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Abstract
We study the thermodynamic properties of the two-component 2 1+ -dimen-
sional massive Dirac fermions in an external magnetic field. The broken time-
reversal symmetry results in the presence of a linear in the magnetic field part
of the thermodynamic potential, while in the famous problem of Landau
diamagnetism the leading field dependent term is quadratic in the field.
Accordingly, the leading term of the explicitly calculated magnetization is
anomalous, viz it is independent of the strength of the magnetic field. The
Strěda formula is employed to describe how the anomalous magnetization is
related to the anomalous Hall effect.
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1. Introduction and model

Since 80s of the 20th century the condensed matter realization of the 2 1( )+ -dimensional
Dirac fermions [1, 2] attracts attention of researchers. The discovery of graphene in 2004 [3]
was a tremendous breakthrough in the experimental realization of the massless Dirac fer-
mions. Now a family of the solid-state Dirac materials which includes both the brothers of
graphene, viz made in 2010 silicene, announced in 2014 germanene [4], and cousins such as
MoS2, topological insulators, Weyl semimetals, etc. There are even artificially designed in
2012 nephews such as molecular graphene [5] and ultracold fermionic atoms in optical
honeycomb lattice [6]. An exciting feature of the latter artificial condensed matter system is
that it allows one the experimental realization [7] of the Haldane model [2] where the time-
reversal symmetry is broken and a quantum Hall effect appears as an intrinsic property of the
band structure in the absence of an external magnetic field.

Journal of Physics A: Mathematical and Theoretical

J. Phys. A: Math. Theor. 48 (2015) 365002 (11pp) doi:10.1088/1751-8113/48/36/365002

1751-8113/15/365002+11$33.00 © 2015 IOP Publishing Ltd Printed in the UK 1

mailto:sharapov@bitp.kiev.ua
http://dx.doi.org/10.1088/1751-8113/48/36/365002
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8113/48/36/365002&domain=pdf&date_stamp=2015-08-13
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8113/48/36/365002&domain=pdf&date_stamp=2015-08-13


As a matter of fact, the low-energy description of these systems is based on a pair of the
independent effective Dirac Hamiltonians

v k kk , 1x yF 1 2 3( )( ) ( ) h t t t= + + Dh h

where the Pauli matrices t act in the sublattice (pseudospin) space, the two-dimensional
wave-vector k kk ,x y( )= is counted off the two independent Kh points (with h = ) in the
Brillouin zone, and vF is the Fermi velocity, andDh is the mass (gap) term. Although the spin
degree of freedom is neglected for simplicity, it can be easily included if necessary.
Accordingly, the most general expression for the gap is given by

, 2T ( )hD = D + Dh

where the gap Δ is invariant with respect to the time-reversal symmetry, and ThD is not.
In the simplest case [1], 0TD = , the mass term Δ originates from a different on-site

energy on two triangular sublattices that form hexagonal lattice. The fermion doubling [8]
guarantees that the ordinary solid-state Dirac materials are always described by pairs of the
Hamiltonians (1), so that the full Hamiltonian k k k1 1( ) ( ) ( )  = Åh h=+ =- respects time-
reversal symmetry (see [9] for an overview of the discrete symmetries for the various mass
terms)

k k 30 0( ) ( )( ) ( ) ( )* t tP Ä P Ä = -

that involves operator Π swapping 1h = and 1h = - valleys. Here 0t is the unit matrix. The
inversion symmetry is, however, broken because the sublattices are inequivalent for 0D ¹ .
Obviously, when a separate Kh point is considered, the time-reversal symmetry is always
broken.

A more sophisticated case, 0TD ¹ , with broken time-reversal symmetry is realized in
the Haldane model [2] by including next-nearest-neighbour (nearest-neighbour on the same
sublattice) hopping and periodic local magnetic flux density with zero total flux through the
unit cell. The experimental implementation of this model in [7] is highly nontrivial. An earlier
history of searches of the condensed matter realization of the time-reversal anomaly is pre-
sented in [10].

