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Bose-Einstein Condensates in Dilute Trapped
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The static and dynamic behavior of dilute trapped Bose-Einstein condensates
at low temperature follows from the Gross-Pitaevskii equation for the conden-
sate and the Bogoliubov equations for the linearized small-amplitude normal
modes. The uniform system serves to illustrate the theoretical methods and
much of the basic physics. The principal new effect of the confining trap is
to introduce an additional length scale (the size of the single-particle ground
state) and energy scale (the single-particle ground-state energy). Most recent
experiments use large condensates, when the repulsive interactions expand
the condensate considerably and thus reduce the kinetic energy associated
with the nonuniform density. In this regime (known as the “Thomas-Fermi”
limit), the system can be treated as locally uniform, which greatly simplifies
the analysis. When the condensate contains one or more vortex lines, the
nonuniform trap potential and local line curvature drive the resulting vortex
motion. Ezperiments have confirmed various predicted precessional motions
in considerable detail. Miztures of two distinct bosonic species allow for new
coupled dynamical motions that alter the topology of the original single com-
plex order parameter. In particular, application of near-resonant electromag-
netic fields yields a coupled system that no longer has quantized circulation.
Such experimental techniques created the first vortex line by spinning up one
of the components. The introduction of optical traps has allowed the study of
what are called “spinor” condensates. In this case, all hyperfine states are
trapped, in contrast to the more common magnetic traps that confine only a
subset of the various hyperfine states. The rotational invariance of the inter-
particle interactions significantly restricts the allowed states of these spinor
condensates.
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1. BASIC PHYSICS OF BOSE-EINSTEIN CONDENSATION
IN A TRAP

These notes make no attempt to provide comprehensive references; good
recent accounts can be found in Refs. 1-3. Consider an ideal uniform gas
of N identical particles confined in a volume V = L® with mean density
n = N/V (see, for example, Refs. 4,5). At temperature T, the mean kinetic
energy per particle p?/2M ~ kgT implies a thermal De Broglie wavelength
M = (2nh2 /M kgT)'/? ~ h/p associated with the quantum-mechanical mat-
ter waves in thermal equilibrium. At high temperature (or in the classical
limit, & — 0), A is small compared to the interparticle spacing | ~ n~1/3,
In this short-wavelength limit, the particles follow definite trajectories, anal-
ogous to light rays in geometric optics. As the temperature falls, however,
Ar eventually becomes comparable with the interparticle spacing. When
nA3 ~ 1, quantum degeneracy becomes important. Equivalently, kgT be-
comes comparable with the zero-point energy A?n?/3/M associated with con-
finement in a box of volume n~! (the only energy that can be formed from
the interparticle spacing). For fermions, this yields the Fermi temperature
Tr when the Pauli exclusion principle starts to play a significant role. For
bosons, the same temperature characterizes the onset of Bose-Einstein con-
densation (BEC), when a macroscopic number of particles starts to occupy
the lowest single-particle state. For liquid helium at its equilibrium den-
sity, this temperature is ~ 1 K for both isotopes (*He is a fermion and
‘He is a boson). The corresponding temperatures for dilute atomic gases
are ~ 100 - 1000 nK because of the much lower density and higher atomic
mass.

1.1. Ideal Bose Gas

Consider an ideal Bose gas confined in an external potential Vex. The
single-particle states 1; and eigenvalues ¢; obey the Schrédinger equation

(T + Vex) ¥ = €%y, (1)

where T = —h?V?/2M is the kinetic-energy operator. It is convenient to
use the grand canonical ensemble, where the system is in equilibrium with
a particle reservoir at chemical potential g, so that the number of particles
can fluctuate (eventually, we express the chemical potential in terms of the
particle number N). The mean occupation of the jth state is

- 1
"= explBlej — ] - L

= fle), (2)
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where 3 = 1/kgT is the inverse temperature and f(e) = {exp[B(e—pu)]—1} !
is the familiar Bose-Einstein distribution function. Correspondingly, the
mean number of particles and mean energy are

N =>"fle;) = N(T,p), (3)
J

E=Y ¢f(e) = E(T,p). 4)
J

Equation (3) expresses the mean number in terms of the temperature and
chemical potential, and it can be inverted (at least formally) to determine
the chemical potential p(T, N) for given T and N. Substitution into Eq. (4)
then gives E(T, N).

In the high-temperature (or classical) limit, the chemical potential
u(T, N) is large and negative, and the distribution function reduces to the
Maxwell-Boltzmann form f(e) ~ e##~9), As the temperature falls, however,
4 increases, and the occupation ng of the lowest single-particle state becomes
singular at a critical temperature T, defined by p(7, N) = €. This behavior
signals the onset of Bose-Einstein condensation.

It is useful to introduce the density of states

gl@) =) de—¢), (5)
J
in which case Egs. (3) and (4) take simple forms
N = [ deg9r(e), ©)
B~ [deeqar(e). (7

For T' < T, the chemical potential remains fixed at u(T., N) = €, and
the ground state has a macroscopic occupation Ng(T') whose temperature
dependence is determined by

N = No(T) + N'(T), with N’(T)=/wdeexp[ﬂ(€g(_6)€0)]_1. (8)

1.1.1. BEC in a boz with periodic boundary conditions

The simplest example is a box of volume V, when the eigenfunctions
are plane waves ¥y (r) = V12 exp(ik - r), with the energy e, = h%k?/2M.
In the thermodynamic limit N — oo, V' — oo, the density of states is
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h2k2 vV o(2M\%?

Since €y = 0, the onset of Bose-Einstein condensation occurs at (T, N) =0,

with
_ V(2 /°° gV (10)
T 4n? \ A2 0 exp(Bee) — 1"

The integral is readily evaluated, and the onset of quantum degeneracy oc-
curs at

A = g(g) 5 2.612, (11)

which is the critical phase-space density for onset of BEC in a box, as antic-
ipated from the qualitative arguments given above. Equivalently, the onset
Bose-condensation temperature for an ideal Bose gas with number density
n is
i2n 2/3
kT, = 3.31

(12)

For T' < T, the chemical potential remains zero in the thermodynamic limit
of large N and V, with a discontinuous second derivative at T, indicating
the presence of a true phase transition. For an ideal Bose gas in a box,
Eq. (8) yields

Note that Np{0) = N, so that the ground-state occupation is complete at
zero temperature.

1.1.2. BEC in a harmonic trapping potential

Formally, the experimentally interesting case of BEC for an ideal Bose
gas in a harmonic trap differs only in the detailed form of the single-particle
energy spectrum and the associated density of states. For a trap potential
Vie(r) = %M (wa%:c2 + w§y2 + wfz2), the energy levels are (we omit the zero-
point energy that simply shifts the chemical potential)

€ngnyn, = h ('n':cww + nywy + nzwz) ’ (14)
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labeled by a triplet of non-negative integers ng, ny, n;. The density of states
is

gle) = Z 8 (€ — engnyns) - (15)
g ,My,Np=0
For small €, only a few states contribute, and the resulting density of states
has a step-like structure. For large ¢, many states contribute and the sum
can be approximated by an integral

€2

m, (16)

gle) =

ey 3/ dudvdwd{le —u—v—w) =

where wy = (wwwywz)l/ 3 is the geometric mean of the trap frequencies.
With our definitions, the onset of BEC in a harmonic trap occurs at
# =0, and a straightforward calculation shows that

1/3
kpT, = <43—3)> Fwg N3 2 0.94 hwy N/3 (17)

for onset of BEC in a harmonic trap, where {(3) = 1.202. For T < T, the
macroscopic occupation of the ground state has the temperature dependence

again showing that the ground state of an ideal Bose gas is fully occupied
at T = 0 K. This ground state has a gaussian density distribution with
a mean width dy = \/A/Mw,. In contrast, the classical density profile in
the same potential Vi, is given by n(r) « exp[—BV;(r)]. For a spherical
potential, this density represents an isotropic gaussian distribution with a
characteristic thermal width Ry = /2kgT /M wg that is the classical turning
point for a particle with energy kgT'. Typical traps have dy ~ a few ym and
N ~ 108, At the transition temperature, the ratio of the thermal width
to the ground-state width is Rr,/dy ~ N'/® ~ 10, so that the onset of
BEC in a trap leads to a dramatic narrow ground-state peak that rises out
of the much wider diffuse thermal cloud® (see Fig. 1). In addition, since
kpT,/fuwy ~ N'/3 ~ 100, the classical picture of the thermal cloud remains
valid even at T,. The mean density at the transition is n, ~ N/ RT typically
much smaller than the corresponding ground-state value ng ~ N / d3

In contrast to a uniform ideal Bose gas in a box, the case of BEC in a
given trap does not strictly have a thermodynamic limit, because the density
can remain constant only if the trap parameters vary in an appropriate way
as N — oo. This also means that there is strictly no sharp phase transition,



268 A. L. Fetter

Fig. 1. Images of velocity distribution in experiment by Anderson et
al.% (1995). Left frame corresponds to gas at temperature just above conden-
sation; center frame, just after appearance of condensate; right frame, after
further evaporation leaves nearly pure condensate [from J. Res. NIST 101(4)
(1996))].

but detailed numerical studies show that the resulting rounding near 7,
generally becomes unobservable for typical experimental parameters.

1.2. Inclusion of Interparticle Interactions

Bogoliubov’s original paper on the uniform weakly interacting Bose gas’
focused clearly on the crucial role of the Bose-Einstein condensate in deter-
mining the ground state and low-lying excited states of a dilute interacting
Bose gas at zero temperature. For low density n and short-range interac-
tions characterized by an s-wave scattering length a, the small gas parameter
na3 < 1 provides a suitable basis for an expansion relative to the behavior
of the ideal Bose gas (equivalently, the scattering length a is small compared
to the interparticle separation n~'/3). In this limit, the true interacting
ground state is assumed to be “close” to that of an ideal Bose gas, in that
the occupation Ny of the single-particle ground state remains comparable to
the total number of particles, with Ny < N.
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1.2.1. Bogoliubov approzimation for a uniform Bose gas

In the dilute limit, only s-wave two-body scattering is important, and
the interparticle potential can be approximated by a short-range “pseu-
dopotential” V(r) = ¢d(r). Standard scattering theory shows that the s-
wave scattering length a fixes the interaction strength through the relation
g ~ 4mwah?/M.2 For such a potential, the second-quantized Hamiltonian for
the interacting system in a box of volume V takes the form

2 g
H= E €k aLak + BV E aLl aL2ak3ak4 Oky +ko ka+kas (19)
k kikaksky

where the operators obey the usual Bose-Einstein commutation relations
lax, a};,] = Ok, [aL a}:,] = [ak,ar] = 0. The basic assumption is that
the operators ay and azr) associated with the single-particle ground state
are of order v/ Ny, whereas their commutator is unity. Hence, they can be
treated as classical fields to leading order, merely making the replacements
ao,az‘) — v/Np in the Hamiltonian, Eq. (19). In this way, the many-body
Hamiltonian becomes a quadratic form?

. gN gNy
H= 0 + Z ( ) Ta ax + W (a};af_k + aka_k) . (20)
k#0 k#£0

Note the unusual structure containing terms that do not conserve particle
number. Consequently, it is convenient to consider only states with a fixed
number N of particles, so that the number operator

N=Ny+ Za};ak (21)
k#£0
can then be replaced by its eigenvalue N. Equation (21} can be used to
eliminate Ny in favor of N through terms of order N2 and N. As a result,
the model Hamiltonian, Eq. (20), becomes

5 _ gN? fo g f ot
H= v + kz;éo €x +gn) apax + % kZ#, (aka_k + aka_k) . (22)

The operator part of Eq. (22) can be diagonalized by a linear canonical
transformation

ax = UpQy — vkaf_k, at_k = ukat_k — Vpox (23)
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to new quasiparticle operators ay and aL that obey the same Bose commu-
tation relations [ak,a};,] = fyi, [a};, aL,] = [ok, ] = 0. This condition
requires that ui - v,% = 1 for all k # 0. A detailed analysis shows that
the relevant part of the Hamiltonian reduces to a set of uncoupled harmonic
oscillators with

H = const + Z E aLak. (24)
kA0

Here the energy associated with the quasiparticle normal mode k is

Ey, = \/(ex + gn)? — (gn)? = 1/} + 2exgn (25)

along with the transformation parameters

v%:uﬁ—l:l(m—gn—l). (26)

The condition that Fj be real for all k requires a repulsive interaction with
a > 0 (the situation is different for a trapped condensate).

