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Abstract. The states of free electrons in a magnetic field confined to a box of finite volume 
are determined and used to calculate the average magnetic moment and the non-dissipative 
electric and heat current in an unambiguous way. It is shown that for infinite volume the 
average magnetic moment coincides with the magnetization calculated by Landau. Simi- 
larly, for infinite volume, the non-dissipative transport coefficients coincide with those 
calculated by Zyryanov and Silin who use Landau's method and subtract the purely 
diamagnetic parts from the total currents. We think that our considerations give an answer 
to the often discussed question, why the Landau calculation of the magnetization and 
similar calculations of the non-dissipative transport coefficients are correct for a large 
system. 

1. Introduction 

In the eyes of many physicists, the Landau diamag- 
netism of free electrons in a box [1] is simple text 
book knowledge. Others, however, are of the opinion 
that Landau's calculation of magnetization is either 
incomprehensible or not convincing-even in those 
cases when they do not doubt the correctness of 
Landau's formula for susceptibility. This is undoubted- 
ly one of the reasons why there are numerous alter- 
native theories, of which those by Teller E2], Kubo [3], 
and Ohtaka and Moriya [4] should be particularly 
mentioned. Perhaps the most important objection to 
Landau's theory is that the role of the "surface elec- 
trons" which are reflected on the surface of the box 
is not clarified. This omission is particularly regret- 
able because it is precisely the consideration of the 
surface electrons which leads to the well known 
theorem of classical statistics, according to which the 
total magnetic moment of free point charges in the 
box disappears. As this objection is often formulated, 
it is not clear just how far the surface electrons are 
correctly taken into account when, in the counting 
of states, one neglects those states which correspond 
to circular orbits, the center of which lies outside of 

the box. In any case, Landau calculates the free energy 
using an incomplete set of states (Landau states) with- 
out any further justification. It is clear that in such a 
calculation the identity of the thermodynamic mag- 
netization and the thermal average of the total mag- 
netic moment is violated. To the best of our knowledge, 
however, this fact has not yet been fully appreciated 
in the literature. 
The aim of the paper by Teller quoted above is the 
calculation of the magnetization via the surface cur- 
rent. Although Teller "essentially" confirms the result 
of Landau, his work doesn't give any real insight into 
the implications of Landau's theory; the theories of 
Landau and Teller are actually much too different 
to be compared. 
In Section 2 of the present paper we calculate the 
thermal average of the magnetic moment of free elec- 
trons in a box. The finite extension of the box will 
be taken account of by homogeneous boundary con- 
ditions in the eigenvalue problem which replaces 
Landau's normalization condition. Although the eigen- 
value problem can then not be solved exactly in a 
closed form, general symmetry relations and approxi- 
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mate formulae I-5] can be obtained, which are sufficient 
for our present purposes�9 In the calculation of the 
magnetic moment we employ a device used by Teller 
in which the integrals are divided into surface parts 
and volume parts. We can then show that, in the 
limit of an infinite system, the average of the magnetic 
moment and the magnetization calculation by Landau 
become identical�9 At finite volumes, corrections occur 
which can be calculated explicitely. 
The diamagnetism is closely related to the non- 
dissipative currents which occur in thermally inhomo- 
geneous systems of free electrons I-6-21]. The contro- 
versy (cf. [18, 19]) among those authors who have 
made essential contributions to this topic is mainly 
caused by the fact that some follow Landau's and 
others follow Teller's procedure. Particularly contro- 
versial is the question of how the purely diamagnetic 
surface currents has to be taken account of. 
In Section 3 the currents which flow on the surface 
of the box are calculated directly�9 Special treatment 
for the diamagnetic currents is not necessary. The 
expressions of the transport coefficients coincide which 
those obtained by the procedure similar to Landau's 
after the diamagnetic contributions have been sub- 
tracted. Thus, our method of calculation gives justi- 
fication for such a treatment. 