From a theoretical point of view, the specifics of the Haldane model appears to be more
transparent when one considers the spectrum of the Hamiltonians (1) in an external magnetic
field BB A 0, 0,( )= ´ = applied perpendicular to the plane along the positive z axis.
Accordingly, the momentum operator p ii iˆ = - ¶ has to be replaced by the covariant
momentum p p Ai i

e

c iˆ ˆ + . Here e 0- < is the electron charge and BxA 0, , 0( )= is the
vector potential in the Landau gauge. The corresponding Landau level energies are

eB n

M n

sgn , 0,

, 1, 2 ,...,
4n

n

( )
( )

⎧⎨⎩
h

=
- D =
 =h

h

where M nv eB c2n F
2 2 ∣ ∣= D +h .

In 2 1+ -dimensions there are two inequivalent irreducible 2 × 2 representations of the
Dirac algebra labelled by a = 1,2. In particular, the Hamiltonian (1) corresponds to the
representation , i , ia 3 2 1( )g t ht t= -n with 0, 1, 2n = . In general, one can relate the sign of
the energy of the n = 0 Landau level to the sign of the product of the mass, Dh, and the
signature, ah , of the Dirac matrices ag

n . The signature is defined as [11]

i

2
tr 1 5a a a a

0 1 2 ( )⎡⎣ ⎤⎦h g g g= = 
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and is called sometimes ‘chirality’. Thus, instead of putting the ± sign in the matrix
a
1g , one

can instead include this sign in the mass term (see e.g. [1, 12]).
As mentioned before, in the time-reversal symmetric case, 0TD = , the spectrum of the

full Hamiltonian k k k1 1( ) ( ) ( )  = Åh h=+ =- is particle-hole symmetric and invariant
under B B - . The case 0TD ¹ and 0D = corresponds to the so called Haldane mass that
breaks time-reversal symmetry. As the result, the n = 0 ‘zero-mode’ level breaks both the
particle-hole symmetry and invariance under B B - . It is crucial that the difference
between these cases survives even in the B = 0 limit, making possible the quantum Hall effect
in the absence of magnetic field.

The vast majority of the literature (see e.g. [13–15] and references therein) on the
thermodynamic properties of the Dirac fermions including magnetic oscillations is devoted to
the case of the particle-hole symmetric spectrum. This concerns both the papers that consider
the reducible 4 × 4 representation of the Dirac algebra in 2 1+ -dimensions and present a field
theoretical perspective of the problem [13] and the works devoted to the condensed matter
systems [14, 15] with even number of fermion species. Since the time-reversal symmetry is
preserved, a finite Hall conductivity is only possible in nonzero external magnetic field.
Respectively, the first magnetic field dependent term of the grand thermodynamic potential

B,( )mW is proportional to B2, so that there is no net magnetization in the limit B 0 .
The purpose of the present work is to study the thermodynamic properties of the Dirac

fermions with the broken time-reversal symmetry. In other words, we focus on the asym-
metric spectrum (4) associated with the Hamiltonian (1) for one fixed value of η, viz we take

0TD = , and haveD = Dh . Having the thermodynamic potential for ‘unphysical’ case with a
fixed η, it is straightforward to obtain, for example, the result for two K points with the
Haldane mass and include the spin degree of freedom.

The paper is organized as follows. We already began by presenting in section 1 the
problem and the model Hamiltonian (1). In section 2 we consider the grand thermodynamic
potential. We show that the unboundedness of the Landau level spectrum for the negative
energies results in the diverging carrier density and discuss the relativistic form of the ther-
modynamic potential that corresponds to the finite carrier imbalance. The magnetic field
dependent parts of the carrier imbalance and density are obtained in section 3 using the Euler–
Maclaurin formula. The main results of the present paper that include thermodynamic
potential and magnetization in the low magnetic field regime are presented in section 4. Using
the Strěda formula we overview in section 5 how the obtained expressions can be linked to
the known results for the Hall conductivity in the anomalous and normal cases. In section 6,
the main results of the paper are summarized.

