
Introduction to homotopy theory

Sergiy Maksymenko

Institute of Mathematics of NAS of Ukraine, Kyiv



Introduction

Topology studies topological spaces and continuous maps. There is a lot
of invariants (properties) that allow to differ one topological space from
another (compactness, connectedness, metrizability, etc.)

Homotopy theory studies topological spaces up to homotopy equivalence
and continuous maps up to homotopy. This gives another kind of
invariants allowing to distinguish spaces.

Advantage of homotopy classifications:

• number of objects becomes discrete

• the set of objects often carries an algebraic structure (groups, rings,
semigroups, etc)

• applications: almost always discrete (“quantum”) invariants of
something are homotopy invariants.
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Homotopy

Definition
Let X ,Y be a topological spaces, and I = [0, 1]. A homotopy is an
arbitrary continuous map

F : X × I → Y

A homotopy can be viewed as a one-parametric family of continuous
maps

Ft = F |X×t : X × t → Y , t ∈ [0, 1].

Then the maps F0 and F1 are called homotopic, and F is a homotopy
between them.
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Homotopic maps

Two continuous maps f , g : X → Y are homotopic if there is a
homotopy F : X × [0, 1]→ Y between them, i.e. f = F0 and g = F1.

We then write: f ' g .

Exercises
1) Prove that the relation ' to be homotopic on the space C (X ,Y ) of
continuous maps between topological spaces X and Y is an equivalence
relation. Equivalence classes are denoted by [X ,Y ] and called homotopy
classes of maps from X to Y .
2) Let f , f ′ : X → Y and g , g ′ : Y → Z be continuous maps. If f ' f ′

and g ' g ′ then g ◦ f ' g ′ ◦ f ′ : X → Z .
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Examples

• The map F : R× I → R given by

F (x , t) = t cos(x) + 2t2−x4

+ ln(x2 + t2 + 2)

is a homotopy.

• F : Rn × [0, 1]→ Rn, F (x , t) = tx .

F (x , 0) = 0, F (x , 1) = x

Thus F0 is a constant map, while F1 is the identity map.

• More generally, let K be a convex subset of a topological vector
space, p ∈ K be a point, and F : K × I → K be given by

F (x , t) = tx + (1− t)p.

Then F (x , 0) = p, F (x , 1) = x . Thus again F0 is a constant map,
while F1 is the identity map.
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Contractible spaces

A topological space X is contractible if the identity map idX is
homotopic to a constant map into some point.
So there exists a continuous map F : X × [0, 1]→ X such that F0 = idX
and F1(X ) = z for some point z ∈ X .

The homotopy between idX and a constant map is called a contraction of
X .

Theorem
Every convex subset of a topological vector space is contractible.

Not every topological space is contractible!

Theorem
If Y is contractible if and only if for every topological space X any two
continuous maps f , g : X → Y are homotopic.

Exercise
Prove that every finite tree is contractible.
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Contractible spaces (reformulation)

A cone over X is the quotient CX := X × [0, 1]/{X × 1}.

Then the set {X × 1} is a point in CX called vertex, while X × 0 is the
base of CX .
Every contraction of X factors through the map into cone:

CX

F ′

%%
X × [0, 1]

p

::

F // X = X × 0

A contraction of X can be regarded as a continuous map
F ′ : CX → X × 0 fixed on X × 0.
A subset A ⊂ Y is a retract of Y if there exists a continuous map
r : Y → A such that r(a) = a for all a ∈ A.

Reformulation
X is contractible whenever the base X × 0 is a retract of CX .
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Homeomorphism

A continuous map f : X → Y is a homeomorphism if there exists a
continuous map g : Y → X such that

X
f //

idX

��
Y

g //

idY

@@X
f // Y



Homotopy equivalence

A continuous map f : X → Y is a homotopy equivalence if there exists a
continuous map g : Y → X such that

X
f //

homotopic to idX

��
Y

g //

homotopic to idY

@@X
f // Y

Exercises
1) Homotopy equivalence is an equivalence relation.
2) A map homotopic to a homotopy equivalence is a homotopy
equivalence as well.

