2. Триангульовані категорії. Навколо похідних категорій

Володимир Любашенко

11 лютого 2021

Властивості $\mathbf{K}(\mathscr{C})$ як триангульованої категорії

Proposition 1.4.4. The collection of distinguished triangles in $K(\mathscr{C})$ satisfies the following properties, (TR 0)–(TR 5).

- (TR 0) A triangle isomorphic to a distinguished triangle is distinguished.
- (TR 1) For any $X \in \text{Ob}(\mathbf{K}(\mathscr{C}))$, $X \xrightarrow{\text{id}_X} X \longrightarrow 0 \longrightarrow X[1]$ is a distinguished triangle.
- (TR 2) Any $f: X \to Y$ in $K(\mathscr{C})$ can be embedded in a distinguished triangle $X \xrightarrow{f} Y \to Z \to X[1]$.
- (TR 3) $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$ is a distinguished triangle if and only if $Y \xrightarrow{g} Z \xrightarrow{h} X[1] \xrightarrow{-f[1]} Y[1]$ is a distinguished triangle.
- (TR 4) Given two distinguished triangles $X \xrightarrow{f} Y \to Z \to X[1]$ and $X' \xrightarrow{f'} Y' \to Z' \to X'[1]$, a commutative diagram

can be embedded in a morphism of triangles (not necessarily unique).

(TR 5) (octahedral axiom). Suppose given distinguished triangles:

$$X \xrightarrow{f} Y \longrightarrow Z' \longrightarrow X[1] ,$$

$$Y \xrightarrow{g} Z \longrightarrow X' \longrightarrow Y[1] ,$$

$$X \xrightarrow{g \circ f} Z \longrightarrow Y' \longrightarrow X[1] ,$$
exists a distinguished triangle

 $Z' \to Y' \to X' \to Z' \lceil 1 \rceil$

then there exists a distinguished triangle

such that the following diagram is commutative:

Доведення властивостей $\mathbf{K}(\mathscr{C})$ як трианг. категорії

Proof. The properties (TR 0) and (TR 2) are obvious, and (TR 3) follows from Lemma 1.4.2.

Since the mapping cone of $f: 0 \to X$ is X, the triangle $0 \longrightarrow X \xrightarrow{\operatorname{id}_X} X \longrightarrow 0[1]$ is distinguished. Applying (TR 3) we get (TR 1). Let us prove (TR 4). We may assume that $X \xrightarrow{f} Y \to Z \to X[1]$ and $X' \xrightarrow{f'} Y' \to Z' \to X'[1]$ are $X \xrightarrow{f} Y \xrightarrow{\alpha(f')} M(f') \xrightarrow{\beta(f')} X'[1]$, respectively. We shall construct a morphism $w: M(f) \to M(f')$ such that:

(1.4.4)
$$\begin{cases} w \circ \alpha(f) = \alpha(f') \circ v , \\ u[1] \circ \beta(f) = \beta(f') \circ w . \end{cases}$$

By the definition of $K(\mathscr{C})$, there exists $s^n: X^n \to Y'^{n-1}$ such that $v^n \circ f^n - f'^n \circ u^n = s^{n+1} \circ d_X^n + d_Y^{n-1} \circ s^n$. We define $w^n: M(f)^n = X^{n+1} \oplus Y^n \to M(f')^n = X'^{n+1} \oplus Y'^n$ by:

$$w^n = \begin{pmatrix} u^{n+1} & 0 \\ s^{n+1} & v^n \end{pmatrix} .$$

Then a direct calculation shows that w is a morphism of complexes and satisfies (1.4.4).

$$w = \begin{pmatrix} u[1] & 0 \\ s \circ \sigma^{-1} & v \end{pmatrix}.$$

Let us prove (TR 5). We may assume Z' = M(f), X' = M(g) and Y' = $M(g \circ f)$. Let us define $u: Z' \to Y'$ and $v: Y' \to X'$ by:

Let us prove (1R 3). We may assume
$$Z = M(f)$$
, $X = M(g)$ and $Y = M(g \circ f)$. Let us define $u: Z' \to Y'$ and $v: Y' \to X'$ by:
$$u^n: X^{n+1} \oplus Y^n \to X^{n+1} \oplus Z^n , \qquad u = \begin{pmatrix} \mathrm{id}_{X^{n+1}} & 0 \\ 0 & g^n \end{pmatrix},$$

$$v^n: X^{n+1} \oplus Z^n \to Y^{n+1} \oplus Z^n , \qquad v^n = \begin{pmatrix} f^{n+1} & 0 \\ 0 & \mathrm{id}_{Z^n} \end{pmatrix}.$$

$$v^{n}: X^{n+1} \oplus Z^{n} \to Y^{n+1} \oplus Z^{n} , \quad v^{n} = \begin{pmatrix} 0 & \operatorname{id}_{Z^{n}} \end{pmatrix}$$

$$X \xrightarrow{f} Y \xrightarrow{\alpha(f)} Z' \xrightarrow{\beta(f)} X[1]$$

$$\operatorname{id}_{X} \downarrow \qquad \qquad \downarrow u \qquad \qquad \downarrow \operatorname{id}_{X[1]}$$

$$X \xrightarrow{g \circ f} Z \xrightarrow{\alpha(g \circ f)} Y' \xrightarrow{\beta(g \circ f)} X[1]$$

$$f \downarrow \qquad \qquad \downarrow \operatorname{id}_{Z} \qquad \qquad \downarrow v \qquad \qquad \downarrow f[1]$$

$$Y \xrightarrow{g} Z \xrightarrow{\alpha(g)} X' \xrightarrow{\beta(g)} Y[1]$$

$$\alpha(f) \downarrow \qquad \qquad \downarrow \alpha(g \circ f) \qquad \downarrow \operatorname{id}_{X'} \qquad \qquad \downarrow \alpha(f)[1]$$

$$v^{n}: X^{n+1} \oplus Z^{n} \to Y^{n+1} \oplus Z^{n} , \qquad v^{n} = \begin{pmatrix} s & s \\ 0 & id_{Z^{n}} \end{pmatrix} .$$

$$X \xrightarrow{f} Y \xrightarrow{\alpha(f)} Z' \xrightarrow{\beta(f)} X[1]$$

$$id_{x} \downarrow \qquad \qquad \downarrow_{id_{X[1]}}$$

We define $w: X' \to Z'[1]$ as the composite $X' \to Y[1] \to Z'[1]$. Then the diagram in (TR 5) is commutative, and it is enough to show that $Z' \xrightarrow{u} Y' \xrightarrow{v} X' \xrightarrow{w} Z'[1]$ is a distinguished triangle. For that purpose we shall construct an isomorphism $\phi: M(u) \to X'$ and its inverse $\psi: X' \to M(u)$ such that $\phi \circ \alpha(u) = v$ and $\beta(u) \circ \psi = w$. We have:

$$M(u)^n = M(f)^{n+1} \oplus M(g \circ f)^n = X^{n+2} \oplus Y^{n+1} \oplus X^{n+1} \oplus Z^n$$

and $X'^n = M(g)^n = Y^{n+1} \oplus Z^n$. We define ϕ and ψ by:

$$\phi^n = \begin{pmatrix} 0 & \mathrm{id}_{Y^{n+1}} & f^{n+1} & 0 \\ 0 & 0 & 0 & \mathrm{id}_{Z^n} \end{pmatrix}, \qquad \psi^n = \begin{pmatrix} 0 & 0 \\ \mathrm{id}_{Y^{n+1}} & 0 \\ 0 & 0 \\ 0 & \mathrm{id}_{X^{n+1}} \end{pmatrix}.$$

Then one checks easily that ϕ and ψ are morphisms of complexes and $\phi \circ \alpha(u) = v$, $\beta(u) \circ \psi = w$.

