TR 1-TR4 for the case of the ordinary
homotopy category of complexes, as carried out, €.g., in [2], applies without change to
the present case, which is in essence the case of complexes with a system of operators
(generating the DG-category).



[Toximna kareropis dg-momymis HaJi dg-KaTeropiero
DEFINITION 3. Let & be a DG-category. We define an imbedding of DG-
categories
a: Pre-Tr(&/) — DG-FunO(M , C(&b)).

The imbedding assigns to an object K = {E]ug, ;} € ObPre-Tr(#/) the following
DG-functor a(K): & — C(¥b). For each E € Ob# the value a(K)(E) is the
graded abelian group @ Hom_, (E, E ,.)[’i] provided with the differential d+Q , where
Q=lg,l| and d is the differential in @ Hom,, (E, E,)[i].

ProrosiTION 3. (a) The functor o is an imbedding of Pre-Tr(«/) into DG-
Funo(M , C(& b)) as a full DG-subcategory, and it takes the cone of a closed mor-
phism f in Pre-Tr(&) intothe of the morphism o(f) in DG-FunO(.ﬁai , C(¥b)).

(b) The cohomology functor ;ﬁf) gives agn imbedding of Tr(&/) into Hot(&/) as
a full triangulated subcategory.
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DEFINITION 3. Let & be a DG-category. We define an imbedding of DG-
categories

a: Pre-Tr(&/) — DG-FunO(M , C(&b)).

The imbedding assigns 10 an object K = {Ellg, ;} € ObPre-Tr(«/) the following
DG-functor a(K): & — C(¥b). For each E € Ob/ the value a(K)(E) is the
graded abelian group @ Hom (E, E; )[1] provided with the differential d+Q , where
Q=llg;,l| and d is the differential in @Homﬂ, (E, E, )ft]

ProrosiTION 3. (a) The functor o is an imbedding of Pre-Tr(«/) into DG-
Funo(M , C(& b)) as a full DG-subcategory, and it takes the cone of a closed mor-
phism f in Pre-Tr(&) intothe cone ofthe morphism a(f) in DG-FunO(.ﬁai , C(¥b)).

(b) The cohomology functor H(a) gives an imbedding of Tr(&/) into Hot(«/) as
a full triangulated subcategory.

PROPOSITION 1. The category Tr(%/) with the above-described set of distinguished
triangles is a triangulated category.

D(«) = Hot(«7) 2 DG-Fun® (7, C(k-mod)).



[Toximna kareropis dg-momymis HaJi dg-KaTeropiero

DEFINITION 3. Let & be a DG-category. We define an imbedding of DG-
categories

a: Pre-Tr(&/) — DG-FunO(M , C(&b)).

The imbedding assigns to an object K = {E[’}i, } € ObPre-Tr(#/) the following
DG-functor a(K): & — C(¥b). For each E € Ob/ the value a(K)(E) is the
graded abelian group €@ Hom,, (E, E,){i] provided with the differential 4+Q, where
Q=llg;|| and d is the differential in @ Hom,_, (E, E,)[1].

ProrosiTION 3. (a) The functor o is an imbedding of Pre-Tr(«/) into DG-
Funo(M , C(& b)) as a full DG-subcategory, and it takes the cone of a closed mor-
phism f in Pre-Tr(&) intothe cone ofthe morphism a(f) in DG-FunO(.ﬁai , C(¥b)).

(b) The cohomology functor H(a) gives an imbedding of Tr(&/) into Hot(«/) as
a full triangulated subcategory.

PROPOSITION 1. The category Tr(%/) with the above-described set of distinguished
triangles is a mangulatedbcategory.

H
D(«/) = Hot(e/) = DG-Fun®(«/, C(k-mod)).
We recall that a monad in a category & (see [3]) is a functor C: &F — F together
with natural transformations u: Co C — C and n: idz — C such that for every
B € Ob# the composite morphxsms

C(B) 2, c(c(B)) 22 (B »d C(C(C(B))) =2 ¢(C(B))
cm,)l = |
), c(cB) L CB) —id  CCB) —H- CB) commutes.

