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Topological matter has become one of the most important subjects in contemporary condensed
matter physics. Here, I would like to provide a pedagogical review explaining some of the main
ideas, which were pivotal in establishing topological matter as such an important subject. Specif-
ically, I explain how the integer quantum Hall state played the role as a prototype for topological
matter, eventually leading to the concept of topological insulator. The topological nature of the
integer quantum Hall state is best represented by the Thouless-Kohmoto-Nightingale-den Nijs, or
so-called TKNN formula, which connects between the Berry phase and the Hall conductivity. The
topological non-triviality of topological insulator stems from the existence of a Dirac monopole in
an appropriate, but often hidden Hamiltonian parameter space. Interestingly, having the identi-
cal Dirac monopole structure, the Hamiltonian describing the Rabi oscillation bears the essence
of topological insulator. The concept of topological matter has expanded to include topological
semimetals such as Weyl and Dirac semimetals. A final frontier in the research of topological
matter is the interaction-induced topological phases of matter, namely, the fractional Chern and
topological insulators. The existence of the fractional Chern and topological insulators has been
proposed theoretically by drawing an analogy from the fractional quantum Hall states. The gist of
this proposal is explained along with some of its issues. I conclude this review by discussing some
of the future directions in the research of topological matter.
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I. INTRODUCTION

There are various reasons why topological matter has
become one of the most important subjects in contem-
porary condensed matter physics. While the specific or-
dering of importance can vary depending on the authors,
one of the key reasons should be the fact that topological
matter owes its existence to the Berry phase [1]. Prior to
the establishment of topological matter, it was believed
that the Berry phase could manifest itself only through
a form of interference. The notion that the Berry phase
can be used as a new order parameter defining topologi-
cal matter has received a universal recognition as one of
the most important breakthroughs in condensed matter
physics.

In this review, I would like to explain how this single
idea of using the Berry phase as a topological order pa-
rameter has generated a remarkable chain of discoveries
and new ideas, establishing topological matter as one of
the most important subjects.

∗E-mail: kpark@kias.re.kr

II. BERRY PHASE AS A TOPOLOGICAL
ORDER PARAMETER

While the usual order parameter is related with a
spontaneous breaking of the symmetry in the Hamil-
tonian, the topological order parameter has to do with
the topological structure of the manifold formed by the
Hamiltonian parameter.

To give an intuitive example illustrating what this
means physically, let us imagine a Gedanken experi-
ment of the Aharonov-Bohm effect with an infinitesi-
mally thin solenoid. As well known, electrons traveling
along a certain closed path would acquire the Aharonov-
Bohm phase depending on whether the path encloses the
solenoid or not. This already indicates some form of
topology.

Generally speaking, however, the total flux penetrat-
ing through the solenoid is not quantized if the solenoid
is indeed completely shielded from the electron paths.
Therefore, although the Aharonov-Bohm phase acquired
by each electron path is topological in the sense that it
depends on whether the path encloses the solenoid or
not, the total flux itself is not topologically quantized.
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Fortunately, there is a class of superconductor known as
the type-II superconductor, where an externally applied
magnetic field can penetrate the superconductor as a lat-
tice of narrow bundles. This magnetic bundle is called
the magnetic vortex since it induces a swirling supercur-
rent of Cooper pairs nearby. Now, the total flux of the
magnetic vortex is quantized due to the condition that
the Cooper-pair wave function should be single valued
circling around each vortex. This means that any closed
electron path can be topologically classified in terms of
how many magnetic vortices it encloses. In other words,
the number of vortex quanta inside a closed path can be
used as a topological order parameter of the path.

The topological insulator [2, 3] can be regarded as a
generalization of this idea to higher dimensions. In a
broad sense, the term “topological insulator” includes
both the anomalous quantum Hall state, also known
as the Chern insulator, and its appropriately extended
version with time-reversal symmetry. In 2D, the time-
reversal invariant topological insulator is simply two in-
dependent copies of the Chern insulator, preserving the
time-reversal symmetry as a whole.

To begin, let us discuss the 2D Chern insulator, which
is rather a direct generalization of the 1D idea sketched
above for the following reasons. First, a closed path in
the 1D example corresponds to a compact 2D manifold
formed by momenta, i.e., the 2D Brillouin zone, which
can be mapped onto the surface of a Bloch sphere in
the Hamiltonian parameter space. Second, a magnetic
vortex corresponds to a Dirac monopole generating a
hedgehog-like configuration of the effective magnetic field
in the Hamiltonian parameter space. It is important to
note that, similar to the 1D example, the strength of
the Dirac monopole is also quantized due to the single-
valuedness of the electron wave function.

III. INTEGER QUANTUM HALL STATE:
PROTOTYPE OF THE CHERN

INSULATOR

Historically, the concept of the 2D Chern insulator
has been hidden all along in the integer quantum Hall
state (IQHS), waiting to be discovered. The quantized
Hall conductance of the IQHS was so precise that many
researchers believed that there must be a fundamental
reason for this. There have been several different ap-
proaches including the Laughlin’s gauge argument [4],
the Thouless-Kohmoto-Nightingale-den Nijs, or so-called
TKNN formula [5], the Landauer-type argument using
the edge state transport [6,7], and so on. Different ap-
proaches are useful in their own specific purposes. In this
review, we focus on the first two approaches, namely, the
Laughlin’s gauge argument and the TKNN formula.

Laughlin’s gauge argument. The Laughlin’s gauge
argument is both elegant and powerful since it is based
on one of the most fundamental principles in physics, i.e.,
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Fig. 1. (Color online) Laughlin’s gauge argument for the
quantized Hall resistance. In the Landau gauge, the Landau-
level eigenstates are the Gaussian-localized wave packets
along the x direction, whose center positions are dependent
on the momentum in the y direction. Inserting a test flux δΦ
induces a kick in the momentum in the y direction and thus
a shift in the center position of the wave packets. This gener-
ates a pumping of the charge along the x direction and a flow
of the current along the y direction, eventually explaining the
quantized Hall resistance. See the main text for details.

the gauge invariance principle. To explain the quantized
Hall conductance of the IQHSs, Laughlin performed a
Gedanken experiment imagining a very large cylinder
of the 2D electron gas (2DEG) system, which can be
obtained by connecting two ends of the 2DEG system
so that the periodic boundary condition can be applied
along the circumference direction of the cylinder.

To understand the Laughlin’s gauge argument in con-
crete details, let us consider the Hamiltonian in the Lan-
dau gauge A = (0, Bx, 0):

H =
1

2m

[
p2x +

(
py − eB

c
x

)2
]

=
1

2m
p2x +

1

2
mω2

c (x− kyl
2
B)

2, (1)

where the x direction is across the cylinder height, and
the y direction is along the circumference of the cylin-
der. The external magnetic field B is assumed to be
applied in such a way that it penetrates the surface of
the cylinder perpendicularly. Here, ωc = eB/mc is the

cyclotron frequency, and lB =
√
�c/eB is the magnetic

length. Also, the second line is obtained by using the
separation of variables, i.e., the wave function is chosen
to be the momentum eigenstate along the y direction,
ψ(x, y) = φ(x)eikyy with ky = 2πmy/Ly. The Hamilto-
nian in Eq. (1) is nothing but the Hamiltonian of the 1D
harmonic oscillator, which can be solved readily by the
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Table 1. Examples of the fluctuation-dissipation theorem.