$$X \xrightarrow{f} Y \xrightarrow{} Z' \xrightarrow{} X[1]$$

$$id_{x} \downarrow \qquad \qquad \downarrow g \qquad \qquad \downarrow u \qquad \qquad \downarrow id_{x[1]}$$

$$X \xrightarrow{g \circ f} Z \xrightarrow{} Y' \xrightarrow{} X[1]$$

$$f \downarrow \qquad \qquad \downarrow id_{z} \qquad \downarrow v \qquad \qquad \downarrow f[1]$$

$$Y \xrightarrow{g} Z \xrightarrow{} X' \xrightarrow{} Y[1]$$

$$\downarrow \qquad \qquad \downarrow id_{x} \xrightarrow{w} \qquad \downarrow Z'[1]$$

$$Z' \xrightarrow{u} Y' \xrightarrow{v} X' \xrightarrow{w} Z'[1]$$

Октаедр

We have $\phi \circ \psi = \mathrm{id}_{x'}$. If we define:

then:

$$(\mathrm{id}_{M(u)} - \psi \circ \phi)^n = s^{n+1} \circ d^n_{M(u)} + d^{n-1}_{M(u)} \circ s^n$$
.

Hence $\psi \circ \phi$ equals $id_{M(u)}$ in $K(\mathscr{C})$. \square

Remark 1.4.5. Property (TR 5) may be visualized by the following octahedral diagram:

Триангульована категорія

Let \mathscr{C} be an additive category, together with an automorphism $T:\mathscr{C}\to\mathscr{C}$. We write sometimes [1] for T and [k] for T^k , (i.e. X[1] for T(X), or f[1] for T(f)).

A triangle in \mathscr{C} is a sequence of morphisms

$$X \to Y \to Z \to T(X)$$
.

Definition 1.5.1. A triangulated category & consists of the following data and rules.

- (1.5.1) An additive category \mathscr{C} together with an automorphism $T:\mathscr{C}\to\mathscr{C}$,
- (1.5.2) a family of triangles, called distinguished triangles.

These data satisfy the axioms (TR 0)–(TR 5) of Proposition 1.4.4 when setting X[1] = T(X).

Let (\mathscr{C}, T) and (\mathscr{C}', T') be two triangulated categories. We say that an additive functor F from \mathscr{C} to \mathscr{C}' is a functor of triangulated categories if $F \circ T \simeq T' \circ F$, and F sends distinguished triangles of \mathscr{C} into distinguished triangles of \mathscr{C}' .

Clearly, for an additive category \mathscr{C} , $K(\mathscr{C})$ is a triangulated category.

Когомологічний функтор

 \mathscr{C} – триангульована категорія, $\mathscr{A} = \mathbb{k}\text{-mod}$.

Definition 1.5.2. An additive functor $F : \mathscr{C} \to \mathscr{A}$ is called a cohomological functor if for any distinguished triangle $X \to Y \to Z \to T(X)$, the sequence $F(X) \to F(Y) \to F(Z)$ is exact.

For a cohomological functor F, we write F^k for $F \circ T^k$. Then for any distinguished triangle $X \to Y \to Z \to T(X)$ we obtain a long exact sequence:

$$(1.5.3) \qquad \cdots \to F^{k-1}(Z) \to F^k(X) \to F^k(Y) \to F^k(Z) \to F^{k+1}(X) \to \cdots.$$

Трикутник $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} A[1]$ - скорочений запис послідовності

$$\dots \xrightarrow{g[-1]} C[-1] \xrightarrow{h[-1]} A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} A[1] \xrightarrow{f[1]} B[1] \xrightarrow{g[1]} C[1] \xrightarrow{h[1]} \dots$$

яку можна візуалізувати як спіраль

Трикутник

що проектується на трикутник

Proposition 1.5.3. (i) If $X \xrightarrow{f} Y \xrightarrow{g} Z \to T(X)$ is a distinguished triangle, then $g \circ f = 0$.