C(B) —



Let & = DG-Cat be the category of DG-categories, and & € ObZ a given
DG-category.
We construct a DG-functor

Tot,,: Pre-Tr(Pre-Tr(%)) — Pre-Tr(&7).
amely, an object in Pre-Tr(Pre-Tr(%/)) can be regarded as a set € = {C)i ez s
49;;..* C;j = Cy} with appropriate differential conditions on the %joar - Put
Tot, (C) = {(Dk)kezs "t Dy = Di},

where
D= ¢, Tt = 11di; palls i+j=k,m+n=I.
i+j=k
We shall call Tot,, (C) the convolution of the twisted complex C over Pre-Tr(&) .
Clearly, the correspondence & +— Tot,, extends to a natural transformation

Tot: Pre-TroPre-Tr — Pre-Tr

on the category DG-Cat.

We denote by ¢, the natural imbedding of & into Pre-Tr(#) as a full DG-
subcategory: e (E) is the set consisting of just E at the zeroth position. Thus, &
is a natural transformation id — Pre-Tr on the category DG-Cat.

ProrosiTION 1. The functor
Pre-Tr: DG -Cat — DG -Cat
and the natural transformations
&: id — Pre-Tr, Tot: Pre-Tr(Pre-Tr) — Pre-Tr
define a monad over the category DG-Cat.



HamnisBisbHa dg-kareropid

PROPOSITION 2. The functor Tot, is an equivalence of DG-categories, and the
cohomoalogy functor
H°(Tot,,): Tr(Pre-Tr(&)) — Tr(«/)
is an equivalence of triangulated categories.
PROOE. If C and C' are any two objects in (Pre-Tr)z(.M ), then the complexes
Homp, 12,(C, C') and  Homy, 1 . (TotC, TotC')

are the same. In other words, Tot » 15 an equivalence of DG-categories. Further-
more, by Proposition 1, it preserves convolutions of twisted complexes. Therefore
HO(Totw) is an equivalence of triangulated categories.



HamnisBisbHa dg-kareropid

PROPOSITION 2. The functor Tot, is an equivalence of DG-categories, and the
cohomoalogy functor
H°(Tot,,): Tr(Pre-Tr(&)) — Tr(«/)

is an equivalence of triangulated categories.
PROOE. If C and C' are any two objects in (Pre-Tr)z(.M ), then the complexes
Homp, 12,(C, C') and  Homy, 1 . (TotC, TotC')

are the same. ln‘qther s\(ords, Tot, isan quuivalence of DG-categories. Further-
mgre, by Proposition 1, it preserves convolutions of twisted complexes. Therefore
H"(Tot,,) is an equivalence of triangulated categories.

Definition. Let .4 be a DG category .4 equipped with a DG functor X — A. We say that .4
is semi-free over K if A can be represented as the union of an increasing sequence of DG
subcategories A;, i = 0,1, ..., so that Ob.A; = Ob.A, K maps isomorphically onto Ag,
and for every i > 0 A; as a graded k-category over .4;_; (i.e., with forgotten differentials in
the Hom complexes) is freely generated over .A4;_; by a family of homogeneous morphisms
S« such that d f;, € Mor A;_;.

Definition. A DG category A is semi-free if it is semi-free over Agiser, Where Agiser 18
the DG category with Ob Agiser = Ob A such that the endomorphism DG algebra of each
object of Agiser equals k and Hom 4, (X, Y) = 0if X, Y are different objects of Agjser.