The quasiparticle Hamiltonian, Eq. (24), implies a very simple structure
for the %round state and the excited states in the Bogoliubov approximation.
Since oy o has the eigenvalues 0, 1,2, ..., the ground-state |®) of this model
Hamiltonian is the quasiparticle vacuum deﬁned by

ag|®) =0 for all k # 0; (27)

evidently, |®) is a very complicated combination of unperturbed single-
particle states, for neither ax nor aL annihilates it. Correspondingly, the
excited states are obtained by applying various quasiparticle creation oper-
ators a}; to |®).

More generally, the quasiparticle Hamiltonian for a dilute Bose gas at
low temperature typically has a structure H = const + E hw; ol 5 similar
to Eq. (24), but with j now denoting a complete set of self-consmtent single-
particle states. The corresponding normal-mode excitation frequencies w;
often depend on various parameters. Since the quasiparticle number operator
oja; necessarily has non-negative eigenvalues, the system is unstable if any
one of the eigenvalues w; becomes negative. An example of such behavior
is considered below in connection with the Landau critical velocity for a
uniform condensate moving with velocity v, and similar ideas are crucial in
understanding the stability of a vortex line in a rotating Bose condensate.

The physics of the quasiparticles is very transparent, for the excitation
energy associated with a quasiparticle of wave vector k is [compare with
Eq. (25)]
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1/ hk = /290 Bk, for k — 0; (28)

g+ L n 4"aﬁ N for k = o0.

In the long-wavelength limit, the elementary excitations represent sound
waves with the propagation speed

% = %\/47ran, (29)
which again shows that g and a must be positive for a uniform Bose gas.
For short wavelengths, the spectrum is that of a free particle shifted upward
by the “Hartree” interaction Vy = 4mak?n/M = gn with the background
particles. The crossover between the two regimes occurs when ¢, = ng =
4mah?n /M, which leads the characteristic length

1
\/87rna’

known as the “healing length” (or correlation length or coherence length).
Since { =& oo as a — 0, the crossover at k =~ 1/£ then moves to zero,
reproducing the quadratic spectrum of the ideal Bose gas in a box.

The Bogoliubov transformation, Eq. (23), can be easily inverted to yield

£= (30)

a = upar +veal ,  of, = wpal |+ viar. (31)

The quasiparticle operators are linear superpositions of particle and hole
operators, with uj and vy as weight factors. In the phonon regime (k€ < 1),
each coefficient is large (u2 ~ v2 o< 1/k¢), so that the quasiparticle operators
a.re coherent nearly equal admixtures. In the free-particle regime, however,
ul &~ 1 and 2 « (k¢)™*, leading to effectively pure particle operators.

As an example of the power of these methods, we consider the ground-
state depletion of the zero-momentum state caused by the repulsive inter-
actions N'(0)/N = 1 — Ny(0)/N. The ground-state expectation value of
Eq. (21), (®|N|®) = N = Ny(0) + zk#o(@a};aklé), can be easily ex-
pressed in terms of quasiparticle operators with Eq. (23), yielding N =
No(0) + >y 4o vi- A direct calculation gives

N'(0) 8 [ndd
SRRl (32)

which exhibits vna3 <« 1 as the relevant dimensionless expansion param-
eter for a dilute Bose gas at low temperature. Note the fractional power
a®/2, which means that any simple perturbation expansion in powers of g
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or a necessarily fails (this is where Bogoliubov’s nonperturbative canonical
transformation is so valuable).

1.2.2.  Gross-Pitaevskii equation in a trap

In the Bogoliubov approximation, most of the particles remain in the
condensate at low temperature. Thus, we start with the condensate wave
function ¥ that describes the dilute system (we always assume na® < 1,
which applies quite generally to atomic Bose condensates, but not to super-
fluid “He). Specifically, ¥ can be considered as an order parameter that char-
acterizes the quantum-mechanical phase transition to the low-temperature
ordered state. The Hamiltonian for the trapped condensate has the intuitive
form

H:/dV [qf (T+Vtr)\1’+%g|‘1,|4 ; (33)

where T is the kinetic-energy operator and V4, is the confining trap poten-
tial. The constraint of fixed number [dV |[¥[> = Ny = N is included with
a Lagrange multiplier ;2 (which is the chemical potential), and the result-
ing Euler-Lagrange equation becomes the well-known Gross-Pitaevskii (GP)
equation %10

(T+Vie + V) ¥ = p¥, (34)

where Vg (r) = gn(r) is the (now nonuniform) Hartree potential. More
generally, the time-dependent condensate wave function obeys the time-
dependent GP equation

maa—‘f — (T + Vi + Vi) 0, (35)

implying a time dependence o exp(—iut/h) for a stationary solution.

The time-dependent Gross-Pitaevskii equation takes a very intuitive
quantum-hydrodynamic form when the condensate wave function is written
as

U(r,t) = [¥(r,t)| 5ED, (36)

with the condensate density n(r,t) = |¥(r,#)|?. The corresponding current
density j = (B/2Mi)[T* V¥ — (VI*)T] automatically assumes a hydrody-
namic form j = nv, with an irrotational velocity

RV S
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expressed in terms of a velocity potential ® = AS/M.
Substitute Eq. (36) into the time-dependent GP equation, Eq. (35). The
imaginary part yields the familiar continuity equation for compressible flow

on
5 TV () =0. (38)

Correspondingly, the real part constitutes the analog of Bernoulli’s equation
for the condensate fluid

1
NG

To interpret this equation, rccall that the Bernoulli equation for an irrota-
tional compressible isentropic flow can be written very generally as!!

1 9%
M 2+V + =
v tr Ot

5 TVn+gn+ M

0. (39)

e+p 0P
M—= 4

1
§Mv'-’ + Vir +

where e is the internal energy density and p is the pressure, so that e +
p is the enthalpy density. The GP Hamiltonian, Eq. (33), identifies e =
VrTy/n+ %gn2, and the thermodynamic relation p = —(0E/0V)n implies
that p = %gn2. Consequently, the enthalpy per particle for the quantum
hydrodynamics described by the GP equation is just

et+p 1

n o Va
in agreement with Eq. (39). As a result, the zero-temperature conden-
sate exhibits all the usual hydrodynamic behavior associated with classi-
cal nonviscous irrotational isentropic fluids, including the Kelvin circulation
theorem that describes the dynamics of vortex lines.!! The only explicit
quantum-mechanical feature in Eq. (39) is the “quantum kinetic pressure”
()~} T/m arising from spatial gradients in the particle density.

The behavior of a Bose condensate in a trap is considerably richer than
in a box because of the additional energy scale and length scale associated
with the single-particle ground state in the trap. In the case of an anisotropic
harmonic trap, these are the oscillator energy ~ fwy and the mean oscilla-
tor length dy = \/h/Mwy. The repulsive interactions tend to expand the
condensate, leading to a mean radius Ry that typically exceeds dp. To il-
lustrate the effect of the interactions, we can estimate the various terms of
Eq. (33) for the interacting ground state. The kinetic energy per particle
is of order (T)/N ~ h?/MR2, the trap potential energy per particle be-
comes (Vi;)/N ~ Mw?R2, and the Hartree energy per particle is of order

Tv/n+ gn, (41)
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(Vg)/N ~ gn ~ h2an/M ~ K?aN/MR}. 1t is helpful to introduce the di-
mensionless expansion ratio R = Ry/dp, in which case the total ground-state
energy E, becomes

E, 1 s Nal
N ~ g (R2 +R +d—oﬁ>, (42)

where we can take R as a variational parameter. Note the presence of
the new dimensionless parameter Na/dy, which arises from the additional
length scale set by the trap. For Na/dy < 1, the system is essentially
an ideal Bose gas, and the minimum occurs for ® = 1, which is the fa-
miliar harmonic-oscillator solution. For Na/dy > 1 (but still na® < 1),
the repulsive interactions predominate and the kinetic energy is negligible
because the condensate radius is significantly larger than the ideal-gas di-
mension dy. Minimizing the last two terms of Eq. (42) gives the estimate
R5 ~ Na/dy > 1. Thus the repulsive interactions expand the condensate
according to

Ry 1, for Na/dy < 1;

a { 1/5 (43)

0 (Na/dy) ', for Na/dy > 1.

A detailed analysis confirms these qualitative estimates, and we here
concentrate on the limit of large interaction parameter Na/dy >> 1, which is
experimentally most relevant. Typical scattering lengths are a few nm (for
example, a = 2.75 nm for > Na, a = 5.77 nm for ¥’ Rb, and a = —1.45 nm for
TLi). Since dp is typically a few pm, the ratio Na/dy is large for N > 103
(typically, N ~ 108), and the mean condensate radius is of order 10dy. Thus
the spatial gradients of the density are small, and the GP equation, Eq. (34),
can be simplified by omitting the kinetic energy entirely. Equivalently, the
condensate is taken as locally uniform, and this limit is therefore known
as the Thomas-Fermi (TF) approximation [as is clear from the omission of
the first term in Eq. (42)]. In the TF limit, the condensate density {and
condensate wave function) is determined by an algebraic equation!?

gn(r) = g|¥ () = p ~ Vuu(r), (44)
where the right-hand side is positive and zero elsewhere. For the typical
harmonic trap, the resulting density has a parabolic cross section and fills
a (generally anisotropic) ellipsoid. The condensate’s dimensions R; (j =
z,y,z) are determined by the classical turning points for a particle with
energy

R} = 2H (45)
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and the density thus becomes

2 2 2 2 2 2
z y z z Y z
TL(I')=’I’L(O)(1——1—{7—@—?)@(1‘-}%—%—}2—2—@), (46)
where n(0) = u/g is the central density and © denotes the unit positive step
function.
The normalization integral [dVn(r) = N yields the important TF
relation!?

8w 3 RS . R} Na
N = T n(0) Ry = Tad’ or, equivalently, E = 15d—0 >1, (47)

where Ry = (RwRsz)l/ % is the mean TF condensate radius. This relation
quantifies the previous estimate in Eq. (43). The TF chemical potential
becomes

= 1Mw§R§ —hwo B (48)

2 a2’
so that g > hwy in the TF limit (but still 4 < kTl ~ FuwoN/3).
The TF limit leads to several important simplifications. For a trapped
condensate, it is natural to define the healing length [Eq. (30)] in terms of
the central density, with ¢ = [87n(0)a]~'/2. In the TF limit, this choice
implies that

€ Ro =d2, or, equivalently, £ = % < L (49)
d R
Thus the TF limit (Na/dp > 1) provides a clear separation of length scales
&€ € dy € Ry, and the (small) healing length £ will be seen to characterize the
size of the vortex core. In contrast, the healing length formally diverges in the
near-ideal limit (Na/dy < 1) but the vortex core size remains comparable
with dyp and hence with the size of the condensate.

The quantum-hydrodynamic equations also simplify in the TF limit,
because the quantum kinetic pressure in Eq. (39) becomes negligible. For
the static TF ground-state density given in Eq. (44), the small perturbations
n' in the density and @' in the velocity potential can be combined to yield
the generalized wave equation'®

32,”/ aZnI
MW =V [(p— Vi) V'] or, equivalently, o V. [&(r)Va],
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Fig. 2. Oscillations of the axial width of the condensate in the cigar-shaped
trap at MIT. The excited collective motion is the low-lying m = 0 mode,
shown at {a) low and (b) high temperature (from Ref. 14).

where s%(r) = [ — V;:(r)] /M defines a spatially varying local sound speed.
Stringari has used this equation to analyze the low-lying normal modes of
the TF condensate, and several experimental studies have verified these pre-
dictions in considerable detail (see, for example, Ref. 2 and Fig. 2).