Fluctuation or correlation Dissipation or response
Density-density Dielectric function
Spin-spin Spin susceptibility
Current-current along the same direction Longitudinal conductivity
Current-current between orthogonal directions Hall conductivity

following eigenstates:

ψn,ky
(x, y) = CnHn(x/lB−kylB)e

− (x−kyl2B)2

2l2
B eikyy, (2)

where Hn is the Hermite polynomial and Cn is the nor-
malization constant. It is important to note that the cen-
ter of the wave packet along the x direction, described
by the Hermite polynomial times the Gaussian function,
is dependent on the y-direction momentum, ky.

Returning back to the Laughlin’s gauge argument, let
us imagine that we now insert a small test flux, δΦ,
through the cylinder along its axis. The insertion of such
a test flux induces a kick in ky due to the Aharanov-
Bohm effect, i.e., ky → ky+δky = 2πmy/Ly+

e
�cδΦ/Ly.

This kick in ky generates in turn a shift in the center of
the wave packet to the x direction. If δΦ becomes one
flux quantum φ0 = 2π�c/e, δky = 2π/Ly, meaning that
the wave packets are shifted exactly by one unit. Actu-
ally, this can be regarded as a form of the gauge trans-
formation since this shift can be absorbed into my by
defining a new momentum indexm′

y = my+1, which just
relabels the wave packets without changing the physical
nature of the state. See Fig. 1 for a schematic diagram.

Now, any IQHS with integer-filled Landau levels
should be invariant with respect to this gauge transfor-
mation of adding a test flux equal to one flux quantum.
Interestingly, while this gauge transformation does not
change any physical nature of the state itself, something
has actually changed. What has changed is that charges
have been pumped from the left to right end of the cylin-
der. To be precise, when the number of filled Landau
levels is n, n charges are pumped. In this situation, if
the voltage Vx is applied across the height of the cylin-
der, then there is an energy increase in the amount of
neVx.
Meanwhile, this energy increase due to the flux change

should be related to the current, Iy, flowing along the cir-
cumference of the cylinder. To understand this, note that
the cylinder has a magnetic moment equal to μ = IyA/c,
where A is the area of the cross section of the cylin-
der. Then, the energy increase due to the flux change
is given by δE = μδΦ/A = IyδΦ/c, meaning that
Iy = cδE/δΦ. Now, let us remind ourselves that, for
the IQHS with n-filled Landau levels, δE = neVx for
δΦ = φ0 = 2π�c/e = hc/e. Consequently, the Hall resis-
tance is given as

RH =
Vx

Iy
=

h

ne2
, (3)

which is exactly the expected result for the quantized
Hall resistance of the IQHS at ν = n. Note that the Hall
conductance is simply the inverse of the Hall resistance
for the IQHSs, where the longitudinal resistance is zero.

At this point, it is very important to note that the
above argument should hold even in the presence of
moderately strong disorder. Moderately strong disor-
der would disturb the ideal positions of the Landau-
level eigenstates. Despite this disturbance, however, the
gauge transformation must move each wave packet one
by one, making the whole state return to itself. In con-
clusion, the Hall resistance should be quantized as before.

Actually, there is a tricky issue regarding the role of
disorder. The gauge transformation shifts only the cen-
ter positions of the so-called extended states, which are
extended across the entire circumference of the cylinder.
On the other hand, the localized states, which are local-
ized near impurities, do not contribute to the Hall re-
sistance since the test flux would have negligible effects
on them. This means that, even though the number
of electrons changes continuously, only those electrons
forming the extended states can contribute to the Hall
resistance. Put in another way, any electron spilled over
the top-most filled Landau level is trapped in the local-
ized states, making the Hall resistance fixed for a range
of the magnetic field. Therefore, ironically, the Hall re-
sistance can become quantized because of (moderately
strong) disorder. Without disorder, there would be no
localized state at all. In such an idealized situation, the
Hall resistance would follow a straight line as a function
of filling factor since every electron can contribute.

Of course, this scenario breaks down if disorder be-
comes too strong. In this situation, the gap between dif-
ferent Landau levels closes, and therefore there would be
no protection against the excitations to higher Landau
levels, destroying the quantized Hall resistance.

TKNN formula. Perhaps, the TKNN approach has
been the most influential one among various approaches
explaining the quantized Hall resistance since it makes
a direct connection between the Berry phase and the
Hall conductance. Despite the conceptual breakthrough,
however, the TKNN approach may be the most tradi-
tional approach since it uses the linear response theory.

The linear response theory is also known as the
fluctuation-dissipation theorem, which is one of the most
fundamental principles in condensed matter physics. In
some sense, it is the fluctuation-dissipation theorem that
actually makes the comparison between theory and ex-
periment possible. The gist of the fluctuation-dissipation
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theorem is that the dissipation, or response induced by
an external perturbation is proportional to the fluctua-
tion, or correlation of the system that is already present
in equilibrium, i.e., before the application of the external
perturbation. The reason why this makes the comparison
between theory and experiment possible is that theory
can usually compute only the equilibrium properties of
the system, while experiment must apply some kind of
probe to the system, i.e., an external perturbation. A
well-known example of the fluctuation-dissipation theo-
rem is that the density-density correlation function in
equilibrium is proportional to the dielectric function,
which is simply the linear response to an external electric
field. See Table 1 for other examples.

As shown in Table 1, it is necessary to consider
the current-current correlation between orthogonal di-
rections to compute the Hall conductivity σxy. Mathe-
matically,

σxy ∝
∫ ∞

0

dt〈Jx(t)Jy(0)〉, (4)

where Jx and Jy are the currents along the x and y di-
rections, respectively. It turns out that it is possible to
perform the integral in the right-hand side of Eq. (4) ex-
actly for 2D noninteracting systems, as done by TKNN.
After performing some algebra, one can rewrite Eq. (4)
as follows:

σxy ∝
∫

d2k
∑

εμk<εF

〈∇kuμk| × |∇kuμk〉 · ẑ, (5)

where, being the periodic part of the Bloch wave func-
tion, uμk(r) is defined as the eigenstate of the following
modified Schrödinger equation with the eigenvalue εμk:

Hmod =
1

2m

(
−i�∇+ �k− e

c
A(r)

)2

+ U(r), (6)

where U(r) is the potential energy imposing the periodic
structure of the lattice. Above, ẑ denotes the unit vector
along the z direction, i.e., the perpendicular direction to
the 2DEG system. It is important to note that the sum-
mation is taken over all the energy bands, whose energy
is below the Fermi energy. After taking into account the
proportionality constant precisely, the Hall conductivity
can be written as follows:

σxy =
e2

h

∑
εμk<εF

Cμ, (7)

where Cμ, called the Chern number of the μ-th energy
band, is defined by

Cμ =
i

2π

∫
d2k〈∇kuμk| × |∇kuμk〉 · ẑ. (8)

Equation (8) shows that the Chern number of a given
energy band is the total Berry flux piercing through the

αx
αy

αz

|ψ∗n(α)〉
|ψ∗n(α+ δα)〉

Fig. 2. (Color online) Schematic diagram showing how the
Berry phase is computed.

entire Brillouin zone for that energy band. To under-
stand this, let us remind ourselves of how the Berry phase
is computed.

The concept of the Berry phase was originally intro-
duced in the context of the adiabatic approximation
[1]. The adiabatic approximation concerns the situa-
tion, where the system is subject to a very slowly vary-
ing perturbation in time. Specifically, in the adiabatic
approximation, the solution of the full time-dependent
Schrödinger equation is approximated to be proportional
to the instantaneous eigenstate of the Hamiltonian as if
time is just a fixed parameter. Mathematically,

|ψn(t)〉 � |ψ∗n(t)〉e− i
�

∫ t
0
dt′E∗n(t′)eiγn(t), (9)

where |ψ∗n(t)〉 is the n-th instantaneous eigenstate with
the instantaneous eigenvalue E∗n(t) at a given time t.
Here, γn(t) is the Berry phase of the n-th instantaneous
eigenstate. Actually, the existence of this additional
phase had been known even before Berry. However, it
was always assumed that this phase could be eliminated
by devising an appropriate gauge transformation. As
realized by Berry, this is not always possible. Some-
times, there emerges a situation, where the additional
phase factor survives and generates a physically observ-
able consequence.

