Introduction to homotopy theory

Sergiy Maksymenko

Institute of Mathematics of NAS of Ukraine, Kyiv

Introduction

Topology studies topological spaces and continuous maps. There is a lot of invariants (properties) that allow to differ one topological space from another (compactness, connectedness, metrizability, etc.)

Introduction

Topology studies topological spaces and continuous maps. There is a lot of invariants (properties) that allow to differ one topological space from another (compactness, connectedness, metrizability, etc.) Homotopy theory studies topological spaces up to homotopy equivalence and continuous maps up to homotopy. This gives another kind of invariants allowing to distinguish spaces.

Introduction

Topology studies topological spaces and continuous maps. There is a lot of invariants (properties) that allow to differ one topological space from another (compactness, connectedness, metrizability, etc.) Homotopy theory studies topological spaces up to homotopy equivalence and continuous maps up to homotopy. This gives another kind of invariants allowing to distinguish spaces.

Advantage of homotopy classifications:

- number of objects becomes discrete

Introduction

Topology studies topological spaces and continuous maps. There is a lot of invariants (properties) that allow to differ one topological space from another (compactness, connectedness, metrizability, etc.) Homotopy theory studies topological spaces up to homotopy equivalence and continuous maps up to homotopy. This gives another kind of invariants allowing to distinguish spaces.

Advantage of homotopy classifications:

- number of objects becomes discrete
- the set of objects often carries an algebraic structure (groups, rings, semigroups, etc)

Introduction

Topology studies topological spaces and continuous maps. There is a lot of invariants (properties) that allow to differ one topological space from another (compactness, connectedness, metrizability, etc.) Homotopy theory studies topological spaces up to homotopy equivalence and continuous maps up to homotopy. This gives another kind of invariants allowing to distinguish spaces.

Advantage of homotopy classifications:

- number of objects becomes discrete
- the set of objects often carries an algebraic structure (groups, rings, semigroups, etc)
- applications: almost always discrete ("quantum") invariants of something are homotopy invariants.

Homotopy

Definition
Let X, Y be a topological spaces, and $I=[0,1]$. A homotopy is an arbitrary continuous map

$$
F: X \times I \rightarrow Y
$$

Homotopy

Definition

Let X, Y be a topological spaces, and $I=[0,1]$. A homotopy is an arbitrary continuous map

$$
F: X \times I \rightarrow Y
$$

A homotopy can be viewed as a one-parametric family of continuous maps

$$
F_{t}=\left.F\right|_{X \times t}: X \times t \rightarrow Y, \quad t \in[0,1] .
$$

Homotopy

Definition

Let X, Y be a topological spaces, and $I=[0,1]$. A homotopy is an arbitrary continuous map

$$
F: X \times I \rightarrow Y
$$

A homotopy can be viewed as a one-parametric family of continuous maps

$$
F_{t}=\left.F\right|_{X \times t}: X \times t \rightarrow Y, \quad t \in[0,1] .
$$

Then the maps F_{0} and F_{1} are called homotopic, and F is a homotopy between them.

Homotopic maps

Two continuous maps $f, g: X \rightarrow Y$ are homotopic if there is a homotopy $F: X \times[0,1] \rightarrow Y$ between them, i.e. $f=F_{0}$ and $g=F_{1}$.

Homotopic maps

Two continuous maps $f, g: X \rightarrow Y$ are homotopic if there is a homotopy $F: X \times[0,1] \rightarrow Y$ between them, i.e. $f=F_{0}$ and $g=F_{1}$. We then write: $f \simeq g$.

Homotopic maps

Two continuous maps $f, g: X \rightarrow Y$ are homotopic if there is a homotopy $F: X \times[0,1] \rightarrow Y$ between them, i.e. $f=F_{0}$ and $g=F_{1}$. We then write: $f \simeq g$.

Exercises

1) Prove that the relation \simeq to be homotopic on the space $C(X, Y)$ of continuous maps between topological spaces X and Y is an equivalence relation.

Homotopic maps

Two continuous maps $f, g: X \rightarrow Y$ are homotopic if there is a homotopy $F: X \times[0,1] \rightarrow Y$ between them, i.e. $f=F_{0}$ and $g=F_{1}$. We then write: $f \simeq g$.

Exercises

1) Prove that the relation \simeq to be homotopic on the space $C(X, Y)$ of continuous maps between topological spaces X and Y is an equivalence relation. Equivalence classes are denoted by $[X, Y]$ and called homotopy classes of maps from X to Y.

Homotopic maps

Two continuous maps $f, g: X \rightarrow Y$ are homotopic if there is a homotopy $F: X \times[0,1] \rightarrow Y$ between them, i.e. $f=F_{0}$ and $g=F_{1}$. We then write: $f \simeq g$.

