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enrich should be a symmetric monoidal category (V, X, ). Here, V is an ordinary cat-
egory, — X —: VxV — V is a bifunctor called the monoidal product, and = € V is
called the unit object. We write “x” for the monoidal product because it will be the carte-

YV =dg, x=0=Q, x=1=k.



¥ -kareropil

enrich should be a symmetric monoidal category (V, X, ). Here, V is an ordinary cat-
egory, — X —: VxV — V is a bifunctor called the monoidal product, and = € V is
called the unit object. We write “x” for the monoidal product because it will be the carte-

YV =dg, x=0=Q, x=1=k.
DEerintTion 3.3.1. A V-category D consists of
e acollection of objects x,y,z€ D
o for each pair x,y € 2, a hom-object D(x,y) € V
e for each x € O, amorphism id,: * — D(x,x)inV
for each triple x,y,z € D, amorphism o: D(y, z) X D(x,y) = D(x,z) inV

such that the following diagrams commute for all x,y,z,w € D:

D(z.w) X Dy, 2) X D(x,y) —= Dz, w) X D(x.2)

L

D, w) X D(x, y) D(x, w)

id, id,x1
D(x,y) X * 25 D(x, y) x D, ) DY) X D(x,y) < — % X D(x, )

l° |

D(x,y) D(x.y)

e
e



Definition 1.3.1.1. Let k& be a commutative ring. A differential graded category C over k consists
of the following data:

o A collection {X,Y,...}, whose elements are called the objects of C.
e For every pair of objects X and Y, a chain complex of k-modules
- = Mape(X,Y)1 — Mape(X, Y)g — Mape(X,Y) 1 — -+,
which we will denote by Mape(X,Y ).
e For every triple of objects X, Y, and Z, a composition map
Mape(Y, Z). @ Mape(X,Y ). — Mape(X, Z).,
which we can identify with a collection of k-bilinear maps
o Mape(Y, Z), x Mape(X,Y )y — Mape(X, Z)piq
satisfying the Leibniz rule d(go f) = dgo f + (—1)Pg o df.
o For each object X € C, an identity morphism idx € Mape(X, X )o such that
goidy =g idyof =f
for all f € Mape(Y,X),, g € Mape(X,Y),.

The composition law is required to be associative in the following sense: for every triple f €
Mape(W, X)p, g € Mape(X,Y),, and h € Mape(Y, Z),, we have

(hog)of="ho(gof).

In the special case where k = Z is the ring of integers, we will refer to a differential graded
category over k simply as a differential graded category.
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Kareropis dg — 3amxuena = gomyckae 36aradents B co0i.
VX,Y € dg dg(X,Y)=dg'(X,Y) € dg;

3 axciomn st ev! = icrye MuOxenHs o € dg, acoriarugme i
VHITAJbHE.



dg-kareropii
A DG category is an additive category A in which the sets Hom(A,B), A,B € Ob A, are
provided with a structure of a Z-graded k-module and a differential d : Hom(A,B) —
Hom(A, B) of degree 1, so that for every A, B, C € A, the composition Hom(A, B) x Hom(B,
C) — Hom(A, C) comes from a morphism of complexes Hom(A, B)@Hom(B, C) — Hom(A,
C). Also there is a closed degree-zero morphism 1o € Hom(A, A), which behaves as the