3) The set of self-homotopy equivalences HE (X ) ⊂ [X ,X ] of a
topological space X constitute a subgroup in the semigroup [X ,X ].
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Homotopy equivalence, 2

Theorem
Let F : X → Y be a continuous map. Then the following conditions are equivalent:

(1) there exists a continuous map G : Y → X such that G ◦ F : X → X is
homotopic to idX (G is “right” homotopy inverse for F );

(2) for any topological space Z the induced map

F∗ : [Y ,Z ]→ [X ,Z ], F∗(g) = g ◦ F : X
F−→ Y

g−→ Z

is a bijection.

Similarly, the following conditions are also equivalent:

(1′) there exists a continuous map G : Y → X such that F ◦ G ′ : Y → Y is
homotopic to idY (G ′ is a left” homotopy inverse for F );

(2′) for any topological space Z the induced map

F∗ : [Z ,X ]→ [Z ,Y ], F∗(h) = F ◦ h : Z
h−→ X

F−→ Y

is a bijection.

If both conditions (1) and (1′) hold then G and G ′ are homotopic.
In particular, F : X → Y is a homotopy equivalence iff F∗ and F∗ are bijections for
all spaces Z .



Contractible spaces, 3

Exercise
For a topological space X TFAE:

i X is contractible (idX is homotopic to a constant map)

ii X × 0 is a retract of the cone CX

iii any two maps f , g : Y → X are homotopic

iv X is homotopy equivalent to a point

Proof (i)⇔(iv): Let pz : X → {z} be a constant map.

{z} �
� //

idz

!!
X

pz //

'idX ?

pz

>>{z} �
� // X

(i) means that pz ' idX and this is the same as (iv).
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Deformations

Let A ⊂ X be a subset. A deformation of X into A is a homotopy
F : X × I → X such that

• F0 = idX
• Ft(A) ⊂ A for all t ∈ I

• F1(X ) ⊂ A.

Theorem
Let F : X × I → X be a deformation of X into A. Then the map
F1 : X → A is a homotopy equivalence.

A �
� //

F1|A'F0|A=idA

$$
X

F1 //

'F0=idX

;;A �
� // X

Note that F |A×I : A× I → A is a homotopy between F0|A = idA and F1|A.
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Let A ⊂ X be a subset. A deformation retraction of X on A is a
homotopy F : X × I → X such that

• F0 = idX
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Simple homotopy equivalence
Let X be a topological space, Dn be an n-disk, n ≥ 1, Sn−1

+ and Sn−1
− be

two semispheres in the ∂Dn = Sn−1.

Let f : Sn−1
− → X be a continuous

map, and Y = Dn tf X be the topological space obtained by gluing Dn

to X by the map f .
Then there is a deformational retraction Y → X .
Passing from Y to X is called collapsion, and passing from X to Y is
expansion.
We use the following notations:
• X ↗ Y for the inclusion X ⊂ Y , so it is an expansion
• Y ↘ X for the deformational retraction r : Y → X , so it is a

collapsion.
Definition. Topological spaces X and Y are simply homotopy equivalent
if there exists a finite sequence of collapsions and expansions which
transforms X into Y . This is writes as X y Y .

Theorem (Chapman)
Let X and Y be two finite connected CW -complexes (polyhedrons).
Then a map f : X → Y is a simple homotopy equivalence iff the map
f × id : X × Q → Y × Q is homotopic to a homeomorpism, where
Q =

∏∞
i=1[0, 1] is a Hilbert cube.
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Maps [S1, S1]

Problem: compute homotopy classes of self maps of a circle [S1,S1].

Main tools:

1 S1 = {z ∈ C | |z | = 1} is a unit circle

2 consider the map p : R→ S1, p(t) = e2πit .

3 one can regard S1 as [0, 1] with indentified ends via the map
p : [0, 1]→ S1
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Maps [S1, S1]

Map p : R→ S1, p(t) = e2πit .

Lemma
1 For each f : S1 → S1 there exists a function f̂ : [0, 1]→ R

such that
diagram is commutative:

[0, 1]

p

��

f̂ // R

p

��
S1 f // S1

that is f (e2πit) = e2πi f̂ (t).

2 Each f̂ is defined up to an integer summand, i.e. for any n ∈ Z
f̂n(t) = f̂ (t) + n also satisfies 1).

3 f̂ (1)− f̂ (0) ∈ Z and this number does not depend on replacing f̂

with f̂n.

