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Assume given idempotent complete additive category A. For a
simplicial object A viewed as an Ab-functor Z∆op → A we denote
Adi = A(∂ i )op : An → An−1, 0 6 i 6 n,
Asj = A(σj )op : An → An+1, 0 6 j 6 n,
Aπk = A(πk )op : An → An. The equivalence

SA = Ab-Cat(Z∆op,A)←Ab-Cat(ı̈,A)

'
addCat(Ẑ∆op,A)

'−→
addCat(add Ch>0,A) ' Ab-Cat(Ch>0,A) = Ch>0(A) is isomorphic
to the functor

SA → Ch>0(A),

A 7→
(
Aπk−1 · Adk · Aπk−2 :

Im(πk−1 : Ak → Ak )→ Im(πk−2 : Ak−1 → Ak−1) | k > 1
)
,

(f : A→ B) 7→ (Aπk−1 · fk · Bπk−1)k>0. (1)

Let us represent this equivalence in another form.



Consider the cosimplicial topological simplex

∆top : [n] 7→ ∆n
top = {(x0, . . . , xn) ∈ R[n]

>0 = R1+n
>0 |

∑n
i=0 xi = 1}.

It assigns to f : [m]→ [n] ∈ ∆ the map ∆m
top → ∆n

top induced by
the linear map

Ψ(f ) : R[m] → R[n], (y0, . . . , ym) 7→ (x0, . . . , xn), xi =
∑

j∈f −1i

yj .

(2)
View ∆n

top as a cellular space, whose cells are non-degenerate
faces. Associate with it the cell complex C n

• = C (∆n
top) over Z. It

is isomorphic to the exterior algebra ∧•Z[n] = T •Z[n]/(u ⊗ u)u∈Z[n]

over Z, equipped with the differential d : ∧kZ[n] → ∧k−1Z[n] which
is a right derivation (that is,
(ω ∧ η)d = ω ∧ (ηd) + (−1)η(ωd) ∧ η) determined by the map
d : Z[n] → Z, ei 7→ 1, 0 6 i 6 n. The functor [n] 7→ ∧•Z[n],
(f : [m]→ [n]) 7→ ∧•Ψ(f ), provides a cosimplicial differential
graded ring ∧•Z[•]. Here Ψ(f ) : Z[m] → Z[n] is given by (2).
Exercise: Prove directly that ∧•Ψ(f ) are chain maps.



Forgetting about the multiplication and the unit we get a functor
Z∆→ Ch>0(fAb), where fAb is a full subcategory of Ab consisting
of free finitely generated abelian groups. Equivalently, a functor
Ch>0 → Ab-Cat(Z∆, fAb).
Since A is closed under direct sums, there is an action functor

which we denote by ⊗ : fAb×A → A, (Zn,X ) 7→ Zn ⊗ X
def
= X n,

(f = (fij )ij : Zn → Zm,X ) 7→ f⊗1
def
= (fij : X → X )ij ∈ A(X n,X m),

(Zn, g : X → Y ) 7→ 1⊗ g
def
= (g n : X n → Y n).

Proposition

Let A : ∆op → A be a simplicial object of A. Then for any k > 0

there exists a coend and a cokernel
∫ [p]∈∆ ∧1+kZ[p] ⊗ Ap =

Coker
(
(Asj )j :

⊕k−1
j=0 Ak−1 → Ak

)
= Im(Aπk−1 : Ak → Ak ). The

assignment A 7→
∫ [p]∈∆ ∧1+•Z[p] ⊗ Ap extends to a functor

SA → Ch>0(A), isomorphic to (1).



The coend of a functor F : C × Cop → D is written
∫ c∈C

F (c , c),
and comes equipped with a universal extranatural transformation
with components

ιc : F (c , c)→
∫ c∈C

F (c , c).

We unwrap the definition of an extranatural transformation.

Definition
Let F : C × Cop → D be a functor. A cowedge e : F → w is an
object w and maps ec : F (c , c)→ w for each c, such that given
any morphism f : c → b ∈ C, the following diagram commutes:

F (c , b)
F (f ,b)→ F (b, b)

F (c , c)

F (c,f )
↓

ec → w

eb

↓



Coend

Given a cowedge e : F → w and a map f : w → v , we obtain a
cowedge e · f : F → v by composition. We define the coend as
follows:

Definition
Let F : C × Cop → D be a functor. A coend of F is a universal
cowedge, i.e. a cowedge e : F → w such that any other cowedge
e ′ : F → w ′ factors through e via a unique map w → w ′.

Notation:
∫ c∈C

F (c , c).
Remark: coend is a particular case of a colimit.



A co-cone of a diagram F : S → D is an object N of C together
with a family of morphisms ψX : F (X )→ N for every object X of
S, such that for every morphism f : X → Y in S, we have
ψY ◦ F (f ) = ψX .
A colimit of a diagram F : S → D is a co-cone (L, φ) of F such
that for any other co-cone (N, ψ) of F there exists a unique
morphism u : L→ N such that u ◦ φX = ψX , ∀X ∈ S:

FX

L ∃!u →
φX →

N

ψX

→

FY

Ff

↓
ψY

→
φY

→

Colimits are also referred to as universal co-cones. They can be
characterized as initial objects in the category of co-cones from F .
If a diagram F has a colimit then this colimit is unique up to a
unique isomorphism.



Exercise

A coend is a colimit: ∫ c∈C
F (c , c) = colim

C�
F̄ ,

where Ob C� = Mor C, a morphism (h, k) : f → g of C� is the
commutative square in C

c
h → a

=

b

f
↓
← k

d

g
↓

Functor F̄ : C� → D takes (f : c → b) 7→ F (c, b),
((h, k) : f → g) 7→ F (h, k) : F (c , b)→ F (a, d).