identity under composition of morphisms.
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Hom(A, B) of degree 1, so that for every A, B, C € A, the composition Hom(A, B) x Hom(B,
C) — Hom(A, C) comes from a morphism of complexes Hom(A, B)@Hom(B, C) — Hom(A,
C). Also there is a closed degree-zero morphism 1o € Hom(A, A), which behaves as the
identity under composition of morphisms.
Using the supercommutativity isomorphism S @ T ~ T @ S in the category of
DG k-modules, one defines for every DG category A the opposite DG category A° with
0bA° = Ob A, Hom 40 (A, B) = Hom, (B, A). We denote by A# the graded category which
is obtained from A by forgetting the differentials on Hom's.
The tensor product of DG categories A and B is defined as follows:
(i) Ob(A®B):=0bAx0bB;for A € ObAand B € Ob B, the corresponding object
is denoted by A ® B;
(ii) Hom(A ® B,A’ ® B') := Hom(A,A’) @ Hom(B, B’) and the composition map is
defined by (f1 ® g1)(f2 ® g2) := (—1)deelor)dee(f2)f, £, © gy 5.
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provided with a structure of a Z-graded k-module and a differential d : Hom(A,B) —
Hom(A, B) of degree 1, so that for every A, B, C € A, the composition Hom(A, B) x Hom(B,
C) — Hom(A, C) comes from a morphism of complexes Hom(A, B)@Hom(B, C) — Hom(A,
C). Also there is a closed degree-zero morphism 1o € Hom(A, A), which behaves as the
identity under composition of morphisms.
Using the supercommutativity isomorphism S @ T ~ T @ S in the category of
DG k-modules, one defines for every DG category A the opposite DG category A° with
0bA° = Ob A, Hom 40 (A, B) = Hom, (B, A). We denote by A# the graded category which
is obtained from A by forgetting the differentials on Hom's.
The tensor product of DG categories A and B is defined as follows:
(i) Ob(A®B):=0bAx0bB;for A € ObAand B € Ob B, the corresponding object
is denoted by A ® B;
(ii) Hom(A ® B,A’ ® B') := Hom(A,A’) @ Hom(B, B’) and the composition map is
defined by (f1 ® g1)(f2 ® g2) := (—1)deelor)dee(f2)f, f, © g7 5.
Note that the DG categories A ® B and B ® A are canonically isomorphic. In the

above notation, the isomorphism functor ¢ is

bA®B)=(BwA), (feg)=(-1)*E0w(gef). (4.1)
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Dermnirion 3.5.1. A V-functor F: C — D between V-categories is given by an object
map C 2 x = Fx € D together with morphisms

Fuy
Q(XJ) HQ(F-X} Fy)

in V for each x,y € C such that the following diagrams commute for all x,y,z € C:

CL ) X Clx,y) — > C(x,2) s s O(x %)

FyoxFo, l lFX,; \ lFM
1dFy

D(Fy, Fz) x D(Fx, Fy) —D:»Q(Fx, Fz) D(Fx, Fx)
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Given a DG category A, one defines the graded category Ho'(A) with ObHo (A) =
Ob A by replacing each Hom complex by the direct sum of its cohomology groups. We call
Ho'(A) the graded homotopy category of A. Restricting ourselves to the 0th cohomology
of the Hom complexes, we get the homotopy category Ho(A).

Two objects A,B € ObA are called DG isomorphic (or, simply, isomorphic) if
there exists an invertible degree-zero morphism f € Hom(A,B). We say that A, B are
homotopy-equivalent if they are isomorphic in Ho(A).

A DG functor between DG categories F : A — B is said to be a quasi-equivalence
if Ho'(F) : Ho'(A) — Ho'(B) is full and faithful and Ho(F) is essentially surjective. We say
that F is a DG equivalence if it is full and faithful and every object of B is DG isomorphic
to an object of F(A). Certainly, a DG equivalence is a quasi-equivalence. DG categories €
and D are called quasi-equivalent if there exist DG categories Ay, ..., A, and a chain of
quasi-equivalences

Co— Ay — - — Ay — D. (4.2)
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Definition g_G_

A DG functor between DG categories F : &7 — B —
EKBIBAJIEHTHICTh = Aw-€KBIBAJIEHTHICTh, SKIIO

> VX,Y € Ob&/ nanmorose BijoOparKeHHs
Fxy:9(X,Y)— B(XF, YF) romoromniuno obopoTHe,
T06T0, [Fx,v] € Hdg( (X,Y),B(XF, YF)) - izomopdizu,
» Ho(F) is essentially surjective on objects, ro6ro, VU € Ob %
3V € Ob.eZ 3 izomopdism r € HOB(U, VF).