Kpagiizomopdua namiBbijibHa dg-Kareropis

B.5. Lemma. For every DG category A there exists a semi-fiee DG category A with
ObA=0bA and a functor W : A — A such that W(X) = X for every X € Ob A and
Y induces a surjective quasi-isomorphism HQm(X Y) — Hom(¥ (X), ¥ (Y)) for every
X, YeA A A

The proof is the same as for DG algebras [19, Sections 2, 4] and similar to_that
of Lemma B.3. (A ¥) is constructed as the direct limit of (A,, ¥;) where ObA, =
ObA, Ay Ay o> -, Wi A — A, ¥i| g, , = Wi-1, and the following conditions are
satisfied: \X//

(1) Ao is the discrete k-category;
(ii) forevery i > 0 A; as a graded k-category is freely generated over A;_; by a family
of homogeneous morphisms f, such thatdf, € Mor A;_;;
(iii) for every i > 0 and X,Y € Ob.A the morphism Hom 4, (X, Y) — Hom4 (¥ (X),
Y (Y)) is surjective and induces a surjective map between the sets of the cocycles;
(iv) for every i > 0 and X, Y € Ob A every cocycle f € Hom 4, (X, ¥') whose image in
Hom 4 (¥ (X), ¥ (Y)) is a coboundary becomes a coboundary in Hom 4, (X, Y).



Kpagiizomopdua namiBbijibHa dg-Kareropis

B.5. Lemma. For every DG category A there exists a semi-fiee DG category A with
ObA=0bA and a functor W : A — A such that W(X) = X for every X € Ob A and
¥ induces a surjective quasi-isomorphism Hom(X,Y) — Hom(¥ (X), ¥ (Y)) for every
X, Ye A

The proof is the same as for DG algebras [19, Sections 2, 4] and similar to_that
of Lemma B.3. (A, ¥) is constructed as the direct limit of (A;, ¥;) where Ob.A4; =
ObA, Ag > Al <> -, U A — A, W |4, = %i-1, and the following conditions are
satisfied:

(1) Ao is the discrete k-category;
(ii) forevery i > 0 A; as a graded k-category is freely generated over A;_; by a family
of homogeneous morphisms f, such thatdf, € Mor A;_;;
(iii) for every i > 0 and X,Y € Ob.A the morphism Hom 4, (X, Y) — Hom4 (¥ (X),
Y (Y)) is surjective and induces a surjective map between the sets of the cocycles;
(iv) for every i > 0 and X, Y € Ob A every cocycle f € Hom 4, (X, ¥') whose image in
Hom 4 (¥ (X), ¥ (Y)) is a coboundary becomes a coboundary in Hom 4, (X, Y).

One constructs (.Z,-, ;) by induction. Notice that (iii) holds for all i if it holds for
i =1, so after (Aj, ¥) is constructed one only has to kill cohomology classes by adding
new morphisms.



Bractusocti migitomy

Classically, cofibrations and fibrations, technical terms in the context of any model
structure, refer to classes of continuous functions of topological spaces characterized by
certain lifting properties. Our story begins by explaining the common features of any class
of maps defined in this way. We will given an “algebraic” characterization of such classes
in Chapter[12]

Let i and f be arrows in a fixed category M. A lifting problem between i and f is
simply a commutative square

A lift or solution is a dotted arrow, as indicated, making both triangles commute. If any
lifting problem between i and f has a solution, we say that 7 has the left lifting property
with respect to f and, equivalently, that f has the right lifting property with respect to i.
We use the suggestive symbolic notation i & f to encode these equivalent assertions.

ExampLE 11.1.1. A map of sets has the right lifting property against the unique map
0 — = if and only if the map is an epimorphism. A map of sets has the right lifting property
against the unique map * Ll + — * if and only if the map is a monomorphism.



Cnabka cucreMa (paxTOpU3aIlil

Suppose £ is a class of maps in M. We write £ for the class of arrows that have
the right lifting property against each element of £. Dually, we write R for the class of
arrows that have the left lifting property against a given class R.

Exampre 11.1.3. Writing iy and py for the obvious maps induced by the inclusion of
the Oth endpoint of the standard unit interval /, the Hurewicz fibrations are defined to be
{io: A = A x I)® and the Hurewicz cofibrations are Z{p,: A’ — A}, where the classes
defining these lifting properties are indexed by all topological spaces A. Restricting to the
subset of cylinder inclusions on disks, {ig: D" — D" X I}¥ is the class of Serre fibrations.