2. Grand thermodynamic potential and its specific in the Dirac case

The grand thermodynamic potential [16] can be written as follows

T T D, d ln 1 e , 6T( )( ) ( ) ( ) 


òmW = - +
-¥

¥ m-

where T is the temperature, μ is the chemical potential, and D ( ) is the density of states
(DOSs). We have also set the Boltzmann constant kB = 1. The derivative of the
thermodynamic potential (6) with respect to the chemical potential μ,

T
V

T
D n,

1 ,
d , 7F( )

( ) ( ) ( ) ( )  òr m
m

m
= -

¶W
¶

=
-¥

¥
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determines the density of carriers ρ in nonrelativistic many-body theory as a function of T, B,
and μ. Here n T1 exp 1F ( ) [ [( ) ] ]  m= - + is the usual Fermi function and V is volume
(area) of the system which is set to be unit.

In the absence of scattering from impurities the DOS per unit area for a given value of η
is expressed via the energies of the Landau levels n h as follows

D
eB

c
eB M M

2
sgn . 8

n
n n0

1
( ) ( )( ) ∣ ∣ ( ( )) ( )

⎡
⎣⎢

⎡⎣ ⎤⎦
⎤
⎦⎥


  åp

d h d d= + D + - + +
=

¥

Substituting the DOS D0 ( ) given by equation (8) in equation (7) we obtain

eB

c
n eB n M n M

2
sign , 9n

n
n n0 1 F

1
F F( ) ( )∣ ∣ ( ( )) ( )

⎡
⎣⎢

⎡⎣ ⎤⎦
⎤
⎦⎥ år r r

p
hº + = - D + + -

=

¥

where 0r and n 1r denote contributions from the lowest, n = 0, and remaining ( Mn , n 0¹ )
Landau levels, respectively. We observe that equation (9) diverges because the spectrum (4)
is unbound for the negative energies n h. Since the Dirac Hamiltonian (1) has to be regarded
as an effective model Hamiltonian derived from the tight-binding model, the divergence can
be removed by using the appropriate band-width cutoff.

The other way to remove this divergency is to begin with so called relativistic thermo-
dynamic potential (see [13, 17, 18])

T T D
T

, d ln 2 cosh
2

. 10rel ( ) ( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠ 


òm

m
W = -

-
-¥

¥

To clarify the physical meaning of the potential (10) we differentiate it with respect to μ and
obtain the relativistic carrier density

T
T

D
T

,
, 1

2
d tanh

2
. 11rel

rel
( )

( ) ( ) ( ) 


òr m
m

m
m

= -
¶W

¶
= -

-
-¥

¥

Then for the particle-hole symmetric spectrum, i.e. when the DOS D ( ) is an even function of
the energy ò, D D( ) ( ) = - one can see that T , 0 0rel ( )r m = = . Further, using the identity
1 ( ) ( ) q q= + - with ( )q being a step function, one can rewrite the last equation in the
following form

D n nd 1 . 12rel
F F[ ]( ) ( ) ( ) ( ) ( ) ( )⎡⎣ ⎤⎦     òr q q= - - -

-¥

¥

This shows that relr corresponds to the relativistic carrier density or the carrier imbalance, viz
relr r r= -+ -, where r+ and r- are the densities of ‘electrons’ and ‘holes’, respectively.

Accordingly, when the DOS is the even function of energy, the relativistic thermodynamic
potential (10) can be presented as a sum of the vacuum, electron and hole terms [13]
illustrating its physical meaning. The interpretation of relr for the case of the asymmetric DOS
is discussed in detail in [17] (see also [19] for a review).

Substituting the DOS, D0 ( ) given by equation (8) in equation (11), one obtains

eB

c

eB

T

M

T

M

T

4
tanh

sign

2

tanh
2

tanh
2

, 13

n

n

n n

rel
0
rel

1
rel

1

∣ ∣ ( )

( )

⎡
⎣⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦⎥



å

r r r
p

m h

m m

º + =
+ D

+
-

+
+

=

¥

where 0
relr and n 1

rel
r denote contributions from the lowest and remaining Landau levels,

respectively. One can see that, in contrast to equation (9), equation (13) converges. Thus the
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use of the relativistic potential (10) makes the calculation free of divergencies, but at the end
one should prove that the physical results do not change as compared to the results that follow
directly from the initial potential (6).

