3. dg-категорії. Навколо похідних категорій

Володимир Любашенко

18 лютого 2021

\mathscr{V} -категорії

enrich should be a **symmetric monoidal category** $(\mathcal{V}, \times, *)$. Here, \mathcal{V} is an ordinary category, $-\times -: \mathcal{V} \times \mathcal{V} \to \mathcal{V}$ is a bifunctor called the **monoidal product**, and $*\in \mathcal{V}$ is called the **unit object**. We write " \times " for the monoidal product because it will be the carte-

$$\mathscr{V} = dg, \ \times = \otimes = \otimes_{\Bbbk}, \ * = 1 = \&.$$

У-категорії

enrich should be a **symmetric monoidal category** $(\mathcal{V}, \times, *)$. Here, \mathcal{V} is an ordinary category, $-\times -: \mathcal{V} \times \mathcal{V} \to \mathcal{V}$ is a bifunctor called the **monoidal product**, and $*\in \mathcal{V}$ is called the **unit object**. We write " \times " for the monoidal product because it will be the carte-

$$\mathscr{V} = dg, \ \times = \otimes = \otimes_{\mathbb{k}}, \ * = 1 = \mathbb{k}.$$

Definition 3.3.1. A V-category $\underline{\mathcal{D}}$ consists of

- a collection of objects $x, y, z \in \underline{\mathcal{D}}$
- for each pair $x, y \in \underline{\mathcal{D}}$, a hom-object $\underline{\mathcal{D}}(x, y) \in \mathcal{V}$
- for each $x \in \underline{\mathcal{D}}$, a morphism $\mathrm{id}_x \colon * \to \underline{\mathcal{D}}(x,x)$ in \mathcal{V}
- for each triple $x, y, z \in \underline{\mathcal{D}}$, a morphism $\circ : \underline{\mathcal{D}}(y, z) \times \underline{\mathcal{D}}(x, y) \to \underline{\mathcal{D}}(x, z)$ in \mathcal{V} such that the following diagrams commute for all $x, y, z, w \in \mathcal{D}$:

$$\underline{\mathcal{D}}(z,w) \times \underline{\mathcal{D}}(y,z) \times \underline{\mathcal{D}}(x,y) \xrightarrow{1 \times \circ} \underline{\mathcal{D}}(z,w) \times \underline{\mathcal{D}}(x,z)
\downarrow \circ \\
\underline{\mathcal{D}}(y,w) \times \underline{\mathcal{D}}(x,y) \xrightarrow{\circ} \underline{\mathcal{D}}(x,w)$$

$$\underline{\mathcal{D}}(x,y) \times * \xrightarrow{1 \times \mathrm{id}_x} \underline{\mathcal{D}}(x,y) \times \underline{\mathcal{D}}(x,x) \qquad \underline{\mathcal{D}}(y,y) \times \underline{\mathcal{D}}(x,y) \xrightarrow{\mathrm{id}_y \times 1} * \times \underline{\mathcal{D}}(x,y)$$

$$\underline{\mathcal{D}}(x,y) \times \underbrace{\mathcal{D}}(x,y) \times \underline{\mathcal{D}}(x,y) \times \underline{\mathcal{D}}(x,y)$$

Definition 1.3.1.1. Let k be a commutative ring. A differential graded category $\mathfrak C$ over k consists of the following data:

- A collection $\{X,Y,\ldots\}$, whose elements are called the *objects* of \mathcal{C} .
- For every pair of objects X and Y, a chain complex of k-modules

$$\cdots \to \operatorname{Map}_{\mathfrak{C}}(X,Y)_1 \to \operatorname{Map}_{\mathfrak{C}}(X,Y)_0 \to \operatorname{Map}_{\mathfrak{C}}(X,Y)_{-1} \to \cdots,$$

which we will denote by $\operatorname{Map}_{\mathfrak{C}}(X,Y)_*$.

• For every triple of objects X, Y, and Z, a composition map

$$\operatorname{Map}_{\mathfrak{C}}(Y, Z)_* \otimes_k \operatorname{Map}_{\mathfrak{C}}(X, Y)_* \to \operatorname{Map}_{\mathfrak{C}}(X, Z)_*,$$

which we can identify with a collection of k-bilinear maps $\circ : \operatorname{Map}_{\mathcal{C}}(Y, Z)_{p} \times \operatorname{Map}_{\mathcal{C}}(X, Y)_{q} \to \operatorname{Map}_{\mathcal{C}}(X, Z)_{p+q}$

satisfying the Leibniz rule
$$d(g \circ f) = dg \circ f + (-1)^p g \circ df$$
.

• For each object $X \in \mathcal{C}$, an identity morphism $\mathrm{id}_X \in \mathrm{Map}_{\mathcal{C}}(X,X)_0$ such that

$$g \circ id_X = g$$
 $id_X \circ f = f$

for all $f \in \operatorname{Map}_{\mathcal{C}}(Y, X)_p$, $g \in \operatorname{Map}_{\mathcal{C}}(X, Y)_q$.

The composition law is required to be associative in the following sense: for every triple $f \in \text{Map}_{\mathcal{C}}(W,X)_p$, $g \in \text{Map}_{\mathcal{C}}(X,Y)_q$, and $h \in \text{Map}_{\mathcal{C}}(Y,Z)_r$, we have

$$(h \circ g) \circ f = h \circ (g \circ f).$$

In the special case where $k = \mathbf{Z}$ is the ring of integers, we will refer to a differential graded category over k simply as a differential graded category.

dg-збагачення

Категорія \mathbf{dg} – замкнена \Rightarrow допускає збагачення в собі. $\forall X, Y \in \mathbf{dg} \ \underline{\mathbf{dg}}(X, Y) = \underline{\mathbf{dg}}^I(X, Y) \in \mathbf{dg};$

З аксіоми для $ev^I \Rightarrow$ існує множення $\circ \in dg$, асоціативне і унітальне.

dg-категорії

A DG category is an additive category \mathcal{A} in which the sets $\operatorname{Hom}(A,B), A,B \in \operatorname{Ob}\mathcal{A}$, are provided with a structure of a \mathbb{Z} -graded k-module and a differential $d:\operatorname{Hom}(A,B)\to \operatorname{Hom}(A,B)$ of degree 1, so that for every $A,B,C\in\mathcal{A}$, the composition $\operatorname{Hom}(A,B)\times\operatorname{Hom}(B,C)\to \operatorname{Hom}(A,C)$ comes from a morphism of complexes $\operatorname{Hom}(A,B)\otimes\operatorname{Hom}(B,C)\to \operatorname{Hom}(A,C)$. Also there is a closed degree-zero morphism $1_A\in\operatorname{Hom}(A,A)$, which behaves as the identity under composition of morphisms.

dg-категорії

A DG category is an additive category \mathcal{A} in which the sets $\text{Hom}(A,B), A,B \in \text{Ob}\,\mathcal{A}$, are provided with a structure of a \mathbb{Z} -graded k-module and a differential $d: \text{Hom}(A,B) \to \text{Hom}(A,B)$ of degree 1, so that for every $A,B,C\in\mathcal{A}$, the composition $\text{Hom}(A,B)\times \text{Hom}(B,C) \to \text{Hom}(A,C)$ comes from a morphism of complexes $\text{Hom}(A,B)\otimes \text{Hom}(B,C) \to \text{Hom}(A,C)$. Also there is a closed degree-zero morphism $1_A\in \text{Hom}(A,A)$, which behaves as the identity under composition of morphisms.