(ii) For any $W \in \mathrm{Ob}(\mathscr{C})$, $\mathrm{Hom}_{\mathscr{C}}(W,\cdot)$ and $\mathrm{Hom}_{\mathscr{C}}(\cdot,W)$ are cohomological functors.

Proof. (i) By (TR 1), $X \xrightarrow{idx} X \longrightarrow 0 \longrightarrow T(X)$ is a distinguished triangle. Therefore by (TR 4) there is a morphism $\phi: 0 \to Z$ which makes the following diagram commutative:

Hence $g \circ f = \phi \circ 0 = 0$.

(ii) Let $X \stackrel{f}{\to} Y \stackrel{g}{\to} Z \to T(X)$ be a distinguished triangle. In order to show that $\operatorname{Hom}_{\mathscr{C}}(W,\cdot)$ is a cohomological functor, it is enough to show that, for any $\phi \in \operatorname{Hom}_{\mathscr{C}}(W,Y)$ with $g \circ \phi = 0$, we can find $\psi \in \operatorname{Hom}_{\mathscr{C}}(W,X)$, with $\phi = f \circ \psi$. This follows from (TR 1), (TR 3) and (TR 4) which imply that the dotted arrow below can be completed:

The proof that $\operatorname{Hom}_{\mathscr{C}}(\cdot, W)$ is a cohomological functor is similar. \square

5 ізоморфізмів

Corollary 1.5.5. Let

be a morphism of distinguished triangles. If ϕ and ψ are isomorphisms, then so is θ .

Proof. For any $W \in \mathrm{Ob}(\mathscr{C})$, let us apply the functor $\mathrm{Hom}_{\mathscr{C}}(W,\cdot)$ to the above diagram. We obtain a commutative diagram whose rows are exact. Since $\mathrm{Hom}_{\mathscr{C}}(W,\phi)$ and $\mathrm{Hom}_{\mathscr{C}}(W,\psi)$ are isomorphisms, as well as $\mathrm{Hom}_{\mathscr{C}}(W,T(\phi))$ and $\mathrm{Hom}_{\mathscr{C}}(W,T(\psi))$, we obtain that $\mathrm{Hom}_{\mathscr{C}}(W,\theta)$ is an isomorphism by Exercise I.8.

(5-лема). За лемою Йонеда θ - ізоморфізм.

 $\mathscr{C} = \mathbb{k}\text{-mod}.$

Proposition 1.5.6. Let $\mathscr C$ be an abelian category. Then the functor $H^0(\cdot): \mathbf K(\mathscr C) \to \mathscr C$ is a cohomological functor.

Proof. It is enough to show that if $f: X \to Y$ is a morphism in $\mathbf{C}(\mathscr{C})$, then the sequence

$$H^0(Y) \to H^0(M(f)) \to H^0(X[1])$$

is exact.

Since $0 \to Y \to M(f) \to X[1] \to 0$ is an exact sequence in $\mathbf{C}(\mathscr{C})$, the result follows from Proposition 1.3.6.

Definition 1.5.7. Let $\mathscr C$ be an abelian category and let $f: X \to Y$ be a morphism in $K(\mathscr C)$. One says that f is a quasi-isomorphism (qis for short) if $H^n(f)$ is an isomorphism for each n.

Hence f is a qis if and only if $H^n(M(f)) = 0$ for each n. If f is a qis, one writes $X \xrightarrow{\text{qis}} Y$, for short.

Notations 1.5.8. Let $\mathscr C$ be a triangulated category. In the subsequent sections we shall often write $X \longrightarrow Y \longrightarrow Z \xrightarrow[+1]{}$ instead of $X \to Y \to Z \to T(X)$, to denote a distinguished triangle.

Let $\mathscr C$ be a category, and let S be a family of morphisms in $\mathscr C$.

Definition 1.6.1. One says that S is a multiplicative system if it satisfies (S 1)–(S 4) below.