In general, one can relate the grand thermodynamic potential (6) and the relativistic
potential (10) as follows

T T D, ,
1

2
d . 14rel( ) ( ) ( ) ( ) ( )  òm m mW = W - -

-¥

¥

When the D ( ) is an even function of the energy ò, the last term with the integral in
equation (14) reduces to

Dd . 15hf ( ) ( ) ( )  òmr m q- = - -
-¥

¥

Then the carrier imbalance relr and total carrier density ρ are related by the expression
T T, ,rel

hf( ) ( )r m r m r= - , where hfr is the density of particles for a half-filled band (in the
lower Dirac cone). Note that both T ,( )r m and hfr are divergent, so that the appropriate cutoff
has to be introduced. This reflects the already mentioned fact that in the continuum field
theory there is no lower bound to the Dirac sea of filled electron states.

The thermodynamic potential (10) can be restored from the particle density T B, ,rel ( )r m
by integration

T B T B T B, , d , , , . 16c
rel rel( ) ( ) ( ) ( ) òm rW = - + W

m

-¥

Here T B,c ( )W is a constant of integration. Similarly, integrating T B, ,( )r m one restores the
potential (6).

The magnetization M in the direction perpendicular to the plane is defined in the grand
canonical ensemble by the derivative with respect to B at fixed chemical potential, i.e.

M T B
T B

B
, ,

, ,
. 17( )

( ) ( )m
m

= -
¶W

¶
Thus one needs only the magnetic field dependent part of the grand thermodynamic potentials
(10) and (6). A special interest for us represents a linear in magnetic field part of the
thermodynamic potential those presence would imply a nonzero net magnetization in the limit
of B 0 .

3. Calculation of the carrier imbalance and density

Since we are interested in the weak field regime, there is no need to evaluate the sum over
Landau levels exactly. The simplest way to extract the magnetic field dependent terms is to
use the Euler–Maclaurin formula

F F n F x x F
1

2
0 d

1

12
0 18

n 1 0
( ) ( ) ( ) ( ) ( )òå+ » - ¢

=

¥ ¥

following the seminal paper on Landau diamagnetism [20]. Firstly we calculate the carrier
imbalance n 1

rel
r from equation (13), so that

eB

c
F n

4
19n

n
1

rel

1

rel∣ ∣ ( ) ( )
 år

p
=

=

¥
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with

F n
M

T

M

T
tanh

2
tanh

2
. 20n nrel ( ) ( )m m

=
-

+
+

Repeating the arguments of [16, 20] one can see that the use of the Euler–Maclaurin formula
is justified in the weak-field regime, L B( ) ∣ ∣m with L B eB v c2 F

2( ) ∣ ∣= being the
Landau scale.

One can see that the term with the integral in equation (18) is independent of the
magnetic field similarly to the original Landau consideration [20]. Combining together the
lowest Landau contribution, 0

relr and term containing F1 2 0rel( ) ( )- , we obtain the linear in B
contribution, I

relr , to relr :

eB

c

eB

T T T4
tanh

sign

2

1

2
tanh

2

1

2
tanh

2
. 21I

rel ∣ ∣ ( ) ∣ ∣ ∣ ∣ ( )
⎡
⎣⎢

⎤
⎦⎥

r
p

m h m m
=

+ D
-

- D
-

+ D

Analyzing all possible cases eB, 0hD , one can simplify the last expression to the form

eB

c T T

sgn

8
tanh

2
tanh

2
. 22I

rel ( ) ∣ ∣ ∣ ∣ ( )
⎡
⎣⎢

⎤
⎦⎥

r
h

p
m m

=
D + D

-
- D

Note that there is no linear in B term in the analysis of Landau diamagnetism [16, 20]. This
term would also be absent if one considers the total contribution from both valleys with
h = . Similarly to [16, 20], the term with the derivative F 0rel( ) ( )¢ produces the quadratic in
B part, II

relr , of relr :

eB v

c T
T T

96

1

cosh
2

1

cosh
2

. 23II
rel

2
F
2

2
2 2

( )
∣ ∣ ∣ ∣ ( )

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥r
p m m

= -
D + D

-
- D

The same approach can be applied to the carrier density (9). However, as mentioned
earlier, the ‘nonrelativistic’ analog of the sum (19) with

F n n M n M2 24n nF F( ) ( )( ) ( )⎡⎣ ⎤⎦= + -

is diverging. To make the series convergent, one can introduce the regularization factor,
Mexp n( )d- with 0d  + . Then the use of the Euler–Maclaurin formula (18) is justified.