En

The integral, called an end, is the limit of a particular diagram
constructed from a functor that is both covariant and
contravariant in €. Given H: ¢°? x € — &, the end [, H is an
object of & equipped with arrows [, H — H(c,c) for each c € ¢
that are collectively universal with the property that the

diagram \\

/ H —— H(c, )
@

J{ lH(f,c’)

H(c,c) 2 Hie, o)

commutes for each f: ¢ — ¢’ in €.



En
The integral, called an end, is the limit of a particular diagram
constructed from a functor that is both covariant and
contravariant in €. Given H: ¢°? x € — &, the end [, H is an
object of & equipped with arrows [, H — H(c,c) for each c € ¢
that are collectively universal with the property that the
diagram

/ H —— H(c, )
@

J{ lH(f,c’)

H(c,c) 2 Hie, o)

commutes for each f : c = ¢’ in €.
Equivalently, [, H is the equalizer of the diagram

/WH ~-—= JI H(c.e)= T[] H(domf,codf).

€0b% feMor®



Theorem 1.4.1. Given functors I, G : C — D between small categories
we have the canonical isomorphism of sets

Cat(C, D)(F,G) = / D(FC,GC). (1.47)
C

Proof A wedge 7¢ : Y — D(FC, GC) consists of a function y +— (7¢, :
FC — GC | € € C), which is natural in ¢ € C (this is simply a
rephrasing of the wedge condition): the equation

G(f)eroy = Tcry o F(f) (1.48)

valid for any f : C' — C’, means that for a fixed y € Y the arrows 7¢
form the components of a natural transformation F' = @G thus, there
exists a unique way to close the diagram

Y — X D(FC,GO)
' (1.49)

T

k- Cat(c, D) (F,G)

with a function sending y — 7_, € [[oee P(FC,GC), and where
Cat(C,D)(F,G) — D(FC,GC) is the wedge sending a natural transfor-
mation to its c-component; the diagram commutes for a single h: Y —
Cat(C,D)(F, ), and this is precisely the desired universal property for
Cat(C,D)(F.G) to be [, D(FC,GC). a



[IeperBOpenns

Given DG categories A and B, the collection of covariant DG functors A — B is
itself the collection of objects of a DG category, which we denote by Funpg (A, B). Namely,
let ¢ and 1\ be two DG functors. Put Hom* (¢, ) equal to the set of natural transforma-
tions t : ¢p& — P8[k] of graded functors from A8 to BE". This means that for any mor-

phism f € HomY (A, B) one has

W) t(A) = (~1)*t(B) - d(f). (4.3)

On each A € A, the differential of the transformation t is equal to (dt)(A) (one easily
checks that this is well defined). Thus, the closed transformations of degree zero are the
DG transformations of DG functors. A similar definition gives us the DG category con-

sisting of the contravariant DG functors Funpg(A°, B) = Funpg(A, B?) from A to B.
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On each A € A, the differential of the transformation t is equal to (dt)(A) (one easily
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DG transformations of DG functors. A similar definition gives us the DG category con-

sisting of the contravariant DG functors Funpg(A°, B) = Funpg(A, B?) from A to B.

0(4) 205 6(B)  t={t(A)| Ac Obw}

t(AQ (—1) jtw) t(A) € Z(9(A), w(A))*
w(A) ) y(B) Vf € o/ (A, B)®



Modulo size issues, the category V-Cat is closed: given V-categories D and M where
D is small, define a “V-category MQ whose objects are V-functors F,G: D =3 M and
whose hom-objects, taking inspiration from|I.2.8] are defined by the formula

(1.3.2) ME(F,G) = M(Fd, Gd).
deD
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the formula for the enriched end defining the hom-object of “V-natural transformations is
the equalizer
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D d dd
The component of the top arrow indexed by the ordered pair d,d’ projects to M(Fd, Gd)
and composes in the second coordinate with D(d, d'). The analogous component of the bot-
tom arrow projects to M(Fd’, Gd") and precomposes in the first coordinate with D(d, d").