Exercises

1) Prove that the relation \simeq to be homotopic on the space $C(X, Y)$ of continuous maps between topological spaces X and Y is an equivalence relation. Equivalence classes are denoted by $[X, Y]$ and called homotopy classes of maps from X to Y.
2) Let $f, f^{\prime}: X \rightarrow Y$ and $g, g^{\prime}: Y \rightarrow Z$ be continuous maps. If $f \simeq f^{\prime}$ and $g \simeq g^{\prime}$ then $g \circ f \simeq g^{\prime} \circ f^{\prime}: X \rightarrow Z$.

Examples

- The map $F: \mathbb{R} \times I \rightarrow \mathbb{R}$ given by

$$
F(x, t)=t \cos (x)+2^{t^{2}-x^{4}}+\ln \left(x^{2}+t^{2}+2\right)
$$

is a homotopy.

Examples

- The map $F: \mathbb{R} \times I \rightarrow \mathbb{R}$ given by

$$
F(x, t)=t \cos (x)+2^{t^{2}-x^{4}}+\ln \left(x^{2}+t^{2}+2\right)
$$

is a homotopy.

- $F: \mathbb{R}^{n} \times[0,1] \rightarrow \mathbb{R}^{n}, F(x, t)=t x$.

$$
F(x, 0)=0, \quad F(x, 1)=x
$$

Examples

- The map $F: \mathbb{R} \times I \rightarrow \mathbb{R}$ given by

$$
F(x, t)=t \cos (x)+2^{t^{2}-x^{4}}+\ln \left(x^{2}+t^{2}+2\right)
$$

is a homotopy.

- $F: \mathbb{R}^{n} \times[0,1] \rightarrow \mathbb{R}^{n}, F(x, t)=t x$.

$$
F(x, 0)=0, \quad F(x, 1)=x
$$

Thus F_{0} is a constant map, while F_{1} is the identity map.

Examples

- The map $F: \mathbb{R} \times I \rightarrow \mathbb{R}$ given by

$$
F(x, t)=t \cos (x)+2^{t^{2}-x^{4}}+\ln \left(x^{2}+t^{2}+2\right)
$$

is a homotopy.

- $F: \mathbb{R}^{n} \times[0,1] \rightarrow \mathbb{R}^{n}, F(x, t)=t x$.

$$
F(x, 0)=0, \quad F(x, 1)=x
$$

Thus F_{0} is a constant map, while F_{1} is the identity map.

- More generally, let K be a convex subset of a topological vector space, $p \in K$ be a point, and $F: K \times I \rightarrow K$ be given by

$$
F(x, t)=t x+(1-t) p .
$$

Examples

- The map $F: \mathbb{R} \times I \rightarrow \mathbb{R}$ given by

$$
F(x, t)=t \cos (x)+2^{t^{2}-x^{4}}+\ln \left(x^{2}+t^{2}+2\right)
$$

is a homotopy.

- $F: \mathbb{R}^{n} \times[0,1] \rightarrow \mathbb{R}^{n}, F(x, t)=t x$.

$$
F(x, 0)=0, \quad F(x, 1)=x
$$

Thus F_{0} is a constant map, while F_{1} is the identity map.

- More generally, let K be a convex subset of a topological vector space, $p \in K$ be a point, and $F: K \times I \rightarrow K$ be given by

$$
F(x, t)=t x+(1-t) p
$$

Then $F(x, 0)=p, F(x, 1)=x$. Thus again F_{0} is a constant map, while F_{1} is the identity map.

Contractible spaces

A topological space X is contractible if the identity map id_{X} is homotopic to a constant map into some point. So there exists a continuous map $F: X \times[0,1] \rightarrow X$ such that $F_{0}=\mathrm{id}_{X}$ and $F_{1}(X)=z$ for some point $z \in X$.

Contractible spaces

A topological space X is contractible if the identity map id_{X} is homotopic to a constant map into some point.
So there exists a continuous map $F: X \times[0,1] \rightarrow X$ such that $F_{0}=\operatorname{id}_{X}$ and $F_{1}(X)=z$ for some point $z \in X$.
The homotopy between id_{X} and a constant map is called a contraction of X.

Contractible spaces

A topological space X is contractible if the identity map id_{X} is homotopic to a constant map into some point.
So there exists a continuous map $F: X \times[0,1] \rightarrow X$ such that $F_{0}=\mathrm{id}_{X}$ and $F_{1}(X)=z$ for some point $z \in X$.
The homotopy between id_{X} and a constant map is called a contraction of X.

Theorem

Every convex subset of a topological vector space is contractible.

Contractible spaces

A topological space X is contractible if the identity map id_{X} is homotopic to a constant map into some point.
So there exists a continuous map $F: X \times[0,1] \rightarrow X$ such that $F_{0}=\mathrm{id}_{X}$ and $F_{1}(X)=z$ for some point $z \in X$.
The homotopy between id_{X} and a constant map is called a contraction of X.

Theorem
Every convex subset of a topological vector space is contractible.
Not every topological space is contractible!