Taking into account the identity n T1 2 1 tanh 2F ( ) [ ( ) ] m= + - , one can see that the
field dependent densities coincide, viz I I

relr r= and II II
relr r= .

One can also come to the same conclusion that the magnetic field dependent parts of the
carrier densities ρ and relr coincide by using equation (14). Indeed, taking the derivative over
μ, one can see that

T B T B D, , , ,
1

2
d . 25rel ( ) ( ) ( ) ( ) òr m r m= -

-¥

¥

Here, in contrast to equation (15) we do not assume the evenness of the DOS D ( ) . The
integral in the rhs of equation (25) corresponds to the total number of states in our bands
which should be independent of the magnetic field [21].
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4. Magnetic field dependent part of the grand thermodynamic potential and
magnetization

Using equation (16) we restore the thermodynamic potentials, viz

T B T B T B T B T B, , , , 0 , , , , , , 26c
rel rel

I
rel

II
rel( ) ( ) ( ) ( ) ( ) ( )m m m mW = W = + W + W + W

and

T B T B T B, , , , , . 27c
rel( ) ( ) ˜ ( ) ( )m mW = W + W

Here I
relW and II

relW are, respectively, the linear and quadratic in B parts of the thermodynamic
potential obtained by integration of equation (22) for I

relr and equation (23) for II
relr from-¥

to μ:

T B
eB T

c T T
, ,

sgn

4
ln cosh

2
ln cosh

2

28

I
rel ( )

( ) ∣ ∣ ∣ ∣

( )

⎡
⎣⎢

⎤
⎦⎥

m
h

p
m m

W = -
D + D

-
- D

and

T B
eB v

c T T
, ,

48
tanh

2
tanh

2
. 29II

rel
2

F
2

2
( )

( ) ∣ ∣ ∣ ∣ ( )
⎡
⎣⎢

⎤
⎦⎥m

p
m m

W =
D

+ D
-

- D

In equations (26) and (27) the arbitrary functions T B,c ( )W and T B,c
˜ ( )W may depend on T

and/or B, but they are independent of μ.
Then the magnetization M defined by equation (17) in the low-field limit reads

M T B M T M T B M T B, , , , , , , 30cI II( ) ( ) ( ) ( ) ( )m m m= + +

where

M
B

e T

c T T

sgn

4
ln cosh

2
ln cosh

2
,

31

I
I
rel ( ) ∣ ∣ ∣ ∣

( )

⎡
⎣⎢

⎤
⎦⎥

h
p

m m
= -

¶W
¶

=
D + D

-
- D

is the anomalous magnetization,

M
B

e

c

eB v

c T T24
tanh

2
tanh

2
,

32

II
II
rel

F
2

∣ ∣
∣ ∣ ∣ ∣

( )

⎡
⎣⎢

⎤
⎦⎥


p

m m
= -

¶W
¶

= -
D

+ D
-

- D

is the linear in field part, and the function M T B,c ( ) is independent of μ. Our final result (30)
with MI and MII given by equations (31) and (32) does not depend on a choice of the starting
thermodynamic potential that may be taken either (10) or (6). The condition that at half-filling
the anomalous magnetization is absent, viz M T B, 0, 0 0( )m = = = allows to fix the
function M T B, 0c ( ) = .