To see this, it is instructive to consider a concrete ex-
ample, where the Hamiltonian depends on a 3D vector
parameter α, which is in turn a very slowly varying func-
tion of time. In this situation, let us compute how the
additional phase γn depends on the n-th instantaneous
eigenstate |ψ∗n(α)〉. Specifically, we begin by computing
the overlap between the n-th instantaneous eigenstates
at α and α+ δα:

〈ψ∗n(α)|ψ∗n(α+ δα)〉 � 1 + δα · 〈ψ∗n(α)|∇α|ψ∗n(α)〉
� e−iδα·An(α),

(10)

where

An(α) = i〈ψ∗n(α)|∇α|ψ∗n(α)〉. (11)

See Fig. 2 for a schematic diagram. The last expression in
Eq. (10) looks as if it is the Aharonov-Bohm phase in the
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parameter space induced by an effective vector potential
An(α). Actually, it turns out that it can be regarded
as being such. For the time being, let us assume so and
proceed further. Then, the effective magnetic field can
be defined by taking the curl of An(α):

Bn(α) = ∇α ×An(α)

= i〈∇αψ∗n(α)| × |∇αψ∗n(α)〉, (12)

which in turn can be used to compute the effective
Aharanov-Bohm phase:

γn = i

∫
A

dS · 〈∇αψ∗n(α)| × |∇αψ∗n(α)〉, (13)

where A denotes an area in the parameter space bounded
by a closed boundary, or path. Technically, An(α),
Bn(α), and γn are called the Berry connection, curva-
ture, and flux, respectively.

Now, it is important to notice the similarity between
Eqs. (8) and (13). The two expressions are essentially
identical with α and k playing the corresponding roles.
In Eq. (8), the area, A, is simply equal to the entire
Brillouin zone. The similarity between the two expres-
sions is very important not only because it triggered the
conceptual development eventually leading to topologi-
cal matter, but also because it provides a natural expla-
nation for the reason why the Chern number should be
quantized.

The reason is fundamentally due to the single-
valuedness of the wave function imposing a strict condi-
tion for the magnetic charge of the Dirac monopole, qm,
which is present in the Hamiltonian parameter space. As
first discovered by Dirac himself, qm should be an inte-
ger multiple of the flux quantum divided by the solid
angle, i.e., 4π in order for the electron wave function
to be single valued. Actually, the original formulation
was given in such a form that the product between the
electron charge e and the magnetic charge qm should be
quantized as follows (in the Gaussian units):

eqm
�c/2

∈ Z, (14)

meaning that 4πqm/φ0 ∈ Z. As shown in one of the
following sections, the archetypal Hamiltonian of the 2D
Chern insulator has the Dirac monopole in the Hamil-
tonian parameter space, whose magnetic charge is qm =
±φ0

4π with the sign depending on the energy level.
Hofstadter’s butterfly. There is a subtle, but very

intriguing problem that arises when one tries to apply the
TKNN formula to the IQHS as it is written. The problem
is that the TKNN formula requires the momentum to be
a good quantum number. Unfortunately, the presence of
the magnetic field in the IQHS breaks the translational
symmetry, at least, in the Hamiltonian level since the
vector potential depends on position. A solution to this
problem is to introduce an additional periodic potential
forming the lattice structure and enlarge the unit cell

Magnetic flux through the unit cell
in units of magnetic flux quantum

En
er

gy

0 1

Color: Hall conductance 

Fig. 3. (Color online) Hofstadter’s butterfly in the square
lattice as a function of magnetic flux through the unit cell.
Belonging to the public domain, the main figure is taken from
wikipedia. The axis labels are added by the current author
of this review. Note that different colors indicate different
quantized values of the Chern number, or the Hall conduc-
tance.

to enclose an integer number of flux quanta, called the
magnetic unit cell.

Surprisingly, it is found in this situation that the en-
ergy levels exhibit a fractal structure known as Hofs-
tadter’s butterfly [8]. See Fig. 3 for Hofstadter’s butter-
fly in the square lattice. It is important to note that the
complex energy levels reduce to the usual Landau lev-
els in the limit of the magnetic flux approaching either
0 or 1, or the continuum limit. Such a limiting process
provides a guarantee that, while not easy to compute
directly, the Chern number of the lowest Landau level
(for that matter, any Landau levels) can be regarded as
being quantized as unity.

IV. HALDANE MODEL: CHERN
INSULATOR

Setting aside the issue of Hofstadter’s butterfly, the
TKNN formula stimulated the imaginations of many re-
searchers including Haldane, who conducted a theoreti-
cal study to investigate the possibility of the quantized
Hall conductance without Landau levels [9]. Realizing
that the TKNN formula does not require the existence
of a finite magnetic field, Haldane constructed a tight-
binding model Hamiltonian in graphene with both near-
est and next-nearest neighbor hopping in the presence
of an appropriately modulating, but net-zero magnetic
field. It turns out that the model constructed by Hal-
dane, called the Haldane model from this forward, is an
exact embodiment of the 1D idea mentioned in the be-
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Bloch sphere

dk,z/|dk|

dk,x/|dk|

dk,y/|dk|

Momentum space

kx

ky

Harche = dk · σ

Fig. 4. (Color online) Mapping between the 2D Brillouin zone and the surface of the Bloch sphere. It is important to note
that the archetypal Hamiltonian of the 2D Chern insulator, Harche, can be regarded as a mapping between these two parameter
spaces.

ginning of this review for the 2D generalization.
The Haldane model can be regarded as a mapping from

the 2D Brillouin zone to the surface of the Bloch sphere.
That is, a momentum eigenstate in the 2D Brillouin zone
can be mapped onto a unit vector, whose end point is lo-
cated at a position in the surface of the Bloch sphere.
The Bloch sphere contains a Dirac monopole with the
monopole strength being ±1/2, provided that the Hamil-
tonian is given as the following archetypal form:

Harche = dk · σ (15)

where σ is the Pauli matrix vector. The momentum
dependence of the Hamiltonian parameter, dk, deter-
mines whether the model is topologically trivial or not.

Specifically, if the normalized vector d̂k = dk/|dk| wraps
around the Bloch sphere entirely (or, any integer number
of times), the total Berry flux becomes non-trivial due to
the presence of the Dirac monopole at the center of the
Bloch sphere, i.e., at dk = 0. See Fig. 4 for a schematic
diagram.

Intriguingly, the Hamiltonian in Eq. (15) is exactly
the same Hamiltonian describing the Rabi oscillation in
the presence of time-periodic magnetic field. The Rabi
oscillation is mostly known for the magnetic resonance.
However, the Hamiltonian describing the Rabi oscilla-
tion has exactly the same monopole structure in its pa-
rameter space as the 2D topological insulator. Thus, a
complete understanding of the Rabi oscillation should

be sufficient for that of the 2D topological insulator, or,
strictly speaking, 2D Chern insulator.