- (S1) For any $X \in Ob(\mathscr{C})$, $id_X \in S$.
- (S2) For any pair (f,g) of S such that the composition $g \circ f$ exists, $g \circ f \in S$. (S3) Any diagram:

$$\begin{array}{c}
Z \\
\downarrow \\
X \xrightarrow{f} Y
\end{array}$$

with $g \in S$, may be completed to a commutative diagram:

with $h \in S$. Ditto with all the arrows reversed.

- (S4) If f and g belong to $\operatorname{Hom}_{\mathscr{C}}(X,Y)$, the following conditions are equivalent:
 - (i) there exists $t: Y \to Y'$, $t \in S$, such that $t \circ f = t \circ g$,
 - (ii) there exists $s: X' \to X$, $s \in S$, such that $f \circ s = g \circ s$.

Локалізація

Definition 1.6.2. Let \mathscr{C} be a category, S a multiplicative system. The category \mathscr{C}_S , = called the localization of \mathscr{C} by S, is defined by:

$$Ob(\mathscr{C}_S) = Ob(\mathscr{C}),$$

(1.6.2) for any pair (X, Y) of $Ob(\mathscr{C})$,

$$\operatorname{Hom}_{\mathscr{C}_{S}}(X,Y) = \{(X',s,f); X' \in \operatorname{Ob}(\mathscr{C}), s: X' \to X, f: X' \to Y, s \in S\}/\mathscr{R}$$

where ${\mathcal R}$ is the following equivalence relation:

$$(X',s,f)\mathcal{R}(X'',t,g)$$

iff there exists a commutative diagram

with $u \in S$.

Композиція в локалізації

The composition of $(X', s, f) \in \operatorname{Hom}_{\mathscr{C}_S}(X, Y)$ and $(Y', t, g) \in \operatorname{Hom}_{\mathscr{C}_S}(Y, Z)$ is defined as follows. We use (S 3) to find a commutative diagram:

with $t' \in S$, and we set:

$$(Y',t,g)\circ(X',s,f)=(X'',s\circ t',g\circ h).$$

One sees easily, using the axioms (S 1)–(S 4), that \mathscr{C}_S is a category. We shall denote by Q the functor:

$$Q:\mathcal{C}\to\mathcal{C}_S$$

defined by Q(X) = X for $X \in \text{Ob}(\mathscr{C})$, and $Q(f) = (X, \text{id}_X, f)$ for $f \in \text{Hom}_{\mathscr{C}}(X, Y)$.

Proposition 1.6.3. (i) For $s \in S$, Q(s) is an isomorphism in \mathscr{C}_S .

(ii) Let \mathscr{C}' be another category, $F:\mathscr{C}\to\mathscr{C}'$ be a functor such that F(s) is an isomorphism for all $s\in S$. Then F factors uniquely through Q.

Нульова система

Definition 1.6.6. Let $\mathscr C$ be a triangulated category, and let $\mathscr N$ be a subfamily of $Ob(\mathscr C)$. One says that $\mathscr N$ is a null system if it satisfies $(N \ 1)-(N \ 3)$ below.

- (N 1) $0 \in \mathcal{N}$,
- (N 2) $X \in \mathcal{N}$ if and only if $X[1] \in \mathcal{N}$,
- (N 3) If $X \to Y \to Z \to X[1]$ is a distinguished triangle, and $X \in \mathcal{N}$, $Y \in \mathcal{N}$, then $Z \in \mathcal{N}$.

Now we set:

$$\begin{cases} S(\mathcal{N}) = \{f: X \to Y; f \text{ is embedded into a distinguished} \\ \text{triangle } X \xrightarrow{f} Y \to Z \to X[1], \text{ with } Z \in \mathcal{N} \} \end{cases} .$$

Proposition 1.6.7. Assume $\mathcal N$ is a null system. Then $S(\mathcal N)$ is a multiplicative system.