Contractible spaces

A topological space X is contractible if the identity map id_{X} is homotopic to a constant map into some point.
So there exists a continuous map $F: X \times[0,1] \rightarrow X$ such that $F_{0}=\operatorname{id}_{X}$ and $F_{1}(X)=z$ for some point $z \in X$.
The homotopy between id_{X} and a constant map is called a contraction of X.

Theorem

Every convex subset of a topological vector space is contractible.
Not every topological space is contractible!
Theorem
If Y is contractible if and only if for every topological space X any two continuous maps $f, g: X \rightarrow Y$ are homotopic.

Contractible spaces

A topological space X is contractible if the identity map id_{X} is homotopic to a constant map into some point.
So there exists a continuous map $F: X \times[0,1] \rightarrow X$ such that $F_{0}=\operatorname{id}_{X}$ and $F_{1}(X)=z$ for some point $z \in X$.
The homotopy between id_{X} and a constant map is called a contraction of X.

Theorem

Every convex subset of a topological vector space is contractible.
Not every topological space is contractible!
Theorem
If Y is contractible if and only if for every topological space X any two continuous maps $f, g: X \rightarrow Y$ are homotopic.

Exercise
Prove that every finite tree is contractible.

Contractible spaces (reformulation)

A cone over X is the quotient $C X:=X \times[0,1] /\{X \times 1\}$.

Contractible spaces (reformulation)

A cone over X is the quotient $C X:=X \times[0,1] /\{X \times 1\}$. Then the set $\{X \times 1\}$ is a point in $C X$ called vertex, while $X \times 0$ is the base of $C X$.

Contractible spaces (reformulation)

A cone over X is the quotient $C X:=X \times[0,1] /\{X \times 1\}$. Then the set $\{X \times 1\}$ is a point in $C X$ called vertex, while $X \times 0$ is the base of $C X$.
Every contraction of X factors through the map into cone:

Contractible spaces (reformulation)

A cone over X is the quotient $C X:=X \times[0,1] /\{X \times 1\}$. Then the set $\{X \times 1\}$ is a point in $C X$ called vertex, while $X \times 0$ is the base of $C X$.
Every contraction of X factors through the map into cone:

A contraction of X can be regarded as a continuous map $F^{\prime}: C X \rightarrow X \times 0$ fixed on $X \times 0$.

Contractible spaces (reformulation)

A cone over X is the quotient $C X:=X \times[0,1] /\{X \times 1\}$.
Then the set $\{X \times 1\}$ is a point in $C X$ called vertex, while $X \times 0$ is the base of $C X$.
Every contraction of X factors through the map into cone:

A contraction of X can be regarded as a continuous map $F^{\prime}: C X \rightarrow X \times 0$ fixed on $X \times 0$.
A subset $A \subset Y$ is a retract of Y if there exists a continuous map $r: Y \rightarrow A$ such that $r(a)=a$ for all $a \in A$.

Contractible spaces (reformulation)

A cone over X is the quotient $C X:=X \times[0,1] /\{X \times 1\}$.
Then the set $\{X \times 1\}$ is a point in $C X$ called vertex, while $X \times 0$ is the base of $C X$.
Every contraction of X factors through the map into cone:

A contraction of X can be regarded as a continuous map $F^{\prime}: C X \rightarrow X \times 0$ fixed on $X \times 0$.
A subset $A \subset Y$ is a retract of Y if there exists a continuous map
$r: Y \rightarrow A$ such that $r(a)=a$ for all $a \in A$.
Reformulation
X is contractible whenever the base $X \times 0$ is a retract of $C X$.

Homeomorphism

A continuous map $f: X \rightarrow Y$ is a homeomorphism if there exists a continuous map $g: Y \rightarrow X$ such that

Homotopy equivalence

A continuous map $f: X \rightarrow Y$ is a homotopy equivalence if there exists a continuous map $g: Y \rightarrow X$ such that

Homotopy equivalence

A continuous map $f: X \rightarrow Y$ is a homotopy equivalence if there exists a continuous map $g: Y \rightarrow X$ such that

Exercises

1) Homotopy equivalence is an equivalence relation.

Homotopy equivalence

A continuous map $f: X \rightarrow Y$ is a homotopy equivalence if there exists a continuous map $g: Y \rightarrow X$ such that

Exercises

1) Homotopy equivalence is an equivalence relation.
2) A map homotopic to a homotopy equivalence is a homotopy equivalence as well.

Homotopy equivalence

A continuous map $f: X \rightarrow Y$ is a homotopy equivalence if there exists a continuous map $g: Y \rightarrow X$ such that

Exercises

1) Homotopy equivalence is an equivalence relation.
2) A map homotopic to a homotopy equivalence is a homotopy equivalence as well.
3) The set of self-homotopy equivalences $H E(X) \subset[X, X]$ of a topological space X constitute a subgroup in the semigroup $[X, X]$.