To be specific, let us write the Hamiltonian for the
Rabi oscillation:

HRabi = α · σ, (16)

where α is essentially equal to the rotating magnetic field
in the actual Rabi oscillation problem. Obviously, α cor-
responds to dk in Eq. (15). In the actual Rabi oscillation
problem, α = μ[B1 cos (Ωt)x̂ + B1 sin (Ωt)ŷ + B0ẑ] with
μ being the magnetic moment and Ω being the driving
frequency. The specific form of the time dependence is
not important here since we are interested in the Berry
phase only. Now, we would like to compute the Berry
curvature of this Rabi Hamiltonian to show that there is
a Dirac monopole at α = 0.
It is shown in Eq. (12) that the Berry curvature can

be written as follows:

B±(α) = i〈∇αψ±(α)| × |∇αψ±(α)〉, (17)

where |ψ±(α)〉 denotes the eigenstate of the Rabi Hamil-
tonian in Eq. (16) with energy eigenvalue ε±(α) = ±|α|.
Actually, the expression in Eq. (17) is rather inconve-
nient since one has to take the derivatives of the eigen-
state. Instead, one can rewrite Eq. (17) in a more conve-
nient that does not involve any derivatives of the eigen-
state:

Bn(α) = i〈∇αψn(α)| × |∇αψn(α)〉,
= i

∑
m �=n

〈∇αψn(α)|ψm(α)〉 × 〈ψm(α)|∇αψn(α)〉,

= i
∑
m �=n

〈ψn(α)|∇αH(α)|ψm(α)〉 × 〈ψm(α)|∇αH(α)|ψn(α)〉
[εn(α)− εm(α)]2

, (18)
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where n and m are the level indices denoting ± for
|ψ±(α)〉. The second line in the above equation is ob-
tained owing to the completeness of the Hamiltonian
eigenstates. The third line can be obtained by multiply-
ing 〈ψm(α)|∇α to both sides of the eigenvalue equation:

〈ψm(α)|∇αψn(α)〉 = 〈ψm(α)|∇αH(α)|ψn(α)〉
εn(α)− εm(α)

. (19)

Note that the final expression in Eq. (18) involves only
the derivatives of the Hamiltonian, not the eigenstates.

By using Eq. (18), one can show that

B±(α) = ∓1

2

α̂

α2
, (20)

which is identical to the usual inverse-square law of the
electric field induced by a point electric charge. This
means that there is a Dirac monopole with the magnetic
charge equal to ±1/2 at α = 0.

Due to the identical form of the Hamiltonian, a Dirac
monopole should also exist in the archetypal Hamiltonian
Harche in Eq. (15). Consequently, if the normalized vec-

tor d̂k wraps around the Bloch sphere entirely, the total
Berry flux is given as the product between the magnetic
charge of the Dirac monopole, ±1/2, and the solid an-
gle, 4π, amounting to ±2π. Since the Chern number is
defined as the total Berry flux divided by 2π, this means
that the Chern number becomes simply ±1 for the topo-
logically non-trivial state of Harche.
Concretely, the Hamiltonian for the Haldane model

has the following mathematical form [9]:

HHaldane =

(
g+,k f∗

k
fk g−,k

)
, (21)

where

fk = t1
∑
i

eik·ai , (22)

g±,k = ±Δ+ 2t2
∑
i

cos (k · bi ± φ), (23)

where t1 and t2 are the hopping parameters between
nearest and next nearest neighbors, respectively. Sim-
ilarly, ai and bi are the displacement vectors connect-
ing between nearest and next nearest neighbors, respec-
tively. Δ is the on-site energy difference between the
sites at sublattice A and B. φ is an appropriate phase
acquired by the hopping between next nearest neighbors
due to a modulating, but net-zero magnetic field inside
the hexagonal unit cell.

The Hamiltonian in Eq. (21) can be rewritten in the
form of Eq. (15):

HHaldane = hkI+ dk · σ (24)

where

hk = 2t2 cosφ
∑
i

cos (k · bi), (25)

dk,x = Refk = t1
∑
i

cos (k · ai), (26)

dk,y = Imfk = t1
∑
i

sin (k · ai), (27)

dk,z = Δ− 2t2 sinφ
∑
i

sin (k · bi). (28)

Here, note that, while depending on k, the hkI term
shifts both energies of the conduction and valence bands
together so that the direct gap between the two bands
remains the same even if we ignore it. Therefore, the
hkI term can be ignored unless the two bands overlap in
different momenta; that is, the band gap closes indirectly.

To test whether the Haldane model is topologically
trivial or non-trivial at a particular choice of the param-
eters, t1, t2, Δ, and φ, it is convenient to expandHHaldane

near the Dirac points. It is important to note that the
Haldane model reduces to the usual tight-binding model
of graphene with nearest-neighbor hopping only when
t2 = Δ = 0. In this situation, the gap closes at the usual
Dirac points at K and K′. With addition of non-zero t2
and Δ, the gap opens up, but its magnitude remains to
be the minimum at the Dirac points. Considering that
the magnitude of the gap indicates the distance from the
Dirac monopole in the Hamiltonian parameter space, the
minimum gap position plays a crucial role in determin-

ing the topology, or the wrapping of d̂k around the Bloch
sphere. Specifically, dk can be expanded near the Dirac
points as follows:

dq,x � Aqx, (29)

dq,y � ±Aqy, (30)

dq,z � M +B(q2x + q2y), (31)

with A, B, and M depending on t1, t2, Δ, and φ. Specif-
ically,

A =
3

2
t1, (32)

B = ±9
√
3

4
t2 sinφ, (33)

M = Δ∓ 3
√
3t2 sinφ, (34)

where we have ignored an unimportant phase factor of
A. Above, q = (qx, qy) denotes the displacement vector
measured from the Dirac points; that is, k = K + q or
k = K′ + q. Note that the sign in the right-hand side of
Eq. (30) depends on near which Dirac point, K or K′,
dk is expanded.

Then, the condition for a complete wrapping of the

unit vector d̂k around the Bloch sphere can be visual-
ized as the condition that the parabola sheet formed by

dk (not the unit vector d̂k) encloses a Dirac monopole
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dq,x = Aqx

dq,z = M +B(q2x + q2y)

M/B < 0

Topologically non-trivial

dq,x = Aqx

dq,z = M +B(q2x + q2y)

M/B > 0

Topologically trivial

dq,z = ±Aqy dq,z = ±Aqy

Fig. 5. (Color online) Schematic diagram illustrating the topology test of the Haldane model, or generally the archetypal
model Hamiltonian of the 2D Chern insulator. It is important to note that, generically, the Hamiltonian parameter dk =
(dq,x, dq,y, dq,z) can be always expanded as (Aqx,±Aqy,M + B(q2x + q2y)) near the momentum point, where the band gap is
minimum. As explained in the main text, the topology is non-trivial if M/B < 0 and trivial otherwise.

at the origin. This condition is simply determined by
the sign of M/B. That is, the topology is non-trivial
if M/B < 0 and trivial otherwise. See Fig. 5 for a
schematic diagram. Note that A is not important as far
as the topology is concerned. For the Haldane model,
this condition amounts to |Δ/t2| < 3

√
3| sinφ|, which is

exactly the same formula obtained by Haldane in Ref.
[9].

V. TOPOLOGICAL INSULATOR

In a narrow sense, the term “topological insulator” in-
dicates an appropriate time-reversal invariant version of
the Chern insulator with two spin species. As mentioned
previously, in 2D, this means two independent copies of
the Chern insulator with opposite Chern numbers for dif-
ferent spins, preserving the time-reversal symmetry as a
whole. It was perhaps the existence of this time-reversal
invariant topological insulator in 2D that sparked a re-
markable attention from the entire community of con-
densed matter physics. While there have been many
prior attempts, such an existence was first realized by
Kane and Mele in their seminal paper [10] in the form
recognized as being complete in the modern standard.
For this reason, let us begin our discussion on the 2D
topological insulator with the model Hamiltonian pro-
posed by Kane and Mele.

