Dold-Kan correspondence, revisited
 Dold-Kan correspondence for simplicial objects

Volodymyr Lyubashenko

March 30, 2020

Assume given idempotent complete additive category \mathcal{A}. For a simplicial object A viewed as an Ab -functor $\mathbb{Z} \Delta^{\mathrm{op}} \rightarrow \mathcal{A}$ we denote $A d_{i}=A\left(\partial^{i}\right)^{\mathrm{op}}: A_{n} \rightarrow A_{n-1}, 0 \leqslant i \leqslant n$, $A s_{j}=A\left(\sigma^{j}\right)^{\mathrm{op}}: A_{n} \rightarrow A_{n+1}, 0 \leqslant j \leqslant n$, $A \pi_{k}=A\left(\pi^{k}\right)^{\mathrm{op}}: A_{n} \rightarrow A_{n}$. The equivalence $S \mathcal{A}=\operatorname{Ab-Cat}\left(\mathbb{Z} \Delta^{\mathrm{op}}, \mathcal{A}\right) \underset{\simeq}{\underset{\sim}{\mathrm{Ab}-\mathcal{C a t}(i, A)}} \operatorname{addCat}\left(\widehat{\mathbb{Z} \Delta^{\mathrm{op}}}, \mathcal{A}\right) \stackrel{\simeq}{\leftrightarrows}$ addC at $\left(\operatorname{add} \mathrm{Ch}_{\geqslant 0}, \mathcal{A}\right) \simeq \operatorname{Ab-\mathcal {Cat}}\left(\mathrm{Ch}_{\geqslant 0}, \mathcal{A}\right)=\mathrm{Ch}_{\geqslant 0}(\mathcal{A})$ is isomorphic to the functor

$$
\begin{align*}
& S \mathcal{A} \rightarrow C h_{\geqslant 0}(\mathcal{A}), \\
& A \mapsto\left(A \pi_{k-1} \cdot A d_{k} \cdot A \pi_{k-2}:\right. \\
&\left.\quad \operatorname{Im}\left(\pi_{k-1}: A_{k} \rightarrow A_{k}\right) \rightarrow \operatorname{Im}\left(\pi_{k-2}: A_{k-1} \rightarrow A_{k-1}\right) \mid k \geqslant 1\right), \\
&(f: A \rightarrow B) \mapsto\left(A \pi_{k-1} \cdot f_{k} \cdot B \pi_{k-1}\right)_{k \geqslant 0} . \tag{1}
\end{align*}
$$

Let us represent this equivalence in another form.

Consider the cosimplicial topological simplex
$\Delta_{\text {top }}:[n] \mapsto \Delta_{\text {top }}^{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}_{\geqslant 0}^{[n]}=\mathbb{R}_{\geqslant 0}^{1+n} \mid \sum_{i=0}^{n} x_{i}=1\right\}$. It assigns to $f:[m] \rightarrow[n] \in \Delta$ the map $\Delta_{\text {top }}^{m} \rightarrow \Delta_{\text {top }}^{n}$ induced by the linear map

$$
\begin{equation*}
\Psi(f): \mathbb{R}^{[m]} \rightarrow \mathbb{R}^{[n]}, \quad\left(y_{0}, \ldots, y_{m}\right) \mapsto\left(x_{0}, \ldots, x_{n}\right), \quad x_{i}=\sum_{j \in f-1_{i}} y_{j} \tag{2}
\end{equation*}
$$