2. D i a m a g n e t i s m  

1. To begin we briefly review Landau's calculation 
of the magnetization. Landau considers free electrons 
in a magnetic field B = (0, 0, B) confined to a box of 
volume V=Lx Lr L z. Choosing the vector potential 
A=(0,  B x, 0) he requires, for the energy eigenfunc- 
tions, periodic boundary conditions in y and z and 
normalization condition over the infinite interval 
- ~ < x < + ~ which corresponds to an infinite length 
L~-~ ~ .  In this case the quantum numbers are ~= 
(n, kr, kz), k r = - x o / R  2, R2=h  c/lel B. In the classical 
description x o is the x-coordinate of the center of 
the cyclotron motion of the electrons in the plane 
perpendicular to the magnetic field. The eigenfunctions 
are in y and z plane waves and in x Hermite functions 
which depend on x - x  o . The energy eigenvalues e~-L- 
h oo(n+l/2)+h 2 k~/2m, ~o--le] B/mc are in x o degen- 
erate. The crucial point is now that, in the counting 
of states, Landau restricts himself to states with 
O< x o < L  x, i.e. he neglects those states the center of 
which lies outside of the box. In the calculation of the 
thermodynamic potential 

O = - k T 2 ~ In { 1 + exp 1'(( - e~)/k T] } (1) 

the summation over ky leads to the degeneracy factor 

. d k y _  Ly rL~ L~Ly _ L ~ L y  ]elB 
Ly 2rc R 2 Jo dx~  2rc R 2 2rch c 

V lelB 
OL= - k T 2  

(2re h) 2 c 

�9 ~, ~ dpz In { 1 + exp [(( - e~)/k T] }. 
n --oo 

The index L here and in the following denotes that 
the labeled quantity is calculated by using Landau 
eigenfunctions, eigenstates, and Landau counting of 
states. Due to the incomplete counting of states, the 
identity of the magnetization 9)l = -(c30/c3B) and the 

average of the magnetic moment ( M )  = 2 y~fo [_c3e~ 
\ OBI' 

where fo  is the Fermi distribution function, is violated. 
One obtains instead 

~t.R L = ( M }  L -- f2L/B. (3) 

It seems therefore desirable to omit the Landau 
normalization condition and counting of states by 
taking account of the finite extension of the system 
in the formulation of the eigenvalue problem�9 

2. In order to describe an electron in a finite box we 
require, in place of the Landau normalization con- 
dition, that the energy eigenfunctions 

1 
0~(r) = ~ exp [i(p r y + Pz z)/h] ~ (x) (4) 

vanish outside the interval boundaries x = 0 and x = L x. 
The solution to the eigenvalue problem 

{ ( h e d 2 m o o  2 (X-Xo) 2+ e~ 
2m dx 2 2 2~n -/ ) (5) 

with boundary conditions ~//~(0)=~r leads, 
for R ~ Lx, to the eigenvalues 

h ( L )  (~_)2n+l h2k:2m e~=h , o ( n + � 8 9  e x p { -  x2/ZR 2} -~ 

(6) 
for internal electrons (x o > R) and 

g=ho91, (2n+1)+�89  1/~ r ( n + � 8 9  (7) 
7Z r / !  

for surface electrons (Xo <R). Here Xo is measured 
from the surface at x = 0. 
The energy spectrum is symmetrical in respect to 
x o = Lx/2, 

e (n, x o, kz) = e (n, L x -  Xo, kz) (8 a) 
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and correspondingly 

~r ~o (x) = ~/s L~-~o (L~ - x). (8 b) 

3. Using "Feynman's  Theorem" (~1 8H 8~ 
~;t IcO- 8;~ 

8e~ e 2 B r L~ 
x(X- Xo) ~#ff~2 (x) dx (9) OB mc2 Jo 

and with 

L~ L~ 

~ "'" --+ (2re h)2 
s 

(M} = 2LyL= 
(2 rc h) 2 

Lx 
[. X(X--Xo) ~2(X)dx. 
0 

lel B ~ ~ dxo ~ dp~... 
C - o o  --(72) 

!el3B 2 
mc 3 EIdp~ fdxo f  ~ 

n 

(lO) 

(11) 

According to point 2 above we can always find for 
R~L~ an internal state characterized by ~o, such 
that up to the exponential correction exp { -  x2/2RZ}, 

~g~ xo=~o = r xo=L~-~o 
0x ~ 8x ~ = 0 holds true. 