The microscopic model proposed by Kane and Mele is
based on the spin-orbit-coupled graphene, which reduces
to two copies of the Haldane model at an appropriate
parameter. Concretely, the Kane-Mele Hamiltonian is

written as follows:

HKane-Mele = −t
∑

〈i,j〉,σ
(c†iσcjσ +H.c.)

+ iλSO

∑
〈〈i,j〉〉,σ

σνij(c
†
iσcjσ +H.c.), (35)

where σ = ±1 for spin up and down, respectively. Also,
defined between next nearest neighbors, νij = 1 (−1)
if the hopping from ri to rj indicates a counterclock-
wise (clockwise) hopping with respect to the center of
the hexagonal unit cell. In the momentum space rep-
resentation, the Kane-Mele Hamiltonian can be written
in the archetypal form similar to that of the Haldane
Hamiltonian:

H
(↑)
Kane-Mele(k) = dk · σ (36)

H
(↓)
Kane-Mele(k) = [H

(↑)
Kane-Mele(−k)]∗, (37)

where ↑ and ↓ indicate the up and down spins, respec-
tively, and

dk,x = t
∑
i

cos (k · ai), (38)

dk,y = t
∑
i

sin (k · ai), (39)

dk,z = 2λSO

∑
i

sin (k · bi). (40)

Equations (36) and (37) indicate that, forming the Chern
insulators individually, the two Hamiltonian components
for different spin species are time-reversal conjugate to
each other, making the whole system time-reversal in-
variant. Similar to the Haldane model, dk,z can be ex-
panded near the Dirac points:

dq,z/λSO � ±3
√
3∓ 9

√
3

4
(q2x + q2y), (41)
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where, again, the sign depends on near which Dirac point
dq,z is expanded. Equation (41) shows that the topology
is always non-trivial for the Kane-Mele model.

Generalization to 3D topological insulator.
Näıvely, it may be expected that the 3D topological insu-
lator can be also constructed by generalizing the 2D con-
cept to a compact 3D manifold with appropriate Dirac
monopoles. Unfortunately, this does not work. Math-
ematically, it is not possible to generalize the Chern
number to 3D. Fortunately, however, if both inversion
and time-reversal symmetries are present, the 3D band
topology can be characterized by four Z2 invariants,
(ν0; ν1, ν2, ν3), which depend on the parities of the time-
reversal operator, δi(=1,··· ,8), at eight time reversal in-
variant momentum (TRIM) points [11,12].

To provide an intuition for the Z2 invariants, let us
begin with a simple example of the 3D topological insu-
lator, which is a stack of 2D topological insulators. This
is called the weak 3D topological insulator. The reason
why it is called being weak is that its edge states are
protected only along a certain direction.

The so-called strong 3D topological insulator, whose

edge states are protected in all directions, is achieved by
relaxing the idea that the Chern number can be some-
how generalized to 3D by using the topological informa-
tion of the entire 3D Brillouin zone. In fact, there is an
immediate problem if one tries to define the Chern num-
ber in 3D, where the spin degree of freedom is generally
coupled with the orbital counterpart, and therefore the
Chern number cannot be defined for each spin species
separately. A literal, but effective solution to this prob-
lem is to define the Chern number only when it can be
done. In the presence of both inversion and time-reversal
symmetries, there are certain 2D planes in the 3D Bril-
louin zone, where the Chern number can be defined sep-
arately for each spin species. These 2D planes are none
other than those containing the TRIM points [13]. For
convenience, let us call such 2D planes the TRIM planes.

To concretely show how this can be done, let us con-
sider a generic form of the Hamiltonian for 3D topologi-
cal insulator, which can be expanded near the minimum
gap position, e.g. the Γ point for BiSe-family materials
[2,3]:

H3D(k) = εkI4+

⎛
⎜⎝

M +B1k
2
⊥ +B2k

2
z A1(kx + iky) 0 A2kz

A1(kx − iky) −(M +B1k
2
⊥ +B2k

2
z) A2kz 0

0 A2kz M +B1k
2
⊥ +B2k

2
z −A1(kx − iky)

A2kz 0 −A1(kx + iky) −(M +B1k
2
⊥ +B2k

2
z)

⎞
⎟⎠ , (42)

where I4 is the 4× 4 identity matrix, and the overall en-
ergy shift εk can be expanded as C +D1k

2
⊥ +D2k

2
z with

k2⊥ = k2x + k2y. While the original microscopic Hamil-
tonian can be very complicated, the essential proper-
ties of the 3D topological insulator can be well captured
by the above expanded Hamiltonian or its minimally
lattice-regularized version constructed via ki → sin ki
and k2i → 2(1− cos ki) with i = x, y, z.

Let us begin by investigating what happens at kz = 0,
one of the TRIM planes. In this situation, H3D(k) re-
duces to a 2×2 block-diagonalized matrix describing two
independent copies of the Chern insulator with opposite
Chern numbers for different spins just like the 2D topo-
logical insulator. Therefore, at least at kz = 0, each spin
species can have the well-defined Chern number with an
opposite value to each other. Also, due to the reason
explained in the preceding section, the topology is deter-
mined by the sign of M/B1.

Next, we investigate what happens at kz = π, another
one of the TRIM planes. In this situation, one should
consider the lattice-regularized Hamiltonian with kz →
sin kz|kz=π = 0 and k2z → 2(1− cos kz)|kz=π = 4. Again,
here, H3D(k) reduces to a 2×2 block-diagonalized matrix
describing two independent copies of the Chern insulator.
A difference is that the topology is now determined by

the sign of (M + 4B2)/B1.
Now, we arrive at the stage, where the strong 3D topo-

logical insulator can be defined. The strong 3D topolog-
ical insulator can be defined as such a topological insu-
lator that its 2D topology is non-trivial at kz = 0 while
trivial at kz = π, or vice versa. While it is not easy to
see at this stage, one can show that the definition for
the strong 3D topological insulator does not depend on
the choice of the axis [13]. That is, one can choose the
TRIM planes at kx = 0 and kx = π, or those at ky = 0
and ky = π instead of those at kz = 0 and kz = π.

Actually, there is an equivalent, but much more con-
venient way of tracking the 3D topology instead of mon-
itoring the 2D topology of the TRIM planes. That is the
above-mentioned Z2 invariants. Below, I discuss how the
2D topology of the TRIM planes can be connected with
the Z2 invariants.
In the presence of the time-reversal symmetry, the

Chern numbers are always opposite between different
spins, meaning that the 2D band topology is fully char-
acterized by the Chern number difference. Motivated by
the analogy between the charge and time-reversal po-
larization, the Chern number difference can be alterna-
tively computed in a discrete form, which is formulated
in terms of the parities of the time-reversal operator,
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δi(=1,2,3,4), at four TRIM points [14]:

(−1)ν2D =

4∏
i=1

δi. (43)

It is important to note that the above 2D Z2 invariant,
ν2D, is exactly identical to half the Chern number differ-
ence computed via the integral form in Eq. (8):

ν2D =
C↑ − C↓

2
(mod 2), (44)

where C↑ and C↓ are the Chern numbers for the up and
down spins, respectively As shown below, the fact that
the 2D topological invariant can be computed in a dis-
crete form plays an important role in defining the 3D
topological invariants.

Näıvely, since there are generally six TRIM planes in
3D, there could be the same number of Z2 topological
invariants. For example, in the cubic lattice, the TRIM
planes are those defined by kx = 0 or π and the others
with kx replaced by ky and kz. It turns out, however,
that we only need four distinct numbers (ν0; ν1, ν2, ν3)
to fully specify the 3D topology. Note that each of the
Z2 indices, (ν0; ν1, ν2, ν3), is the 2D Z2 invariant for its
specific 2D plane computed via either Eq. (43) or (44).

