Dold–Kan correspondence, revisited Dold–Kan correspondence for simplicial objects

Volodymyr Lyubashenko

March 30, 2020

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Assume given idempotent complete additive category
$$\mathcal{A}$$
. For a simplicial object A viewed as an Ab-functor $\mathbb{Z}\Delta^{\mathrm{op}} \to \mathcal{A}$ we denote $Ad_i = A(\partial^i)^{\mathrm{op}} : A_n \to A_{n-1}, \ 0 \leq i \leq n,$
 $As_j = A(\sigma^j)^{\mathrm{op}} : A_n \to A_{n+1}, \ 0 \leq j \leq n,$
 $A\pi_k = A(\pi^k)^{\mathrm{op}} : A_n \to A_n.$ The equivalence $S\mathcal{A} = \operatorname{Ab-Cat}(\mathbb{Z}\Delta^{\mathrm{op}}, \mathcal{A}) \xleftarrow{\cong}_{\simeq} \operatorname{addCat}(\mathbb{Z}\Delta^{\mathrm{op}}, \mathcal{A}) \xrightarrow{\cong}_{\simeq} \operatorname{addCat}(\operatorname{add} \operatorname{Ch}_{\geq 0}, \mathcal{A}) \simeq \operatorname{Ab-Cat}(\operatorname{Ch}_{\geq 0}, \mathcal{A}) = \operatorname{Ch}_{\geq 0}(\mathcal{A})$ is isomorphic to the functor

$$\begin{aligned} S\mathcal{A} &\to \mathrm{Ch}_{\geq 0}(\mathcal{A}), \\ \mathcal{A} &\mapsto \left(\mathcal{A}\pi_{k-1} \cdot \mathcal{A}d_{k} \cdot \mathcal{A}\pi_{k-2} : \\ \mathrm{Im}(\pi_{k-1} : \mathcal{A}_{k} \to \mathcal{A}_{k}) \to \mathrm{Im}(\pi_{k-2} : \mathcal{A}_{k-1} \to \mathcal{A}_{k-1}) \mid k \geq 1 \right), \\ (f : \mathcal{A} \to \mathcal{B}) &\mapsto (\mathcal{A}\pi_{k-1} \cdot f_{k} \cdot \mathcal{B}\pi_{k-1})_{k \geq 0}. \end{aligned}$$

$$(1)$$

(日)、(型)、(E)、(E)、(E)、(O)へ(C)

Let us represent this equivalence in another form.

Consider the cosimplicial topological simplex

 $\begin{array}{l} \Delta_{\mathrm{top}}:[n]\mapsto\Delta_{\mathrm{top}}^{n}=\{(x_{0},\ldots,x_{n})\in\mathbb{R}_{\geq0}^{[n]}=\mathbb{R}_{\geq0}^{1+n}\mid\sum_{i=0}^{n}x_{i}=1\}.\\ \text{It assigns to }f:[m]\to[n]\in\Delta\text{ the map }\Delta_{\mathrm{top}}^{m}\to\Delta_{\mathrm{top}}^{n}\text{ induced by the linear map} \end{array}$

$$\Psi(f): \mathbb{R}^{[m]} \to \mathbb{R}^{[n]}, \quad (y_0, \dots, y_m) \mapsto (x_0, \dots, x_n), \quad x_i = \sum_{j \in f^{-1}i} y_j.$$
(2)

View Δ_{top}^n as a cellular space, whose cells are non-degenerate faces. Associate with it the cell complex $C^n_{\bullet} = C(\Delta_{top}^n)$ over \mathbb{Z} . It is isomorphic to the exterior algebra $\wedge^{\bullet}\mathbb{Z}^{[n]} = T^{\bullet}\mathbb{Z}^{[n]}/(u \otimes u)_{u \in \mathbb{Z}^{[n]}}$ over \mathbb{Z} , equipped with the differential $d : \wedge^k \mathbb{Z}^{[n]} \to \wedge^{k-1} \mathbb{Z}^{[n]}$ which is a right derivation (that is,