Proof. The property (S 1) is deduced from (N 1) and (TR 1). Let us prove (S 2). Let $X \stackrel{f}{\to} Y \to Z' \to X[1]$ and $Y \stackrel{g}{\to} Z \to X' \to Y[1]$ be two distinguished triangles, with $X' \in \mathcal{N}$, $Z' \in \mathcal{N}$. By (TR 2) there exists a distinguished triangle $X \stackrel{g \circ f}{\to} Z \longrightarrow Y' \longrightarrow X[1]$, and by (TR 5) there exists a distinguished triangle $Z' \to Y' \to X' \to Z'[1]$. By (N 2), (N 3) and (TR 3), we have: $Y' \in \mathcal{N}$. Hence $g \circ f \in S(\mathcal{N})$.

To prove (S 3), consider a distinguished triangle $Z \stackrel{g}{\to} Y \stackrel{k}{\to} X' \to Z[1]$, with $X' \in \mathcal{N}$, and let $f: X \to Y$. There exists a distinguished triangle

$$W \xrightarrow{h} X \xrightarrow{k \circ f} X' \longrightarrow W[1]$$
.

Then by (TR 4) and (TR 3), we have a morphism of distinguished triangles:

Since $X' \in \mathcal{N}$, h belongs to $S(\mathcal{N})$.

A similar proof holds by reversing the arrows.

Finally we prove (S 4). Let $f: X \to Y$ and $t: Y \to Y'$, with $t \in S(\mathcal{N})$ and $t \circ f = 0$. We shall show that there exists $s: X' \to X$, $s \in S(\mathcal{N})$, such that $f \circ s = 0$. Let $Z \xrightarrow{g} Y \xrightarrow{h} Y' \to Z[1]$ be a distinguished triangle, with $Z \in \mathcal{N}$. By (TR 1), (TR 3), (TR 4), there exists $h: X \to Z$ such that $f = g \circ h$. If we embed h into a distinguished triangle $X' \xrightarrow{s} X \xrightarrow{h} Z \to X'[1]$ then s will satisfy the desired properties. The proof of the converse implication is similar. \square

Notation 1.6.8. Let \mathscr{C} be a triangulated category and \mathscr{N} a null system in \mathscr{C} . We write \mathscr{C}/\mathscr{N} instead of $\mathscr{C}_{S(\mathscr{N})}$.

Proposition 1.6.9. Let \mathscr{C} be a triangulated category and \mathscr{N} a null system.

- (i) \mathscr{C}/\mathscr{N} becomes a triangulated category by taking for distinguished triangles those isomorphic to the image of a distinguished triangle in \mathscr{C} .
- (ii) Denote by Q the natural functor $\mathscr{C} \to \mathscr{C}/\mathscr{N}$. We have $Q(X) \simeq 0$ for $X \in \mathscr{N}$.
- (iii) Any functor $F: \mathcal{C} \to \mathcal{C}'$ of triangulated categories such that $F(X) \simeq 0$ for all $X \in \mathcal{N}$, factors uniquely through Q.

Похідна категорія

 $\mathscr{C} = \mathbb{k}\text{-mod}.$

We shall apply the preceding construction to the triangulated category $K(\mathscr{C})$. It is clear that:

$$(1.7.1) \qquad \mathcal{N} = \{X \in \mathrm{Ob}(\mathbf{K}(\mathscr{C})); H^n(X) = 0 \text{ for any } n\}$$

is a null system. Note that, in view of Proposition 1.5.6, $S(\mathcal{N})$ consists of quasi-isomorphisms of $K(\mathcal{C})$.

Definition 1.7.1. We set $D(\mathscr{C}) = K(\mathscr{C})/\mathscr{N}$ and call $D(\mathscr{C})$ the derived category of \mathscr{C} .