Called the weak indices, the three Z2 topological in-
variants, ν1, ν2, and ν3, are the usual 2D Z2 invari-
ants for three TRIM planes, say, defined by kx = 0,
ky = 0, and kz = 0, respectively. That is, ν1 = νkx=0 =
(C↑,kx=0 − C↓,kx=0)/2 (mod 2) with ν2 and ν3 defined
similarly by using the ky = 0 and kz = 0 TRIM planes,
respectively.

Called the strong index, ν0 determines if a given 3D
topological insulator is weak or strong. Specifically, ν0
becomes unity (zero) if the Z2 topological invariant of a
given TRIM plane is different from (the same as) that of
the opposing TRIM plane in the same direction. That
is, ν0 = 1 and 0 if νkz=0 is different from and the same
as νkz=π, respectively. It is important to remember that
this definition is exactly identical to that obtained in our
previous discussion by using the explicit form of the 3D
Hamiltonian in Eq. (42). The fact that the strong 3D
topological insulator possesses topologically protected
edge states has been confirmed via angle-resolved pho-
toemission spectroscopy (ARPES) [2,3].

VI. TOPOLOGICAL SEMIMETAL

After the establishment of the 2D and 3D topologi-
cal insulators, researchers set out to explore new phases
of topological matter extending the concept of topo-
logical matter beyond the insulating state. Such new
phases of topological matter include Weyl [15, 16] and
Dirac [17] semimetals, which are generally called topolog-
ical semimetals. Unlike the topological insulator, where

kx
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kz

k0

−k0

kkkkzzz

kk00000

k000

−kkk000

Topologically non-trivial

Topologically trivial

Topologically trivial

Fig. 6. (Color online) Schematic diagram illustrating why
there should be a Fermi arc in the surface of Weyl semimetal.

Dirac monopoles are avoided in the momentum space,
Weyl and Dirac semimetals have Dirac monopoles di-
rectly in the momentum space as isolated points. Math-
ematically, the Hamiltonian for Weyl semimetal can be
expanded near the point where the gap vanishes as fol-
lows:

HWeyl = vFk · σ, (45)

where vF is called the Fermi velocity. The difference
between Weyl and Dirac semimetals is determined by
whether the Dirac monopoles of different spin species
occur in separated or coincidental points in the mo-
mentum space. Once separated in Weyl semimetal,
Dirac monopoles are called Weyl nodes. In some sense,
graphene is the 2D version of the Dirac semimetal since
the Dirac nodes are located in the same positions in the
Brillouin zone regardless of spin.

Weyl semimetal can be realized rather naturally from
the 3D topological insulator by breaking either the time-
reversal or the inversion symmetry. Weyl semimetal
has attracted intense interest from the condensed mat-
ter community due to the existence of its peculiar sur-
face state property known as the Fermi arc. The Fermi
arc is the gapless surface excitation mode connecting
between two surface-projected Weyl nodes, forming an
open-end segment in stark contrast with the Fermi cir-
cle for the usual 2D edge states. In this sense, Weyl
semimetal is a more interesting topological matter than
Dirac semimetal.

To understand why there should be a Fermi arc in
the surface of Weyl semimetal, it is convenient to study
a simple model Hamiltonian proposed by Yang et al.
[18] describing a time-reversal symmetry-broken Weyl
semimetal:

HYLR

= [−2t(cos kx − cos k0) +m(2− cos ky − cos kz)]σx

+ 2t sin kyσy + 2t sin kzσz, (46)
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which has two Weyl nodes at k = (±k0, 0, 0). Assuming
that k0 is small, HYLR can be expanded near k = 0 as
follows:

HYLR �
[
t(k2x − k20) +

m

2
(k2y + k2z)

]
σx+2tkyσy+2tkzσz,

(47)

which has essentially the same form as the expanded Hal-
dane Hamiltonian in Eqs. (29), (30), and (31) with the
roles of dq,z, dq,x, and dq,y in the Haldane Hamiltonian
now played by dk,x, dk,y, and dk,z, respectively.
In this situation, the condition for topological non-

triviality, M/B < 0, is now translated into |kx| < |k0|
since M = t(k2x − k20) and B = m/2. That is, the regime
defined by |kx| < |k0| is topologically non-trivial. This
means that each of the 2D momentum planes within
|kx| < |k0| can be regarded as an individual 2D Chern
insulator. See Fig. 6 for a schematic diagram illustrating
the situation.

In this situation, those individual 2D Chern insulators
have their own chiral edge states. If so, there must be a
line segment of topologically protected chiral edge states
existing within the projected surface of the topologically
non-trivial regime. Such a line segment is the Fermi arc.

VII. FRACTIONAL CHERN AND
TOPOLOGICAL INSULATOR

The next challenge in the research of topological mat-
ter concerns what happens to topological matter in the
presence of strong correlation between electrons. No
matter how complicated their band structure may be,
all the topological matters discussed so far can be de-
scribed by the noninteracting wave function composed
of a single Slater determinant.

In the case of topological insulators, the noninteract-
ing wave function can provide a reasonably good state
so long as the electron-electron interaction is weaker
than the band gap. In this situation, the effects of the
electron-electron interaction are taken into account in
such a level that they just renormalize the band dis-
persion. Meanwhile, in the case of Weyl and Dirac
semimetals, the noninteracting wave function is pro-
tected by a subtle renormalization group process, via
which the electron-electron interaction is more or less
screened away [19,20].

While noninteracting topological matter can be pro-
tected against reasonably strong correlation between
electrons, more exciting is the possibility that a novel
topological matter is induced by the interaction between
electrons [21–28]. A major inspiration comes from the
fractional quantum Hall states (FQHSs). In the FQHSs,
electrons are all confined in the lowest Landau level,
which can be regarded as a completely flat topological
band without any dispersion what so ever. Moreover,
with the lowest Landau level only fractionally filled, the

electron-electron interaction produces highly nonpertur-
bative correlation effects in the FQHSs. A question is
if a similar interaction-induced topological state can be
obtained at a fractional filling of the (nearly) flat Chern
band. If existent, this state would be called the frac-
tional Chern insulator (FCI). By the similar token, the
fractional topological insulator (FTI) can be defined as
the interaction-induced topological insulator at a frac-
tional filling of the (nearly) flat Chern band preserving
the time-reversal symmetry.

Below, we provide some details on the FQHS, which
are necessary to understand how the FCI can be con-
structed as a lattice analog of the FQHS.

Fractional quantum Hall state. With the first
FQHS discovered at 1/3 filling of the lowest Landau level
(LLL), initial efforts were devoted to explain why and
how an incompressible state can emerge at filling fac-
tor ν = 1/3. Eventually, these questions were answered
by Laughlin, who put forward the wave function later
named after him, the Laughlin wave function [29]:

ΨLaughlin =
∏
i<j

(zi − zj)
2p+1e

−∑
k

|zk|2
4l2

B , (48)

where p is an integer, related to the filling factor ν via
ν = 1/(2p+1). Note that p = 1 corresponds to ν = 1/3.
To understand the motivation for the Laughlin state,

it is convenient to use the circular gauge rather than the
Landau gauge, which was used in one of the preceding
sections. In the circular gauge, the vector potential is set
to be A = B

2 (−y, x, 0). In this situation, the LLL energy
eigenstates can be written as follows:

ψm(z) ∝ zme
− |z|2

4l2
B , (49)

where z = x + iy and m is the eigenvalue of the z-
component angular momentum, Lz = �(z ∂

∂z − z̄ ∂
∂z̄ ).