Using the supercommutativity isomorphism $S \otimes T \simeq T \otimes S$ in the category of DG k-modules, one defines for every DG category $\mathcal A$ the opposite DG category $\mathcal A^0$ with Ob $\mathcal A^0 = \text{Ob}\,\mathcal A$, $\text{Hom}_{\mathcal A^0}(A,B) = \text{Hom}_{\mathcal A}(B,A)$. We denote by $\mathcal A^{gr}$ the graded category which is obtained from $\mathcal A$ by forgetting the differentials on Hom's.

The tensor product of DG categories ${\mathcal A}$ and ${\mathcal B}$ is defined as follows:

- $\label{eq:definition} \begin{array}{ll} (i) \;\; Ob(\mathcal{A}\otimes\mathcal{B}) := Ob\,\mathcal{A}\times Ob\,\mathcal{B}; \\ \text{for } A\in Ob\,\mathcal{A} \text{ and } B\in Ob\,\mathcal{B}, \\ \text{the corresponding object} \\ \text{is denoted by } A\otimes B; \end{array}$
- $\begin{array}{ll} \text{(ii)} \ \ Hom(A\otimes B,A'\otimes B') \coloneqq Hom(A,A')\otimes Hom(B,B') \ and the composition map is } \\ \text{defined by } (f_1\otimes g_1)(f_2\otimes g_2) \coloneqq (-1)^{deg(g_1)\, deg(f_2)} f_1 f_2\otimes g_1 g_2. \end{array}$

dg-категорії

A DG category is an additive category $\mathcal A$ in which the sets $\operatorname{Hom}(A,B), A,B \in \operatorname{Ob}\mathcal A$, are provided with a structure of a $\mathbb Z$ -graded k-module and a differential $d:\operatorname{Hom}(A,B)\to \operatorname{Hom}(A,B)$ of degree 1, so that for every $A,B,C\in\mathcal A$, the composition $\operatorname{Hom}(A,B)\times\operatorname{Hom}(B,C)\to \operatorname{Hom}(A,C)$ comes from a morphism of complexes $\operatorname{Hom}(A,B)\otimes\operatorname{Hom}(B,C)\to \operatorname{Hom}(A,C)$. Also there is a closed degree-zero morphism $1_A\in\operatorname{Hom}(A,A)$, which behaves as the identity under composition of morphisms.

Using the supercommutativity isomorphism $S \otimes T \simeq T \otimes S$ in the category of DG k-modules, one defines for every DG category $\mathcal A$ the opposite DG category $\mathcal A^0$ with Ob $\mathcal A^0 = \text{Ob}\,\mathcal A$, $\text{Hom}_{\mathcal A^0}(A,B) = \text{Hom}_{\mathcal A}(B,A)$. We denote by $\mathcal A^{gr}$ the graded category which is obtained from $\mathcal A$ by forgetting the differentials on Hom's.

The tensor product of DG categories $\mathcal A$ and $\mathcal B$ is defined as follows:

- $\label{eq:definition} \begin{array}{ll} \text{(i)} & Ob(\mathcal{A}\otimes\mathcal{B}) := Ob\,\mathcal{A}\times Ob\,\mathcal{B}; \text{for } A\in Ob\,\mathcal{A} \text{ and } B\in Ob\,\mathcal{B}, \text{the corresponding object} \\ & \text{is denoted by } A\otimes B; \end{array}$
- $$\begin{split} \text{(ii)} \ \, &\text{Hom}(A \otimes B, A' \otimes B') := \text{Hom}(A, A') \otimes \text{Hom}(B, B') \text{ and the composition map is} \\ &\text{defined by } (f_1 \otimes g_1)(f_2 \otimes g_2) := (-1)^{\text{deg}(g_1)} \, ^{\text{deg}(f_2)} f_1 f_2 \otimes g_1 g_2. \end{split}$$

Note that the DG categories $\mathcal{A}\otimes\mathcal{B}$ and $\mathcal{B}\otimes\mathcal{A}$ are canonically isomorphic. In the above notation, the isomorphism functor φ is

$$\varphi(A\otimes B)=(B\otimes A), \qquad \varphi(f\otimes g)=(-1)^{\text{deg}(f)\text{ deg}(g)}(g\otimes f). \tag{4.1}$$

\mathscr{V} -функтори

DEFINITION 3.5.1. A \mathcal{V} -functor $F \colon \underline{C} \to \underline{\mathcal{D}}$ between \mathcal{V} -categories is given by an object map $\underline{C} \ni x \mapsto Fx \in \underline{\mathcal{D}}$ together with morphisms

$$\underline{C}(x,y) \xrightarrow{F_{x,y}} \underline{\mathcal{D}}(Fx,Fy)$$

in \mathcal{V} for each $x, y \in \underline{C}$ such that the following diagrams commute for all $x, y, z \in \underline{C}$:

dg-еквівалентності

Given a DG category \mathcal{A} , one defines the graded category $\operatorname{Ho}^{\cdot}(\mathcal{A})$ with $\operatorname{ObHo}^{\cdot}(\mathcal{A}) = \operatorname{Ob}\mathcal{A}$ by replacing each Hom complex by the direct sum of its cohomology groups. We call $\operatorname{Ho}^{\cdot}(\mathcal{A})$ the graded homotopy category of \mathcal{A} . Restricting ourselves to the 0th cohomology of the Hom complexes, we get the homotopy category $\operatorname{Ho}(\mathcal{A})$.

Two objects $A, B \in Ob \mathcal{A}$ are called DG isomorphic (or, simply, isomorphic) if there exists an invertible degree-zero morphism $f \in Hom(A, B)$. We say that A, B are homotopy-equivalent if they are isomorphic in $Ho(\mathcal{A})$.