Proof of proposition

The coend
∫ [p]∈∆ ∧1+kZ[p] ⊗Ap is by definition an object

∫
k of A,

equipped with morphisms ik
p : ∧1+kZ[p] ⊗ Ap →

∫
k such that for

any f : [m]→ [n] ∈ ∆ the squares

∧1+kZ[m] ⊗ An
1⊗A(f op)→ ∧1+kZ[m] ⊗ Am

=

∧1+kZ[n] ⊗ An

∧1+k Ψ(f )⊗1↓
ik
n →

∫
k

ik
m↓ (3)

commute and make
∫

k a colimit of the diagram of arrows
∧1+k Ψ(f )⊗ 1 and 1⊗ A(f op), where f runs over Mor ∆. If n < k ,
then ik

n = 0. For m = k , n = k − 1, particular cases of (3) take the
form (

Ak−1
A(sj )→ Ak

ik
k→

∫
k

)
= 0, 0 6 j 6 k − 1.



Exercise
There exists a cokernel in A

Sk
def
= Coker

(
(Asj )

k−1
j=0 :

k−1⊕
j=0

Ak−1 → Ak

)
= Im(Aπk−1 : Ak → Ak ),

coker
(
(Asj )

k−1
j=0 :

k−1⊕
j=0

Ak−1 → Ak

)
= pπk−1

: Ak → Im(Aπk−1).

Therefore ik
k =

(
Ak

ı̄kk . Sk
ηk−→
∫

k

)
. If n > k , we consider m = k

and equation (3) for all subsets 0 6 i0 < i1 < · · · < ik 6 n, or for
the functions f = χi0,...,ik : [k] ↪→ [n], χ(j) = ij . We obtain

ik
n =

∑
06i0<i1<···<ik6n

(
∧1+kZ[n] ⊗ An

pri0,...,ik
⊗1
→ Z⊗ An = An

A(χi0,...,ik
)op

→ Ak
ı̄kk→ Sk

) ηk−→
∫

k .

Denote by ı̄kn the sum of these compositions ending in Sk .



We shall prove the reduced version of (3), namely,

∧1+kZ[m] ⊗ An
1⊗A(f op)→ ∧1+kZ[m] ⊗ Am

=

∧1+kZ[n] ⊗ An

∧1+k Ψ(f )⊗1↓
ı̄kn → Sk

ı̄km↓
(4)

If m < k , there is nothing to prove. Assume that m > k , and
restrict equation to the summand Zei0 ∧ · · · ∧ eik ⊗ An of
∧1+kZ[m] ⊗ An, 0 6 i0 < i1 < · · · < ik 6 m. The top-right path is

An

A(χi0,...,ik
·f )op

→ Ak
ı̄kk . Sk . (5)

We have ∧1+k Ψ(f )(ei0 ∧ · · · ∧ eik ) = efi0 ∧ · · · ∧ efik
. If all

fi0, . . . fik ∈ [n] are distinct, then the left-bottom path is

An

A(χfi0,...,fik
)op

→ Ak
ı̄kk . Sk

which coincides with (5).



If
(
[k] ⊂

χi0,...,ik→ [m]
f−→ [n]

)
is not an injection, then

∧1+k Ψ(f )(ei0 ∧ · · · ∧ eik ) = 0, and there are 0 6 j 6 k − 1, h ∈ ∆

such that χi0,...,ik · f =
(
[k]

σj

. [k − 1]
h−→ [n]

)
. Therefore, (5)

equals
(
An

A(hop)→ Ak−1
Asj→ Ak

ı̄kk . Sk

)
= 0, which proves (4).

Hence, Sk is the colimit and is a suitable choice for
∫

k . Note that
we wished to identify Sk with Imπk−1. One could, in principle,
find another idempotent which solves Exercise 10.



Since ∧1+•Z[•] is a functor from ∆op × Ch>0, the coend∫ [p]∈∆ ∧1+•Z[p] ⊗ Ap has the structure of a complex in A. For this
differential and k ∈ N the collection of morphisms given by top
rows of the following diagrams is a chain map:

∧1+kZ[m] ⊗ An
1⊗A(f op)→ ∧1+kZ[m] ⊗ Am

ik
m →

∫
k

=

∧kZ[m] ⊗ An

d⊗1↓
1⊗A(f op)→ ∧kZ[m] ⊗ Am

d⊗1↓
ik−1
m →

∫
k−1

d↓

In fact, the right square computed on Zei0 ∧ · · · ∧ eik ⊗ Am takes
the form for χi0,...,ik : [k] ↪→ [m]

Am

A(χi0,...,ik
)op

→ Ak
ik
k →

∫
k

=

Am

wwwww ∑k
j=0(−1)k−j A(∂j

k ·χi0,...,ik
)op

→ Ak−1

∑k
j=0(−1)k−j Adj↓

ik−1
k−1→

∫
k−1

d↓

where d = Aπk−1 · Adk · Aπk−2.



End of proof of proposition

Commutativity of the right square

k∑
j=0

(−1)k−j Adj · Aπk−2 = Aπk−1 · Adk · Aπk−2

follows from the identity

k∑
j=0

(−1)k−jπk−2 · ∂j = πk−2 · ∂k · πk−1

which follows from some previous identity multiplied with πk−2 on
the left.
The coend

∫ [p]∈∆ ∧1+kZ[p] ⊗ Ap behaves functorially with respect
to A, giving a functor, which for our choice of the coend coincides
with (1).