Above, the normalization constant is not explicitly
shown. Note that ψm describes the cyclotron motion
of an electron, which forms a ring with its expectation
value of the radius being equal to

√
2mlB .

Now, let us discuss how the Laughlin state can be con-
structed in terms of these LLL eigenstates in the circular
gauge. Specifically, below, we enumerate each of the ma-
jor ideas leading to the Laughlin state one by one.

(i) Any many-body wave function confined in the LLL
should be written solely in terms of the above LLL eigen-
states. That is, the many-body wave function should be
a holomorphic function, i.e., a function of complex vari-
ables entirely composed of z, not z̄:

Ψ(z1, z2, · · · , zN )

=
∑
{mi}

C{mi}A [zm1
1 zm2

2 · · · zmN

N ] e
−∑

k

|zk|2
4l2

B , (50)

where A is the antisymmetrization operator. Note

that the Gaussian factor, exp
(
−∑

k
|zk|2
4l2B

)
, is sometimes
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not explicitly written since it is always the same factor
regardless of the specific form of the wave function.

(ii) One of the most important lessons obtained from
the study of liquid Helium is that the strongly corre-
lated many-body wave function can be well described by
the product of two-body wave functions so long as the
two-body correlation is taken care of as accurate as pos-
sible. It turns out that higher-body correlations can be
ignored to a good approximation. Applying this idea to
the FQHS problem, one can write the following many-
body wave function for the FQHSs:

Ψ =
∏
i<j

f(zi − zj)e
−∑

k

|zk|2
4l2

B , (51)

where f(z) must be a polynomial of z to satisfy the holo-
morphicity condition discussed above. Note that we have
dropped the argument of the many-body wave function,
i.e., z1, z2, · · · , zN , for simplicity. Incidentally, the func-
tion f is generally called the Jastrow factor named after
Jastrow, who considered this type of the wave function
for the first time.

(iii) Since electrons are fermions, f(z) should be an
odd function with respect to the sign change of z:
f(−z) = −f(z).

(iv) The simplest Jastrow factor incorporating all the
above ideas is the power function of z with an odd power:
f(z) = z2p+1 with p being an integer. That is, the re-
sulting many-body wave function is given as

Ψ =
∏
i<j

(zi − zj)
2p+1e

−∑
k

|zk|2
4l2

B , (52)

which is none other than the Laughlin wave function.
(v) By inspecting the form of the Laughlin wave func-

tion, one can find that the size of the electron liquid
described by the Laughlin wave function is set by the
maximum power of any particular electron coordinate
zi, which is of course the same for all electrons. Specif-
ically, the maximum power is mmax = (2p + 1)(N − 1),
which also defines the total number of the available or-
bitals for electrons participating in the Laughlin state.
Meanwhile, the filling factor ν is the ratio between the
total number of electrons and available orbitals:

ν =
N

mmax
=

N

(2p+ 1)(N − 1)
→ 1

2p+ 1
, (53)

where the last expression is obtained in the thermody-
namic limit of N → ∞. In summary, the Laughlin wave
function is defined at filling factor ν = 1/(2p+ 1).

It was soon discovered, however, that, in addition to
the Laughlin sequence ν = 1/(2p + 1), various other
FQHSs are obtained at the filling factors summarized
by the following formula:

ν =
n

2pn± 1
, (54)

where n and p are both integers. Some FQHSs are related
with others via the particle-hole symmetry such that ν =
2− n/(2pn± 1).
Eventually, the entire sequence of these FQHSs was

explained by the composite fermion (CF) theory, which
was put forward by Jain [30,31]. The CF theory provides
a unification of the IQHSs and FQHSs via the key princi-
ple that there is a new quasiparticle called the CF, which
is the bound state between an electron and an even num-
ber of vortices. Since a vortex can be roughly regarded as
one magnetic flux quantum, this means that CFs experi-
ence only the residual magnetic field that is the difference
between the external and the captured magnetic fields.
That is, the effective magnetic field experienced by the
CF, B∗, is given as

B∗ = B − 2pρφ0, (55)

where 2p denotes the number of vortices captured by a
composite fermion, and ρ is the electron density.

Defined as the ratio between the total number of elec-
trons and flux quanta, the filling factor of electrons is
related with that of CFs as follows:

ν =
ρ

B/φ0
=

ρ

B∗/φ0 + 2pρ
=

ν∗

2pν∗ + 1
. (56)

If CFs fill an integer number of the effective Landau lev-
els, i.e., forming an IQHS at ν∗ = n, then the filling
factor for the FQHS of electrons is given as

ν =
n

2pn+ 1
, (57)

which is a special case of Eq. (54) with the positive sign
chosen in the denominator. See Fig. 7 for a schematic
diagram showing the mapping between the FQHSs of
electrons at ν = n/(2n+ 1) (with p = 1) and the IQHSs
of composite fermions at ν∗ = n. See also Fig. 8 for a
cartoon picture of the CF theory.

The negative sign is chosen if vortices are attached to
CFs inversely. The inverse vortex attachment is neces-
sary when B and B∗ have different signs. In this situa-
tion, CFs fill n effective Landau levels with the opposite
residual magnetic field, i.e., ν∗ = −n, so that Eq. (56)
becomes

ν =
−n

−2pn+ 1
=

n

2pn− 1
. (58)

Incidentally, the filling factor sequence in Eq. (54) is
called the Jain sequence.

Microscopically, the CF wave function can be written
as follows:

Ψν = PLLL

∏
i<j

(zi − zj)
2pΨν∗ , (59)

where the Jastrow factor,
∏

i<j(zi−zj)
2p, play the role of

attaching 2p vortices to CFs at the effective filling factor
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Fig. 7. (Color online) Mapping between the FQHSs of electrons at ν = n/(2n + 1) and the IQHSs of CFs at ν∗ = n. It is
important to note that the top and bottom experimental plots are exactly identical except that the latter is translated to the
left-hand side indicating that the magnetic field is subtracted by the constant amount equal to 2ρφ0 with ρ being the electron
density and φ0 being the flux quantum. The experimental plot is taken from the press release of the Nobel Prize in Physics in
1998.

ν∗. Above, PLLL denotes the LLL projection operator,
which is necessary since Ψν∗ can in general contain z̄ as
well as z. Note that, corresponding to ν∗ = 1 and p = 1,
Eq. (59) reproduces the Laughlin wave function at ν =
1/3 since Ψν∗=1 =

∏
i<j(zi−zj), which is nothing but the

Slater determinant for the fully filled LLL, also known
as the Vandermonde determinant. It has been shown
that Eq. (59) provides very accurate wave functions for
the exact Coulomb ground states, which are obtained via
exact diagonalization of various finite-size systems [31].

Now, an important question is how to translate the
CF wave function in Eq. (59), which is written in the
continuum, to a corresponding analog in the lattice.

Fractional Chern insulator. To find the lattice
analog of the CF wave function, it is convenient first
to consider the CF wave function in the Landau gauge,
which is amenable for the application of the periodic

boundary condition. Since it is not straightforward to
write the CF wave function in the Landau gauge at gen-
eral filling factors [32], here, we focus on the Laughlin
wave function only. The Laughlin wave function is writ-
ten on a cylinder with the Landau gauge as follows [33]:

ΨLaughlin =
∏
i<j

(
e

2π
Ly

zi − e
2π
Ly

zj
)2p+1

e
−∑

k

x2
k

2l2
B , (60)

where it is used that the cylinder is finite along the y
direction with the length being Ly, which means that
the momentum in the y direction is quantized in units of
2π/Ly.