A DG functor between DG categories $F:\mathcal{A}\to\mathcal{B}$ is said to be a *quasi-equivalence* if $Ho^*(F):Ho^*(\mathcal{A})\to Ho^*(\mathcal{B})$ is full and faithful and Ho(F) is essentially surjective. We say that F is a DG *equivalence* if it is full and faithful and every object of \mathcal{B} is DG isomorphic to an object of $F(\mathcal{A})$. Certainly, a DG equivalence is a quasi-equivalence. DG categories \mathcal{C} and \mathcal{D} are called *quasi-equivalent* if there exist DG categories $\mathcal{A}_1,\ldots,\mathcal{A}_n$ and a chain of quasi-equivalences

$${\mathfrak C} \longleftarrow {\mathcal A}_1 \longrightarrow \cdots \longleftarrow {\mathcal A}_n \longrightarrow {\mathfrak D}. \tag{4.2}$$

Еквівалентності

Definition

ره

A DG functor between DG categories $F: \mathcal{A} \to \mathcal{B}$ – еквівалентність = A_{∞} -еквівалентність, якщо

- ▶ $\forall X, Y \in \text{Ob} \mathscr{A}$ ланцюгове відображення $F_{X,Y}: \mathscr{A}(X,Y) \to \mathscr{B}(XF,YF)$ гомотопічно оборотне, тобто, $[F_{X,Y}] \in H^0$ dg $(\mathscr{A}(X,Y),\mathscr{B}(XF,YF))$ ізоморфізм,
- ► Ho(F) is essentially surjective on objects, тобто, $\forall U \in \mathsf{Ob}\mathscr{B}$ $\exists V \in \mathsf{Ob}\mathscr{A} \exists$ ізоморфізм $r \in H^0\mathscr{B}(U, VF)$.

Енд

The integral, called an end, is the limit of a particular diagram constructed from a functor that is both covariant and contravariant in \mathscr{C} . Given $H: \mathscr{C}^{op} \times \mathscr{C} \to \mathscr{E}$, the end $\int_{\mathscr{C}} H$ is an object of \mathscr{E} equipped with arrows $\int_{\mathscr{C}} H \to H(c,c)$ for each $c \in \mathscr{C}$ that are collectively universal with the property that the diagram

commutes for each $f: c \to c'$ in \mathscr{C} .

Енд

The integral, called an end, is the limit of a particular diagram constructed from a functor that is both covariant and contravariant in \mathscr{C} . Given $H:\mathscr{C}^{op}\times\mathscr{C}\to\mathscr{E}$, the end $\int_{\mathscr{C}}H$ is an object of \mathscr{E} equipped with arrows $\int_{\mathscr{C}}H\to H(c,c)$ for each $c\in\mathscr{C}$ that are collectively universal with the property that the diagram

$$\int_{\mathscr{C}} H \longrightarrow H(c',c')$$

$$\downarrow \qquad \qquad \downarrow_{H(f,c')}$$

$$H(c,c) \xrightarrow{H(c,f)} H(c,c')$$

commutes for each $f: c \to c'$ in \mathscr{C} . Equivalently, $\int_{\mathscr{C}} H$ is the equalizer of the diagram

$$\int_{\mathscr{C}} H \ -- \to \prod_{c \in \mathsf{Ob}\,\mathscr{C}} H(c,c) \Longrightarrow \prod_{f \in \mathsf{Mor}\,\mathscr{C}} H(\mathsf{dom}f,\mathsf{cod}f).$$

Theorem 1.4.1. Given functors $F,G:\mathcal{C}\to\mathcal{D}$ between small categories we have the canonical isomorphism of sets

$$\operatorname{Cat}(\mathcal{C}, \mathcal{D})(F, G) \cong \int_{C} \mathcal{D}(FC, GC).$$
 (1.47)

Proof A wedge $\tau_C: Y \to \mathcal{D}(FC, GC)$ consists of a function $y \mapsto (\tau_{C,y}: FC \to GC \mid C \in \mathcal{C})$, which is natural in $C \in \mathcal{C}$ (this is simply a rephrasing of the wedge condition): the equation

$$G(f) \circ \tau_{C,y} = \tau_{C',y} \circ F(f) \tag{1.48}$$

valid for any $f: C \to C'$, means that for a fixed $y \in Y$ the arrows τ_C form the components of a natural transformation $F \Rightarrow G$; thus, there exists a unique way to close the diagram

$$Y \xrightarrow{\tau_{C}} \mathcal{D}(FC, GC)$$

$$\uparrow \qquad \qquad \uparrow$$

$$h \operatorname{Cat}(\mathcal{C}, \mathcal{D})(F, G)$$

$$(1.49)$$

with a function sending $y \mapsto \tau_{-,y} \in \prod_{C \in \mathcal{C}} \mathcal{D}(FC,GC)$, and where $\operatorname{Cat}(\mathcal{C},\mathcal{D})(F,G) \to \mathcal{D}(FC,GC)$ is the wedge sending a natural transformation to its c-component; the diagram commutes for a single $h:Y \to \operatorname{Cat}(\mathcal{C},\mathcal{D})(F,G)$, and this is precisely the desired universal property for $\operatorname{Cat}(\mathcal{C},\mathcal{D})(F,G)$ to be $\int_C \mathcal{D}(FC,GC)$.

Перетворення

Given DG categories $\mathcal A$ and $\mathcal B$, the collection of covariant DG functors $\mathcal A\to\mathcal B$ is itself the collection of objects of a DG category, which we denote by $\operatorname{Fun}_{DG}(\mathcal A,\mathcal B)$. Namely, let φ and ψ be two DG functors. Put $\operatorname{Hom}^k(\varphi,\psi)$ equal to the set of natural transformations $t:\varphi^{gr}\to\psi^{gr}[k]$ of graded functors from $\mathcal A^{gr}$ to $\mathcal B^{gr}$. This means that for any morphism $f\in\operatorname{Hom}_{\mathcal A}^g(A,B)$ one has

$$\psi(f)\cdot t(A) = (-1)^{ks}t(B)\cdot \varphi(f). \tag{4.3}$$

On each $A \in \mathcal{A}$, the differential of the transformation t is equal to (dt)(A) (one easily checks that this is well defined). Thus, the closed transformations of degree zero are the DG transformations of DG functors. A similar definition gives us the DG category consisting of the contravariant DG functors $Fun_{DG}(\mathcal{A}^0,\mathcal{B})=Fun_{DG}(\mathcal{A},\mathcal{B}^0)$ from \mathcal{A} to \mathcal{B} .

Перетворення

Given DG categories $\mathcal A$ and $\mathcal B$, the collection of covariant DG functors $\mathcal A\to\mathcal B$ is itself the collection of objects of a DG category, which we denote by $Fun_{DG}(\mathcal A,\mathcal B)$. Namely, let φ and ψ be two DG functors. Put $Hom^k(\varphi,\psi)$ equal to the set of natural transformations $t:\varphi^{gr}\to\psi^{gr}[k]$ of graded functors from $\mathcal A^{gr}$ to $\mathcal B^{gr}$. This means that for any morphism $f\in Hom_{\mathcal A}^s(A,B)$ one has

$$\psi(f) \cdot t(A) = (-1)^{ks} t(B) \cdot \phi(f). \tag{4.3}$$

On each $A \in \mathcal{A}$, the differential of the transformation t is equal to (dt)(A) (one easily checks that this is well defined). Thus, the closed transformations of degree zero are the DG transformations of DG functors. A similar definition gives us the DG category consisting of the contravariant DG functors $Fun_{DG}(\mathcal{A}^0,\mathcal{B})=Fun_{DG}(\mathcal{A},\mathcal{B}^0)$ from \mathcal{A} to \mathcal{B} .