Cnabka cucreMa (paxTOpU3aIlil

Suppose £ is a class of maps in M. We write £ for the class of arrows that have
the right lifting property against each element of £. Dually, we write R for the class of
arrows that have the left lifting property against a given class R.

Exampre 11.1.3. Writing iy and py for the obvious maps induced by the inclusion of
the Oth endpoint of the standard unit interval /, the Hurewicz fibrations are defined to be
{io: A = A x I)® and the Hurewicz cofibrations are Z{p,: A’ — A}, where the classes
defining these lifting properties are indexed by all topological spaces A. Restricting to the
subset of cylinder inclusions on disks, {ig: D" — D" X I}¥ is the class of Serre fibrations.

In a model category, the lifting properties defining the cofibrations and fibrations are
supplemented with a factorization axiom in the following manner:

DerniTion 11.2.1. A weak factorization system on a category is a pair (£, R) of
classes of morphisms such that

(factorization) every arrow can be factored as an arrow of £ followed by an arrow of R,
(lifting) L @R, and
(closure) furthermore, £ = 2R and R = LP.



Mojenpai kaTeropii

DermiTion 2.1.1. A homotopical category is a category M equipped with a wideﬂ
subcategory W such that for any composable triple of arrows
f

N
(2.12) \ LW =  fighhgfeW

Wagf | hgs
h
if hg and g f are in ‘W so are f, g, h, and hgf.

The arrows in ‘W are called weak equivalences; the condition 2.1.2) is called the
2-of-6 property.



Mojenpai kaTeropii

DermiTion 2.1.1. A homotopical category is a category M equipped with a Wideﬂ
subcategory W such that for any composable triple of arrows

‘

(2.12) \ LW = fighhgfeW

Wagf 8| nef.

h
if hg and g f are in ‘W so are f, g, h, and hgf.

The arrows in ‘W are called weak equivalences; the condition is called the
2-of-6 property.

Quillen’s closed model categories of [Qui67| are called model categories by the
modern literature. Because a given category can admit multiple model category structures,
we prefer to use the term model structure when referring to particular classes of maps that

define a model category.
The following definition, perhaps first due to |[JT07], a source of several useful facts

about model categories, is equivalent to the usual one.

Dermvirion 11.3.1. A model structure on a complete and cocomplete homotopical
category (M, W) consists of two classes of morphisms C and ¥ such that (CNW, F) and

(C,F N W) are weak factorization systems.



The maps in C are called cofibrations and the maps in ¥ are called fibrations. The
maps in C N W are called trivial cofibrations or acyclic cofibrations while the maps in
F N W are called trivial fibrations or acyclic fibrations. The model structure is said to
be cofibrantly generated if both of its weak factorization systems are.
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maps in C N W are called trivial cofibrations or acyclic cofibrations while the maps in
F N W are called trivial fibrations or acyclic fibrations. The model structure is said to
be cofibrantly generated if both of its weak factorization systems are.

We should at least state the upshot. A model structure on (M, ‘W) in particular gives
anotion of fibrant and cofibrant objects—more about which in just a moment. An object
is fibrant just when the map to the terminal object is a fibration and cofibrant just when
the map from the initial object is a cofibration. In a model category, it is an elementary
exercise to show that

e every object is weakly equivalent to one that is both fibrant and cofibrant.



The maps in C are called cofibrations and the maps in F are called fibrations. The
maps in C N W are called trivial cofibrations or acyclic cofibrations while the maps in
F N W are called trivial fibrations or acyclic fibrations. The model structure is said to
be cofibrantly generated if both of its weak factorization systems are.