Modulo size issues, the category V-Cat is closed: given V-categories D and M where
D is small, define a “V-category MQ whose objects are V-functors F,G: D =3 M and
whose hom-objects, taking inspiration from|I.2.8] are defined by the formula

(1.3.2) ME(F,G) = M(Fd, Gd).
deD

the formula for the enriched end defining the hom-object of “V-natural transformations is
the equalizer

(7.3.3) f M(Fd.Gd) := eq[H M(Fd,Gd) 3 | | V@, &), M(Fd.Gd')) |
D d dd

The component of the top arrow indexed by the ordered pair d,d’ projects to M(Fd, Gd)
and composes in the second coordinate with D(d, d'). The analogous component of the bot-
tom arrow projects to M(Fd’, Gd") and precomposes in the first coordinate with D(d, d").

Bepxus crpinka B (7.3.3) — 1e
[1.4(Fd,Gd) =% .4 (Fd, Gd) — #!(2(d,d"),.4(Fd, Gd)),
d

e OCTaHHI# MOp(}I3M IPUXOIUTL 3 HapyBaHHSI

M (Fd,Gd)02(d,d") 22% (Fd, Gd)o .4 (Gd, Gd') s . (Fd, Gd').



Hwxust crpinka B (7.3.3) — 11e

H/// (Fd,Gd) 2% . (Fd',Gd") — ¥'(2(d,d"), .4 (Fd,Gd')),

Jie ocTaHHIfl MOpdi3M TPUXOAUTE 3 KOMITO3UITIT

M(Fd',Gd)® 2(d,d") —— #(Fd,Gd')

|

2d,d)o.H(Fd,6d") 25 o (Fd,Fd')y o (Fd', Gd')

TOJI SIK JiaroHaJIbHIM CTPLII BiAIOBigaI0 6

M(Fd',Gd") — V" (2(d,d"), 4 (Fd,Gd)).
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‘We denote the DG category Funpg (B, DG(k)) by B-mod and call it the category of DG B-
modules. There is a natural covariant DG functor h : A4 — A°-mod (the Yoneda embed-
ding) defined by h*(B) := Homy, (B, A). As in the “classical” case one verifies that the
functor h is full and faithful, that is,

Homy (A,A’) = Hom 4o_yeq (R, h*). (4.4)
Moreover, for any F € A°-mod, A € 4,
Hom o mea (W™, F) = F(A). (4.5)

The A°-DG-modules h*, A € A, are called free. An A°-DG-module F is called
semifreeif it has a filtration

0=FpCFC...=F (4.6)

such that Fi./F; is isomorphic to a direct sum of shifted free A°-DG-modules h* m),ne
Z. The full subcategory of semifree A°-DG-modules is denoted by SF(A).

An A°-DG-module F is called acyclic if the complex F(A) is acyclic for all A € A.
Let D(A) denote the derived category of A°-DG-modules, that is, D(.A) is the Verdier quo-
tient of the homotopy category Ho(A°-mod) by the subcategory of acyclic DG-modules.



dg-kareropii 3 ¢popMaJibHUM 3CYBOM
Given a DG category A, one can associate to it a triangulated category A" [5]. It is defined
as the homotopy category of a certain DG category AP, The idea of the definition of
AP g to formally add cones of all morphisms, cones of morphisms between cones,
and so forth.

First, we need to clarify the notion of a “formal shift” of an object.