$$\phi(A) \xrightarrow{\phi(f)} \phi(B) \qquad t = \{t(A) \mid A \in \mathsf{Ob} \mathscr{A}\}$$

$$t(A) \downarrow \qquad (-1)^{tf} \qquad \downarrow t(B) \qquad t(A) \in \mathscr{B}(\phi(A), \psi(A))^k$$

$$\psi(A) \xrightarrow{\psi(f)} \psi(B) \qquad \forall f \in \mathscr{A}(A, B)^s$$

Modulo size issues, the category V-Cat is closed: given V-categories \mathcal{D} and \mathcal{M} where \mathcal{D} is small, define a \mathcal{V} -category $\mathcal{M}^{\underline{\mathcal{D}}}$ whose objects are \mathcal{V} -functors $F,G:\mathcal{D} \Rightarrow \mathcal{M}$ and

$$\underline{\mathcal{D}}$$
 is small, define a \mathcal{V} -category $\underline{\mathcal{M}}^{\underline{\mathcal{D}}}$ whose objects are \mathcal{V} -functors $F,G:\underline{\mathcal{D}} \rightrightarrows \underline{\mathcal{M}}$ and whose hom-objects, taking inspiration from 1.2.8 are defined by the formula

(7.3.2)
$$\underline{\mathcal{M}}^{\mathcal{D}}(F,G) = \int_{d \in \mathcal{D}} \underline{\mathcal{M}}(Fd,Gd).$$

Modulo size issues, the category \mathcal{V} -Cat is closed: given \mathcal{V} -categories $\underline{\mathcal{D}}$ and $\underline{\mathcal{M}}$ where $\underline{\mathcal{D}}$ is small, define a \mathcal{V} -category $\underline{\mathcal{M}}^{\underline{\mathcal{D}}}$ whose objects are \mathcal{V} -functors $F,G:\underline{\mathcal{D}} \Rightarrow \underline{\mathcal{M}}$ and whose hom-objects, taking inspiration from $\boxed{1.2.8}$ are defined by the formula

(7.3.2)
$$\underline{\mathcal{M}}^{\underline{\mathcal{D}}}(F,G) = \int_{de\mathcal{D}} \underline{\mathcal{M}}(Fd,Gd).$$

the formula for the enriched end defining the hom-object of V-natural transformations is the equalizer

(7.3.3)
$$\int_{\underline{\mathcal{D}}} \underline{\mathcal{M}}(Fd, Gd) := eq \left(\prod_{d} \underline{\mathcal{M}}(Fd, Gd) \Rightarrow \prod_{d,d'} \underline{\mathcal{V}}(\underline{\mathcal{D}}(d, d'), \underline{\mathcal{M}}(Fd, Gd')) \right).$$

The component of the top arrow indexed by the ordered pair d, d' projects to $\underline{\mathcal{M}}(Fd,Gd)$ and composes in the second coordinate with $\underline{\mathcal{D}}(d,d')$. The analogous component of the bottom arrow projects to $\underline{\mathcal{M}}(Fd',Gd')$ and precomposes in the first coordinate with $\underline{\mathcal{D}}(d,d')$.

Modulo size issues, the category \mathcal{V} -Cat is closed: given \mathcal{V} -categories $\underline{\mathcal{D}}$ and $\underline{\mathcal{M}}$ where $\underline{\mathcal{D}}$ is small, define a \mathcal{V} -category $\underline{\mathcal{M}}^{\underline{\mathcal{D}}}$ whose objects are \mathcal{V} -functors $F,G:\underline{\mathcal{D}} \rightrightarrows \underline{\mathcal{M}}$ and whose hom-objects, taking inspiration from 1.2.8 are defined by the formula

(7.3.2)
$$\underline{\mathcal{M}}^{\underline{\mathcal{D}}}(F,G) = \int_{d\in\mathcal{D}} \underline{\mathcal{M}}(Fd,Gd).$$

the formula for the enriched end defining the hom-object of ${\mathcal V}$ -natural transformations is the equalizer

(7.3.3)
$$\int_{\underline{\mathcal{D}}} \underline{\mathcal{M}}(Fd, Gd) := eq \left(\prod_{d} \underline{\mathcal{M}}(Fd, Gd) \Rightarrow \prod_{d,d'} \underline{\mathcal{V}}(\underline{\mathcal{D}}(d, d'), \underline{\mathcal{M}}(Fd, Gd')) \right).$$

The component of the top arrow indexed by the ordered pair d, d' projects to $\underline{\mathcal{M}}(Fd,Gd)$ and composes in the second coordinate with $\underline{\mathcal{D}}(d,d')$. The analogous component of the bottom arrow projects to $\underline{\mathcal{M}}(Fd',Gd')$ and precomposes in the first coordinate with $\underline{\mathcal{D}}(d,d')$.

Верхня стрілка в (7.3.3) – це

$$\prod_{I} \underline{\mathscr{M}}(Fd,Gd) \xrightarrow{pr_{d}} \underline{\mathscr{M}}(Fd,Gd) \to \underline{\mathscr{V}}^{I}(\underline{\mathscr{D}}(d,d'),\underline{\mathscr{M}}(Fd,Gd')),$$

де останній морфізм приходить з парування

$$\underline{\mathscr{M}}(\mathsf{Fd},\mathsf{Gd}) \otimes \underline{\mathscr{D}}(\mathsf{d},\mathsf{d}') \xrightarrow{1 \otimes \mathsf{G}} \underline{\mathscr{M}}(\mathsf{Fd},\mathsf{Gd}) \otimes \underline{\mathscr{M}}(\mathsf{Gd},\mathsf{Gd}') \xrightarrow{\cdot} \underline{\mathscr{M}}(\mathsf{Fd},\mathsf{Gd}').$$

Нижня стрілка в (7.3.3) – це

$$\prod \underline{\mathscr{M}}(Fd,Gd) \xrightarrow{pr_{d'}} \underline{\mathscr{M}}(Fd',Gd') \to \underline{\mathscr{V}}^I(\underline{\mathscr{D}}(d,d'),\underline{\mathscr{M}}(Fd,Gd')),$$

де останній морфізм приходить з композиції

$$\underline{\mathscr{M}}(Fd', Gd') \otimes \underline{\mathscr{D}}(d, d') \longrightarrow \underline{\mathscr{M}}(Fd, Gd')$$

$$\downarrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\underline{\mathscr{D}}(d, d') \otimes \underline{\mathscr{M}}(Fd', Gd') \xrightarrow{F \otimes 1} \underline{\mathscr{M}}(Fd, Fd') \otimes \underline{\mathscr{M}}(Fd', Gd')$$