4 The correspondence f 7→ f (1)− f (0) ∈ Z induces a bijection
[S1,S1] ∼= Z.
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The set π0(X , x)

Let X be a topological space and x ∈ X .

Let also S0 = {0, 1} = ∂I be
the 0-sphere. Then 0-th homotopy set of X at point x is the set of
homotopy classes [(S0, 0), (X , x)]. It is denoted by π0(X , x).

π0(X , x) = [(S0, 0), (X , x)].

In general, π0(X , x) has no algebraic structure.
Exercise. Prove that the map p : C ((S0, 0), (X , x))→ X associating to
each f : (S0, 0)→ (X , x) the value f (1) ∈ X induces a bijection between
π0(X , x) and the set of path components of X .
Exercise. Let G be a topological group with unit e, and Ge be the path
component of e in G . Prove that

1 Ge is a normal subgroup of G ;

2 There is an isomorphism π0(G , e) ∼= G/Ge .
Exercise. Let G be a topological semigroup. Prove that

1 Partition of G into path components ξ = {Gα}α∈A is a congruence, that is if
a, a′ ∈ Gα and b, b′ ∈ Gβ , then ab and a′b′ belong to the same path component
of G .

2 Hence the quotient set G/ξ which can be identified with π0(G , g) for any g ∈ G
is a semigroup, and the map G → π0(G , g) is a semigroup homomorphism.
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Exercise. Let G be a topological semigroup. Prove that

1 Partition of G into path components ξ = {Gα}α∈A is a congruence, that is if
a, a′ ∈ Gα and b, b′ ∈ Gβ , then ab and a′b′ belong to the same path component
of G .

2 Hence the quotient set G/ξ which can be identified with π0(G , g) for any g ∈ G
is a semigroup, and the map G → π0(G , g) is a semigroup homomorphism.
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The set π0(X , x)

Exercises

1 Every continuous map f : X → Y induces a map
f0 : π0(X , x)→ π0(Y , f (x)) defined by f0[α] = [f ◦ α], where
α : (S0, 0)→ (X , x).

2 If G and H are topological groups and f : G → H is a continuous
homomorphism, then f0 : π0(G , eG )→ π0(H, eH) is also a
homomorphism.

3 Formulate and prove previous problem for semigroups.
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Fundamental group π1(X , x)

Let X be a topological space, x ∈ X , S1 be the circle and ∗ ∈ S1 be a
point.

Then 1-th homotopy group or the fundamental group of X at
point x is the set of homotopy classes [(S1, ∗), (X , x)]. It is denoted by
π1(X , x) and was introduced by H. Poincarè.

π1(X , x) = [(S1, ∗), (X , x)] = [(I , ∂I )→ (X , x)]

Theorem. π1(X , x) has a structure of a group.
Proof. Given two loops α, β : (I , ∂I )→ (X , x), define their product
α ∗ β : (I , ∂I )→ (X , x) by the formula:

α ∗ β(t) =

{
α(2t), t ∈ [0, 1

2 ],

β(2t − 1), t ∈ [ 1
2 , 1].

Then the operations in π1(X , x) is defined by [α] ∗ [β] = [α ∗ β].
Exercise. 1) Prove that homotopy class of the constant map I into x is
the unit of π1(X , x).
2) Prove that inverse to [α] is the homotopy class of the map β : I → X
given by β(t) = α(1− t).
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π1(X , x) = [(S1, ∗), (X , x)] = [(I , ∂I )→ (X , x)]

Theorem. π1(X , x) has a structure of a group.
Proof. Given two loops α, β : (I , ∂I )→ (X , x), define their product
α ∗ β : (I , ∂I )→ (X , x) by the formula:

α ∗ β(t) =

{
α(2t), t ∈ [0, 1

2 ],

β(2t − 1), t ∈ [ 1
2 , 1].

Then the operations in π1(X , x) is defined by [α] ∗ [β] = [α ∗ β].
Exercise. 1) Prove that homotopy class of the constant map I into x is
the unit of π1(X , x).
2) Prove that inverse to [α] is the homotopy class of the map β : I → X
given by β(t) = α(1− t).