Corresponding to the division 
X o  L x - - . X o  

;dxo=  ~ dxo+ ~ dxo+ ; dx o (12) 
-- co -- oo xO Lx--  xo 

we obtain three contributions to the average magnetic 
moment 

(M> = (M>~ + (M)e  + (M)3 (13) 

which we now consider successively. Performing the 
transformation of variables Xo--,L~-x o and x ~  
L ~ - x ,  and using the symmetry relations (8) and the 
relation 

8g~ e 2 B 2 L~ 
-- m c 2  So ( x - x ~  (14) aXo 

we obtain 

2V le]B 2 ;dp~ 
( M ) a = ( M ) I  (2rch) 2 c ~ _~ 

&~ (15) io dxo f ~ ~Xo 

Since, for the quantum number x o=xo,  E~=~ and 
therefore 

2 V  lel 
( M ) 3 = ( M ) l q  (2z~h) 2 c 

�9 kTy', ; dp~ln{l+exp[((-e~)/kT]} 
n - - o o  

= ( M ) I  --  ff2L/B (16) 

holds. 

In the expression for (M)2,  we can replace ~ ( x )  
by the corresponding Hermite function and extend the 
integration in respect to x from - ~ to oo. We obtain 
then 

2x~ M 
(M)2=(M)L-~-x  ( )L (17) 

and finally 

(M) = (M)L-- f2jB + K (Lx) (18) 

where the correction 

2fro 
K (Lx) = 2 (M)I  - ~ (M)L (19) 

depends explicitely on the extension of the system. 
Since the choice of fro is independent of Lx, and 
(M)I/V is of the order Y~o/Lx we obtain, with Eq. (3) 
in the limit Lx--+ oo 

( M )  =gJ/L. (20) 

Thus, for an infinite system, the average of the mag- 
netic moment agrees with Landau's expression for 
the magnetization 9JIL=-(Sf2ffOB)~ r. As the pre- 
ceeding calculations show (C.f. Eq. [15)), the surface 
electrons (with & J S x o + 0  ) give an essential contri- 
bution to the magnetic moment�9 Although the relative 
number of surface electrons decreases, their magnetic 

moment r xv  increases with increasing vo- 
lume [2]. 

3. Non-Dissipative Transport 

1. From the grand canonical density operator of local 
equilibrium 

pZ = exp { - S fl (r) [ ~  (r) - ~ (r) A/'(r)] d 3 r} 
Tr exp{-S  f l ( r ) [ J r ( r ) - ( ( r )Y( r ) ]  dar} (21) 

one obtains for independent electrons the single 
particle density operator 

f~=  {exp 5 fl(r) [H( r ) -  ((r) n(r)] d 3 r +  1} -1 (22) 

= {exp [{fl (f), H} - fl (f) ~ (f)] + 1 } -1 (23) 

where 

H (r) = {H, n (r)} = �89 n (r) + n (r) H), n (r) = 6 (r - f). 