Homotopy equivalence, 2

Theorem

Let $F: X \rightarrow Y$ be a continuous map. Then the following conditions are equivalent:
(1) there exists a continuous map $G: Y \rightarrow X$ such that $G \circ F: X \rightarrow X$ is homotopic to id_{X} (G is "right" homotopy inverse for F);
(2) for any topological space Z the induced map

$$
F^{*}:[Y, Z] \rightarrow[X, Z], \quad F^{*}(g)=g \circ F: X \xrightarrow{F} Y \xrightarrow{g} Z
$$

is a bijection.
Similarly, the following conditions are also equivalent:
$\left(1^{\prime}\right)$ there exists a continuous map $G: Y \rightarrow X$ such that $F \circ G^{\prime}: Y \rightarrow Y$ is homotopic to $\mathrm{id}_{Y}\left(G^{\prime}\right.$ is a left" homotopy inverse for F);
(2') for any topological space Z the induced map

$$
F_{*}:[Z, X] \rightarrow[Z, Y], \quad F_{*}(h)=F \circ h: Z \xrightarrow{h} X \xrightarrow{F} Y
$$

is a bijection.
If both conditions (1) and (1') hold then G and G^{\prime} are homotopic.
In particular, $F: X \rightarrow Y$ is a homotopy equivalence iff F^{*} and F_{*} are bijections for all spaces Z.

Contractible spaces, 3

Exercise
For a topological space X TFAE:
(i) X is contractible (id_{X} is homotopic to a constant map)

Contractible spaces, 3

Exercise

For a topological space X TFAE:
(i) X is contractible (id_{X} is homotopic to a constant map)
(1) $X \times 0$ is a retract of the cone $C X$

Contractible spaces, 3

Exercise

For a topological space X TFAE:
(i) X is contractible (id_{X} is homotopic to a constant map)
(1) $X \times 0$ is a retract of the cone $C X$
(1) any two maps $f, g: Y \rightarrow X$ are homotopic

Contractible spaces, 3

Exercise

For a topological space X TFAE:
(i) X is contractible (id_{X} is homotopic to a constant map)
(1) $X \times 0$ is a retract of the cone $C X$
(1) any two maps $f, g: Y \rightarrow X$ are homotopic
(1) X is homotopy equivalent to a point

Contractible spaces, 3

Exercise

For a topological space X TFAE:
(i) X is contractible (id_{X} is homotopic to a constant map)
(1) $X \times 0$ is a retract of the cone $C X$
(1) any two maps $f, g: Y \rightarrow X$ are homotopic
(1) X is homotopy equivalent to a point

Proof (i) \Leftrightarrow (iv): Let $p_{z}: X \rightarrow\{z\}$ be a constant map.

Contractible spaces, 3

Exercise

For a topological space X TFAE:
(i) X is contractible (id_{X} is homotopic to a constant map)
(1) $X \times 0$ is a retract of the cone $C X$
(1) any two maps $f, g: Y \rightarrow X$ are homotopic
(1) X is homotopy equivalent to a point

Proof (i) \Leftrightarrow (iv): Let $p_{z}: X \rightarrow\{z\}$ be a constant map.

(i) means that $p_{z} \simeq \mathrm{id} X$ and this is the same as (iv).

Contractible spaces, 3

Exercise

For a topological space X TFAE:
(i) X is contractible (id_{X} is homotopic to a constant map)
(1) $X \times 0$ is a retract of the cone $C X$
(1) any two maps $f, g: Y \rightarrow X$ are homotopic
(1) X is homotopy equivalent to a point

Proof (i) \Leftrightarrow (iv): Let $p_{z}: X \rightarrow\{z\}$ be a constant map.

(i) means that $p_{z} \simeq \mathrm{id} X$ and this is the same as (iv).

Deformations

Let $A \subset X$ be a subset. A deformation of X into A is a homotopy $F: X \times I \rightarrow X$ such that

- $F_{0}=\mathrm{id} X$
- $F_{t}(A) \subset A$ for all $t \in I$
- $F_{1}(X) \subset A$.

Deformations

Let $A \subset X$ be a subset. A deformation of X into A is a homotopy $F: X \times I \rightarrow X$ such that

- $F_{0}=\mathrm{id} X$
- $F_{t}(A) \subset A$ for all $t \in I$
- $F_{1}(X) \subset A$.

Theorem
Let $F: X \times I \rightarrow X$ be a deformation of X into A. Then the map $F_{1}: X \rightarrow A$ is a homotopy equivalence.

Deformations

Let $A \subset X$ be a subset. A deformation of X into A is a homotopy $F: X \times I \rightarrow X$ such that

- $F_{0}=\mathrm{id} X$
- $F_{t}(A) \subset A$ for all $t \in I$
- $F_{1}(X) \subset A$.

Theorem
Let $F: X \times I \rightarrow X$ be a deformation of X into A. Then the map $F_{1}: X \rightarrow A$ is a homotopy equivalence.