Definition 4.5. Define the DG category A as follows:

ObA = {A[n]|A€ObA, neZ}, (4.12)
and define
Hom ; (A[k], B[n]) = Homy4 (A, B)[n—X] (4.13)

as graded vector spaces. If f € Hom (A, B) is considered as an element of Hom ;7 (A[k],

B[n]) under the above identification, then the differentials are related by the formula

da(f) = (=1)"da(f). (4.14)

Notice, for example, that the differential in Hom 4 (A[1], B[1]) is equal to minus the
differential in Homy, (A, B).



Anrebpa B Kareropii dg-kareropiii

The category of differential graded categories dg-%at equipped
with the tensor product X is a symmetric monoidal category.
Let us study an algebra in this category, which will be used to
define the functor of shifts. Let 2 be a differential graded
quiver with Ob 2 =Z, Z(m,n) =k[n— m] and zero differential.



Anrebpa B Kareropii dg-kareropiii
The category of differential graded categories dg-%at equipped
with the tensor product X is a symmetric monoidal category.
Let us study an algebra in this category, which will be used to
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Anrebpa B Kareropii dg-kareropiii
The category of differential graded categories dg-%at equipped
with the tensor product X is a symmetric monoidal category.
Let us study an algebra in this category, which will be used to
define the functor of shifts. Let 2 be a differential graded
quiver with Ob 2 =Z, Z(m,n) =k[n— m] and zero differential.
Consider an arbitrary k-linear graded category structure of 2
given by isomorphisms
.u/ = (P,(/vm?n) : D%p(hm)@kff(m’n)
=k[m—IN@k[n—m] = k[n—1]=Z(I,n),
15" @1s" ™ ¢'(1,m,n)s"".
It is specified by a function ¢’ : Z3 — k* with values in the
multiplicative group k*. The associativity of composition
(Qlep'=Welu': Z(k e Z(l,m)e Z(m,n)— Z(kn)

implies that ¢’ is a cycle:

¢'(1,m,n)-¢'(k,I.n)=¢'(k,1,m)-¢'(k,m,n).



An arbitrary such cycle ¢’ is a boundary

¢/(I7m7 n) = é(lvm) 'é(mvn)'g(hn)il
of a function & : Z? — k*, namely, &(/,m) = ¢'(0,/,m).

(1)



An arbitrary such cycle ¢’ is a boundary

¢/(I7m7n) = é(l,m)-é(m,n)-é(/,n)*l

of a function & : Z? — k*, namely, &(/,m) = ¢'(0,/,m).

The graded quiver automorphism & : 2 — 2, n+— n,
E(m,n): Z(m,n) — Z(m,n) equips & with another
(isomorphic) category structure (2, ) with ¢(/,m,n) =1, so
that & : (Z,u') — (2°,u) is a category isomorphism.

(1)
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In the following we shall consider only composition y in 2
specified by the function ¢(/,m,n) = 1. The elements

1 ek = Z(n,n) are identity morphisms of Z.



An arbitrary such cycle ¢’ is a boundary

¢)/(I,m,n):é(l,m)-g(m,n)-é(/,n)*l (1)

of a function & : Z? — k*, namely, &(/,m) = ¢'(0,/,m).

The graded quiver automorphism & : 2 — 2, n+— n,

E(m,n): Z(m,n) — Z(m,n) equips & with another
(isomorphic) category structure (2, ) with ¢(/,m,n) =1, so
that & : (Z,u') — (2°,u) is a category isomorphism.

In the following we shall consider only composition y in 2
specified by the function ¢(/,m,n) = 1. The elements

1 ek = Z(n,n) are identity morphisms of Z.

We equip the object 2 of (dg-% at,X) with an algebra
structure, given by multiplication — differential graded functor

Qy: ZRZ = Z, mX nw— m+n,
Qy =y(n,m k1) (ZRZ)(nxmkxI)
=Z(nk)@Z(m,])— Z(n+mk+1),
1sF"®1s™m — y(n, m,k,l)s”'*”*m.

We assume that the function y : Z* — k takes values in k*.