Persisting in the B 0 limit anomalous magnetization MI was derived in [22] using the
low-field expansion for the Green’s function in an external magnetic field. This powerful and
more complicated method allows one to consider interacting systems, while the presented
here method uses the explicit form of the noninteracting spectrum (4). In the T = 0 limit
equation (31) acquires the form
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M
e

c4
sgn sgn . 33I [ ( ) (∣ ∣ ∣ ∣) ( ) (∣ ∣ ∣ ∣)] ( )

p
h m q m m h q m= D - D + D D -

For 0TD = and D = Dh , the anomalous MI contribution from K points has the
opposite sign. Accordingly, when the integral contribution of both valleys is considered, the
leading contribution to the magnetization is linear in B term given by equation (32). In the
T = 0 limit it reduces to

M
e

c

eB v

c
L B

12
, . 34II

F
2

2 2( )∣ ∣
( ) ∣ ∣ ( )




p
q m= -

D
D - D

This result is in agreement with the papers [14, 23] where the gapped graphene was
considered, if one takes into account the factor of 4 from the spin-valley degeneracy. In the
limit 0D  the corresponding magnetic susceptibility was firstly considered by McClure
[24] in the framework of the studies of diamagnetism of graphite. In the opposite limit,
L B( ) ∣ ∣D , the vacuum term results in the magnetization M T B0( )m = = D = ~ -
(see [14, 25–27] and references therein). Finally we note that the impact of disorder on the
magnetization and susceptibility of graphene with 0D = was studied in [28].

5. Hall conductivity

It is shown in [22] that the anomalous magnetization (31) is crucial in obtaining the off-
diagonal thermal transport coefficient. Below we illustrate how this magnetization can be
used to obtain the anomalous Hall conductivity and show how to obtain the Hall conductivity
quantization in graphene from equation (13).

5.1. Anomalous quantum Hall effect

When the chemical potential μ falls in a gap of the energy spectrum, the Hall conductivity can
be found from the Strěda formula [29]:

ec
B

ec
M

, 35xy

B

( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟s

r
m

= -
¶
¶

= -
¶
¶m

where the second equality follows from the Maxwell relation. Then either substituting the
carrier density (22) in the first equality of equation (35) or substituting the anomalous
magnetization (31) in the second equality of equation (35), one obtains

B
e

T T
0

sign

8
tanh

2
tanh

2
. 36xy

2
( ) ( ) ∣ ∣ ∣ ∣ ( )

⎡
⎣⎢

⎤
⎦⎥

s
h

p
m m

= = -
D + D

-
- D

We stress that this value of the anomalous Hall conductivity does not depend on a choice of
the starting thermodynamic potential. Furthermore, because equation (36) corresponds to the
second derivative of the thermodynamic potential with respect to both B and μ, the presence
of an arbitrary function of T and B in Ω and in the magnetization (30) does not affect the final
result.

In the limit T = 0 the last equation reduces to

e

4
sign . 37xy

2
( ) (∣ ∣ ∣ ∣) ( )


s

p
h q m= - D D -

It is interesting to note that this result corresponds to the long-wavelength limit of the static
Hall conductivity, viz qlim lim ,q xy0 0 ( )s ww  (see [30] and the discussion in [31]). The
usual Hall conductivity, relevant for the transport, is given by an opposite limit,
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qlim lim ,xy q xy
tr

0 0 ( )s s w= w  . This anomalous Hall conductivity was studied in [32, 33]
and in the clean limit for h = + reads

e sgn

4

1, ,

, .
38xy

tr
2 ( ) ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
( )

⎧⎨⎩


s
p

m
m m

= -
D D

D > D

We observe that equation (38) agrees with equation (37) when the chemical potential is inside
the gap, ∣ ∣ ∣ ∣m < D in accord with the conditions of the Strěda formula [29] validity.

Finally we note that the presence of disorder might regularize [30] the uncertainty of the
order of limits mentioned below equation (37). For ∣ ∣ ∣ ∣m D the quantized value of the Hall
conductivity (38) is robust with respect to disorder, while for ∣ ∣ ∣ ∣m > D the presence of
disorder modifies the result for the clean case (see [32, 33] and [34] for a recent discussion).