тоді як діагональній стрілці відповідало б

$$\underline{\mathscr{M}}(\mathsf{Fd}',\mathsf{Gd}') \to \underline{\mathscr{V}}^r(\underline{\mathscr{D}}(\mathsf{d},\mathsf{d}'),\underline{\mathscr{M}}(\mathsf{Fd},\mathsf{Gd}')).$$

dg-модулі над **dg**-категорією

We denote the DG category $\operatorname{Fun}_{\operatorname{DG}}(\mathcal{B},\operatorname{DG}(k))$ by \mathcal{B} -mod and call it the category of DG \mathcal{B} -modules. There is a natural covariant DG functor $h:\mathcal{A}\to\mathcal{A}^0$ -mod (the Yoneda embedding) defined by $h^A(B):=\operatorname{Hom}_{\mathcal{A}}(B,A)$. As in the "classical" case one verifies that the functor h is full and faithful, that is,

$$\operatorname{Hom}_{\mathcal{A}}(A, A') = \operatorname{Hom}_{\mathcal{A}^{\circ} \operatorname{-mod}}(h^{A}, h^{A'}). \tag{4.4}$$

Moreover, for any $F \in A^0$ -mod, $A \in A$,

$$Hom_{\mathcal{A}^{0}-mod}\left(h^{A},F\right)=F(A). \tag{4.5}$$

The \mathcal{A}^0 -DG-modules h^A , $A\in\mathcal{A}$, are called *free*. An \mathcal{A}^0 -DG-module F is called *semifree* if it has a filtration

$$0 = F_0 \subset F_1 \subset \dots = F \tag{4.6}$$

such that F_{i+1}/F_i is isomorphic to a direct sum of shifted free \mathcal{A}^0 -DG-modules $h^A[\mathfrak{n}], \mathfrak{n} \in \mathbb{Z}$. The full subcategory of semifree \mathcal{A}^0 -DG-modules is denoted by $SF(\mathcal{A})$.

An \mathcal{A}^0 -DG-module F is called acyclic if the complex F(A) is acyclic for all $A \in \mathcal{A}$. Let $D(\mathcal{A})$ denote the *derived category* of \mathcal{A}^0 -DG-modules, that is, $D(\mathcal{A})$ is the Verdier quotient of the homotopy category $Ho(\mathcal{A}^0$ -mod) by the subcategory of acyclic DG-modules.

dg-категорії з формальним зсувом

Given a DG category \mathcal{A} , one can associate to it a triangulated category \mathcal{A}^{tr} [5]. It is defined as the homotopy category of a certain DG category \mathcal{A}^{pre-tr} . The idea of the definition of \mathcal{A}^{pre-tr} is to formally add cones of all morphisms, cones of morphisms between cones, and so forth.

First, we need to clarify the notion of a "formal shift" of an object.

Definition 4.5. Define the DG category \bar{A} as follows:

$$Ob \bar{\mathcal{A}} = \{ A[n] \mid A \in Ob \mathcal{A}, \ n \in \mathbb{Z} \}, \tag{4.12}$$

and define

$$\operatorname{Hom}_{\bar{\mathcal{A}}}\left(A[k],B[n]\right) = \operatorname{Hom}_{\mathcal{A}}(A,B)[n-k] \tag{4.13}$$

as graded vector spaces. If $f \in \operatorname{Hom}_{\mathcal{A}}(A,B)$ is considered as an element of $\operatorname{Hom}_{\bar{\mathcal{A}}}(A[k],B[n])$ under the above identification, then the differentials are related by the formula

$$d_{\bar{A}}(f) = (-1)^n d_{\bar{A}}(f). \tag{4.14}$$

Notice, for example, that the differential in $\operatorname{Hom}_{\bar{\mathcal{A}}}(A[1],B[1])$ is equal to minus the differential in $\operatorname{Hom}_{\mathcal{A}}(A,B)$.

Алгебра в категорії **dg**-категорій

The category of differential graded categories \mathbf{dg} - \mathscr{C} at equipped with the tensor product \boxtimes is a symmetric monoidal category. Let us study an algebra in this category, which will be used to define the functor of shifts. Let \mathscr{Z} be a differential graded quiver with $\mathrm{Ob}\,\mathscr{Z}=\mathbb{Z},\,\mathscr{Z}(m,n)=\Bbbk[n-m]$ and zero differential.

Алгебра в категорії **dg**-категорій

The category of differential graded categories $\operatorname{dg-\mathscr{C}at}$ equipped with the tensor product \boxtimes is a symmetric monoidal category. Let us study an algebra in this category, which will be used to define the functor of shifts. Let $\mathscr Z$ be a differential graded quiver with $\operatorname{Ob}\mathscr Z=\mathbb Z$, $\mathscr Z(m,n)=\Bbbk[n-m]$ and zero differential. Consider an arbitrary \Bbbk -linear graded category structure of $\mathscr Z$ given by isomorphisms

$$\mu' = \phi'(I, m, n) : \mathscr{Z}(I, m) \otimes_{\mathbb{k}} \mathscr{Z}(m, n)$$

$$= \mathbb{k}[m - I] \otimes \mathbb{k}[n - m] \to \mathbb{k}[n - I] = \mathscr{Z}(I, n),$$

$$1s^{m-I} \otimes 1s^{n-m} \mapsto \phi'(I, m, n)s^{n-I}.$$

Алгебра в категорії **dg**-категорій

The category of differential graded categories $\operatorname{dg-\mathscr{C}at}$ equipped with the tensor product \boxtimes is a symmetric monoidal category. Let us study an algebra in this category, which will be used to define the functor of shifts. Let $\mathscr Z$ be a differential graded quiver with $\operatorname{Ob}\mathscr Z=\mathbb Z$, $\mathscr Z(m,n)=\Bbbk[n-m]$ and zero differential. Consider an arbitrary \Bbbk -linear graded category structure of $\mathscr Z$ given by isomorphisms

$$\mu' = \phi'(l, m, n) : \mathscr{Z}(l, m) \otimes_{\mathbb{k}} \mathscr{Z}(m, n)$$

$$= \mathbb{k}[m-l] \otimes \mathbb{k}[n-m] \to \mathbb{k}[n-l] = \mathscr{Z}(l, n),$$

$$1s^{m-l} \otimes 1s^{n-m} \mapsto \phi'(l, m, n)s^{n-l}.$$

It is specified by a function $\phi': \mathbb{Z}^3 \to \mathbb{k}^{\times}$ with values in the multiplicative group \mathbb{k}^{\times} . The associativity of composition

$$(1 \otimes \mu')\mu' = (\mu' \otimes 1)\mu' : \mathscr{Z}(k,l) \otimes \mathscr{Z}(l,m) \otimes \mathscr{Z}(m,n) \to \mathscr{Z}(k,n)$$

implies that ϕ' is a cycle:

$$\phi'(l,m,n)\cdot\phi'(k,l,n)=\phi'(k,l,m)\cdot\phi'(k,m,n).$$

$$\phi'(I, m, n) = \xi(I, m) \cdot \xi(m, n) \cdot \xi(I, n)^{-1} \tag{1}$$

of a function
$$\xi: \mathbb{Z}^2 \to \mathbb{k}^{\times}$$
, namely, $\xi(I,m) = \phi'(0,I,m)$.

$$\phi'(l, m, n) = \xi(l, m) \cdot \xi(m, n) \cdot \xi(l, n)^{-1}$$
 (1)

of a function $\xi: \mathbb{Z}^2 \to \mathbb{k}^{\times}$, namely, $\xi(I, m) = \phi'(0, I, m)$.