Deformations

Let $A \subset X$ be a subset. A deformation of X into A is a homotopy $F: X \times I \rightarrow X$ such that

- $F_{0}=\mathrm{id} X$
- $F_{t}(A) \subset A$ for all $t \in I$
- $F_{1}(X) \subset A$.

Theorem
Let $F: X \times I \rightarrow X$ be a deformation of X into A. Then the map $F_{1}: X \rightarrow A$ is a homotopy equivalence.

Note that $\left.F\right|_{A \times I}: A \times I \rightarrow A$ is a homotopy between $\left.F_{0}\right|_{A}=\operatorname{id} A$ and $\left.F_{1}\right|_{A}$.

Deformation retracts

Let $A \subset X$ be a subset. A deformation retraction of X on A is a homotopy $F: X \times I \rightarrow X$ such that

- $F_{0}=\mathrm{id} X$
- $F_{1}(X) \subset A$ and $F_{1}: X \rightarrow A$ is a retraction, i.e. $F_{1}(a)=a$ for all $a \in A$

Deformation retracts

Let $A \subset X$ be a subset. A deformation retraction of X on A is a homotopy $F: X \times I \rightarrow X$ such that

- $F_{0}=\mathrm{id} X$
- $F_{1}(X) \subset A$ and $F_{1}: X \rightarrow A$ is a retraction, i.e. $F_{1}(a)=a$ for all $a \in A$
Remark: Instead of $F_{t}(A) \subset A$ we require that F_{1} is a retraction.

Deformation retracts

Let $A \subset X$ be a subset. A deformation retraction of X on A is a homotopy $F: X \times I \rightarrow X$ such that

- $F_{0}=\mathrm{id} X$
- $F_{1}(X) \subset A$ and $F_{1}: X \rightarrow A$ is a retraction, i.e. $F_{1}(a)=a$ for all $a \in A$
Remark: Instead of $F_{t}(A) \subset A$ we require that F_{1} is a retraction.
Theorem
Let $F: X \times I \rightarrow X$ be a deformational retraction of X on A. Then the retraction $F_{1}: X \rightarrow A$ is a homotopy equivalence.

Deformation retracts

Let $A \subset X$ be a subset. A deformation retraction of X on A is a homotopy $F: X \times I \rightarrow X$ such that

- $F_{0}=\mathrm{id} X$
- $F_{1}(X) \subset A$ and $F_{1}: X \rightarrow A$ is a retraction, i.e. $F_{1}(a)=a$ for all $a \in A$
Remark: Instead of $F_{t}(A) \subset A$ we require that F_{1} is a retraction.
Theorem
Let $F: X \times I \rightarrow X$ be a deformational retraction of X on A. Then the retraction $F_{1}: X \rightarrow A$ is a homotopy equivalence.

Simple homotopy equivalence

Let X be a topological space, D^{n} be an n-disk, $n \geq 1, S_{+}^{n-1}$ and S_{-}^{n-1} be two semispheres in the $\partial D^{n}=S^{n-1}$.

Simple homotopy equivalence

Let X be a topological space, D^{n} be an n-disk, $n \geq 1, S_{+}^{n-1}$ and S_{-}^{n-1} be two semispheres in the $\partial D^{n}=S^{n-1}$. Let $f: S_{-}^{n-1} \rightarrow X$ be a continuous map, and $Y=D^{n} \sqcup_{f} X$ be the topological space obtained by gluing D^{n} to X by the map f.

Simple homotopy equivalence

Let X be a topological space, D^{n} be an n-disk, $n \geq 1, S_{+}^{n-1}$ and S_{-}^{n-1} be two semispheres in the $\partial D^{n}=S^{n-1}$. Let $f: S_{-}^{n-1} \rightarrow X$ be a continuous map, and $Y=D^{n} \sqcup_{f} X$ be the topological space obtained by gluing D^{n} to X by the map f.
Then there is a deformational retraction $Y \rightarrow X$.

Simple homotopy equivalence

Let X be a topological space, D^{n} be an n-disk, $n \geq 1, S_{+}^{n-1}$ and S_{-}^{n-1} be two semispheres in the $\partial D^{n}=S^{n-1}$. Let $f: S_{-}^{n-1} \rightarrow X$ be a continuous map, and $Y=D^{n} \sqcup_{f} X$ be the topological space obtained by gluing D^{n} to X by the map f.
Then there is a deformational retraction $Y \rightarrow X$.
Passing from Y to X is called collapsion, and passing from X to Y is expansion.

Simple homotopy equivalence

Let X be a topological space, D^{n} be an n-disk, $n \geq 1, S_{+}^{n-1}$ and S_{-}^{n-1} be two semispheres in the $\partial D^{n}=S^{n-1}$. Let $f: S_{-}^{n-1} \rightarrow X$ be a continuous map, and $Y=D^{n} \sqcup_{f} X$ be the topological space obtained by gluing D^{n} to X by the map f.
Then there is a deformational retraction $Y \rightarrow X$.
Passing from Y to X is called collapsion, and passing from X to Y is expansion.
We use the following notations:

- $X \nearrow Y$ for the inclusion $X \subset Y$, so it is an expansion
- $Y \searrow X$ for the deformational retraction $r: Y \rightarrow X$, so it is a collapsion.