Being a functor, ®y has to satisfy the equation:
v(a,b,c,d)-y(c,d,e,f) = (—1)(d"D)e=Dy(a b,e,f).

It specifies the boundary of the 2-cochain v : Z* — k*. Generic
solution to this equation is

W(avbvc’d):(_1)C(bid)X(a)b)'%(Cvd)il (2)

for some function x : Z? — k* (take x(a, b) = w(a, b,0,0)).



Being a functor, ®y has to satisfy the equation:
w(a.b,c.d)-y(c,d,e,f) = (~1){4"Vy(a,b,e,f).

It specifies the boundary of the 2-cochain v : Z* — k*. Generic
solution to this equation is

w(a,b,c,d) = (~1)"Dy(a,b)- 2(c.d) (2)

for some function x : Z? — k* (take x(a, b) = w(a, b,0,0)).
Associativity of the algebra (2, ®y)

(Qfﬁfﬁ&‘”)(axbxcdxexf) Y (ZRZ)(ax (b+c),dx(e+f))

(ZRZ)(a+b)xc,(d+e)xf) —Y— F(at+b+c,d+e+f)

is expressed by the equation

y(a,b,d,e)-w(a+b,c,d+e,f)=wy(b,c,e,f) y(a,b+c,d,e+f).



It means that the function ¥ : Z? x Z? — k*,

W(a,b,c,d) = w(a,c,b,d) is a 2-cocycle on the group Z2. For a
graded category 2 with multiplication (1) related to (2, u) via
the category isomorphism & : (Z,u’) — (Z,u), n— n,

E(m,n): Z(m,n) — Z(m,n), we would get the 2-cocycle

W/(aa b,C,d) = é(a,b)-é(c,d)-W(a,b,c,d)-§(a+c,b+d)_1,

cohomologous to .



It means that the function ¥ : Z? x Z? — k*,

W(a,b,c,d) = w(a,c,b,d) is a 2-cocycle on the group Z2. For a
graded category 2 with multiplication (1) related to (2, u) via
the category isomorphism & : (Z,u’) — (Z,u), n— n,

E(m,n): Z(m,n) — Z(m,n), we would get the 2-cocycle

W/(aa b,C,d) = é(a,b)-é(c,d)-W(a,b,c,d)-§(a+c,b+d)_1,

cohomologous to .

Plugging (2) into equation for y, we reduce the latter to
X(avb) 'X(a,b—FC)_l -x(a+b,c) 'X(bac)_l

ZX(d>e) 'X(dve+ f)_l 'X(d+€, f) 'X(ea f)_l'

The common value of the left and right hand sides does not
depend on the arguments a, b, c,d,e,f € Z. Setting d=e=f =0
we find that this constant equals 1. Thus, y : Z?> = k* is a
2-cocycle on the group Z with values in k*. Since Z is a free
group, its cohomology group H?(Z,k*) vanishes.



Therefore, the cocycle x has the form
x(a,b)=A(a) A(b)-A(a+b) "
for some function A : Z — k*. The corresponding function

v Z* — k* is given by the formula

v, (a,b,c,d)
= (=1)=DA(a) - A(b)-A(a+b) L -A(c)F-A(d) L A(c+d).



Therefore, the cocycle x has the form
x(a,b) = 2A(a)-A(b)-A(a+b) "

for some function A : Z — k*. The corresponding function
v Z* — k* is given by the formula

v, (a,b,c,d)
= (=1)=DA(a) - A(b)-A(a+b) L -A(c)F-A(d) L A(c+d).

Denote the multiplication functor ®y, also by ®*. Define an

automorphism of the graded category 2 as A% — % nen,
A=A(m)"t-A(n): Z(m,n) = Z(m,n). A:(Z,2') = (Z,*)

is an algebra isomorphism, where the first algebra uses

M(a) =1, vi(a,b,c,d) = (_1)c(b—d)_



Therefore, the cocycle x has the form
x(a,b) = 2A(a)-A(b)-A(a+b) "

for some function A : Z — k*. The corresponding function
v Z* — k* is given by the formula

v, (a,b,c,d)
= (=1)=DA(a) - A(b)-A(a+b) L -A(c)F-A(d) L A(c+d).