The graded quiver automorphism $\xi: \mathscr{Z} \to \mathscr{Z}, n \mapsto n$, $\xi(m,n): \mathscr{Z}(m,n) \to \mathscr{Z}(m,n)$ equips \mathscr{Z} with another (isomorphic) category structure (\mathscr{Z},μ) with $\phi(l,m,n)=1$, so that $\xi: (\mathscr{Z},\mu') \to (\mathscr{Z},\mu)$ is a category isomorphism.

$$\phi'(l, m, n) = \xi(l, m) \cdot \xi(m, n) \cdot \xi(l, n)^{-1}$$
 (1)

of a function $\xi: \mathbb{Z}^2 \to \mathbb{k}^{\times}$, namely, $\xi(I, m) = \phi'(0, I, m)$.

The graded quiver automorphism $\xi: \mathcal{Z} \to \mathcal{Z}, n \mapsto n$, $\xi(m,n): \mathscr{Z}(m,n) \to \mathscr{Z}(m,n)$ equips \mathscr{Z} with another (isomorphic) category structure (\mathcal{Z}, μ) with $\phi(I, m, n) = 1$, so that $\xi: (\mathscr{Z}, \mu') \to (\mathscr{Z}, \mu)$ is a category isomorphism. In the following we shall consider only composition μ in \mathscr{Z}

specified by the function $\phi(I, m, n) = 1$. The elements $1 \in \mathbb{k} = \mathscr{Z}(n,n)$ are identity morphisms of \mathscr{Z} .

$$\phi'(I, m, n) = \xi(I, m) \cdot \xi(m, n) \cdot \xi(I, n)^{-1}$$
(1)

of a function $\xi: \mathbb{Z}^2 \to \mathbb{k}^{\times}$, namely, $\xi(I,m) = \phi'(0,I,m)$. The graded quiver automorphism $\xi: \mathscr{Z} \to \mathscr{Z}$, $n \mapsto n$, $\xi(m,n): \mathscr{Z}(m,n) \to \mathscr{Z}(m,n)$ equips \mathscr{Z} with another (isomorphic) category structure (\mathscr{Z},μ) with $\phi(I,m,n) = 1$, so that $\xi: (\mathscr{Z},\mu') \to (\mathscr{Z},\mu)$ is a category isomorphism.

In the following we shall consider only composition μ in \mathscr{Z}

specified by the function $\phi(l, m, n) = 1$. The elements $1 \in \mathbb{k} = \mathcal{Z}(n, n)$ are identity morphisms of \mathcal{Z} .

We equip the object \mathscr{Z} of $(\mathbf{dg} - \mathscr{C}at, \boxtimes)$ with an algebra structure, given by multiplication – differential graded functor

$$\otimes_{\psi} : \mathscr{Z} \boxtimes \mathscr{Z} \to \mathscr{Z}, \qquad m \times n \mapsto m + n,$$

$$\otimes_{\psi} = \psi(n, m, k, l) : (\mathscr{Z} \boxtimes \mathscr{Z})(n \times m, k \times l)$$

$$= \mathscr{Z}(n, k) \otimes \mathscr{Z}(m, l) \to \mathscr{Z}(n + m, k + l),$$

$$1s^{k-n} \otimes 1s^{l-m} \mapsto \psi(n, m, k, l)s^{k+l-n-m}.$$

We assume that the function $\psi : \mathbb{Z}^4 \to \mathbb{k}$ takes values in \mathbb{k}^{\times} .

Being a functor, \otimes_{ψ} has to satisfy the equation:

$$\psi(a,b,c,d)\cdot\psi(c,d,e,f)=(-1)^{(d-b)(e-c)}\psi(a,b,e,f).$$

It specifies the boundary of the 2-cochain $\psi: \mathbb{Z}^4 \to \mathbb{k}^{\times}$. Generic solution to this equation is

$$\psi(a, b, c, d) = (-1)^{c(b-d)} \chi(a, b) \cdot \chi(c, d)^{-1}$$
 (2)

for some function $\chi: \mathbb{Z}^2 \to \mathbb{k}^{\times}$ (take $\chi(a,b) = \psi(a,b,0,0)$).

Being a functor, \otimes_{ψ} has to satisfy the equation:

$$\psi(a,b,c,d) \cdot \psi(c,d,e,f) = (-1)^{(d-b)(e-c)} \psi(a,b,e,f).$$

It specifies the boundary of the 2-cochain $\psi: \mathbb{Z}^4 \to \mathbb{k}^{\times}$. Generic solution to this equation is

$$\psi(a,b,c,d) = (-1)^{c(b-d)} \chi(a,b) \cdot \chi(c,d)^{-1}$$
 (2)

for some function $\chi: \mathbb{Z}^2 \to \mathbb{k}^{\times}$ (take $\chi(a,b) = \psi(a,b,0,0)$). Associativity of the algebra $(\mathscr{Z}, \otimes_{\psi})$

is expressed by the equation

$$\psi(a,b,d,e)\cdot\psi(a+b,c,d+e,f)=\psi(b,c,e,f)\cdot\psi(a,b+c,d,e+f).$$

It means that the function $\overline{\psi}: \mathbb{Z}^2 \times \mathbb{Z}^2 \to \mathbb{k}^{\times}$. $\overline{\psi}(a,b,c,d) = \psi(a,c,b,d)$ is a 2-cocycle on the group \mathbb{Z}^2 . For a graded category \mathscr{Z} with multiplication (1) related to (\mathscr{Z},μ) via the category isomorphism $\xi: (\mathscr{Z}, \mu') \to (\mathscr{Z}, \mu), n \mapsto n$, $\xi(m,n): \mathscr{Z}(m,n) \to \mathscr{Z}(m,n)$, we would get the 2-cocycle

The category isomorphism
$$\xi: (\mathscr{Z}, \mu') \to (\mathscr{Z}, \mu), \ n \mapsto n$$
, $\xi(m,n): \mathscr{Z}(m,n) \to \mathscr{Z}(m,n)$, we would get the 2-cocycle $\overline{\psi}'(a,b,c,d) = \xi(a,b) \cdot \xi(c,d) \cdot \overline{\psi}(a,b,c,d) \cdot \xi(a+c,b+d)^{-1}$,

the category isomorphism
$$\xi: (\mathscr{Z}, \mu') \to (\mathscr{Z}, \mu), \ n \mapsto n$$
, $\xi(m,n): \mathscr{Z}(m,n) \to \mathscr{Z}(m,n)$, we would get the 2-cocycle $\overline{\psi}'(a,b,c,d) = \xi(a,b) \cdot \xi(c,d) \cdot \overline{\psi}(a,b,c,d) \cdot \xi(a+c,b+d)^{-1}$,

cohomologous to $\overline{\psi}$.