 $(\omega \wedge \eta)d = \omega \wedge (\eta d) + (-1)^{\eta}(\omega d) \wedge \eta)$ determined by the map $d : \mathbb{Z}^{[n]} \to \mathbb{Z}, e_i \mapsto 1, 0 \leq i \leq n$. The functor $[n] \mapsto \wedge^{\bullet}\mathbb{Z}^{[n]}, (f : [m] \to [n]) \mapsto \wedge^{\bullet}\Psi(f)$, provides a cosimplicial differential graded ring $\wedge^{\bullet}\mathbb{Z}^{[\bullet]}$. Here $\Psi(f) : \mathbb{Z}^{[m]} \to \mathbb{Z}^{[n]}$ is given by (2). Exercise: Prove directly that $\wedge^{\bullet}\Psi(f)$ are chain maps.

Forgetting about the multiplication and the unit we get a functor $\mathbb{Z}\Delta \to Ch_{\geq 0}(fAb)$, where fAb is a full subcategory of Ab consisting of free finitely generated abelian groups. Equivalently, a functor $Ch_{\geq 0} \to Ab-Cat(\mathbb{Z}\Delta, fAb)$.

Since \mathcal{A} is closed under direct sums, there is an action functor which we denote by \otimes : $fAb \times \mathcal{A} \to \mathcal{A}$, $(\mathbb{Z}^n, X) \mapsto \mathbb{Z}^n \otimes X \stackrel{\text{def}}{=} X^n$, $(f = (f_{ij})_{ij} : \mathbb{Z}^n \to \mathbb{Z}^m, X) \mapsto f \otimes 1 \stackrel{\text{def}}{=} (f_{ij} : X \to X)_{ij} \in \mathcal{A}(X^n, X^m)$, $(\mathbb{Z}^n, g : X \to Y) \mapsto 1 \otimes g \stackrel{\text{def}}{=} (g^n : X^n \to Y^n)$.

Proposition

Let $A : \Delta^{\mathrm{op}} \to \mathcal{A}$ be a simplicial object of \mathcal{A} . Then for any $k \ge 0$ there exists a coend and a cokernel $\int^{[p] \in \Delta} \wedge^{1+k} \mathbb{Z}^{[p]} \otimes A_p =$ $\operatorname{Coker}((As_j)_j : \bigoplus_{j=0}^{k-1} A_{k-1} \to A_k) = \operatorname{Im}(A\pi_{k-1} : A_k \to A_k)$. The assignment $A \mapsto \int^{[p] \in \Delta} \wedge^{1+\bullet} \mathbb{Z}^{[p]} \otimes A_p$ extends to a functor $S\mathcal{A} \to \operatorname{Ch}_{\ge 0}(\mathcal{A})$, isomorphic to (1). The **coend** of a functor $F : C \times C^{op} \to D$ is written $\int^{c \in C} F(c, c)$, and comes equipped with a universal extranatural transformation with components

$$\iota_c\colon F(c,c)\to \int^{c\in\mathcal{C}}F(c,c).$$

We unwrap the definition of an extranatural transformation.

Definition

Let $F : C \times C^{op} \to D$ be a functor. A **cowedge** $e : F \to w$ is an object w and maps $e_c : F(c, c) \to w$ for each c, such that given any morphism $f : c \to b \in C$, the following diagram commutes:

$$F(c,b) \xrightarrow{F(f,b)} F(b,b)$$

$$F(c,f) \downarrow \qquad \qquad \qquad \downarrow e_b$$

$$F(c,c) \xrightarrow{e_c} w$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Coend

Given a cowedge $e: F \to w$ and a map $f: w \to v$, we obtain a cowedge $e \cdot f: F \to v$ by composition. We define the coend as follows:

Definition

Let $F : \mathcal{C} \times \mathcal{C}^{op} \to \mathcal{D}$ be a functor. A **coend** of F is a universal cowedge, i.e. a cowedge $e : F \to w$ such that any other cowedge $e' : F \to w'$ factors through e via a unique map $w \to w'$. Notation: $\int^{c \in \mathcal{C}} F(c, c)$. Remark: coend is a particular case of a colimit.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A co-cone of a diagram $F : S \to D$ is an object N of C together with a family of morphisms $\psi_X : F(X) \to N$ for every object X of S, such that for every morphism $f : X \to Y$ in S, we have $\psi_Y \circ F(f) = \psi_X$.