1.2.8. Bogoliuvbov equations for small-amplitude perturbations

An interacting Bose gas can be described by second-quantized field
operators® 9(r) and 4 (r) that obey the commutation relations [¢(r), 3 (r')]
8(r — '), [h(r), $(r')] = [§!(r), 9! (x')] = 0. In the Bogoliubov approxima-
tion at zero temperature, these quantum field operators are replaced by
“classical” wave functions ¥ and ¥* that obey the GP equation. More
generally, the second-quantized Bose field operator J) can be written as
P(r) ~ ¥(r) + ¢(r), where ¢ is a small deviation operator from the macro-
scopic condensate wave function ¥. These deviation operators obey the
approximate Bose-Einstein commutation relations
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[$), 6" ()] m o -7),  [$(0),8()] = [#'), 81| =0, (51)

Since @(r) does not conserve particle number, it is convenient to use
a grand canonical ensemble, with the new Hamiltonian operator K=H-
pN To leading (second) order in the small deviations, the perturbation
in K contains not only the usual “diagonal” terms involving ¢*¢, but also
“off-diagonal” terms proportional to ¢¢ and '@ [compare with Eq. (20)
for a uniform system in a box]. Consequently, the resulting Heisenberg
operators ¢ and ¢f obey coupled linear equations of motion (it is here that
the role of the condensate is evident, for this coupling vanishes if ¥ vanishes).
Pitaevskii'® developed this approach for the particular case of a vortex line
in an unbounded condensate, and the formalism was subsequently extended
to include a general nonuniform condensate. %16
In direct analogy to the Bogoliubov transformation for the uniform sys-
tem, assume the existence of a linear transformation to quasiparticle opera-
tors a; and a for a set of normal modes labeled by j

~ !
b(r,t) = Y [us(0)a; () - v} ()al ()] (52)
J
~ !
(1) =Y [wmad(®) - viay0)] (53)
J
where the primed sum means to omit the condensate mode. Here, the
quasiparticle operators a; and ak obey Bose-Einstein commutation rela-
tions [a,,a};] = J;x and have simple harmonic time dependences a;(t) =
a; exp (—iE;t/h) and a}(t) = a; exp (iE;t/R). Comparison with the equa-
tions of motion for (;3 and ¢! shows that the corresponding spatial amplitudes
obey a set of coupled linear “Bogoliubov equations”

Lu; — g (¥)*v; = Eju;, (54)
Lvj—g (\Il*)zuj = —Ejv;, (55)

where
L=T+ Vi~ p+ 297 (56)

is a Hermitian operator.
Straightforward manipulations with the Bogoliubov equations show that
Ej [dV (Ju;|* — |v;]?) is real. If the integral [dV (|u;|? — |v;|?) is nonzero,



278 A. L. Fetter

then F; itself is real. As in the case of a uniform condensate, the Bose-
Einstein commutation relations, Eq. (51), for the deviations from the nonuni-
form condensate can be shown to imply the following positive normalization'®

[ av (sl = 1) =1 (7

For each solution u;,v; with eigenvalue E; and positive normalization, the
Bogoliubov equations always have a second solution v},u; with eigenvalue
~E; and negative normalization. The only exception to the requirement of
real eigenvalues arises for zero-norm solutions with [ dV (Ju;|? — |v;|?) = 0.
In this case the character of the eigenvalue requires additional analysis.

In terms of the quasiparticle operators, the approximate perturbation

Hamiltonian operator takes the simple intuitive form
~ !
R~ Ejolay, (58)
J

apart from a constant ground-state contribution of all the normal modes.
Here, the sum is over all the states with positive normalization, and it is
clear that the sign of the energy eigenvalues E; is crucial for the stability. If
one or more of the eigenvalues is negative, the Hamiltonian is no longer pos-
itive definite, and the system can lower its energy by creating quasiparticles
associated with the unstable modes.

The present derivation of the Bogoliubov equations and their proper-
ties emphasizes the quantum-mechanical basis for the positive normalization
condition, Eq. (57), and the sign of the eigenvalues. It is worth noting an al-
ternative purely “classical” treatment? based directly on small perturbations
of the time-dependent GP equation, Eq. (35), around the static condensate
U(r). The solution is assumed to have the form

U(r,t) = e Ht/h [¥(r) + u(r)e ™ — v*(r)e™"], (59)

and the appropriate eigenvalue equations then reproduce Egs. (54) and (55).
For a uniform condensate, the solutions of Egs. (54) and (55) are plane
waves, and the corresponding energy is the celebrated Bogoliubov spectrum’

Ep = \/ gnhi2k2 /M + (K2k2/2M)?, (60)

where k is the wave vector of the excitation and n is the condensate density,
as found previously in Eq. (25) with a canonical transformation. For long
wavelengths k€ < 1, Eq. (60) reduces to a linear phonon spectrum Ej, ~ hsk
with the speed of compressional sound s = y/gn/M given by Eq. (29).
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To emphasize the importance of the sign of the eigenfrequency, it is
instructive to consider an unbounded condensate that moves uniformly with
velocity v. The condensate wave function is ¥U(r) = /ne'dT, where q =
Mv/h and the chemical potential becomes u = %M v%2 4+ gn. The Bogoli-
ubov amplitudes for an excitation with wave vector k relative to the moving
condensate have the form

(Z:g))) - (:_,-1.35:;) : (61)

where the different signs +4q - r arise from the different phases +£:2q-r in
the off-diagonal coupling terms in the Bogoliubov equations [Egs. (54) and
(65)]. The solution with positive norm has the eigenvalue

Ey(v) = kk-v + Ej. (62)

In the long-wavelength limit, this excitation energy reduces to Fyx(v) =
Bk(v cos 8 + s), where 8 is the angle between k and v. For v < s the quasi-
particle energy is positive for all angles 8, but for v > s the quasiparticle
energy becomes negative for certain directions, indicating the onset of an
instability. This behavior simply reflects the well-known Landau critical
velocity for the onset of dissipation, associated with the emission of quasi-
particles. For v > s, the GP description becomes incomplete because the
excitation of quasiparticles means that the noncondensate is no longer neg-
ligible. Note that the repulsive interactions produce the linear (phonon)
long-wavelength spectrum for & < ¢! V9. It is this feature that leads
to the finite speed of sound (and thus finite Landau critical velocity). In
this sense, the repulsive interactions are essential for the stability of a dilute
Bose gas, because an ideal uniform Bose gas would have s = 0 and therefore
v = 0.

A uniform Bose gas with attractive interactions (for example, "Li) would
be intrinsically unstable because the speed of sound is imaginary. The situ-
ation is different in a trap, where the finite size of the condensate quantizes
the allowed wave numbers. For negative a = —|a|, the Bogoliubov spectrum
becomes E = (h?/2M)? k*(k? — 16mn|a|), which is negative (and therefore
unstable) in the interval k% < 16mn|al. For a finite condensate with mean ra-
dius Ry, however, the minimum allowed wavenumber is kyi, = 7/Ry. Hence
the system can remain stable if 72/R2 > 167n|a|. Since the density of is

~

order n ~ N/R}, this analysis predicts the critical number
TR wdp
716 |a] ~ 16 |a|’

because Ry = dy for such a small value of the ratio N;la|/dy = #/16. For

(63)
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Fig. 3. Scattering length for 8°Rb in units of the Bohr radius (ag) as a
function of the magnetic field. For reference, the shape of the full resonance
is shown in the inset (from Ref. 18).

N < N, the positive kinetic energy arising from the confinement stabilizes a
trapped condensate with attractive interactions. For N 2 N, however, the
attractive interaction energy predominates, and the condensate is expected
to collapse. Experiments with “Li have measured a critical number N, in
reasonable agreement with detailed estimates based on the GP equation.!?

Recently, it has become possible to “tune” the scattering length in cer-
tain hyperfine states by varying an applied magnetic field (this phenomenon
occurs through what is known as a Feshbach resonance). In particular, the
boson isotope 3°Rb has been studied in detail.’®2° In zero magnetic field,
the scattering length is negative, and it undergoes a resonant behavior at
B = 155 G, when a(B) goes discontinuously from —oo to +o00 (see Fig. 3;
note that the phase shift and the s-wave contribution to the scattering am-
plitude are continuous at this point). For larger B, the scattering length de-
creases rapidly from +o0o and changes from positive to negative at B =~ 166
G. The system then exhibits a collapse when |a| reaches the critical value
appropriate for the given N. For a sudden quench into the unstable regime,
the subsequent explosions display anisotropic bursts and other phenomena
that challenge current theoretical models.

In addition to the possibility of initiating a collapse by switching a
from positive to negative, the Feshbach resonance means that the scattering
length can be significantly larger than the typical repulsive values a ~ a few
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nm for 2Na and 8Rb. Thus the small dimensionless parameter vna3 can
in principle produce a significant correction to the nearly ideal-gas behavior.
This possibility is only now just beginning to be explored for a dilute Bose
gas in a trap.

In the last year, two separate groups have produced BEC with metastable
“He in the lowest 235 spin-triplet state.2!?2 Although the results are still
somewhat preliminary, they suggest a large scattering length a =~ 20 nm,
which also could make possible the study of corrections associated with a

nonzero gas parameter na.

2. VORTICES IN A TRAPPED DILUTE BOSE-EINSTEIN
CONDENSATE

The Gross-Pitaevskii (GP) equation serves as the basis for most theoret-
ical analyses of vortices in a Bose condensate at low temperatures. Although
many studies had predicted the presence and behavior of such vortices, ex-
perimental confirmation has appeared only a few years ago.?%?* For a recent
review of most of these questions, see Ref. 25. We have already remarked
that the time-dependent GP equation is wholly equivalent to the hydrody-
namics of an irrotational nonviscous compressible isentropic fluid. As such,
it necessarily incorporates the characteristic aspects of classical vortices, and
it is convenient first to review some of these features.

2.1. Vortex Line in an Unbounded Condensate

Gross? and Pitaevskii'® considered a singly quantized straight vortex in

a condensate with bulk particle density n, assuming a wave function of the
form ¥(r) = +/n x(r), with

. T
X = (), (64
where (ry, ¢) are two-dimensional cylindrical polar coordinates, and f — 1
for r; > £ Equation (37) immediately gives the local circulating flow
velocity

B
v:M_m_¢’ (65)

which represents circular streamlines with an amplitude that becomes large
as r; — 0. Since the speed of sound in a dilute Bose gas is s = /p/M =
R/ V2M¢, the circulating flow velocity becomes supersonic near the vortex
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core when r| = £. In this sense, the vortex core is associated with local
cavitation.

The particular condensate wave function Eq. (64) describes an infinite
straight vortex line with quantized circulation

m:?{dl-v=—ﬂh7. (66)

Stokes’s theorem then yields h/M = [dS -V x v, with the corresponding
localized vorticity

h 5
Vxv= i 62 (r,) 3. (67)

Hence the velocity field around a vortex in a dilute Bose condensate is irro-
tational except for a singularity at the origin.
The kinetic energy per unit length is given by

h2v2 2 f2
2 * 2 2 _ 2
/dTJ_‘I’ ( 2M)\IJ— M/dT‘J_IV\m /d |:(d’l‘_L)+T_2L ;

(68)
and the centrifugal barrier in the second term forces the amplitude to vanish
linearly within a core of radius = £ (see Fig. 4). This core structure ensures
that the particle current density j = nv vanishes and the total kinetic-energy
density remains finite as »; — 0. The presence of the vortex produces
an additional energy E, per unit length, both from the kinetic energy of
circulating flow and from the local compression of the fluid. Numerical
analysis with the GP equation yields E, ~ (7h?n/M)In (1.46R/¢ ), where R
is an outer cutoff; apart from the additive numerical constant, this value is
simply the integral of %M v2n.