It is important to note that Eq. (60) can be obtained
by using a similar logic used to derive the Laughlin wave
function in the circular gauge in Eq. (48). That is, first,
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Strongly interacting electrons at filling factor 1/3

Weakly interacting composite fermions at effective filling factor 1

Fig. 8. Cartoon picture of the CF theory. This cartoon
provides a humorous explanation for the formation of CFs.
Initially, electrons are strongly interacting with each other at
filling factor ν = 1/3. To reduce the Coulomb interaction
energy, electrons are transformed into CFs by capturing, or
grabbing two flux quanta nearby. Consequently, CFs feel only
the residual magnetic fields at effective filling factor ν∗ = 1.
Note that the (effective) filling factor is simply the ratio of
the number of electrons (CFs) to that of flux quanta. In-
cidentally, this cartoon was originally drawn by the current
author of this review as an illustration inserted in the Ph.D.
thesis of Rajiv Kamilla in 1997.

the LLL eigenstates can be written as follows:

ψm(r) ∝ e
2πm
Ly

z
e
− x2

2l2
B , (61)

which can be obtained from Eq. (2) by setting n = 0
and ky = 2πm/Ly. Then, notice that e2πmz/Ly can be

rewritten as gm(z) with g(z) = e2πz/Ly . If so, the same
logic used to derive Eq. (48) can generate the following
Jastrow factor type of the wave function:

Ψ =
∏
i<j

[g(zi)− g(zj)]
2p+1

e
− x2

2l2
B , (62)

which is nothing but the form given in Eq. (60). Here, it
is important to note that the above form is possible since
the LLL wave function can be written as a polynomial of
g(zi) similar to the situation in the circular gauge, where
it can be written as a polynomial of zi.

Now, it is possible to translate the Laughlin wave func-
tion by using a basis mapping from the LLL wave func-
tions to the so-called hybrid Wannier functions [27]. The
hybrid Wannier function is a localized wave packet along
one direction, while a plane wave in the other. Referring
detailed discussions for a concrete mathematical form of
the hybrid Wannier function to Ref. [27], let us sim-
ply denote the hybrid Wannier function as ψhy-Wan

m with
m denoting the momentum along the y direction. An

important point here is that the hybrid Wannier func-
tion ψhy-Wan

m can be one-to-one mapped to the LLL wave
function ψm in Eq. (61).

Specifically, it is in principle possible to expand the
Laughlin wave function in Eq. (60) as follows:

ΨLaughlin =
∑
{mi}

C{mi}A [ψm1(r1) · · ·ψmN
(rN )] . (63)

Then, the FCI wave function for the Laughlin state can
be written by just replacing ψm(r) by ψhy-Wan

m (r):

ΨFCI
Laughlin =

∑
{mi}

C{mi}A
[
ψhy-Wan
m1

(r1) · · ·ψhy-Wan
mN

(rN )
]
,

(64)

where it is important to note that the same amplitudes
C{mi} are used for both wave functions. It was found
that the wave function in Eq. (64) has a reasonably high
overlap with the exact ground state of the model Hamil-
tonian defined in a nearly flat Chern band with next-
nearest neighbor repulsive interaction [28].

Despite reasonable agreements with exact diagonaliza-
tion results, however, there are some serious issues in the
above approach. First, the gauge is not uniquely defined
in the basis mapping process. As a consequence, one
need a certain gauge fixing procedure, which is unfor-
tunately somewhat arbitrary. Second, the specific form
of the hybrid Wannier function is also chosen somewhat
arbitrarily. As a matter of principle, any function, which
is localized in one direction and plane-wave-like in the
other, would be sufficient.

The second issue is actually related with the fun-
damental difference between the Landau level and the
Chern band. While the Landau level can be in some
sense regarded as a flat Chern band, there is also an im-
portant difference between the two. The Landau level
eigenstates have a natural length scale called the mag-
netic length, which is determined by the strength of the
magnetic field. Meanwhile, the energy eigenstates in the
Chern band are fundamentally the plane waves, or the
Bloch states with both momenta in the x and y direc-
tions being good quantum numbers. Therefore, there is
no length scale. It is important to note that the hy-
brid Wannier function is not the energy eigenstate. Of
course, the interaction can introduce a new length scale
via spontaneous symmetry breaking. Unfortunately, if
so, the ground state would be some kind of the charge
density wave (CDW) state rather than the quantum Hall
state.

In summary, while it is likely that the Laughlin-like
state can be obtained in the fractionally filled Chern
band, there are still some issues to be resolved in order
for the FCI to exist both conceptually and experimen-
tally.

Beyond the independent bipartite fractional
topological insulator. The 2D topological insulator
is composed of two independent copies of the Chern
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insulator with opposite Chern numbers for different
spin species, preserving the time-reversal symmetry as
a whole. Naturally, the FTI has been proposed as being
composed of two independent copies of the FCI [34–45].
Let us call this type of the FTI the independent bipartite
FTI.

A question is if this scenario is generically true in the
physically realistic situation, where the electron-electron
interaction has the same strength regardless of spin. It
is important to note that the FCI of each spin species
is induced by the electron-electron interaction. There-
fore, the independent bipartite FTI can be in principle
obtained in an artificial limit, where the interspin in-
teraction is much weaker than the intraspin interaction.
It has been indeed shown that the independent bipartite
FTI can be stable up to a certain strength of the interspin
interaction relative to the intraspin interaction [40]. Un-
fortunately, the independent bipartite FTI breaks down
for the realistic interaction, where the interspin interac-
tion has the same strength as the intraspin interaction.

In this context, it is interesting to investigate the true
nature of the Coulomb ground state in the fractionally
filled Landau levels with spin-dependent holomorphicity,
i.e., electrons of one spin species reside in the holomor-
phic Landau level, while those of the other reside in the
antiholomorphic counterpart. It has been shown in a re-
cent paper of the current author [46] that the ground
state is generally compressible and disordered except at
half filling, where the filling factor of each spin species
is a half. Surprisingly, an incompressible state at half
filling is susceptible to an inherent spontaneous symme-
try breaking, eventually leading to the spatial separation
of different spins. This means that, in general, the FTI
cannot be described as an independent bipartite form.

VIII. DISCUSSION

I would like to conclude this review by discussing some
of the future directions in the research of topological mat-
ter.

First, strongly correlated topological matter is ex-
pected to become more and more important. Remem-
bering that the FCI is a lattice analog of the FQHS,
which is one of the most intriguing strongly correlated
systems, the FCI would become an active research field
if certain conditions for its experimental observation are
met. One of the most important experimental condi-
tions is of course the existence of the (nearly) flat Chern
band. Next, the Coulomb interaction must be sufficiently
strong so that it can overcome the effects of band disper-
sion. While there is a long way to go, it would be exciting
to observe a fractionally quantized Hall resistance with-
out applying an external magnetic field.

Second, while various types of topological matter have
been found in real materials, an interesting direction to
pursue is the artificial generation of topological matter,

especially by applying a time-periodic operation to the
system. This operation has been dubbed as the Flo-
quet engineering [47]. One of the most notable exam-
ples in the Floquet engineering is the proposal for the
generation of a Floquet topological insulator by irradi-
ating graphene [48–53] with a circularly polarized light
at high frequency. Such a Floquet topological insulator
is particularly interesting since it can provide an exact
realization of the Haldane model [9] or the Kane-Mele
model [10] for a single spin species with the possibility
of manipulating the Chern number via tuning the radi-
ation electric field strength. Also, it has been recently
shown by the current author [54] that a Floquet topo-
logical semimetal with nodal helix can be generated by
irradiating graphene with a circularly polarized light at
low frequency.
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