A colimit of a diagram $F : S \to D$ is a co-cone (L, ϕ) of F such that for any other co-cone (N, ψ) of F there exists a unique morphism $u : L \to N$ such that $u \circ \phi_X = \psi_X$, $\forall X \in S$:

Colimits are also referred to as universal co-cones. They can be characterized as initial objects in the category of co-cones from F. If a diagram F has a colimit then this colimit is unique up to a unique isomorphism.

Exercise

A coend is a colimit:

$$\int^{c\in\mathcal{C}} F(c,c) = \operatorname{colim}_{\mathcal{C}^{\rightleftarrows}} \bar{F},$$

where $\operatorname{Ob} \mathcal{C}^{\overrightarrow{\leftarrow}} = \operatorname{Mor} \mathcal{C}$, a morphism $(h, k) : f \to g$ of $\mathcal{C}^{\overrightarrow{\leftarrow}}$ is the commutative square in \mathcal{C}

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Functor $\overline{F} : \mathcal{C}^{\rightleftharpoons} \to \mathcal{D}$ takes $(f : c \to b) \mapsto F(c, b)$, $((h, k) : f \to g) \mapsto F(h, k) : F(c, b) \to F(a, d)$.

Proof of proposition

The coend $\int^{[p] \in \Delta} \wedge^{1+k} \mathbb{Z}^{[p]} \otimes A_p$ is by definition an object \int_k of \mathcal{A} , equipped with morphisms $i_p^k : \wedge^{1+k} \mathbb{Z}^{[p]} \otimes A_p \to \int_k$ such that for any $f : [m] \to [n] \in \Delta$ the squares

commute and make \int_k a colimit of the diagram of arrows $\wedge^{1+k}\Psi(f) \otimes 1$ and $1 \otimes A(f^{\text{op}})$, where f runs over Mor Δ . If n < k, then $i_n^k = 0$. For m = k, n = k - 1, particular cases of (3) take the form

$$\left(A_{k-1} \xrightarrow{A(s_j)} A_k \xrightarrow{i_k^k} \int_k\right) = 0, \qquad 0 \leqslant j \leqslant k-1.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Exercise

There exists a cokernel in \mathcal{A}

$$S_k \stackrel{\text{def}}{=} \operatorname{Coker} \left((As_j)_{j=0}^{k-1} : \bigoplus_{j=0}^{k-1} A_{k-1} \to A_k \right) = \operatorname{Im} (A\pi_{k-1} : A_k \to A_k),$$
$$\operatorname{coker} \left((As_j)_{j=0}^{k-1} : \bigoplus_{j=0}^{k-1} A_{k-1} \to A_k \right) = p_{\pi_{k-1}} : A_k \to \operatorname{Im} (A\pi_{k-1}).$$

Therefore $i_k^k = (A_k \xrightarrow{\overline{i_k^k}} S_k \xrightarrow{\eta_k} \int_k)$. If $n \ge k$, we consider m = k and equation (3) for all subsets $0 \le i_0 < i_1 < \cdots < i_k \le n$, or for the functions $f = \chi_{i_0,\dots,i_k} : [k] \hookrightarrow [n], \ \chi(j) = i_j$. We obtain

$$i_n^k = \sum_{0 \leq i_0 < i_1 < \dots < i_k \leq n} \left(\wedge^{1+k} \mathbb{Z}^{[n]} \otimes A_n \xrightarrow{\mathsf{pr}_{i_0,\dots,i_k} \otimes 1} \mathbb{Z} \otimes A_n = A_n \\ \xrightarrow{A(\chi_{i_0,\dots,i_k})^{\mathsf{op}}} A_k \xrightarrow{\overline{\imath_k^k}} S_k \right) \xrightarrow{\eta_k} \int_k .$$