Simple homotopy equivalence

Let X be a topological space, D^{n} be an n-disk, $n \geq 1, S_{+}^{n-1}$ and S_{-}^{n-1} be two semispheres in the $\partial D^{n}=S^{n-1}$. Let $f: S_{-}^{n-1} \rightarrow X$ be a continuous map, and $Y=D^{n} \sqcup_{f} X$ be the topological space obtained by gluing D^{n} to X by the map f.
Then there is a deformational retraction $Y \rightarrow X$.
Passing from Y to X is called collapsion, and passing from X to Y is expansion.
We use the following notations:

- $X \nearrow Y$ for the inclusion $X \subset Y$, so it is an expansion
- $Y \searrow X$ for the deformational retraction $r: Y \rightarrow X$, so it is a collapsion.
Definition. Topological spaces X and Y are simply homotopy equivalent if there exists a finite sequence of collapsions and expansions which transforms X into Y. This is writes as $X \curvearrowright Y$.

Simple homotopy equivalence

Let X be a topological space, D^{n} be an n-disk, $n \geq 1, S_{+}^{n-1}$ and S_{-}^{n-1} be two semispheres in the $\partial D^{n}=S^{n-1}$. Let $f: S_{-}^{n-1} \rightarrow X$ be a continuous map, and $Y=D^{n} \sqcup_{f} X$ be the topological space obtained by gluing D^{n} to X by the map f.
Then there is a deformational retraction $Y \rightarrow X$.
Passing from Y to X is called collapsion, and passing from X to Y is expansion.
We use the following notations:

- $X \nearrow Y$ for the inclusion $X \subset Y$, so it is an expansion
- $Y \searrow X$ for the deformational retraction $r: Y \rightarrow X$, so it is a collapsion.
Definition. Topological spaces X and Y are simply homotopy equivalent if there exists a finite sequence of collapsions and expansions which transforms X into Y. This is writes as $X \curvearrowright Y$.

Theorem (Chapman)

Let X and Y be two finite connected $C W$-complexes (polyhedrons). Then a map $f: X \rightarrow Y$ is a simple homotopy equivalence iff the map $f \times \mathrm{id}: X \times Q \rightarrow Y \times Q$ is homotopic to a homeomorpism, where $Q=\prod_{i=1}^{\infty}[0,1]$ is a Hilbert cube.

$\operatorname{Maps}\left[S^{1}, S^{1}\right]$

Problem: compute homotopy classes of self maps of a circle $\left[S^{1}, S^{1}\right]$.

$\operatorname{Maps}\left[S^{1}, S^{1}\right]$

Problem: compute homotopy classes of self maps of a circle [$\left.S^{1}, S^{1}\right]$. Main tools:
(1) $S^{1}=\{z \in \mathbb{C}| | z \mid=1\}$ is a unit circle

$\operatorname{Maps}\left[S^{1}, S^{1}\right]$

Problem: compute homotopy classes of self maps of a circle [$\left.S^{1}, S^{1}\right]$. Main tools:
(1) $S^{1}=\{z \in \mathbb{C}| | z \mid=1\}$ is a unit circle
(2) consider the map $p: \mathbb{R} \rightarrow S^{1}, p(t)=e^{2 \pi i t}$.

$\operatorname{Maps}\left[S^{1}, S^{1}\right]$

Problem: compute homotopy classes of self maps of a circle [$\left.S^{1}, S^{1}\right]$. Main tools:
(1) $S^{1}=\{z \in \mathbb{C}| | z \mid=1\}$ is a unit circle
(2) consider the map $p: \mathbb{R} \rightarrow S^{1}, p(t)=e^{2 \pi i t}$.
(3) one can regard S^{1} as $[0,1]$ with indentified ends via the map $p:[0,1] \rightarrow S^{1}$

$\operatorname{Maps}\left[S^{1}, S^{1}\right]$

Problem: compute homotopy classes of self maps of a circle [$\left.S^{1}, S^{1}\right]$. Main tools:
(1) $S^{1}=\{z \in \mathbb{C}| | z \mid=1\}$ is a unit circle
(2) consider the map $p: \mathbb{R} \rightarrow S^{1}, p(t)=e^{2 \pi i t}$.
(3) one can regard S^{1} as $[0,1]$ with indentified ends via the map $p:[0,1] \rightarrow S^{1}$

$\operatorname{Maps}\left[S^{1}, S^{1}\right]$

Map $p: \mathbb{R} \rightarrow S^{1}, p(t)=e^{2 \pi i t}$.
Lemma
(1) For each $f: S^{1} \rightarrow S^{1}$ there exists a function $\widehat{f}:[0,1] \rightarrow \mathbb{R}$