We should at least state the upshot. A model structure on (M, ‘W) in particular gives
a notion of fibrant and cofibrant objects—more about which in just a moment. An object
is fibrant just when the map to the terminal object is a fibration and cofibrant just when
the map from the initial object is a cofibration. In a model category, it is an elementary
exercise to show that

e every object is weakly equivalent to one that is both fibrant and cofibrant.
ExawmpLe 11.3.7. The category Ch,(R) of unbounded chain complexes of modules over
a ring R has a model structure, due in this context to Mark Hovey [Hov99] §2.3], whose
weak equivalences are quasi-isomorphisms and whose trivial fibrations and fibrations are
defined by the lifting properties {S"! — D" | n € Z}? and {0 — D" | n € Z}°. Here §"
is the chain complex with R in degree n and zeros elsewhere, and D" has R in degrees n,

n — 1 with an identity differe@l; /D
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The maps in C are called cofibrations and the maps in ¥ are called fibrations. The
maps in C N W are called trivial cofibrations or acyclic cofibrations while the maps in
F N W are called trivial fibrations or acyclic fibrations. The model structure is said to
be cofibrantly generated if both of its weak factorization systems are.

We should at least state the upshot. A model structure on (M, ‘W) in particular gives
anotion of fibrant and cofibrant objects—more about which in just a moment. An object
is fibrant just when the map to the terminal object is a fibration and cofibrant just when
the map from the initial object is a cofibration. In a model category, it is an elementary
exercise to show that

e every object is weakly equivalent to one that is both fibrant and cofibrant.

ExawmpLe 11.3.7. The category Ch,(R) of unbounded chain complexes of modules over
a ring R has a model structure, due in this context to Mark Hovey [Hov99] §2.3], whose
weak equivalences are quasi-isomorphisms and whose trivial fibrations and fibrations are
defined by the lifting properties {S"™! — D" | n € Z}? and {0 — D" | n € Z}®. Here §"
is the chain complex with R in degree n and zeros elsewhere, and D" has R in degrees n,
n — 1 with an identity differential.

PrROPOSITION 2.3.4. A map p: X — Y in Ch(R) is a fibration if and only if
P Xn — Y, is surjective for all n.

ProOOF. A diagram of the form

0 — X
\/7:)\
1 i
D" —— Y

is equivalent to an element y in Y;,. A lift in this diagram is equivalent to an element
x in X, such that pzr = y. The lemma follows immediately. |



Kodibparil jijist KoMILIEeKCiB

LEMMA 2.3.6. Suppose R is a ring. If A is a cofibrant chain complex, then
A, s a projective R-module for all n. As a partial converse, any bounded below
complex of projective R-modules is cofibrant.



Kodibparil jijist KoMILIEeKCiB

LEMMA 2.3.6. Suppose R is a ring. If A is a cofibrant chain complex, then
A, s a projective R-module for all n. As a partial converse, any bounded below
complex of projective R-modules is cofibrant.

PROPOSITION 2.3.9. Suppose R is a ring. Then a map i: A — B in Ch(R)
is a cofibration if and only if i is a dimensionwise split injection with cofibrant

cokernel.
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[Mpunycrumo, mo o : M — N € dg. Ilozrauumo uepes
Conea = (M[1] @ N,dcone) € Obdg rpanyiiosannii k-moyss 3
nudepeniiaTom

de = dul[l] ol [(-o7ldyo o la
Cone — O dN - O dN .
Hacrymanit pesyaprar y3arajabHioe Teopemy XiHida.

Theorem

[pumycrumo, 1mo S - e MHOXKHHA, KaTeropia % € moBHOIO i
xoroBHOO 1 F : dgs =% : U e cupsikennsiM. [Ipunycrumo, mo U
36epirae dinbrpyrodl korpanuti. aa 6y/ib-gkoro x € S
posrustemo 06’ekt Ky 3 dg®, Ky(x) = Cone(idy), Ky(y) = 0 ms
y # x. [lpumyctunmo, 110 JTaHIIOTOBE Bi0OpakeH s

U(inz) : UA — U(F(Kx[p]) U A) - kBasiizomopdism s Beix
ob6’ekriB A 3 % 1 BCix X €S, p € Z. OcHacTuMo ¢ KjaacaMu
cabKuX eKBiBaIeHTIB (BiamoBimHO bibpariit), Mo CKIaIa0ThCs
3 mopdismis 3 € rakux mo Uf - kBaziizomopdism (Bianosimgno
emimopddizm). Tomi kareropia € - MojeabHa KATEropis.
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