In the context of rotating superfluid *He, Feynman?® noted that solid-
body rotation with vy, = Q X r has constant vorticity V X vg, = 2Q.
Since each quantized vortex line in rotating superfluid *He has an identical
localized vorticity associated with the singular circulating flow, Eq. (67), he
argued that a uniform array of vortices can “mimic” solid-body rotation on
average, even though the flow is strictly irrotational away from the cores.
He then considered the circulation I’ = §,dl- v along a closed contour C
enclosing a large number N, of vortices. The quantization of circulation
ensures that ' = N, - s, where k = h/M is the quantum of circulation. If
the vortex array mimics solid-body rotation, however, the circulation should
also be I' = 202 - 4,,, where A, is the area enclosed by the contour C. In this
way, the areal vortex density in a rotating superfluid becomes

ny= 2o 2 (69)
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Fig. 4. Radial wave function f(r /¢) obtained by numerical solution of the
stationary GP equation for a straight vortex line (from Ref. 25).

Equivalently, the area per vortex 1/n, = k/2Q = 7b? can be taken to define
the intervortex spacing b, which decreases with increasing rotation speed like
1/V/Q. Note that Eq. (69) is directly analogous to the density of vortices
(Alux lines) n, = B/®y in a type-1I superconductor, where B is the magnetic
flux density and ®¢ = h/2e is the quantum of magnetic flux in SI units (see,
for example, Ref. 27).

To illustrate that the time-dependent GP equation indeed incorporates
the correct classical vortex dynamics, consider a state of the form

U(r,t) = Ve x(r — xo) e H/", (70)

where  is the previous stationary solution [Eq. (64)] of the GP equation for
a quantized vortex, now shifted to the instantaneous position ry(t), and u is
a modified chemical potential. The total flow velocity is the sum of a uniform
velocity vp = hiq/M and the circulating flow around the vortex. Substitute
this wave function into the time-dependent GP equation, Eq. (35). Since x
itself obeys the stationary GP equation, Eq. (34), with chemical potential
gn, a straightforward analysis shows that u = %M vg + gn, where the first
term arises from the center of mass motion of the condensate. The remaining
terms yield

ih%r@t_—lgl = —ihdd—l;’l0 - Vx(r —rg) = —ihvy - Vx(r — ro). (71)
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This equation shows that drg(t)/dt = vg, so that the vortex wave function
moves rigidly with the applied flow velocity vy, correctly reproducing the
result from classical irrotational hydrodynamics that each element of a vortex
moves with the local velocity at its particular location. More generally, in the
presence of several straight vortex lines, each line moves with the velocity
generated by all the other vortices, again in agreement with the classical
result.

2.2. Vortex Line in a Trap

Consider an axisymmetric trap with oscillator frequencies w; and w,.
For w,/w, > 1, the condensate has a flattened disk shape, whereas for
wy/wy < 1, the condensate has an elongated cigar shape. The axisymmetry
means that the angular momentum L, is conserved, allowing a simple clas-
sification of the various states. In the case of a singly quantized vortex on
the symmetry axis, the condensate wave function has the form

U(r) = € [T(ry, 2)l. (72)

The circulating velocity field is the same as Eq. (65), and the centrifugal
energy again forces the wave function to vanish near r; < ¢, yielding a
toroidal condensate density. This behavior is especially clear in the TF limit
(Na/dy > 1), when the density becomes

2 2
n(ry,z) = n(0) (I—E;——I—J—‘——ﬁ) @<l—f—z—r—l—f—)» (73)

2 2
rf R RZ

where © is the unit positive step function. This expression differs from
Eq. (46) for a vortex-free condensate only because of the centrifugal barrier
£2/r?, which forces the density to vanish within a core of radius =~ ¢ that
flares out away from the center of the trap. The TF separation of length
scales £/dy = do/Rp < 1 means that the vortex affects the density only near
the core region; hence the density can be assumed to be the same as for a
vortex-free condensate with a suitable short-distance cutoff near the core.
If the condensate is in rotational equilibrium at an angular velocity 2,
then the Hamiltonian H in Eq. (33) must be altered to H' = H - QL, =
H+ [dV 9*(ihQ2-rx V) ¥ = H+ihQ [ dV ¥* (0¥ /3¢) . Let Ey(S?) denote
the energy of the rotating vortex-free condensate, and Ef(rg,§2) the corre-
sponding energy of a rotating condensate containing a straight vortex that
is displaced laterally from the symmetry axis by a distance r9. This latter
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Fig. 5. Vortex energy [in units of AE’(0,0)] associated with a singly quan-
tized straight vortex in a rotating axisymmetric trap in the TF limit as a
function of fractional displacement (y from the trap’s central axis. Different
curves represent different fixed values of the external angular velocity : (a)
Q = 0 (unstable); (b) Q = 9, (onset of metastability at the origin); (c)
Q = Q. (onset of stability at the origin); (d) 2 = %Qc, where thin barrier
inhibits vortex tunneling in from the surface (from Ref. 25).

quantity includes the additional energy of the circulating flow. The assump-
tion of a straight vortex line means that this description holds best for a
disk-shaped condensate with w, 2 w, . The difference between these two en-
ergies AE'(rg, Q) = Ej(ro, Q) — E}(Q) represents the energy associated with
the formation of the vortex; for fixed €2, the dependence on ry characterizes
the local and global stability of the vortex near the trap center.

A detailed calculation with logarithmic accuracy for an axisymmetric
TF condensate gives?®

R,

2
AB/(ro, 9) = 5 uR.£n(0) [m (_) (1= cay¥e _ 2MOEL

5k (1 - Cg)5/2 )
(74)

where (o = ro/R) is a dimensionless lateral displacement. This vortex en-

3
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ergy is shown in Fig. 5 as a function of ¢y for various fixed values of .
Curve (a) for @ = 0 shows that the corresponding energy AE'({, 2 = 0)
decreases monotonically with increasing (o, and that the curvature is neg-
ative at (p = 0. In the absence of dissipation, energy is conserved and the
vortex follows a circular trajectory at fixed (y around the center of the trap
along a line V;; = const at an angular speed proportional to —AE’/d(;.
At low but finite temperature, however, the vortex experiences weak dissi-
pation; thus it slowly reduces its energy by moving outward along curve (a),
executing a spiral trajectory in the zy plane.

With increasing fixed rotation speed £, the function AE’((p, Q) flattens
for small {y < 1. Curve (b) shows the special case of zero curvature at ¢y = 0.
It corresponds to the rotation speed

3 & R L)
Qp=c—n|— 75
"= S3HE (% (75)
at which angular velocity a central vortex first becomes metastable in a large
disk-shaped condensate. For Q < §,,,, the negative local curvature at {5 = 0
means that weak dissipation impels the vortex away from the center. For
Q > Q,,, however, the positive local curvature means that weak dissipation
now impels the vortex back toward the center of the trap. In this regime, the
central position is locally stable; it is not globally stable, however, because
AE'(0,9) is positive for £ = Q.
Curve (c) shows that AE'(0,§.) vanishes at the thermodynamic critical
angular velocity

5 h R 5

For 2 > Q,, the central vortex is both locally and globally stable relative
to the vortex-free state, and the energy barrier near the outer surface of
the condensate becomes progressively narrower with increasing 2. Curve
(d) illustrates this behavior for £ = %Qc. Eventually, the barrier thickness
becomes comparable with the thickness of the boundary layer within which
the TF approximation fails, and it has been suggested that a vortex might
then nucleate spontaneously through a surface instability.

2.3. Experimental Creation and Detection of Vortices

The first experimental detection of a vortex involved a nearly spherical
87Rb TF condensate containing two different internal (hyperfine) components??
that tend to separate into immiscible phases. The JILA group in Boulder
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Fig. 6. (a) Successive images of a “two-component” condensate with a vortex
in one component. The recorded profile of each trapped condensate is fit
with a smooth TF distribution in (b). The vortex core is the dark region
within the bright condensate image. (c¢) The azimuthal angle of the core is
determined for each image, and plotted vs. time held in the trap. A linear
fit to the data gives a precession frequency 1.3(1) Hz (from Ref. 29).
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Fig. 7. Cosine of the phase around the vortex, showing the sinusoidal vari-
ation expected for the azimuthal angle (from Ref. 23).

created the vortex through a somewhat intricate coherent process that con-
trolled the interconversion between the two components (discussed below in
Section 3). They were able to spin up the condensate by coupling the two
components and applying a suitable stirring perturbation. They then turned
off the coupling, leaving the system with a residual trapped quantized vortex
consisting of one circulating component surrounding a nonrotating core of
the other component, whose size is determined by the relative fraction of
the two components. By selective tuning, they can image either component
nondestructively;?® Figure 6 shows the precession of the filled vortex core
around the trap center. In addition, an interference procedure allowed them
to map the variation of the cosine of the phase around the vortex, clearly
showing the expected sinusoidal variation (Fig. 7).

The JILA group has also been able to remove the component filling
the core, in which case they obtain a single-component vortex.?® This one-
component vortex has a smaller core size and can be imaged only by ex-
panding both the condensate and the core, which becomes visible through
its reduced density. They first make an image of the two-component vor-
tex, next remove the component filling the core, and then make an image
of the expanded one-component vortex after a variable time delay. In this
way, they can measure the precession rate of the one-component empty-core
vortex and compare it with theoretical predictions.?’ The data show no ten-
dency for the core to spiral outward, suggesting that the thermal damping
is negligible on the time scale of ~ 1 s.

Separately, the ENS group in Paris observed the formation of one and
more vortices in a single-component 8’Rb elongated cigar-shaped TF con-
densate with a weak nonaxisymmetric deformation that rotates about its
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(b)

Fig. 8. Optical thickness of the expanded cloud in the transverse direction
showing the difference between the states (a) without and (b) with a vortex
(from Ref. 31). Reprinted with permission from Journal of Modern Optics
copyright Taylor and Francis Ltd.

long axis.243132 In essence, a static cylindrically symmetric magnetic trap
is augmented by a nonaxisymmetric attractive dipole potential created by a
stirring laser beam. The combined potential produces a cigar-shaped har-
monic trap with a slightly anisotropic transverse profile. The transverse
anisotropy rotates slowly at a rate Q < 200 Hz. In the first experiments,?*
the trap was rotated in the normal state and then cooled, with the clear
signal of the vortex shown in Fig. 8 (the trap was turned off, allowing the
atomic cloud to expand so that the vortex core becomes visible). This order
was reversed (cool first, then rotate) in a later series of runs.?? In both cases,
the observed critical angular velocity ~ 0.7w, for creating the first (central)
vortex was roughly 70% higher than the predicted thermodynamic value Q.
in Eq. (76). These observations confirm the suggestion that a surface insta-
bility could nucleate a vortex, which is predicted to occur at Q = w, /v/2 for
a quadrupole deformation with [ = 2.3334 Subsequent experiments®>36 at
ENS confirm the predictions in considerable detail and have also seen lower
nucleation frequencies associated with surface waves corresponding to the
higher harmonic [ = 3 (for general [, the surface instability, has a frequency
wy /VI).

The ENS group has also detected vortex arrays3! with up to 11 vortex
lines arranged in two concentric rings. These patterns are reminiscent of
those predicted and seen in rotating superfluid *He.3” More recently, the MIT
group has made significantly larger rotating condensates in less elongated
traps.3® As shown in Fig. 9, they have observed remarkably regular triangular
arrays with up to 130 vortices, directly analogous to the Abrikosov lattice
of quantized flux lines in type-II superconductors.?’