$\operatorname{Maps}\left[S^{1}, S^{1}\right]$

Map $p: \mathbb{R} \rightarrow S^{1}, p(t)=e^{2 \pi i t}$.
Lemma
(1) For each $f: S^{1} \rightarrow S^{1}$ there exists a function $\widehat{f}:[0,1] \rightarrow \mathbb{R}$ such that diagram is commutative:

$\operatorname{Maps}\left[S^{1}, S^{1}\right]$

Map $p: \mathbb{R} \rightarrow S^{1}, p(t)=e^{2 \pi i t}$.
Lemma
(1) For each $f: S^{1} \rightarrow S^{1}$ there exists a function $\widehat{f}:[0,1] \rightarrow \mathbb{R}$ such that diagram is commutative:

$\operatorname{Maps}\left[S^{1}, S^{1}\right]$

Map $p: \mathbb{R} \rightarrow S^{1}, p(t)=e^{2 \pi i t}$.
Lemma
(1) For each $f: S^{1} \rightarrow S^{1}$ there exists a function $\widehat{f}:[0,1] \rightarrow \mathbb{R}$ such that diagram is commutative:

(2) Each \widehat{f} is defined up to an integer summand, i.e. for any $n \in \mathbb{Z}$ $\widehat{f}_{n}(t)=\widehat{f}(t)+n$ also satisfies 1$)$.

$\operatorname{Maps}\left[S^{1}, S^{1}\right]$

$\operatorname{Map} p: \mathbb{R} \rightarrow S^{1}, p(t)=e^{2 \pi i t}$.
Lemma
(1) For each $f: S^{1} \rightarrow S^{1}$ there exists a function $\widehat{f}:[0,1] \rightarrow \mathbb{R}$ such that diagram is commutative:

(2) Each \widehat{f} is defined up to an integer summand, i.e. for any $n \in \mathbb{Z}$ $\widehat{f}_{n}(t)=\widehat{f}(t)+n$ also satisfies 1$)$.
(3) $\widehat{f}(1)-\widehat{f}(0) \in \mathbb{Z}$ and this number does not depend on replacing \widehat{f} with \widehat{f}_{n}.

$\operatorname{Maps}\left[S^{1}, S^{1}\right]$

$\operatorname{Map} p: \mathbb{R} \rightarrow S^{1}, p(t)=e^{2 \pi i t}$.
Lemma
(1) For each $f: S^{1} \rightarrow S^{1}$ there exists a function $\widehat{f}:[0,1] \rightarrow \mathbb{R}$ such that diagram is commutative:

(2) Each \widehat{f} is defined up to an integer summand, i.e. for any $n \in \mathbb{Z}$ $\widehat{f}_{n}(t)=\widehat{f}(t)+n$ also satisfies 1$)$.
(3) $\widehat{f}(1)-\widehat{f}(0) \in \mathbb{Z}$ and this number does not depend on replacing \widehat{f} with \widehat{f}_{n}.
(4) The correspondence $f \mapsto f(1)-f(0) \in \mathbb{Z}$ induces a bijection $\left[S^{1}, S^{1}\right] \cong \mathbb{Z}$.

The set $\pi_{0}(X, x)$

Let X be a topological space and $x \in X$.

The set $\pi_{0}(X, x)$

Let X be a topological space and $x \in X$. Let also $S^{0}=\{0,1\}=\partial I$ be the 0 -sphere.

The set $\pi_{0}(X, x)$

Let X be a topological space and $x \in X$. Let also $S^{0}=\{0,1\}=\partial I$ be the 0 -sphere. Then 0 -th homotopy set of X at point x is the set of homotopy classes $\left[\left(S^{0}, 0\right),(X, x)\right]$. It is denoted by $\pi_{0}(X, x)$.

The set $\pi_{0}(X, x)$

Let X be a topological space and $x \in X$. Let also $S^{0}=\{0,1\}=\partial I$ be the 0 -sphere. Then 0 -th homotopy set of X at point x is the set of homotopy classes $\left[\left(S^{0}, 0\right),(X, x)\right]$. It is denoted by $\pi_{0}(X, x)$.

$$
\pi_{0}(X, x)=\left[\left(S^{0}, 0\right),(X, x)\right] .
$$

The set $\pi_{0}(X, x)$

Let X be a topological space and $x \in X$. Let also $S^{0}=\{0,1\}=\partial I$ be the 0 -sphere. Then 0 -th homotopy set of X at point x is the set of homotopy classes $\left[\left(S^{0}, 0\right),(X, x)\right]$. It is denoted by $\pi_{0}(X, x)$.

$$
\pi_{0}(X, x)=\left[\left(S^{0}, 0\right),(X, x)\right] .
$$

In general, $\pi_{0}(X, x)$ has no algebraic structure.