5.2. Quantum Hall effect in graphene

So far we have considered the anomalous Hall effect by taking the limit B = 0. To complete
our consideration is instructive to consider the Hall conductivity at finite field. Since the
magnetization (30) is valid in the low-field regime, we come back to equation (13) for the
carrier density, because it is valid for an arbitrary strength of the magnetic field. The same
expression can be directly obtained from the Green’s function by doing the summation over
Matsubara frequencies [17, 35, 36]. It is important that, in contrast to the the nonrelativistic
case, the Matsubara summation in the relativistic case is done [36] without an additional
convergence factor. When this factor is present, the Matsubara sum produces the Fermi
function nF as we had in equation (9), rather than tanh that is present in equation (13). Note
also that to compare the corresponding to equation (13) expression from [36], one should
rewrite the lowest Landau level contribution 0

relr as follows

eB

c
eB

T
eB

T4
tanh

2
tanh

2
, 390

rel ( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥

r
p

q
m h

q
m h

=
+ D

- -
- D

where we used that eB eB eB eB eB eBsgn∣ ∣ ( ) [ ( ) ( )]q q= = - - . Using that in the T 0
limit Ttanh 1 2( ) ( ) m q m-  - - + , one can show that equation (39) at T = 0 acquires
the form

eB

c

eB

c4
sgn

4
sgn . 400

rel ( ) (∣ ∣ ∣ ∣)
∣ ∣ (∣ ∣ ∣ ∣) ( )

 
r

p
h q m

p
mq m= D D - + - D

Similarly one can consider the T = 0 limit for n 1
rel
r part given by equation (19) and obtain

eB

c
M

sgn

2
. 41n

n
n1

1
( )∣ ∣ ( ) ( )

 år
m

p
q m= -

=

¥

One can see that the first term of equation (40) corresponding to the anomalous Hall
conductivity (36) is time-reversal symmetry breaking, since it is odd under B B - . On the
other hand, the second term of equation (40) and the whole equation (41) are even under
B B - . For 0m = in the limit 0D  the first term of equation (40) leaves behind the
sgn( )hD . This property is called a sign anomaly. As noted in [17], this anomaly is removed
by a finite density effects. Indeed, for 0m ¹ only the second term of equation (40) survives in
the limit 0D  .

Adding together 0
relr and n 1

rel
r we recover the results of Lykken et al [35] and Schakel

[36]
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eB

c

eB

c

c

v eB4
sgn

sgn

2

1

2 2
, 42rel

2 2

F
2

( )
( ) (∣ ∣ ∣ ∣)

∣ ∣ ( ) ( )
⎛

⎝
⎜⎜

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎞

⎠
⎟⎟  

r
p

h q m
m

p

m
= D D - + +

- D

where x[ ] denotes the integer part of x. As discussed above, graphene corresponds to the case
with 0TD = , 0D = D h . Taking into account the spin-valley degeneracy and using the
Strěda formula (35) we reproduce the half-integer quantum Hall effect [37–39]

e eB c

v eB

2 sgn sgn 1

2 2
. 43xy

2 2

F
2

( ) ( ) ( )
⎛

⎝
⎜⎜

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎞

⎠
⎟⎟ 

s
m

p
m

= - +

The argument given below equation (25) allows to conclude that the same result also follows
from the nonrelativistic carrier density. The Hall conductivity (43) can also be written as a
function of the free carrier imbalance, free

relr ,

e eB c

eB

2 sgn sgn 1

2 2
, 44xy

2
free
rel( ) ( )

∣ ∣
( )

⎛
⎝
⎜⎜

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎞
⎠
⎟⎟


s

m
p

p r
= - +

where we used that in the absence of magnetic field vsgnfree
rel 2 2

F
2( ) ( )r m m p= . Concluding

it is worth to stress that the quantum Hall effect is a disorder-induced phenomenon.
Accordingly the presented consideration only illustrates the expected quantization of the Hall
conductivity, rather than explains it.

6. Conclusion

In the present work we demonstrated how the Landau approach used to describe the dia-
magnetism of electron gas can be applied for the 2 1+ -dimensional massive Dirac fermions.
We derived an explicit expression (30) for magnetization in the low-field regime. It contains
field independent (anomalous) term (31) and the linear in field part (32). While there exist
many approaches that allow one to obtain these terms, the use of the Euler–Maclaurin formula
as in the original work Landau [20] is the simplest option. Using the Strěda formula it is
illustrated how the obtained expressions for the carrier imbalance (22) (or equation (31) for
the magnetization) and (42) are related to the anomalous quantum Hall effect and quantum
Hall effect in graphene.
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