Recently, several groups have studied the behavior of a rapidly rotating
condensate.3%%0 This question is of interest because the external rotation
Q induces a repulsive centrifugal potential Veent(r) = —3MQ?r} that op-
poses the attractive trap potential Vi (r) = $Mw?r?. Indeed, the physics
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Fig. 9. Observation of vortex lattices. The examples shown contain (a)
16 (b) 32 (c) 80 and (d) 130 vortices. The vortices have “crystallized” in
a triangular pattern. The diameter of the cloud in (d) was 1 mm after
ballistic expansion, which represents a magnification of 20 (from Ref. 38).
Reprinted with permission from Science copyright American Association for
the Advancement of Science.

is predicted to become qualitatively different when Q@ — w,,%17%3 although
such a limit is not yet attainable. To understand the basic effect, note
that the combined radial potential Veent(r) + ViL(r) = 1M (w? — 2?)r2 rep-
resents a confining potential with an effective renormalized trap frequency
wef = y/w? — Q2. As a result, the TF condensate radius in a rotating con-

densate R () increases like Ry (Q)/R)(0) = [1 — (Q/w1)?]~3/0, and the
MIT experiments3® have observed this altered aspect ratio. In contrast, the
JILA group®® starts from a rotating normal cloud and cools to create a ro-
tating BEC with an associated superfluid vorticity. In this latter approach,
the altered aspect ratio serves to measure the effective angular velocity of
the rotating condensate.

2.4. Bogoliubov Equations: Stability of Small-Amplitude
Perturbations

The Bogoliubov equations [Egs. (54) and (55)] discussed in Section 1
characterize the small-amplitude excitations in the presence of any partic-
ular condensate associated with a given wave function ¥. For a small to
medium vortex-free axisymmetric condensate with Na/dy < 1, the equa-
tions have been solved numerically to determine the low-lying normal mode
frequencies of a vortex-free condensate (see Refs. 44,2 and Fig. 10). Subse-
quent studies then focused on the case of a condensate containing a vortex on
the axis of an axisymmetric trap.*> Remarkably, the associated quasiparticle
spectrum for a stationary (nonrotating) condensate with a singly quantized
vortex contained a mode with positive normalization, relative angular mo-
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Fig. 10. Frequencies {in units of w, ) of the lowest collective modes of even

parity for N rubidium atoms in the JILA trap. Dashed lines are the asymp-
totic TF results for Na/d; — oo (from Refs. 2,44).

mentum m, = —1, and negative frequency w,. Such modes have become
known as “anomalous” because of the sign of the frequency. The discussion
associated with the quasiparticle Hamiltonian, Eq. (58), suggests that the
condensate containing a vortex should be formally unstable because of the
anomalous mode. In practice, some dissipative mechanism is needed for the
instability to play a significant role, which is essentially the same point made
in connection with curve (a) of Fig. 5. The GP equation has no intrinsic
dissipation, and a vortex slightly displaced from the symmetry axis can only
precess rather than spiral outwards and lose energy.

One can understand the mechanism associated with the anomalous
mode by considering a nearly ideal Bose gas with a condensate containing a
vortex. In this case, all the atoms are in the ﬁrst excited harmonic-oscillator
state with a wave function ¢y o (z+iy) exp(—3r2 /d2) = rie* exp(—3r% /d?)
and unit angular momentum around the symmetry axis. This state has an
energy hw, higher than the true ground state with wave function 1, o
exp(—%'r'j’_ /d?). In principle, each atom would prefer to make a transition
back to the true ground state, with an energy change —Aw, and angular
momentum change m = —1; this transition is just the anomalous mode in a
noninteracting Bose gas; the interactions act to modify but not eliminate this
mode. Indeed, numerical work for small and moderate condensates shows
that the anomalous frequency w, = —|w,| moves upward toward zero, but
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even in the TF limit, the vortex state continues to have an anomalous mode
whose frequency is given by?®

3 h R,
Wy ~ _EM_Rﬁ_ln (T) . (77)

As in the case of a uniformly moving condensate, it is instructive to
consider the solutions of the Bogoliubov equations for a condensate in rota-
tional equilibrium at an angular velocity 2. Since the Hamiltonian is shifted
by an amount —2L,, the eigenfrequencies of the Bogoliubov equations are
also shifted from the original nonrotating values w; to

wi() = w; — myfl, (78)

where m; is the angular momentum of the normal mode relative to that
of the condensate. This expression shows how the eigenvalues shift with
increasing 2, analogous to Eq. (62) for a uniform translation.
For the anomalous mode with m, = —1, the corresponding frequency
in the rotating frame is
wa(Q) = we + (79)

hence the applied rotation ) shifts the negative anomalous frequency —|w,|
upward toward zero. At a critical value 2* determined by w,(2*) = 0, the
anomalous mode ceases to be unstable, and the condensate with a vortex
becomes stable with respect to these small-amplitude perturbations once
© > Q*. In the present case of an axisymmetric condensate, Eq. (79) shows
that this critical rotation frequency is simply

O = —w, = |wal, (80)

namely the absolute value of the anomalous frequency. Comparison with
Eq. (77) in the TF limit shows that Q* ~ 3(A/MR%)In(R_ /¢); this critical
rotation frequency is identical with the metastability frequency Q,, [Eq. (75)]
defined in connection with Fig. 5.

The relevance of the quantum number m; is clarified by considering the
density perturbation associated with the jth Bogoliubov normal mode. It
has the form 7} o exp[i(m;¢ — w;t)], implying that the angular momentum
quantum number m; determines the angular dependence of the distortion.
In particular, the density perturbation for the anomalous mode has a dipole
character

ng (1) oc e HwalDite], (81)

which represents a small precessing displacement of the vortex core with an
angular velocity ¢ = —w,(Q2). For a nonrotating condensate with 2 = 0 and
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wg = —|wg|, the precession is in the positive sense, namely counterclockwise
(this is in the same sense as the circulating flow around the vortex). Careful
experiments at JILA? have indeed verified these predictions in great detail;
for the experimental trap, the theory predicts ¢/ 2n ~ 1.58 £ 0.16 Hz and
the measured value is 1.8 + 0.1 Hz.

Note the crucial relation between the sense of the precession and the sign
of the anomalous mode. The positive precession in a nonrotating condensate
arises from the combined effect of the negative angular momentum quantum
number m, = —1 and the negative sign of w,. In a rotating condensate,
the precession rate would appear slower and would eventually reverse for
Q > O*, when the sign of the anomalous frequency becomes positive.

A vortex-free condensate has an infinite set of small-amplitude normal
modes, and the low-lying ones have been studied in detail. The solutions
are especially direct in the TF limit,!® and low-temperature experiments'4?
have confirmed the predicted frequency of the quadrupole modes with [ = 2,
m =0and ! =2, m= %2 (see Fig. 10; these latter ones are degenerate and
together they produce a quadrupole distortion). When the condensate has
a vortex, however, its intrinsic sense of rotation affects these various normal
modes, splitting the previously degenerate pairs with £m?*647 (the effect is
similar to the Zeeman splitting of the magnetic sublevels in the presence of
an applied magnetic field, or the rotationally induced splitting of the earth’s
elastic normal modes). In the TF limit, the small fractional splitting is of
order |m|d2 /R2. For | = 2 and |m| = 2, the presence of the vortex means
that the original quadrupole deformation slowly precesses because of the dif-
ference in the frequencies for m = 2 and m = —2.3%% Figure 11 shows some
recent JILA pictures of a condensate with a quadrupole deformation. Figure
11 (a) has no vortex, and the deformation does not precess, whereas Figs. 11
(b) and (c) each show the predicted precessing deformation*® [note that (b)
and (c) refer to singly quantized vortices with opposite sense of circulation
so that the precessions are in opposite directions]. This phenomenon serves
as a clear signal for the presence of a vortex.

As noted by Zambelli and Stringari,*” the magnitude of the splitting
of the quadrupole mode can also provide a direct measure of the angular
momentum of the condensate. This technique has been used in Paris (ENS)
to detect when a vortex first appears in a rotating slightly nonaxisymmetric
cigar-shaped condensate3? and to verify that the angular momentum per
particle is = A.
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Fig. 11. Surface excitations provide an in situ detection of a vortex in a
confined BEC. (a), (b), and (c) are each a series of nondestructive images
of the quadrupole mode, after excitation. The pictures are strobed at 45.5
ms, half the excitation period. (a) is the case of a vortex-free condensate;
(b) and (c) show the excitations in the presence of a vortex whose core is
normal to the plane of the page. The vortices in (b) and {c) have opposite
handedness. The principal axes of the ellipse-shaped quadrupole deformation
precess in the direction of the fluid flow. The images are each fit to an
elliptical distribution with an orientation angle A# of the principal axes.
The orientation, expressed as an angular deviation from the horizontal and
vertical axes, is plotted versus time in (d) for each of the cases (a), (b),
and (c). A linear fit has been applied to the data to determine a precession
frequency of the principal axes, -0.49(4) Hz for (b) and 0.45(5) Hz for (c).
From Ref. 48.
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2.5. Direct Analysis of Vortex Dynamics for a Rotating
Anisotropic Condensate

At zero temperature, the dynamics of a condensate in a rotating nonax-
isymmetric trap follows from the appropriate time-dependent GP equation

ik

v _ [ BV?
ot \ 2M

+ Vie + 9|2 — () + A2 - (r x V)) . (82)

A vortex line in the condensate will, in general, move in response to the effect
of the nonuniform trap potential and the external rotation, as well as self-
induced effects caused by its own local curvature. This problem can be solved
in the case of a large condensate, where the TF separation of length scales
means that the vortex-core radius ¢ is much smaller than the condensate radii
R;. The relevant mathematics involves the method of matched asymptotic
expansions. 1950

2.5.1. Dynamics of straight vortex in Thomas-Fermi regime for
disk-shaped trap

As an introduction to these techniques, it is helpful first to concentrate
on the case of a straight singly quantized vortex line,?® which is applicable to
disk-shaped condensates with R, < R;. Assume that the vortex is located
near the center of the trap at a transverse position ro(¢). In this region,
the trap potential does not change significantly on a length scale comparable
with the vortex core size £. The method of matched asymptotic expansions
compares the solution of Eq. (82) on two very different length scales.

First, consider the detailed structure of the vortex core. Assume that
the vortex moves with a transverse velocity V L %, and transform to a
co-moving frame centered at the vortex core. Away from the trap center,
the trap potential exerts a force proportional to V1V, evaluated at the
position ro(t). The resulting steady solution includes the “asymptotic”
region |r; —r o] > &.

Second, consider the region far from the vortex (on this scale, the vortex
core is effectively a singularity). The short-distance behavior of this latter
solution also includes the region ¢ < |r; — r g|- The requirement that
the two solutions match in the overlapping region of validity determines the
translational velocity V of the vortex line.

Unfortunately, the details become rather intricate, but the final answer
is elegant and physical:
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where R, for an asymmetric trap is defined by 2/R3 = 1/R2 + 1/R>. This
expression has several notable features.

e The motion is along the direction Z x V Vi, and hence follows an

equipotential line of V;;. Thus the trajectory conserves energy, which
is expected because the GP equation omits dissipative processes. In
the present case of an anisotropic harmonic trap, the trajectory is
elliptical.

For a nonrotating trap (Q = 0), the motion is counterclockwise in the
positive sense at the frequency given by

;3 _h Ry
=3 MR.R, ln( f) (84

proportional to wgwy. This expression generalizes the previous results
for an axisymmetric condensate, where experiments confirm the correct
sense of precession.??

With increasing applied rotation 2, the translational velocity V de-
creases and vanishes at the special value

Sh(wptwy) (RiY_ 38 | (R
e () s (). @

proportional to % (w2 + wg) This value generalizes Eq. (75) associated
with the onset of metastability for small transverse displacements of
the vortex from center of an axisymmetric trap. For large asymme-
try wy/wg, the metastable frequency {1, can significantly exceed the
precession frequency ¢ in a nonrotating trap.

For Q > Q,,, the motion is clockwise as seen in the rotating frame. A
detailed analysis based on the normalization of the Bogoliubov ampli-
tudes shows that the positive-norm state has a frequency

2wywy

we() =

= Q— .
T (0= 0) (86)
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The normal-mode frequency is negative and hence unstable for Q <
Q,, but it becomes positive and hence stable for Q > Q,,; in this latter
regime, the apparent sense of precession would be clockwise.