Denote the multiplication functor ®y, also by ®*. Define an
automorphism of the graded category 2 as A% — % nen,
A=A(m)"t-A(n): Z(m,n) = Z(m,n). A:(Z,2') = (Z,*)

is an algebra isomorphism, where the first algebra uses
M(a) =1, ya(a,b,c.d) = (~1)°.

The multiplicative cocycle W, € Z?(Z? k*) comes via the
homomorphism Z/2 — k*, a+ (—1)?, from the additive cocycle
72 x 7% 172, (a,c,b,d) s c(b—d) (mod 2), which represents
the only non-trivial element of the cohomology group
H?(Z?,7./2) = 7./2 with values in the trivial Z?-module Z/2.



In the following we shall consider only multiplication ® » = @1
in % specified by the function yi(a, b, c,d) = (—1)<(b=9),
Clearly, the algebra (2,®4) is unital with the unit

Ne:1— 2 «—0,id: 1(x,*) =k — 2(0,0).



DyHKTOP 3CYBIB
Given a dg-category <7, we produce another one !l = 7K %,
obtained by adding formal shifts of objects. The set of objects is

Oba/ll = {X[n] = (X,n) | X € Obe?,n € Z} = Ob.o/ X Z.



DyHKTOP 3CYBIB
Given a dg-category <7, we produce another one !l = 7K %,
obtained by adding formal shifts of objects. The set of objects is

Oba/ll = {X[n] = (X,n) | X € Obe?,n € Z} = Ob.o/ X Z.

The graded k-module of morphisms is
ZW(X[n], Y[m]) = &/ (X,Y)@k[m — n]. We identify it with
</ (X,Y)[m— n]. Given a morphism of dg-categories f : &7 — A,
we define another one fll = fX 14 : &l - Bl On objects it
acts as Ob fll 1 X[n] — (Xf)[n]. Commutative diagram

A (X, V) [m—n] =5 (X, Y)ok 2 (X, Y)@ Z(n,m)

f['"*"ll me J{f@l

BUXE, YE)[m—n] 5 BXF, Yok 2275 BXF,YF)@ 2 (n,m)

describes the action of —U on morphisms in another
presentation:

flm=n] — gn=mgem—n . (X, Y)[m—n] — B(Xf,YF)[m—n].



dg-kaTeropil 3aMKHEeHI BiJJHOCHO 3CyBiB

Tudepenniar na &/ o6uncmoerses ax

dll = (=1)m=nsn=mgsm=n . o7I(X[n], Y[m]) = (X, Y)[m—n]
— (X, Y)[m—n] = ZU(X[n], Y[m]).
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A (X, Y)[p—n|@(Y,Z)[k—p)— (X, Z)[k—n] = oV (X[n], Z[K]).



dg-kaTeropil 3aMKHEeHI BiJJHOCHO 3CyBiB

Tudepenniar na &/ o6uncmoerses ax

dll = (=1)m=nsn=mgsm=n . o7I(X[n], Y[m]) = (X, Y)[m—n]
— (X, Y)[m—n] = ZU(X[n], Y[m]).

Kowmmozunisa gia o7 [ o6uncaroeThes gk

mll = (P "@s*P) Tms " /U (X[n], Y [p]) 0. U( Y [p], Z[K]) =
A (X, Y)[p—n|@(Y,Z)[k—p)— (X, Z)[k—n] = oV (X[n], Z[K]).

Definition
We say that a dg-category % is closed under shifts if every

object X[n] of %1l is homotopy isomorphic in €l to some object
Y[0], Y =[X,n] € Ob¥%.
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