Fundamental group π1(X , x)

Let X be a topological space, x ∈ X , S1 be the circle and ∗ ∈ S1 be a
point. Then 1-th homotopy group or the fundamental group of X at
point x is the set of homotopy classes [(S1, ∗), (X , x)]. It is denoted by
π1(X , x) and was introduced by H. Poincarè.
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Computation of π1(X , x)

Exercises.

1 π1(point) = 0.

2 π1(S1, ∗) = Z.

3 every path γ : I → X with γ(0) = x and γ(1) = y , induces an
isomorphism

γ∗ : π1(X , x)→ π1(X , y), γ∗(α) = γ ∗ α ∗ γ−1

So π1X depends only on the path component of X , and for such
spaces sometimes we can omit base point.

4 π1(X × Y ) ∼= π1X × π1Y .

5 π1

∏
λ∈Λ Xλ ∼=

∏
λ∈Λ π1Xλ.

6 π1(S1 × S1) ∼= Z2 (for 2-torus)

7 Every homotopy equivalence f : (X , x)→ (Y , y) of pointed spaces
induces an isomorphism π1(X , x)→ π1(Y , y). (This means that
there exists g : (Y , y)→ (X , x) such that g ◦ f is homotopic to idX
relatively to x , i.e. and that homotopy fixes point x , and similarly
for f ◦ g .)
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Fundamental group π1(X , x)

Exercises

1 Every continuous map f : X → Y induces a map
f1 : π1(X , x)→ π1(Y , f (x)) defined by f1[α] = [f ◦ α], where
α : (S1, ∗)→ (X , x).

2 Let f : S1 → S1 be given by f (z) = zk . Compute the induced
homomorphism f1 : π1S

1 → π1S
1.
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H-spaces

Let X be a topological space and e ∈ X be a point.

In general π1(X , e) is not abelian.
(X , e) is called H-space if there exists a continuous map µ : X × X → X
such that

µ(x , e) = µ(e, x) = e

for all x ∈ X .
Exercises.

1 Every topological semigroup (and group) is an H-space.

2 If (X , e) is an H-space, then π1(X , e) is abelian.
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Higher homotopy group πk(X , x)

Let X be a topological space, x ∈ X , Sk be the circle and ∗ ∈ Sk be a
point, and k ≥ 0.

Then k-th homotopy group of X at point x is the set
of homotopy classes [(Sk , ∗), (X , x)]. It is denoted by πk(X , x), and
these groups were introduced by W. Hurevicz.

πk(X , x) = [(Sk , ∗), (X , x)] = [(I k , ∂I k), (X , x)]

Theorem. πk(X , x), k ≥ 2, has a structure of a group and that group is
always abelian.
Proof. Let α, β : (I k , ∂I k)→ (X , x) be two maps. Regard I k as I × I k−1

with coordinates (x , y). Define α ∗ β : (I k , ∂I k)→ (X , x) by the formula:

α ∗ β(x , y) =

{
α(2x , y), x ∈ [0, 1

2 ],

β(2x − 1, y), x ∈ [ 1
2 , 1],

where x ∈ I and y ∈ I k−1.
Then the operation in πk(X , x) is defined by

[α] ∗ [β] := [α ∗ β].
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Computation of πk(X , x)

Exercises.

1 π1(point) = 0.

2 Every continuous map f : X → Y induces a map
fk : πk(X , x)→ πk(Y , f (x)) defined by fk [α] = [f ◦ α], where
α : (Sk , ∗)→ (X , x). This map is a homomorphism for k ≥ 1.

3 Every homotopy equivalence f : (X , x)→ (Y , y) of pointed spaces
induces an isomorphism of all homotopy groups
f∗ : πk(X , x)→ πk(Y , y).

4 Every path γ : I → X with γ(0) = x and γ(1) = y , induces an
isomorphism

γ∗ : πk(X , x)→ πk(X , y)

So πkX depends only on the path component of X , and for such
spaces sometimes we can omit base point.

5 πk(X × Y ) ∼= πkX × πkY .

6 πk
∏
λ∈Λ Xλ ∼=

∏
λ∈Λ πkXλ.
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Weak homotopy type

A continuous map f : X → Y is a weak homotopy equivalence if for each
x ∈ X and k ≥ 0 the induced map

fk : πk(X , x)→ πk(Y , f (x))

is an isomorphism.

As noted above every homotopy equivalence is also
weak.