2.5.2. Dynamics of curved vortez in Thomas-Fermi regime

Consider a nonaxisymmetric trap that rotates with an angular velocity
Q (for convenience, £ is often taken along the z axis). At low tempera-
ture in a frame rotating with the same angular velocity, the trap potential
is time independent, and Eq. (82) describes the evolution of the conden-
sate wave function. In the TF limit, the method of matched asymptotic
expansions again yields an approximate solution for the motion of a singly
quantized vortex line with instantaneous configuration ro(z,t). Let  be the
local tangent to the vortex (defined with the usual right-hand rule), 7 be the
corresponding normal, and b = { x 7 be the binormal. A generalization of
the previous approach eventually yields the explicit expression for the local
translational velocity of the vortex*®

R (EX VValr) | 1 K2\ 2VVi(ro) x 0
Viro) = 2M( gl¥Tr|? TR I Ri+8 + A Vie(ro)

(87)
where k is the local curvature (assumed small, with k¢ < 1) and A is the
Laplacian operator in the plane perpendicular to €.

This vector expression holds for general orientations of the gradient of
the trap potential, the normal to the vortex line, and the angular velocity
vector. Near the TF boundary of the condensate, the denominator of the
first term becomes small, implying that the numerator  x V V;(rp) must
also vanish near the boundary. As a result, the axis of the vortex line £
is parallel to VV;; at the surface and hence obeys the intuitive boundary
condition that the vortex must be perpendicular to the condensate surface.

Equation (87) allows a study of the dynamics of small-amplitude dis-
placements of the vortex from the z axis, when z(z,t) and y(z,t) obey cou-
pled equations. In the limit w, = 0, there is no confinement in the z di-
rection, and the density is independent of z. The resulting two-dimensional
dynamics exhibits helical solutions that are linear combinations of two plane
standing waves. They generalize the helical vortex waves that are familiar
in superfluid *He® to include the effect of the transverse trap potential.

More generally, for w, # 0, the density near the z axis has the TF
parabolic form, and the solutions become more complicated. It is convenient
to define the asymmetry parameters o = R2/RZ and 8 = RZ/R2, where
a > 1, 8 > 1 indicate a disk shape and o < 1, 8 < 1 indicate a cigar shape.
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Fig. 12. Vortex visibility as the vortex precesses around an axis at 45° to the
line of sight, plotted versus holding time in the trap. Filled squares indicate
vortex detection with the surface-wave technique; open triangles indicate
detection with the expansion technique (from Ref. 48).

o For a nonrotating trap with the special asymmetry values @ = 2/[n(n+
1)] (here, n is a positive integer), the effects of the nonuniform trap
potential and the curvature just balance, and the condensate has sta-
tionary solutions with the vortex at rest in the zz plane. A disk-shaped
trap has no such states, and the first one occurs for the spherical trap
with @ = 1. The next such state occurs for o = %, when the conden-
sate is significantly elongated. Similar considerations for 8 apply to
stationary states in the yz plane.

o For other values of « and 3, solutions necessarily involve motion of the
vortex line relative to the stationary condensate.

e Analytical solutions can be found for a flat disk witha > 1and > 1,
reproducing the frequency 2, found in Eq. (75) for an axisymmetric
disk-shaped trap.

e For small deformations of a vortex line in an axisymmetric trap with
a = B, a disk-shaped or spherical condensate (o > 1) has only a
single (unstable) precessing normal mode with a negative frequency
we < 0. In this case, an external rotation © > Q,, = |w,] stabilizes
the vortex. For these geometries, €1, is less than the thermodynamic
critical value .. In a spherical condensate, the one anomalous mode
|wq| agrees with the observed vortex precession frequency seen in the
JILA experiments,2%:3
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e In contrast, an axisymmetric cigar-shaped condensate has additional
negative-frequency precessing modes, and ,, can exceed 2, for suffi-
ciently elongated condensates (this is very different from a disk-shaped
TF condensate where 2, ~ %Qc) In the range Q. < 2 < Q,,, a bent
vortex is the lowest-energy configuration, because a straight vortex
undergoes a deformational instability.

o For a nearly spherical trap, Eq. (87) predicts that a straight vortex
line through the center can execute large-amplitude periodic tilting
trajectories. In this case, the vortex line becomes invisible when it
tips away from the line of sight, and it then returns periodically to full
visibility. Such revivals agree with observations at JILA,*® where two
recurrences have been seen. The experimental method uses two differ-
ent techniques (see Fig. 12). The open triangles measure the visibility
when the trap is turned off and the subsequent expansion detects the
vortex through its expanded core; the black squares detect the vor-
tex through the induced precession of the small-amplitude quadrupole
deformation. As can be seen, both methods yield the same tilting fre-
quency w/2r = 0.25 Hz, whereas the theory predicts a tilting frequency
w/2m < 0.3 Hz (the experimental paper says “uncertainties in confine-
ment asymmetry preclude more precise determination”), in reasonable
agreement with the experimental value. For a totally asymmetric trap
with w; < wy < w,, the trajectories of the nearly straight vortex obey
equations analogous to the Euler equations for the angular velocity as
seen in the body-fixed frame for torque-free rigid-body motion. A vor-
tex line oriented near £ or Z executes stable small-amplitude motion,
whereas a vortex oriented near § executes large-amplitude but periodic
orbits (see Ref. 49).

3. MIXTURES AND SPINOR CONDENSATES

One of the most interesting recent developments in Bose-Einstein con-
densates has been the possibility of confining simultaneously two distinct
Bose species in the same trap.>? This new experimental system has allowed
a series of remarkable studies of coherence and indeed led to the first exper-
imental creation of a vortex line.
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3.1. Mixtures of Uniform Bose Condensates

The relative interactions between the two species play a crucial role. To
understand the essential physics, it is simplest to consider a box of volume
V containing a uniform Bose gas at zero temperature with N particles of
each species 1 and 2.5 The interparticle potentials are taken as short range,
with

Vij(r = 1) & g;; 6(r — '), (88)

where 7 and j = 1,2 denote the two different species. Assume that g;; is
positive, so that the self interactions are repulsive. Furthermore, symmetry
requires that gio = g21. For the self-interaction parameters, we have g; ~
4rh2a;; /M;, where a;; is the usual s-wave scattering length for the ith species.
For the mutual interaction parameter, we have g;; =~ 27rh2a,-j /Mieq, where
1/Mpeq = 1/M; + 1/M; defines the usual reduced mass.

Suppose that the two species mix and overlap, so that each fills the
whole volume V. The interaction energy arises from both species through
their self interactions and their mutual interaction

2

Emix = éV_V (

If, instead, they do not mix and overlap, let V; and V5 be the volumes

that the two species occupy, with V; + Vo = V. The interaction energy for
this separated case is the sum of the two separate self-interaction energies

911 + 2912 + g22) - (89)

N? N?
Eyp=FE1+ E; = m g11 + % g22. (90)

The pressure in each region follows from the thermodynamic relation

0 _ N
pi= v, = 2‘/;2 Gii-

(91)

Mechanical equilibrium between the two regions requires that the pressures
be equal, so that g;1/VZ = goa/ V2. 1t is easy to see that these relations

imply
14 922 |4 g11
=14/ and —=1+4,/>—, 92
W gi1 Vo 922 (62)

so that the energy of the separated configuration is

N2
Esep = 77 (911 + 2¢/911922 + 92) - (93)
2V
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Comparison of Eqs. (89) and (93) show that Eg, is less than Eyx if

Vg2 < 912, (94)

which is the criterion for phase separation in a uniform system. If gi;g99 <
g%, the components are immiscible and the two species will separate into
two phases, whereas if g11g22 > g%, the mixture is miscible and the two bulk
species will mix. In the context of Bose gases, this criterion was first found
through the appearance of imaginary frequencies in the Bogoliubov equations
for a dilute mixture;3* this instability of the uniform system indicates the
onset of phase separation.

3.2. Mixtures of Bose Condensates in Harmonic Traps

The first theoretical attempt to include the presence of a trap relied on
the TF description and imagined a mixture of distinct atoms with different
scattering lengths,%® for example a ~ 2.75 nm for ?*Na and a ~ 5.77 nm
for 8’Rb. In practice, the interspecies scattering lengths are not known, and
such an experiment has not been performed.

3.2.1. Boundary-layer corrections to Thomas-Fermi approzimation

The use of the TF approximation can lead to considerable inaccura-
cies, and it is valuable to review briefly the leading corrections to the TF
description®® for a single component in an isotropic harmonic trap. We start

from the GP equation that describes the isotropic condensate wave function
U(r)

oM T2

2¢72 2.2
(-5 + 25 +aloi) v = v, (95)

where the condensate density |¥|? varies on the scale of the condensate
radius R. Thus the Laplacian V? scales like 1/R? but the harmonic trapping
potential scales like R2. On this basis, the TF approximation neglects the
kinetic energy entirely and finds the approximate parabolic density profile

T2
ere )P~ 4 (1- 7). (96)

where R = /2u/Mw?. As discussed in Section 1, the TF approximation
generally works well for large Na/dy >> 1, where dy = /A/Mw is the os-
cillator length. Near the surface of the condensate, however, it implies that
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Fig. 13. Condensate wave function for 10° atoms of 8’Rb in a spherical har-
monic trap of oscillator length 1.22 um. Solid line: numerical solution of
the GP equation. Dot-dashed line: Thomas-Fermi approximation (indistin-
guishable from the solid line in the inner part). Dashed line: surface profile
obtained from boundary-layer approximation (from Ref. 56).

Urp &~ 4/1 — r2/R2, which has an infinite derivative as r — R. As a result,
the TF kinetic energy (T)rr = (h%/2M) [ dV |[VI¥1r|? diverges logarith-
mically near the condensate surface. Consequently, the TF approximation
cannot describe the small tail of the true condensate wave function for r > R.

In fact, the GP equation leads to a thin boundary layer of thickness
0 € R in the vicinity of the surface r = R. To understand the physics, it is
convenient to introduce a scaled radial variable, writing » = R + dz, where
z vanishes at the TF surface. In terms of z, the GP equation becomes

2 Muw? 2,2 2
Vm+T(2RtSz+5m)+g|\Il| T =0. (97)

h2
T 2Mé?

The boundary-layer thickness is chosen to balance the first two terms, so
that 63 = k%/2M?w?R = d}/2R; note that § < dy < R in the TF limit. In
the boundary layer |z| < 1, the condensate wave function is small and can
be rescaled according to ¥(r) o« 6'/2®(z). This function ®(z) matches the
TF solution for £ — —oo (namely, deep in the condensate) and it vanishes
exponentially for £ — oo. It provides an accurate description of the small
tail of the true wave function beyond the TF radius (see Fig. 13).
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8.2.2. Coupled Gross-Pitaeuvskii equations

It is easy to study a pair of coupled GP equations for two condensate
wave functions v; and 5 describing the two components. It is convenient to

choose the normalization [ dV |¢;(2 =1 for i = 1,2, in which case we have
(T1 + Vi + Nugu[91]* + Nogiz|2|?) 1 = v, (98)
(T2 + Va + Nigo [1[% + Nagaa|t2|?) 2 = patbe. (99)

Here, T;, V;, N;, and p; are the kinetic energy, the external trap potential,
the total number, and the chemical potential for component i. The coupling
occurs through the effective Hartree potentials

Vin = Nign|$1/>+Negia|go|> and  Virz = Nigar[th1[*+Nogaz|¢|* (100)

that are linear in the densities of the two components. In contrast to the
uniform model considered previously, the spatial variation of the conden-
sate wave functions leads to interesting questions involving the overlap of
the two components. The TF approximation cannot handle these questions
accurately, and numerical methods are usually used to solve these coupled
GP equations.