View $\Delta_{\text {top }}^{n}$ as a cellular space, whose cells are non-degenerate faces. Associate with it the cell complex $C_{0}^{n}=C\left(\Delta_{\text {top }}^{n}\right)$ over \mathbb{Z}. It is isomorphic to the exterior algebra $\wedge^{\bullet} \mathbb{Z}^{[n]}=T^{\bullet} \mathbb{Z}^{[n]} /(u \otimes u)_{u \in \mathbb{Z}^{[n]}}$ over \mathbb{Z}, equipped with the differential $d: \wedge^{k} \mathbb{Z}^{[n]} \rightarrow \wedge^{k-1} \mathbb{Z}^{[n]}$ which is a right derivation (that is,
$\left.(\omega \wedge \eta) d=\omega \wedge(\eta d)+(-1)^{\eta}(\omega d) \wedge \eta\right)$ determined by the map $d: \mathbb{Z}^{[n]} \rightarrow \mathbb{Z}, e_{i} \mapsto 1,0 \leqslant i \leqslant n$. The functor $[n] \mapsto \wedge \cdot \mathbb{Z}^{[n]}$, $(f:[m] \rightarrow[n]) \mapsto \wedge^{\bullet} \Psi(f)$, provides a cosimplicial differential graded ring $\Lambda^{\bullet} \mathbb{Z}^{[\bullet]}$. Here $\Psi(f): \mathbb{Z}^{[m]} \rightarrow \mathbb{Z}^{[n]}$ is given by (2). Exercise: Prove directly that $\Lambda^{\bullet} \Psi(f)$ are chain maps.

Forgetting about the multiplication and the unit we get a functor $\mathbb{Z} \Delta \rightarrow \mathrm{Ch}_{\geqslant 0}(f \mathrm{fb})$, where $f A b$ is a full subcategory of $A b$ consisting of free finitely generated abelian groups. Equivalently, a functor $\mathrm{Ch}_{\geqslant 0} \rightarrow \mathrm{Ab}-\mathrm{Cat}(\mathbb{Z} \Delta, f \mathrm{Ab})$.
Since \mathcal{A} is closed under direct sums, there is an action functor which we denote by $\otimes: \mathrm{fAb} \times \mathcal{A} \rightarrow \mathcal{A},\left(\mathbb{Z}^{n}, X\right) \mapsto \mathbb{Z}^{n} \otimes X \stackrel{\text { def }}{=} X^{n}$, $\left(f=\left(f_{i j}\right)_{i j}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{m}, X\right) \mapsto f \otimes 1 \stackrel{\text { def }}{=}\left(f_{i j}: X \rightarrow X\right)_{i j} \in \mathcal{A}\left(X^{n}, X^{m}\right)$, $\left(\mathbb{Z}^{n}, g: X \rightarrow Y\right) \mapsto 1 \otimes g \stackrel{\text { def }}{=}\left(g^{n}: X^{n} \rightarrow Y^{n}\right)$.

Proposition

Let $A: \Delta^{\mathrm{op}} \rightarrow \mathcal{A}$ be a simplicial object of \mathcal{A}. Then for any $k \geqslant 0$ there exists a coend and a cokernel $\int^{[p] \in \Delta} \wedge^{1+k} \mathbb{Z}^{[p]} \otimes A_{p}=$ $\operatorname{Coker}\left(\left(A s_{j}\right)_{j}: \bigoplus_{j=0}^{k-1} A_{k-1} \rightarrow A_{k}\right)=\operatorname{Im}\left(A \pi_{k-1}: A_{k} \rightarrow A_{k}\right)$. The assignment $A \mapsto \int^{[p] \in \Delta} \wedge^{1+} \cdot \mathbb{Z}^{[p]} \otimes A_{p}$ extends to a functor $S \mathcal{A} \rightarrow C h_{\geqslant 0}(\mathcal{A})$, isomorphic to (1).

The coend of a functor $F: \mathcal{C} \times \mathcal{C}^{\mathrm{op}} \rightarrow \mathcal{D}$ is written $\int^{c \in \mathcal{C}} F(c, c)$, and comes equipped with a universal extranatural transformation with components

$$
\iota_{c}: F(c, c) \rightarrow \int^{c \in \mathcal{C}} F(c, c) .
$$

We unwrap the definition of an extranatural transformation.