Denote by \overline{i}_n^k the sum of these compositions ending in S_k , \overline{i}_k

We shall prove the reduced version of (3), namely,

If m < k, there is nothing to prove. Assume that $m \ge k$, and restrict equation to the summand $\mathbb{Z}e_{i_0} \land \cdots \land e_{i_k} \otimes A_n$ of $\wedge^{1+k}\mathbb{Z}^{[m]} \otimes A_n$, $0 \le i_0 < i_1 < \cdots < i_k \le m$. The top-right path is

$$A_n \xrightarrow{A(\chi_{i_0,\ldots,i_k} \cdot f)^{\text{op}}} A_k \xrightarrow{\overline{\imath}_k^k} S_k.$$
(5)

We have $\wedge^{1+k}\Psi(f)(e_{i_0}\wedge\cdots\wedge e_{i_k}) = e_{fi_0}\wedge\cdots\wedge e_{fi_k}$. If all $fi_0,\ldots,fi_k\in[n]$ are distinct, then the left-bottom path is

$$A_n \xrightarrow{A(\chi_{fi_0,\ldots,fi_k})^{\mathrm{op}}} A_k \xrightarrow{\overline{\imath}_k^k} S_k$$

which coincides with (5).

If $([k] \xrightarrow{\subset \chi_{i_0,...,i_k}} [m] \xrightarrow{f} [n])$ is not an injection, then $\wedge^{1+k} \Psi(f)(e_{i_0} \wedge \cdots \wedge e_{i_k}) = 0$, and there are $0 \leq j \leq k-1$, $h \in \Delta$ such that $\chi_{i_0,...,i_k} \cdot f = ([k] \xrightarrow{\sigma^j} [k-1] \xrightarrow{h} [n])$. Therefore, (5) equals $(A_n \xrightarrow{A(h^{op})} A_{k-1} \xrightarrow{A_{s_j}} A_k \xrightarrow{\overline{i_k^k}} S_k) = 0$, which proves (4). Hence, S_k is the colimit and is a suitable choice for \int_k . Note that we wished to identify S_k with $\text{Im } \pi_{k-1}$. One could, in principle, find another idempotent which solves Exercise 10.

A 日 ト 4 周 ト 4 目 ト 4 目 ト 9 Q Q

Since $\wedge^{1+\bullet}\mathbb{Z}^{[\bullet]}$ is a functor from $\Delta^{op} \times Ch_{\geq 0}$, the coend $\int^{[p] \in \Delta} \wedge^{1+\bullet}\mathbb{Z}^{[p]} \otimes A_p$ has the structure of a complex in \mathcal{A} . For this differential and $k \in \mathbb{N}$ the collection of morphisms given by top rows of the following diagrams is a chain map:

In fact, the right square computed on $\mathbb{Z}e_{i_0} \wedge \cdots \wedge e_{i_k} \otimes A_m$ takes the form for $\chi_{i_0,...,i_k} : [k] \hookrightarrow [m]$

where
$$d = A\pi_{k-1} \cdot Ad_k \cdot A\pi_{k-2}$$
.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

End of proof of proposition

Commutativity of the right square

$$\sum_{j=0}^{k} (-1)^{k-j} Ad_j \cdot A\pi_{k-2} = A\pi_{k-1} \cdot Ad_k \cdot A\pi_{k-2}$$

follows from the identity

$$\sum_{j=0}^{k} (-1)^{k-j} \pi^{k-2} \cdot \partial^j = \pi^{k-2} \cdot \partial^k \cdot \pi^{k-1}$$

which follows from some previous identity multiplied with π^{k-2} on the left.

The coend $\int^{[p] \in \Delta} \wedge^{1+k} \mathbb{Z}^{[p]} \otimes A_p$ behaves functorially with respect to A, giving a functor, which for our choice of the coend coincides with (1).