3.2.8. First experimental realization of coupled Bose condensates

The coupled GP equations [Eqgs. (98) and (99)] have many parameters,
not all of which are known in most cases. For numerical simulations, it is
usually preferable to simulate real experiments instead of studying a fictitious
mixture of (say) 2>Na and 3"Rb that has not been realized in the laboratory.
Thus we focus on the first experiment on boson mixtures,>? which used two
particular hyperfine states of 8'Rb.

As a brief review, this isotope has a nuclear spin I = —g— It combines
with the single valence electron (S = %) to form two hyperfine manifolds, a
lower one with ¥ = 1 and an upper one with F' = 2. Because the trap has a
local minimum in the magnetic field, only some of the hyperfine states are
weak-field seeking and hence stable. In the notation |F, mp), the stable ones
are |1,—1), |2,1), and |2,2) (the remaining ones either have neutral stability
with mp = 0 or are unstable).

The experiment in question3? used the specific components |1, —1) and
|2,2). They first made separate pure condensates of each component and
studied them in detail, confirming the expected behavior. They then made
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a mixture of the two components above the transition to Bose-Einstein con-
densation. Evaporative cooling was used to cool the species |1,—1), but the
|2,2) component cooled only through “sympathetic cooling,” which relies on
thermal contact between the two components. This sympathetic cooling had
previously been used for ions at much higher temperature, but this was the
first application to neutral atoms.

Unfortunately, the details were somewhat intricate.

e The magnetic moment of the state |2,2) is twice that of the state
11, -1).

e As a result, the trapping frequency for |2,2) is more confining, with
trap frequencies larger by a factor v/2.

e These distinct trapping potentials mean that it is necessary to include
the effect of gravity, which induces more displacement for the |1, —1)
component because of the weaker confinement.

Careful numerical studies®” included all these effects. They found a
reasonable fit to the observations, which showed the |2,2) on top of the
|1, —1) component because of gravity and the different confining potentials
(see Fig. 14). The analysis used the following scattering lengths

ai = 5.757 nm, alp = 5.715 nm, agy = 5.773 nm,

which fit the measured spin-exchange decay rate. Note that a2, < ajja22, S0
that the condensates would mix if they were uniform; the physical separation
arises from the trap and from the kinetic energy associated with the spatial
variation of the two densities.

They also studied the spatial overlap of the two condensates by consider-
ing the quantity [ dV |41]*|42|?, which was much smaller than [ dV ||* or
[ @V |42|*. The numerically determined theoretical wave functions yielded
a lifetime of 6 s for each condensate assuming spin-exchange scattering is
the only loss mechanism. In contrast, the TF approximation greatly under-
estimates the overlap and predicts a much longer lifetime (450 s). In fact,
spin-exchange scattering competes with other loss mechanisms, such as dipo-
lar relaxation (which is the dominant two-body loss process for like atoms)
and three-body recombination. The theoretical analysis studied the dipolar
relaxation as a function of the value of the interspecies interaction a;y; for
the actual value, dipolar relaxation dominates for |2,2) and spin exchange
dominates for |1, -1).



Bose-Einstein Condensates in Dilute Trapped Atomic Gases 305

(a)

43

ey

A
”

1
//,,/////

Wiy “\“\

Fig. 14. Single-particle densities |t;(r)|? in the plane y = 0: (a) |2,2) and
(b) |1,—1), shown separately for clarity. Note that the z axis increases from
right to left. The |2,2) state is more tightly confined and therefore closer to
the nominal trap center z = 0 (from Ref. 57).

3.3. Physics of Interacting Condensates with Externally
Applied Electromagnetic Coupling

In the second (and all subsequent) series of experiments, the JILA group
used a different pair of hyperfine states:® |1,~1) = |1) and [2,1) = [2). This
choice offers several advantages.

e The magnetic moments are essentially the same for both components,
so that they experience the same trapping potentials.

o Each component is relatively long-lived because of an accidental coin-
cidence between the singlet and triplet scattering lengths of 37Rb.

e They can conveniently and quickly change atoms from |1) to |2) and
back by a two-photon transition (microwave at 6.8 GHz plus rf at ~ 2
MHz, see Fig. 15a).

e They can selectively image either component by using appropriately
tuned lasers.

Subsequent experiments??? showed that the |2) component is less stable
because it can undergo spin-exchange scattering that changes the my values.
In contrast to the state |1), the state |2) is not maximally aligned, so that
the process |2,1)+(2,1) — |2,2) +|2,0) is allowed, producing the untrapped
state |2,0).
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Fig. 15. (a) Diagram of the ground-state hyperfine levels (F = 1,2) of 3’Rb
shown with Zeeman splitting due to the presence of an applied magnetic field.
The two-photon transition is driven between the |1, —1) and |2,2) states.
(b) The Rabi oscillation of population between the |1,—1) (open circles)
and |2,2) (solid circles) as a function of the two-photon drive duration. The

lines are fit to the data and show the expected sinusoidal oscillation (from
Ref. 58).
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3.8.1.  Sudden transformation from |1) to |2)

A condensate with ~ 5x 10° atoms in state |1) is cooled below 0.4 Tggc,
so that more than 75% of the atoms are in the condensate.’® A short two-
photon pulse then transfers essentially all the atoms to the |2) state. After
a variable time delay, the trap was turned off, allowing the condensate to
expand. Initially, the condensate shrank, followed by compressional oscilla-
tions. This behavior can be understood because a11 > a2, so that the initial
density profile following the transformation |1) — |2) no longer could sustain
its radius and experienced shrinkage and radial oscillations. The behavior
was modeled with a time-dependent GP equation

272
PRI B A R (101)
with a(t) changing from a1y to agy discontinuously at ¢ = 0. A fit to the
observations indicated that a11/ag2 ~ 1.06.

3.8.2. Effect of applied electromagnetic field

When the electromagnetic coupling is turned off, the two distinct con-
densates interact only through their Hartree (mean-field) potentials V; and
Vi that are linear in the density of the two components [see Eq. (100)]. In
this case, each condensate is described by condensate wave functions ¥y
and ¥y that are complex one-component order parameters. Each one has
the representation ¥,(r) = |¥,(r)|exp[¢S;(r)]. The wave function must be
single-valued when r executes a closed path at any instant of time, so that
the phase is 27-periodic for any closed path. When this crucial observation
that the phase must change by an integral multiple of 27 is combined with
the result that v(r) = (B/M)VS(r), it shows that the circulation §, dl-v
is quantized in units of h/M. This effect is well known in superfluid “He and
in conventional BCS superconductors, where it leads to the quantization of
magnetic flux.

A complex one-component order parameter displays U(1) symmetry,
which means that the order parameter is a complex scalar function. Apart
from the magnitude |¥| that is fixed by the temperature in a uniform sys-
tem, such a one-component order parameter has only the phase that varies
between 0 and 27. This topology is that of a circle and yields quantized vor-
ticity to ensure that the order parameter is single-valued. For T < Tggc,
the magnitude of the bulk order parameter || is “large” and fluctuations
are very improbable, which “explains” the persistent currents in superflu-
ids and superconductors. The quantized circulation reflects the topological
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charge of the enclosed state (the integer associated with the 27 periodicity
of the phase of the order parameter). This charge is the winding number
(think of a rubber band wrapped one or more times around a cylinder).
The situation is very different when the electromagnetic coupling is
turned on. The coupling is now intrinsic and the resulting order parameter
has two components, qualitatively changing its character. Any coupled two-
component system can be thought of as analogous to a spin %;59 the order
parameter now has SU(2) symmetry. The dynamics of the coupled system
becomes similar to that of nuclear magnetic resonance, obeying what are
called “optical Bloch equations.” In the present case, the transformation
of |1) into |2) is analogous to a m pulse that rotates a spin from up to
down. If the pulse is twice as long, the resulting 27 rotation reproduces the
initial |1) state. Experiments®® verify the periodic transfer between the two
populations as the length of the applied pulse varies (see Fig. 15b).

8.8.8. Dynamics of coupled interacting condensates

The simplest experiment transfers 50% from |1} to |2) with a 7/2 pulse
and then studies the behavior of the two interacting but separate conden-
sates. The three scattering lengths obey the relation a11 : @12 : a2 = 1.03 :
1.00 : 0.97, with an average a = 5.5 nm. These values are right at the bound-
ary for onset of phase separation in a uniform system. In a trap, one expects
and finds a shell structure, with less repulsive |2) on the inside, allowing the
more strongly repulsive |1) to expand against the trap potential. Before the
pulse, the system is entirely |1); after the pulse, the initial condition is a
1:1 mixture but not in its equilibrium configuration. The near equality of
the scattering lengths means that the total density remains nearly constant,
but the two separate components execute highly damped normal-mode rel-
ative oscillations.®% The final configuration has the centers separated largely
because of the repulsive a;. Nevertheless a significant overlap remains be-
tween the two components, allowing some very interesting experiments on
the persistence of the relative phase.

To appreciate the crucial role of the electromagnetic coupling, it is help-
ful to write down the coupled GP equations for the two condensate wave
functions®’

20 (Y1 _ (T+Vi+ Vg +3h6 1h(t) W
mc’)t (%) B ( 3RO(t) T+ Vo+ Virz — 36 ) \a ) (102)

where T is the kinetic energy, V; is the trapping potential for component
3, and Vpg; is the Hartree potential in Eq. (100) arising from both self and
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mutual interactions. The applied microwave and rf field together lead to an
effective “Rabi” frequency 2 that increases with the strength of the applied
fields.5® In general, this 2(¢) depends on ¢ (for example, it vanishes when the
applied coupling fields are turned off). Finally, § is the detuning between the
frequency of the driving field and that of the atomic hyperfine transition.

The experiment®! starts with ~ 5x 10° atoms in the |1) state. At ¢ =0,
a short 7/2 pulse (400 ps) makes a second condensate |2) with approxi-
mately equal number of atoms N; =~ No. Each condensate then evolves by
separating spatially, which takes ~ 50 ms; at this time, the two condensates
still have a considerable spatial overlap. After a total time delay T', a second
/2 pulse is applied, and the trap is then turned off, allowing the system to
expand so that it can be visualized.

After the first /2 pulse, the two condensates have a definite relative
phase ¢g. This relative phase then evolves at a rate proportional to the
local difference in the chemical potentials of the two condensates w;2 as well
as other contributions from the environment. In the overlap region, the
effective relative phase after the time T is = 6T + ¢, where § = wig — wys.
The second w/2 pulse then remixes the two components. Depending on
the accumulated phase difference, the density in the overlap region contains
an interference term proportional to cos(6T + ¢g). For example, the final
density nay of state |2) is given by noy = n1; + ngi + /11 n2; cos(6T + o),
so that the overlap region can be in either the |1) or the |2) state because of
constructive or destructive interference. The experiment sees many periods
of such oscillations as T increases (see Fig. 16); the second trace shows that
changing w, alters the period of the oscillation as expected from the cos(07T')
dependence.

3.8.4. U(1) vs. SU(2) order parameters

A final pair of experiments highlight the essential difference between
the U(1) order parameter and the SU(2) one. Each U(1) order parameter
is specified by a single complex number and its phase is like a unit vector
confined to a plane oriented at the appropriate angle. In contrast, a coupled
two-component system has an SU(2) order parameter. In addition to the
overall magnitude, this structure has two degrees of freedom associated with,
for example, the angles in spherical polar coordinates; its topology is that
of a sphere and does not require quantized vorticity. Thus the effective
phase for the coupled system is like a unit vector that can point in any
direction in three-dimensional space instead of being confined to a plane
[which describes the U(1) case]. The qualitative difference between the two
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Fig. 16. The value of the condensate density in the |2) state is extracted
at the center of the overlap region (inset) and plotted (a) as a function
of T. Each point represents the average of six separate realizations, and
the thin bars denote the rms scatter in the measured interference for an
individual realization. The thick lines are sinusoidal fits to the data from
which we extract the angular frequency wo; — wir. In (b), the frequency of
the coupling drive w, has been increased to 27 x 150 Hz, leading to the
expected reduction in fringe spacing (from Ref. 61).
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'\T/'

/l\

Fig. 17. Planar charge-1 vortex, with unit vectors pointing radially outward.
In this form, the origin represents a singular point, and any closed path that
encircles the origin finds a net increase of phase of 2. If the unit vectors
can rotate upward near the origin, however, the resulting three-dimensional
structure is everywhere continuous and has no singularities.

cases can be understood as follows: the single degree of freedom of the one-
component order parameter is like a rubber band wrapped around a cylinder,
while the corresponding two degrees of freedom for the two-component order
parameter is like a rubber band around the equator of a sphere. The former
has a given winding number that can be removed only be cutting it (ensuring
the quantization of circulation), whereas the latter can be removed simply
by pulling it to one of the poles (so that there is no quantization).