Definition

Let $F: \mathcal{C} \times \mathcal{C}^{\text {op }} \rightarrow \mathcal{D}$ be a functor. A cowedge $e: F \rightarrow w$ is an object w and maps $e_{c}: F(c, c) \rightarrow w$ for each c, such that given any morphism $f: c \rightarrow b \in \mathcal{C}$, the following diagram commutes:

$$
\begin{aligned}
& F(c, b) \xrightarrow{F(f, b)} F(b, b) \\
& F(c, f) \downarrow
\end{aligned}
$$

Coend

Given a cowedge $e: F \rightarrow w$ and a map $f: w \rightarrow v$, we obtain a cowedge e $f: F \rightarrow v$ by composition. We define the coend as follows:

Definition

Let $F: \mathcal{C} \times \mathcal{C}^{\text {op }} \rightarrow \mathcal{D}$ be a functor. A coend of F is a universal cowedge, i.e. a cowedge $e: F \rightarrow w$ such that any other cowedge $e^{\prime}: F \rightarrow w^{\prime}$ factors through e via a unique map $w \rightarrow w^{\prime}$.
Notation: $\int{ }^{c \in \mathcal{C}} F(c, c)$.
Remark: coend is a particular case of a colimit.

A co-cone of a diagram $F: \mathcal{S} \rightarrow \mathcal{D}$ is an object N of \mathcal{C} together with a family of morphisms $\psi_{X}: F(X) \rightarrow N$ for every object X of \mathcal{S}, such that for every morphism $f: X \rightarrow Y$ in \mathcal{S}, we have $\psi_{Y} \circ F(f)=\psi_{X}$.
A colimit of a diagram $F: \mathcal{S} \rightarrow \mathcal{D}$ is a co-cone (L, ϕ) of F such that for any other co-cone (N, ψ) of F there exists a unique morphism $u: L \rightarrow N$ such that $u \circ \phi_{X}=\psi_{X}, \forall X \in \mathcal{S}$:

Colimits are also referred to as universal co-cones. They can be characterized as initial objects in the category of co-cones from F. If a diagram F has a colimit then this colimit is unique up to a unique isomorphism.

Exercise

A coend is a colimit:

$$
\int^{c \in \mathcal{C}} F(c, c)=\underset{\mathcal{C}}{\operatorname{colim}} \bar{F},
$$

where $\operatorname{Ob} \mathcal{C}{ }^{\rightleftarrows}=\operatorname{Mor} \mathcal{C}$, a morphism $(h, k): f \rightarrow g$ of $\mathcal{C} \mathcal{C}^{\rightleftarrows}$ is the commutative square in \mathcal{C}

Functor $\bar{F}: \mathcal{C}{ }^{\rightleftarrows} \rightarrow \mathcal{D}$ takes $(f: c \rightarrow b) \mapsto F(c, b)$, $((h, k): f \rightarrow g) \mapsto F(h, k): F(c, b) \rightarrow F(a, d)$.

Proof of proposition

The coend $\int^{[p] \in \Delta} \wedge^{1+k} \mathbb{Z}^{[p]} \otimes A_{p}$ is by definition an object \int_{k} of \mathcal{A}, equipped with morphisms $i_{p}^{k}: \wedge^{1+k} \mathbb{Z}^{[p]} \otimes A_{p} \rightarrow \int_{k}$ such that for any $f:[m] \rightarrow[n] \in \Delta$ the squares

$$
\begin{align*}
& \wedge^{1+k} \mathbb{Z}^{[m]} \otimes A_{n} \xrightarrow{1 \otimes A\left(f^{\circ \mathrm{p}}\right)} \wedge^{1+k} \mathbb{Z}^{[m]} \otimes A_{m} \\
&= \downarrow_{i}^{i_{m}^{k}} \tag{3}\\
& \wedge^{1+k} \Psi(f) \otimes 1 \downarrow \\
& \wedge^{1+k} \mathbb{Z}^{[n]} \otimes A_{n} \xrightarrow{i_{n}^{k}} \int_{k}
\end{align*}
$$

commute and make \int_{k} a colimit of the diagram of arrows $\wedge^{1+k} \Psi(f) \otimes 1$ and $1 \otimes A\left(f^{\circ p}\right)$, where f runs over Mor Δ. If $n<k$, then $i_{n}^{k}=0$. For $m=k, n=k-1$, particular cases of (3) take the form

$$
\left(A_{k-1} \xrightarrow{A\left(s_{j}\right)} A_{k} \xrightarrow{i_{k}^{k}} \int_{k}\right)=0, \quad 0 \leqslant j \leqslant k-1
$$