Theorem (J.H.C. Whitehead)
Let X and Y be connected CW-complexes and f : X → Y be a
continuous map. TFAE:

1 f is a homotopy equivalence

2 f is a weak homotopy equivalence

Theorem
Every CW-complex X is weakly homotopy equivalent to some Alexandrov
space (a space in which intersection of arbitrary family of open sets is
open).
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Relative homotopy group πk(X ,A, x)

Let X be a topological space, A ⊂ X and x ∈ A.

Let also

1 I k = I × I︸︷︷︸
k

be a k-cube,

2 I k−1
+ be the “upper” face of ∂I k , and

3 I k−1
− = ∂I k \ I k−1

+ .

Then the relative k-th homotopy group of the triple (X ,A, x) is the set
of homotopy classes

πk(X ,A, x) := [(I k , ∂I k , I k−1
− ), (X ,A, x)]

Again they introduced by W. Hurevicz.
Remark. π0(X ,A, x) is the same as π0(X , x).
Theorem. πk(X ,A, x), k ≥ 2, has a structure of a group and that group
is abelian for k ≥ 3.
Proof. In fact the operation is defined by the same formula as for
πk(X , x).
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Relative homotopy group πk(X ,A, x)

1 Compute homotopy set π1(R, [−1, 1], 0).

2 Every continuous map f : (X ,A, x)→ (Y ,B, y) induces a map
fk : πk(X ,A, x)→ πk(Y ,B, f (x)) defined by fk [α] = [f ◦ α], where
α : (I k , ∂I k , I k−1

− ), (X ,A, x). This map is a homomorphism for
k ≥ 2.

3 Let G be a topological group with unit e and H be its subgroup.
Then π1(G ,H, e) has a structure of a group. Moreover, the maps

π1(G , e)
j1−→ π1(G ,H, e)

∂1−→ π0(H, e)

are group homomorphisms.
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α : (I k , ∂I k , I k−1

− ), (X ,A, x).

This map is a homomorphism for
k ≥ 2.

3 Let G be a topological group with unit e and H be its subgroup.
Then π1(G ,H, e) has a structure of a group. Moreover, the maps

π1(G , e)
j1−→ π1(G ,H, e)

∂1−→ π0(H, e)

are group homomorphisms.
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Long exact sequence of homotopy groups

Let (X ,A, x) be a triple, so x ∈ A ⊂ X .

Let also
1 i : A ⊂ X be a natural inclusion. It induces a homomorphism
ik : πk(A, x)→ πk(X , x).

2 Let α : (I k , ∂I k), (X , x) be a representative of an element of
πk(X , x). Then, in particular, it is also a map of triples

α : (I k , ∂I k , I k−1
− ), (X ,A, x)

so it is also a representative of some element in πk(X ,A, x). This
gives a homomorphism

jk : πk(X , x)→ πk(X ,A, x).

3 Let α : (I k , ∂I k , I k−1
− ), (X ,A, x) be a representative of an element of

πk(X ,A, x). Then, in particular, α(I k−1
+ ) ⊂ A and α(∂I k−1

+ ) = x .
Thus we get the restriction map α|I k−1

+
: (I k−1, ∂I k−1)→ (A, x)

being a representative of some element πk−1(A, x). In fact,
α 7→ α|I k−1

+
induces a so called boundary homomorphism:

∂k : πk(X ,A, x)→ πk−1(A, x)
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Long exact sequence of homotopy groups

Thus we get an infinite sequence of homomorphisms:

· · · ∂k+1−−→ πk(A, x)
ik−→ πk(X , x)

jk−→ πk(X ,A, x)
∂k−→

πk−1(A, x)
ik−1−−→ πk−1(X , x)

jk−1−−→ πk−1(X ,A, x)
∂k−1−−−→ · · ·

· · · ∂2−→ π1(A, x)
i1−→ π1(X , x)

j1−→ π1(X ,A, x)
∂1−→

π0(A, x)
i0−→ π0(X , x)

∼=−→ π0(X ,A, x).

Theorem
The long sequence of homotopy groups for the triple (X ,A, x) is exact.



Long exact sequence of homotopy groups

1 Compute homotopy groups πk(I , ∂I , 0).
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Homotopy equivalence
Contractible space
Retract
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