It means that the function $\overline{\psi}: \mathbb{Z}^2 \times \mathbb{Z}^2 \to \mathbb{k}^{\times}$, $\overline{\psi}(a,b,c,d) = \psi(a,c,b,d)$ is a 2-cocycle on the group \mathbb{Z}^2 . For a graded category \mathscr{Z} with multiplication (1) related to (\mathscr{Z},μ) via the category isomorphism $\xi: (\mathscr{Z},\mu') \to (\mathscr{Z},\mu), \ n \mapsto n$, $\xi(m,n): \mathscr{Z}(m,n) \to \mathscr{Z}(m,n)$, we would get the 2-cocycle

$$\overline{\psi}'(a,b,c,d) = \xi(a,b) \cdot \xi(c,d) \cdot \overline{\psi}(a,b,c,d) \cdot \xi(a+c,b+d)^{-1},$$

cohomologous to $\overline{\psi}$.

Plugging (2) into equation for ψ , we reduce the latter to

$$\chi(a,b) \cdot \chi(a,b+c)^{-1} \cdot \chi(a+b,c) \cdot \chi(b,c)^{-1}$$

= $\chi(d,e) \cdot \chi(d,e+f)^{-1} \cdot \chi(d+e,f) \cdot \chi(e,f)^{-1}$.

The common value of the left and right hand sides does not depend on the arguments $a, b, c, d, e, f \in \mathbb{Z}$. Setting d = e = f = 0 we find that this constant equals 1. Thus, $\chi : \mathbb{Z}^2 \to \mathbb{k}^\times$ is a 2-cocycle on the group \mathbb{Z} with values in \mathbb{k}^\times . Since \mathbb{Z} is a free group, its cohomology group $H^2(\mathbb{Z}, \mathbb{k}^\times)$ vanishes.

Therefore, the cocycle χ has the form

$$\chi(a,b)=\lambda(a)\cdot\lambda(b)\cdot\lambda(a+b)^{-1}$$
tion $\lambda:\mathbb{Z}\to\mathbb{k}^{\times}$. The corresponding function

for some function $\lambda: \mathbb{Z} \to \mathbb{k}^{\times}$. The corresponding function $\psi: \mathbb{Z}^4 \to \mathbb{k}^{\times}$ is given by the formula

$$\psi_{\lambda}(a,b,c,d)$$

$$\psi_{\lambda}(a,b,c,a) = (-1)^{c(b-d)}\lambda(a)\cdot\lambda(b)\cdot\lambda(a+b)^{-1}\cdot\lambda(c)^{-1}\cdot\lambda(d)^{-1}\cdot\lambda(c+d).$$

Therefore, the cocycle χ has the form

$$\chi(a,b) = \lambda(a) \cdot \lambda(b) \cdot \lambda(a+b)^{-1}$$

for some function $\lambda: \mathbb{Z} \to \mathbb{k}^{\times}$. The corresponding function $\psi: \mathbb{Z}^4 \to \mathbb{k}^{\times}$ is given by the formula

$$\psi_{\lambda}(a,b,c,d) = (-1)^{c(b-d)}\lambda(a)\cdot\lambda(b)\cdot\lambda(a+b)^{-1}\cdot\lambda(c)^{-1}\cdot\lambda(d)^{-1}\cdot\lambda(c+d).$$

Denote the multiplication functor $\otimes_{\psi_{\lambda}}$ also by \otimes^{λ} . Define an automorphism of the graded category \mathscr{Z} as $\overline{\lambda}:\mathscr{Z}\to\mathscr{Z},\ n\mapsto n,$ $\overline{\lambda}=\lambda(m)^{-1}\cdot\lambda(n):\mathscr{Z}(m,n)\to\mathscr{Z}(m,n).$ $\overline{\lambda}:(\mathscr{Z},\otimes^1)\to(\mathscr{Z},\otimes^{\lambda})$ is an algebra isomorphism, where the first algebra uses

$$\lambda_1(a) = 1,$$
 $\psi_1(a, b, c, d) = (-1)^{c(b-d)}.$

Therefore, the cocycle χ has the form

$$\chi(a,b) = \lambda(a) \cdot \lambda(b) \cdot \lambda(a+b)^{-1}$$

for some function $\lambda: \mathbb{Z} \to \mathbb{k}^{\times}$. The corresponding function $\psi: \mathbb{Z}^4 \to \mathbb{k}^{\times}$ is given by the formula

$$\psi_{\lambda}(a,b,c,d) = (-1)^{c(b-d)}\lambda(a)\cdot\lambda(b)\cdot\lambda(a+b)^{-1}\cdot\lambda(c)^{-1}\cdot\lambda(d)^{-1}\cdot\lambda(c+d).$$

Denote the multiplication functor $\otimes_{\psi_{\lambda}}$ also by \otimes^{λ} . Define an automorphism of the graded category \mathscr{Z} as $\overline{\lambda}: \mathscr{Z} \to \mathscr{Z}, n \mapsto n$, $\overline{\lambda} = \lambda(m)^{-1} \cdot \lambda(n): \mathscr{Z}(m,n) \to \mathscr{Z}(m,n)$. $\overline{\lambda}: (\mathscr{Z}, \otimes^1) \to (\mathscr{Z}, \otimes^{\lambda})$ is an algebra isomorphism, where the first algebra uses

$$\lambda_1(a) = 1,$$
 $\psi_1(a, b, c, d) = (-1)^{c(b-d)}.$

The multiplicative cocycle $\overline{\psi}_1 \in Z^2(\mathbb{Z}^2, \mathbb{k}^{\times})$ comes via the homomorphism $\mathbb{Z}/2 \to \mathbb{k}^{\times}$, $a \mapsto (-1)^a$, from the additive cocycle $\mathbb{Z}^2 \times \mathbb{Z}^2 \to \mathbb{Z}/2$, $(a, c, b, d) \mapsto c(b - d)$ (mod 2), which represents the only non-trivial element of the cohomology group $H^2(\mathbb{Z}^2, \mathbb{Z}/2) = \mathbb{Z}/2$ with values in the trivial \mathbb{Z}^2 -module $\mathbb{Z}/2$.

In the following we shall consider only multiplication $\otimes_{\mathscr{Z}} = \otimes^1$ in \mathscr{Z} specified by the function $\psi_1(a,b,c,d) = (-1)^{c(b-d)}$.

in
$$\mathscr{Z}$$
 specified by the function $\psi_1(a,b,c,d) = (-1)^{c(b-d)}$. Clearly, the algebra $(\mathscr{Z}, \otimes_{\mathscr{Z}})$ is unital with the unit $\eta_{\mathscr{Z}}: \mathbb{1} \to \mathscr{Z}, *\mapsto 0$, id: $\mathbb{1}(*,*) = \mathbb{k} \to \mathscr{Z}(0,0)$.