Exercise

There exists a cokernel in \mathcal{A}

$$
\begin{aligned}
S_{k} \stackrel{\text { def }}{=} & \operatorname{Coker}\left(\left(A s_{j}\right)_{j=0}^{k-1}: \bigoplus_{j=0}^{k-1} A_{k-1} \rightarrow A_{k}\right)=\operatorname{Im}\left(A \pi_{k-1}: A_{k} \rightarrow A_{k}\right) \\
& \operatorname{coker}\left(\left(A s_{j}\right)_{j=0}^{k-1}: \bigoplus_{j=0}^{k-1} A_{k-1} \rightarrow A_{k}\right)=p_{\pi_{k-1}}: A_{k} \rightarrow \operatorname{Im}\left(A \pi_{k-1}\right)
\end{aligned}
$$

Therefore $i_{k}^{k}=\left(A_{k} \xrightarrow{\bar{i}_{k}^{k}} \triangleright S_{k} \xrightarrow{\eta_{k}} \int_{k}\right)$. If $n \geqslant k$, we consider $m=k$ and equation (3) for all subsets $0 \leqslant i_{0}<i_{1}<\cdots<i_{k} \leqslant n$, or for the functions $f=\chi_{i_{0}, \ldots, i_{k}}:[k] \hookrightarrow[n], \chi(j)=i_{j}$. We obtain

$$
\begin{aligned}
& i_{n}^{k}=\sum_{0 \leqslant i_{0}<i_{1}<\cdots<i_{k} \leqslant n}\left(\Lambda^{1+k_{\mathbb{Z}}}{ }^{[n]} \otimes A_{n} \xrightarrow{\mathrm{pr}_{i_{0}, \ldots, i_{k}} \otimes 1} \mathbb{Z} \otimes A_{n}=A_{n}\right. \\
&\left.\xrightarrow{A\left(\chi_{i_{0}, \ldots, i_{k}}\right)^{\mathrm{op}}} A_{k} \xrightarrow{\bar{i}_{k}^{k}} S_{k}\right) \xrightarrow{\eta_{k}} \int_{k}
\end{aligned}
$$

Denote by $\bar{\imath}_{n}^{k}$ the sum of these compositions ending in S_{k}.

We shall prove the reduced version of (3), namely,

$$
\begin{gather*}
\wedge^{1+k} \mathbb{Z}^{[m]} \otimes A_{n} \xrightarrow{1 \otimes A\left(f^{\circ p}\right)} \wedge^{1+k} \mathbb{Z}^{[m]} \otimes A_{m} \\
\wedge^{1+k} \Psi(f) \otimes 1 \downarrow \tag{4}\\
\wedge^{1+k} \mathbb{Z}^{[n]} \otimes A_{n} \xrightarrow{\bar{i}_{n}^{k}}
\end{gather*}
$$

If $m<k$, there is nothing to prove. Assume that $m \geqslant k$, and restrict equation to the summand $\mathbb{Z} e_{i_{0}} \wedge \cdots \wedge e_{i_{k}} \otimes A_{n}$ of $\wedge^{1+k} \mathbb{Z}^{[m]} \otimes A_{n}, 0 \leqslant i_{0}<i_{1}<\cdots<i_{k} \leqslant m$. The top-right path is

$$
\begin{equation*}
A_{n} \xrightarrow{A\left(\chi_{i_{0}}, \ldots, i_{k} \cdot f\right)^{\mathrm{op}}} A_{k} \xrightarrow{\bar{i}_{k}^{k}} S_{k} . \tag{5}
\end{equation*}
$$

We have $\wedge^{1+k} \Psi(f)\left(e_{i_{0}} \wedge \cdots \wedge e_{i_{k}}\right)=e_{f_{0}} \wedge \cdots \wedge e_{f_{i}}$. If all $f i_{0}, \ldots f i_{k} \in[n]$ are distinct, then the left-bottom path is

$$
A_{n} \xrightarrow{A\left(\chi_{f_{i}, \ldots, f_{k}}\right)^{\text {op }}} A_{k} \xrightarrow{\bar{i}_{k}^{k}} S_{k}
$$

which coincides with (5).