We assume that the temperature and the chemical 
potential are smoothly varying functions of x, 

8T 8( 
T(r)=T(x)=T+~Tx,  ((r)= ((x)= ( + ~ - x  x. (24) 
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Then, in linear approximation 

(25) 

holds where fo is again the Fermi distribution function. 
The stationary single electron density dperator f 
which describes the non-dissipative transport is de- 
fined by the conditions 

[ H , f ] = 0 ,  r r f = l ,  

Putting 

f = f t + f l  

Tr H f=  Tr Hf ~ 

with a linearized expression (25) for f l  and 2 =:2o + 
with (a12o I fi) = Xo 3~ and (ct I ~'1~) = 0 the conditions 
(26) give f2~=-fJp  for e+fi  and f2~=0. Thus, the 
stationary density operator is 

f=~ = f~(Xo) 3~e (28) 

s176176 &~ + T ~xx x~ (29) 

i.e. 

f~(Xo) = {exp [ (G-  ~(Xo))/kT(xo)] + 1}-1 (30) 

in linear approximation. Thereby it has been shown 
that the intuitive distribution function (30) i s -  at least 
in linear approximation-the exact stationary distri- 
bution. 
2. Now we want to calculate the average of the electric 
current and the heat current in the stationary state 
characterized by the distribution function (28). The 
averages of the corresponding current densities can 
be written as 

Jr (x) = 2 ~ f~ (Xo) j,~ (x), (31) 

qy (x) = 2 ~ f~ (Xo) qy~ (x) (32) 

with 

L~(x) . . . .  

and 

hie[ {tp. / 8t~y +~-c [el -x)  O~+h.c.} 
2mi 

lel co (X_Xo)~2(x )  
Ly L~ 

6O 

qy~ (x) = ~ (x- -  Xo)(e~ -- ~) ,r (x). 

It should be pointed out that these expressions differ 
essentially from the formally similar expressions in 

[6, 7] since, in our expressions, the contribution of 
the surface electrons is fully taken account of. We can, 
therefore, in the following calculation of the total 
charge and heat transport 

Jy=~jy(x) d3r, Qy=~ qy(x)dar (35) 

perform the integration with respect to x and the 
summation in respect to x o in arbitrary order. With 
(14) and the linearized distribution function (29) we 
obtain 

(26) 2c w 8f ~ (8(  G - (  ST] 
21 - -  Xo ~---~ ~ (36) JY- B ~ 8x o ( Sx T 3xx 

2c 8f~ Xo(e~-( ) + (37) (27) QY- lelB ~ r ~x 

and herewith, after using (10) and partial integration 

Jy=%x e 8x T ~x (38) 

Q, = 7yx e 8x + ~cyx r ~x (39) 

with transport coefficients 

L'Lz ~ ~ ~ ce N (40) 
%x=2 (27c h ) ~  e 2 dpz d x o f ~  - 

- o 9  

Ly Lz 
fiy~=Yyx=2 (27ch) 2 lel~', ~ dp~ ; dx o 

n - o 9  - o 9  

a f  o 
8x ~ Xo(G-( ) (41) 

L , L ~ ;  8f ~ 2 
Ky~=-2  (2~rh) ~ _ dPz_oo;dxo~oxo x~ 

(42) 

N is the number of electrons in the volume V. 
Up to corrections of the order Zo/Lx, the coefficient 
flyx can be written as 

2V 
fly~-(2nh)2 [e[~ ; dp~ ; dxo(e~-~ ) 8f~ c~x o n - -  m L x - g o  

- B ~ T - / ~ , ~  (43) 

(33) and furthermore, since for a large system f2L--~f2 
holds, and S = -(Sf2/ST)r B the total entropy is, 

cST 
fiyx - B (44) 

(34) 
Analogous calculations lead to 

C ~ T  2 ~(@T) d('. (45) 
KYx- eB _ r  
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The expressions (40) (44) and (45) for the transport 
coefficients have been derived with different methods 
in the papers [6-19] (c.f. also [20,21]). The direct 
calculation of the currents and transport coefficients 
given in the present paper doesn't require a separate 
treatment of the diamagnetic contributions (as in the 
papers [6-8, l 1-15, 21]). Our treatment can be under- 
stood as a refinement and a justification of Obratzov's 
theory [9, 10, 19]. 
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