By replacing $K(\mathscr{C})$ with $K^b(\mathscr{C})$ (resp. $K^+(\mathscr{C})$, resp. $K^-(\mathscr{C})$), we define similarly the derived categories $D^b(\mathscr{C})$ (resp. $D^+(\mathscr{C})$, resp. $D^-(\mathscr{C})$). By Proposition 1.6.3 the functor $H^n(\cdot): K(\mathscr{C}) \to \mathscr{C}$, factors through $D(\mathscr{C})$. We still denote by $H^n(\cdot)$ the functor from $D(\mathscr{C})$ to \mathscr{C} so obtained.

Proposition 1.7.2. (i) $\mathbf{D}^b(\mathscr{C})$ (resp. $\mathbf{D}^+(\mathscr{C})$, resp. $\mathbf{D}^-(\mathscr{C})$) is equivalent to the full subcategory of $\mathbf{D}(\mathscr{C})$ consisting of objects X such that $H^n(X) = 0$ for $|n| \gg 0$ (resp. $n \ll 0$, resp. $n \gg 0$).

(ii) By the composition of the functors $\mathscr{C} \to \mathbf{K}(\mathscr{C}) \to \mathbf{D}(\mathscr{C})$, \mathscr{C} is equivalent to the full subcategory of $\mathbf{D}(\mathscr{C})$ consisting of objects X such that $H^n(X) = 0$ for $n \neq 0$.

Конус відображення в топології

Конус відображення як функтор 🦂 💆 - ⁄а / 🚶

Cone = $M \in \text{ функтором } \mathbf{dg}^{\rightarrow} \rightarrow \mathbf{dg}$, де \rightarrow = категорія з'двома об'єктами 0, 1 і єдиною нетотожною стрілкою $0 \to 1$.

$$\mathscr{C}^{
ightarrow}=$$
 категорія стрілок в \mathscr{C} : $\mathsf{Ob}\mathscr{C}^{
ightarrow}=\mathsf{Mor}\mathscr{C},$

 $\mathscr{C}^{\to}(f:A\to B,g:X\to Y)$

$$= \left\{ (u : A \to X, v : B \to Y) \in (\mathsf{Mor}\mathscr{C})^2 \right\}$$

$$\mathsf{Cone}(f : A \to B) = \left(A[1] \oplus B, \begin{pmatrix} d_{A[1]} \\ 0 \end{pmatrix} \right)$$
Exercise

$$= \left\{ (u: A \to X, v: B \to Y) \in (\mathsf{Mor}\mathscr{C})^2 \middle| \begin{matrix} A & \longrightarrow & B \\ u \downarrow & = & \downarrow v \\ X & \xrightarrow{g} & Y \end{matrix} \right\}.$$

$$\mathsf{Cone}(f: A \to B) = \left(A[1] \oplus B, \begin{pmatrix} d_{A[1]} & \sigma^{-1} \cdot f \\ 0 & d_B \end{pmatrix} \right).$$

Cone
$$(f: A \to B) = \left(A[1] \oplus B, \begin{pmatrix} d_{A[1]} & \sigma^{-1} \cdot f \\ 0 & d_B \end{pmatrix}\right).$$

Exercise
$$\begin{pmatrix} d_{A[1]} & \sigma^{-1} \cdot f \\ 0 & d_B \end{pmatrix}^2 = 0$$

$$\text{Cone}\begin{pmatrix} A & \xrightarrow{f} & B \\ u \downarrow & = & \downarrow v \\ X & \xrightarrow{g} & \searrow \end{pmatrix} = u[1] \oplus v. \text{ Homy Ide } \in \mathbf{dg}?$$

Exercise

Коротка точна послідовність комплексів індукує

виділений трикутник в похідній категорії

Proposition 1.7.5. Let \mathscr{C} be an abelian category and let $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$ be an exact sequence in $\mathbb{C}(\mathscr{C})$. Let M(f) be the mapping cone of f and let $\phi^n : M(f)^n = X^{n+1} \oplus Y^n \to Z^n$ be the morphism $(0, g^n)$. Then $\{\phi^n\}_n : M(f) \to Z$ is a morphism of complexes, $\phi \circ \alpha(f) = g$, and ϕ is a quasi-isomorphism.