Функтор зсувів

Given a **dg**-category \mathscr{A} , we produce another one $\mathscr{A}^{[l]} = \mathscr{A} \boxtimes \mathscr{Z}$, obtained by adding formal shifts of objects. The set of objects is

$$\mathsf{Ob}\,\mathscr{A}^{[]} = \{X[n] = (X,n) \mid X \in \mathsf{Ob}\,\mathscr{A}, n \in \mathbb{Z}\} = \mathsf{Ob}\,\mathscr{A} \times \mathbb{Z}.$$

Функтор зсувів

Given a **dg**-category \mathscr{A} , we produce another one $\mathscr{A}^{[l]} = \mathscr{A} \boxtimes \mathscr{Z}$, obtained by adding formal shifts of objects. The set of objects is

$$\mathsf{Ob}\,\mathscr{A}^{[]} = \{X[n] = (X,n) \mid X \in \mathsf{Ob}\,\mathscr{A}, n \in \mathbb{Z}\} = \mathsf{Ob}\,\mathscr{A} \times \mathbb{Z}.$$

The graded &-module of morphisms is $\mathscr{A}^{[l]}(X[n],Y[m])=\mathscr{A}(X,Y)\otimes \&[m-n]$. We identify it with $\mathscr{A}(X,Y)[m-n]$. Given a morphism of **dg**-categories $f:\mathscr{A}\to\mathscr{B}$, we define another one $f^{[l]}=f\boxtimes 1_{\mathscr{Z}}:\mathscr{A}^{[l]}\to\mathscr{B}^{[l]}$. On objects it acts as $\mathsf{Ob}\,f^{[l]}:X[n]\mapsto (Xf)[n]$. Commutative diagram

$$\mathscr{A}(X,Y)[m-n] \xrightarrow{s^{n-m}} \mathscr{A}(X,Y) \otimes \mathbb{k} \xrightarrow{1 \otimes s^{m-n}} \mathscr{A}(X,Y) \otimes \mathscr{Z}(n,m)$$

$$\downarrow^{f[m-n]} \downarrow \qquad \qquad \downarrow^{f \otimes 1} \qquad \qquad \downarrow^{f \otimes 1}$$

$$\mathscr{B}^{[]}(Xf,Yf)[m-n] \xrightarrow{s^{n-m}} \mathscr{B}(Xf,Yf) \otimes \mathbb{k} \xrightarrow{1 \otimes s^{m-n}} \mathscr{B}(Xf,Yf) \otimes \mathscr{Z}(n,m)$$

describes the action of $-\mathbb{I}$ on morphisms in another presentation:

$$f^{[m-n]} = s^{n-m} f s^{m-n} : \mathscr{A}(X,Y)[m-n] \to \mathscr{B}(Xf,Yf)[m-n].$$

dg-категорії замкнені відносно зсувів

Диференціал на $\mathscr{A}^{[]}$ обчислюється як

$$d^{[]} = (-1)^{m-n} s^{n-m} ds^{m-n} : \mathscr{A}^{[]}(X[n], Y[m]) = \mathscr{A}(X, Y)[m-n]$$

$$\to \mathscr{A}(X, Y)[m-n] = \mathscr{A}^{[]}(X[n], Y[m]).$$

dg-категорії замкнені відносно зсувів

Диференціал на $\mathscr{A}^{[]}$ обчислюється як

$$d^{[]} = (-1)^{m-n} s^{n-m} ds^{m-n} : \mathscr{A}^{[]}(X[n], Y[m]) = \mathscr{A}(X, Y)[m-n]$$
$$\to \mathscr{A}(X, Y)[m-n] = \mathscr{A}^{[]}(X[n], Y[m]).$$

Композиція для $\mathscr{A}^{[]}$ обчислюється як

$$m^{[]} = (s^{p-n} \otimes s^{k-p})^{-1} m s^{k-n} : \mathscr{A}^{[]}(X[n], Y[p]) \otimes \mathscr{A}^{[]}(Y[p], Z[k]) =$$
$$\mathscr{A}(X, Y)[p-n] \otimes \mathscr{A}(Y, Z)[k-p] \to \mathscr{A}(X, Z)[k-n] = \mathscr{A}^{[]}(X[n], Z[k]).$$

dg-категорії замкнені відносно зсувів

Диференціал на $\mathscr{A}^{[]}$ обчислюється як

$$d^{[]} = (-1)^{m-n} s^{n-m} ds^{m-n} : \mathscr{A}^{[]}(X[n], Y[m]) = \mathscr{A}(X, Y)[m-n]$$
$$\to \mathscr{A}(X, Y)[m-n] = \mathscr{A}^{[]}(X[n], Y[m]).$$

Композиція для $\mathscr{A}^{[]}$ обчислюється як

$$m^{[]} = (s^{p-n} \otimes s^{k-p})^{-1} m s^{k-n} : \mathscr{A}^{[]}(X[n], Y[p]) \otimes \mathscr{A}^{[]}(Y[p], Z[k]) =$$
$$\mathscr{A}(X, Y)[p-n] \otimes \mathscr{A}(Y, Z)[k-p] \to \mathscr{A}(X, Z)[k-n] = \mathscr{A}^{[]}(X[n], Z[k]).$$

Definition

We say that a **dg**-category $\mathscr C$ is closed under shifts if every object X[n] of $\mathscr C^{[]}$ is homotopy isomorphic in $\mathscr C^{[]}$ to some object $Y[0], Y = [X, n] \in \mathsf{Ob}\mathscr C$.

- Yuri Bespalov, V. V. Lyubashenko, and Oleksandr Manzyuk, Pretriangulated A_∞-categories, Proceedings of the Institute of Mathematics of NAS of Ukraine. Mathematics and its Applications, vol. 76, Institute of Mathematics of NAS of Ukraine, Kyiv, 2008, http://www.math.ksu.edu/~lub/papers.html. §10.1
- Alexei I. Bondal, Michael Larsen, and Valery A. Lunts, Grothendieck ring of pretriangulated categories, Int. Math. Res. Not. (2004), no. 29, 1461–1495, arXiv:math.AG/0401009 §4.1, §4.3
- Fosco Loregian, Coend calculus, 2015, arXiv:1501.02503 §1.4.1

 Jacob Lurie, Higher algebra, 2017, work in progress, §1.3.1.1
- V. V. Lyubashenko, Category of A_∞-categories, Homology, Homotopy Appl. 5 (2003), no. 1, 1–48, arXiv:math.CT/0210047 http://intlpress.com/HHA/v5/n1/a1/ Theorem 8.8

Emily Riehl, Categorical homotopy theory, New Mathematical Monographs, vol. 24, Cambridge University

Mathematical Monographs, vol. 24, Cambridge University Press, Cambridge, 2014, http://gen.lib.rus.ec/book/index.php?md5=d20d520ad0551d9e0cf2072b168aac1c §3.3.1, §3.5.1