As an instructive example, consider a planar charge-1 vortex in which
the unit phase vectors point radially outward (see Fig. 17). Any closed path
around the center finds an accumulated phase change of 2. If this structure
is instead considered in three dimensions, then the singularity at the center
can be eliminated by rotating the vectors upward from horizontal to vertical
near the center. In the study of liquid crystals, this latter behavior is called
“escape into the third dimension.” The point here is that each uncoupled
condensate with U(1) symmetry has quantized circulation associated with
its own winding number. When the external electromagnetic coupling is
turned on, however, the topology changes to that of a three-dimensional
sphere, and the coupled system has new ways to minimize its total energy.

Such behavior was seen®? by applying external fields with a spatial gra-
dient, so that the precession of the SU(2) order parameter varies with the
spatial coordinate 2. The increasing differential twist between the two ends
relaxed periodically by a three-dimensional evolution of the effective phase
(leading to collapses and recurrences, see Fig. 18). The theoretical basis for
understanding this fascinating system has been developed in Ref. 63.
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Fig. 18. A condensate with a large axial extent undergoes twisting. (a) The
streak-camera data show a rapid decay in the Rabi oscillations in the inte-
grated population difference, from full contrast at ¢ = 0 to near zero contrast
by ¢ = 20 ms. The oscillations recur at 180 ms. (b) Individual phase-contrast
images (at distinct moments in time) of the spatial distribution of |1)-state
atoms show that the spatially inhomogeneous Rabi frequency is twisting the
order parameter, cranking successively more windings into the condensate
until, by ~ 75 ms, four distinct windings are visible. Further evolution
results not in more but fewer windings until, at time 180 ms, the order pa-
rameter is once more uniform across the cloud. Each image block is 100 zm
on a side, and the probe laser is tuned much closer to the |1) state than
to the |2) state. (c) The numerical simulation reproduces the qualitative
features of the corresponding experimental plot (a). From Ref. 62.
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Fig. 19. (a) A basic schematic illustration of the technique used to create a
vortex. An off-resonant laser provides a rotating force on the atoms across
the condensate as a microwave drive of detuning J is applied. (b) A level
diagram showing the microwave transition to very near the |2) state, and
the modulation due to the laser rotation frequency that couples only to the
angular momentum [ = 1 state when w = § (from Ref. 23).

3.3.5.  First creation of a vortez in a Bose-Finstein condensate

Williams and Holland%* proposed adding an extra coupling arising from
an external laser beam that displaces the trap centers for the two hyperfine
states and rotates them at a frequency near the effective Rabi frequency of
the applied electromagnetic fields (see Fig. 19). Starting from the ground
state |1), this process creates the state |2) with one unit of angular mo-
mentum. Thus it constitutes a singly quantized vortex. They performed
numerical simulation on a two-dimensional model, as shown in Fig. 20. The
top graph shows the population of the |2) state as a function of time (the
small-amplitude oscillations represent the cycling between the two different
states caused by the off-resonance coupling). The bottom graph shows the
corresponding angular momentum per particle. By turning off the coupling
at an appropriate time, the |2) state is created with a vortex, and the cir-
culation is now quantized because the order parameter has U(1) symmetry
after the coupling is removed.

This technique was used successfully to create the first vortex in a dilute
trapped Bose condensate.?® In this case, the vortex in the state |2) surrounds
a nonrotating core of state |1). Since the state |2) has mp = 1 (and therefore
is not maximally aligned), it experiences spin relaxation with a lifetime of
~ 1 s. The process can start in either hyperfine state, so that it is easy to
create a vortex in either state. The case of a vortex in |1) surrounding a
core of |2) is more stable. Because of the spin relaxation, the core eventually
decays leaving a more familiar one-component vortex. Section 2.3 discusses
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Fig. 20. Dynamical evolution to a vortex. These are results of numerical
integration, with the condensate initially in the nonrotating ground state
and in the internal state |1). The coupling drive is turned on at time ¢t = 0
and is turned off at ¢t = ¢;. The top graph shows the fractional population of
the atoms in the |2} internal state. The small-amplitude rapid oscillations
correspond to the cycling between internal levels due to the off-resonant cou-
pling. The gradual rise of this line is due to the coupling from the ground
state to the vortex mode caused by the external drive. The bottom graph
shows the angular momentum of the |2) state in units of . The rise and
fall of this curve corresponds to a rapid cycling of the |2) atoms between the
nonrotating condensate and the vortex. Once during each Rabi cycle, the
angular momentum approaches unity, and at that time the |2) state wave
function approaches a pure vortex mode. The inset shows the maximum
amplitude of population transfer to the vortex as a function of the trap ro-
tation frequency wy,, with A = Qg —w, and Qg the effective Rabi frequency
(from Ref. 64). Reprinted with permission from Nature copyright Macmillan
Publishers Ltd.
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some of the various experiments that have been performed.?®

3.4. Spinor Bose-Einstein condensates in optical traps

In addition to the magnetic traps used in most studies of dilute trapped
atomic gases, the MIT group has recently been able to trap *2Na in a purely
optical trap.%® This new technique makes possible the creation of what is
effectively a “spinor” condensate (for a recent review, see Ref. 53).

3.4.1.  Optical traps

In an external electric field £, a polarizable object (such as an atom)
acquires an electric dipole moment p = a€, where a is the atomic polar-
izability. The resulting energy is U(r) = —%a|8 (r)|2. Equivalently, the
polarizable object experiences a force —VU(r) that attracts it to the region
of large |€|?, assuming that « is positive (this is the case for an electrostatic
field).

Suppose that the electric field oscillates at a frequency w. The polar-
izability of an atom is given by a standard expression involving a sum of
squared matrix elements of the dipole operator between the ground state
and the various appropriate excited atomic states, divided by the corre-
sponding energy denominators. For an alkali atom like ?2Na, the dominant
transition is from n.S to nP, ignoring the fine-structure splitting. To a very
good approximation, the frequency-dependent polarizability of such an atom
is given by

const

a(w) ~ (103)

wig —w?’
where the numerator is positive and wpg is the frequency of the dominant
transition (for 23Na, these are the familiar yellow D lines). The most im-
portant conclusion here is that a > 0 for red detuning with w < wpg, but
a < 0 for blue detuning with w > wpg. Thus a red detuned laser beam can
trap atoms through pure dipole forces, independent of the hyperfine state.
Conversely, a blue-detuned laser beam exerts a repulsive force on the atoms.

In the first experiment,5® a conventional BEC was created with a mag-
netic trap and a red-detuned laser beam was then switched on. This laser
beam traps the atoms and the magnetic trap can then be turned off. Like
87RD, the 23Na atoms have a nuclear spin 3, with the lowest hyperfine man-
ifold being F' = 1, containing the three sublevels mg = 1, 0, —1. In contrast
to the magnetic trap, all three of these sublevels are trapped by the red-
detuned laser beam.
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8.4.2. Spinor condensates: special case of spin-1

The possibility of trapping all three magnetic sublevels simultaneously
rapidly led to the study of spin-1 Bose-Einstein condensates (as well as more
general cases).%® Unlike the previous mixtures of distinct species, we now
have special restrictions arising from rotational invariance of the interactions
between two spin-1 atoms. The macroscopic order parameter now becomes
a spin-1 object with a three-component structure

U,
=1 Ty |. (104)
v,
In the low-energy limit where only s-wave scattering is relevant, the inter-
action between two atoms has the form

Anhlap
M

Vint(r1 —r2) = 0(r; — r9) Pr, (105)
F
where F is the magnitude of the total hyperfine spin F = F; + F and Pp
is the projection operator onto the appropriate value of the total hyperfine
spin.
For bosons with hyperfine spin 1, the only allowed values are F = 0 and
I = 2, with two scattering lengths ag and as. The interaction potential can

be written in the equivalent form

Vins(r1 —r2) = 6(r1 —r2) (go + g2 F1 - F2), (106)

where the effective interactions are given by

_Amh? 2a2 + ag _4wh? ay —ap

PEX T3 BT 5

To describe the equilibrium state of the spinor condensate, Ho%® intro-

duced an effective energy functional for the spinor order parameter written

in the form U4(r) = +/n{r)(,(r), where o runs over the values 1, 0, —1,

n(r) is the common den51ty for all three components, and ¢,(r) is a nor-

malized spinor with ¢ - ¢ = 1. The ground-state structure of ¥, follows by

minimizing the energy with fixed total particle number (enforced through

the chemical potential as a Lagrange multiplier). This procedure yields the
effective energy functional

(107)

2

. (g0 + 92(F>2)) .

K= /dv<2M (Vy/n)? +—VC)n—n[,u—Vtr(r)]+2
(108)
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Fig. 21. Probing spinor condensates. After release from the elongated op-
tical trap, the trapped spinor condensate expands primarily radially while
maintaining the axial hyperfine distribution. A magnetic field gradient is
then used to separate out the different components while preserving their
shape. A subsequent absorption probe reveals the spatial and hyperfine
distributions in the trap. From Ref. 53.

Here, the external trap potential is assumed to be independent of the hyper-

fine spin, and y determines the total number of atoms in the trap.

Apart from the gradient terms, the ground-state spinor ¢, is deter-
mined by minimizing the spin-dependent part of the emergy inZgs (F)2,
where (F) = Zaﬂ (xFoap (s is the appropriate expectation value. There
are two distinct solutions depending on the sign of the coupling constant gs.
If go > 0, then the condensate lowers its energy by minimizing the average
spin, namely |(F'}| = 0. These states are called “polar” and they are those
obtained by spatial rotations of the hyperfine state |mp = 0). This situa-
tion applies to 2Na. If gy < 0, then the condensate lowers its energy by
maximizing the average spin, namely |(F)] = 1. These states are called “fer-
romagnetic” and they are those obtained by spatial rotations of the hyperfine
state |mp = 1). This situation apparently applies to 8Rb.

Ketterle’s group at MIT has performed an elegant series of experiments
on this spinor condensate using 2Na in an optical trap.

e Stenger et al.5” studied the formation of spin domains in great detail.
By carefully structuring the magnetic field, they could obtain vari-
ous spin domains that were subsequently observed by a time-of-flight
expansion followed by a Stern-Gerlach separation of the various spin
components. The miscibility or immiscibility of the different compo-
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Fig. 22. Formation of the ground-state spin domains. Absorption images
of ballistically expanding spinor condensates show both the spatial and hy-
perfine distributions. The images of clouds with various dwell times in the
trap show the evolution to the same equilibrium for condensates prepared in
either a pure |mp = 0) state (upper row) or in equally populated |mr = £1)
states (lower row). From Ref. 53.

nents follows from the previous considerations about mixtures. Figure
21 illustrates the technique (from Ref. 53).

Miesner et al.%® prepared long-lived metastable excited states (arising
from the immiscibility of some of the various components). The time
evolution occurs through quantum tunneling and through spin relax-
ation; Figure 22 shows some of the possible time-dependent behaviors.

Stamper-Kurn et al.% carried out detailed studies of the quantum
tunneling from the metastable to the final stable configurations. The
tunneling rates provide a sensitive probe of the boundary between
spin domains. They found a good fit to the Fowler-Nordheim (WKB)
relation.
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