If $\left([k] \xrightarrow{\chi_{i_{0}, \ldots, i_{k}}}[m] \xrightarrow{f}[n]\right)$ is not an injection, then $\wedge^{1+k} \Psi(f)\left(e_{i_{0}} \wedge \cdots \wedge e_{i_{k}}\right)=0$, and there are $0 \leqslant j \leqslant k-1, h \in \Delta$ such that $\chi_{i_{0}, \ldots . i_{k}} \cdot f=\left([k] \xrightarrow{\sigma^{j}}[k-1] \xrightarrow{h}[n]\right)$. Therefore, (5) equals $\left(A_{n} \xrightarrow{A\left(h^{\circ \mathrm{op}}\right)} A_{k-1} \xrightarrow{A s_{j}} A_{k} \xrightarrow{\bar{i}_{k}^{k}} S_{k}\right)=0$, which proves (4). Hence, S_{k} is the colimit and is a suitable choice for \int_{k}. Note that we wished to identify S_{k} with $\operatorname{Im} \pi_{k-1}$. One could, in principle, find another idempotent which solves Exercise 10.

Since $\wedge^{1+\cdot} \mathbb{Z}^{[\bullet]}$ is a functor from $\Delta^{\mathrm{op}} \times \mathrm{Ch}_{\geqslant 0}$, the coend $\int^{[p] \in \Delta} \wedge^{1+} \cdot \mathbb{Z}^{[p]} \otimes A_{p}$ has the structure of a complex in \mathcal{A}. For this differential and $k \in \mathbb{N}$ the collection of morphisms given by top rows of the following diagrams is a chain map:

$$
\begin{gathered}
\wedge^{1+k_{\mathbb{Z}}}{ }^{[m]} \otimes A_{n} \xrightarrow{1 \otimes A\left(f^{\circ p}\right)} \wedge^{1+k_{\mathbb{Z}}}{ }^{[m]} \otimes A_{m} \xrightarrow{i_{m}^{k}} \int_{k} \\
d \otimes 1 \downarrow \\
{ }^{\prime} \downarrow \\
\wedge^{k} \mathbb{Z}^{[m]} \otimes A_{n} \xrightarrow{1 \otimes A\left(f^{\circ p}\right)} \wedge^{k} \mathbb{Z}^{[m]} \otimes A_{m} \xrightarrow{i_{m}^{k-1}} \int_{k-1}
\end{gathered}
$$

In fact, the right square computed on $\mathbb{Z} e_{i_{0}} \wedge \cdots \wedge e_{i_{k}} \otimes A_{m}$ takes the form for $\chi_{i_{0}, \ldots, i_{k}}:[k] \hookrightarrow[m]$

$$
\begin{aligned}
& A_{m} \xrightarrow{A\left(\chi_{i_{0}, \ldots, i_{k}}\right)^{\text {op }}} A_{k} \xrightarrow[i_{k}^{k}]{ } \int_{k}
\end{aligned}
$$

where $d=A \pi_{k-1} \cdot A d_{k} \cdot A \pi_{k-2}$.

End of proof of proposition

Commutativity of the right square

$$
\sum_{j=0}^{k}(-1)^{k-j} A d_{j} \cdot A \pi_{k-2}=A \pi_{k-1} \cdot A d_{k} \cdot A \pi_{k-2}
$$

follows from the identity

$$
\sum_{j=0}^{k}(-1)^{k-j} \pi^{k-2} \cdot \partial^{j}=\pi^{k-2} \cdot \partial^{k} \cdot \pi^{k-1}
$$

which follows from some previous identity multiplied with π^{k-2} on the left.
The coend $\int^{[p] \in \Delta} \wedge^{1+k} \mathbb{Z}^{[p]} \otimes A_{p}$ behaves functorially with respect to A, giving a functor, which for our choice of the coend coincides with (1).