Proof. It is straightforward to see that ϕ is a morphism of complexes. Moreover we have an exact sequence:

$$0 \to M(\mathrm{id}_X) \overset{\gamma}{\to} M(f) \to Z \to 0$$

where γ is associated to the morphism id $\chi \to f$. This last morphism is described by the commutative diagram:

by the commutative diagram:

$$(1): Y \longrightarrow N(f)$$
 (2)
 $(3): Y \longrightarrow N(f)$
 $(4): Y \longrightarrow N(f)$
 $(4): Y \longrightarrow N(f)$
 $(4): Y \longrightarrow N(f)$
 $(5): Y \longrightarrow N(f)$
 $(7): Y \longrightarrow N(f)$
 $(7$

By Proposition 1.3.6 it is enough to check that $H^n(M(\mathrm{id}_X)) = 0$ for all $n \in \mathbb{Z}$. Since $M(\mathrm{id}_X)$ is zero in $K(\mathscr{C})$, this is evident. \square

$$X \xrightarrow{1} X$$

$$\downarrow f \xrightarrow{\mathsf{Cone}} \mathsf{Cone}(1, f) = 1 \oplus f : \mathsf{Cone}1_X \to \mathsf{Cone}f.$$

$$X \xrightarrow{f} Y$$

$$\exists \phi = \begin{pmatrix} 0 \\ g \end{pmatrix} : \mathsf{Cone}\, f \to Z \in \mathbf{dg} \Leftarrow \begin{pmatrix} d_{X[1]} & \sigma^{-1} \cdot f \\ 0 & d_{Y} \end{pmatrix} \begin{pmatrix} 0 \\ g \end{pmatrix} = \begin{pmatrix} 0 \\ g \end{pmatrix} d_{Z}.$$

 $0 \rightarrow \mathsf{Cone} 1_{\mathsf{Y}} \xrightarrow{\mathsf{Cone}(1,f)} \mathsf{Cone} f \xrightarrow{\phi} Z \rightarrow 0$

точна як
$$\oplus$$
 в **gr** послідовностей $0 \to X[1] \xrightarrow{1} X[1] \to 0 \to 0$ і $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$.

Exercise

Cone 1_X — стягуваний ($\exists s: 1_{\mathsf{Cone}\,1} = sd + ds$).

Тому Cone 1_X — ациклічний $\Rightarrow \phi$ — квазі-ізоморфізм $\Rightarrow \phi$ оборотний в $D(\Bbbk\text{-mod}) \Rightarrow$ в $D(\Bbbk\text{-mod})$ існує ізоморфізм трикутників

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{\phi^{-1} \cdot \beta(f)} X[1]$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \downarrow \\
X \xrightarrow{f} Y \xrightarrow{\alpha(f)} \mathsf{Cone} f \xrightarrow{\beta(f)} X[1]$$

короткі точні послідовності комплексів к-модулів

виділені трикутники в
$$D(\mathbb{k}\text{-mod})$$
 H довгі точні послідовності в $\mathbb{k}\text{-mod}$

In the situation of Proposition 1.7.5 the distinguished triangle $X \to Y \to Z \stackrel{h}{\to} X$ [1] is called the distinguished triangle associated to the exact sequence $0 \to X \to Y \to Z \to 0$. Here $h = \beta(f) \circ \phi^{-1}$.

Note that the above distinguished triangle gives rise to a long exact sequence:

$$\cdots \longrightarrow H^{n}(X) \longrightarrow H^{n}(Y) \longrightarrow H^{n}(Z) \xrightarrow{H^{n}(h)} H^{n+1}(X) \longrightarrow \cdots$$

and $H^n(h) = -\delta$, δ being defined in Proposition 1.3.6.

Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der mathematischen Wissenschaften, vol. 292, Springer-Verlag, Berlin, New York, 1990. §1.4.4–§1.7.5