The set $\pi_{0}(X, x)$

Let X be a topological space and $x \in X$. Let also $S^{0}=\{0,1\}=\partial I$ be the 0 -sphere. Then 0 -th homotopy set of X at point x is the set of homotopy classes $\left[\left(S^{0}, 0\right),(X, x)\right]$. It is denoted by $\pi_{0}(X, x)$.

$$
\pi_{0}(X, x)=\left[\left(S^{0}, 0\right),(X, x)\right] .
$$

In general, $\pi_{0}(X, x)$ has no algebraic structure.
Exercise. Prove that the map $p: C\left(\left(S^{0}, 0\right),(X, x)\right) \rightarrow X$ associating to each $f:\left(S^{0}, 0\right) \rightarrow(X, x)$ the value $f(1) \in X$ induces a bijection between $\pi_{0}(X, x)$ and the set of path components of X.

The set $\pi_{0}(X, x)$

Let X be a topological space and $x \in X$. Let also $S^{0}=\{0,1\}=\partial I$ be the 0 -sphere. Then 0 -th homotopy set of X at point x is the set of homotopy classes $\left[\left(S^{0}, 0\right),(X, x)\right]$. It is denoted by $\pi_{0}(X, x)$.

$$
\pi_{0}(X, x)=\left[\left(S^{0}, 0\right),(X, x)\right] .
$$

In general, $\pi_{0}(X, x)$ has no algebraic structure.
Exercise. Prove that the map $p: C\left(\left(S^{0}, 0\right),(X, x)\right) \rightarrow X$ associating to each $f:\left(S^{0}, 0\right) \rightarrow(X, x)$ the value $f(1) \in X$ induces a bijection between $\pi_{0}(X, x)$ and the set of path components of X.
Exercise. Let G be a topological group with unit e, and G_{e} be the path component of e in G. Prove that
(1) G_{e} is a normal subgroup of G;
(2) There is an isomorphism $\pi_{0}(G, e) \cong G / G_{e}$.

The set $\pi_{0}(X, x)$

Let X be a topological space and $x \in X$. Let also $S^{0}=\{0,1\}=\partial I$ be the 0 -sphere. Then 0 -th homotopy set of X at point x is the set of homotopy classes $\left[\left(S^{0}, 0\right),(X, x)\right]$. It is denoted by $\pi_{0}(X, x)$.

$$
\pi_{0}(X, x)=\left[\left(S^{0}, 0\right),(X, x)\right] .
$$

In general, $\pi_{0}(X, x)$ has no algebraic structure.
Exercise. Prove that the map $p: C\left(\left(S^{0}, 0\right),(X, x)\right) \rightarrow X$ associating to each $f:\left(S^{0}, 0\right) \rightarrow(X, x)$ the value $f(1) \in X$ induces a bijection between $\pi_{0}(X, x)$ and the set of path components of X.
Exercise. Let G be a topological group with unit e, and G_{e} be the path component of e in G. Prove that
(1) G_{e} is a normal subgroup of G;
(2) There is an isomorphism $\pi_{0}(G, e) \cong G / G_{e}$.

Exercise. Let G be a topological semigroup. Prove that
(1) Partition of G into path components $\xi=\left\{G_{\alpha}\right\}_{\alpha \in A}$ is a congruence, that is if $a, a^{\prime} \in G_{\alpha}$ and $b, b^{\prime} \in G_{\beta}$, then $a b$ and $a^{\prime} b^{\prime}$ belong to the same path component of G.
(2) Hence the quotient set G / ξ which can be identified with $\pi_{0}(G, g)$ for any $g \in G$ is a semigroup, and the map $G \rightarrow \pi_{0}(G, g)$ is a semigroup homomorphism.

The set $\pi_{0}(X, x)$

Exercises

(1) Every continuous map $f: X \rightarrow Y$ induces a map $f_{0}: \pi_{0}(X, x) \rightarrow \pi_{0}(Y, f(x))$ defined by $f_{0}[\alpha]=[f \circ \alpha]$, where $\alpha:\left(S^{0}, 0\right) \rightarrow(X, x)$.

The set $\pi_{0}(X, x)$

Exercises

(1) Every continuous map $f: X \rightarrow Y$ induces a map $f_{0}: \pi_{0}(X, x) \rightarrow \pi_{0}(Y, f(x))$ defined by $f_{0}[\alpha]=[f \circ \alpha]$, where $\alpha:\left(S^{0}, 0\right) \rightarrow(X, x)$.
(2) If G and H are topological groups and $f: G \rightarrow H$ is a continuous homomorphism, then $f_{0}: \pi_{0}\left(G, e_{G}\right) \rightarrow \pi_{0}\left(H, e_{H}\right)$ is also a homomorphism.

The set $\pi_{0}(X, x)$

Exercises

(1) Every continuous map $f: X \rightarrow Y$ induces a map $f_{0}: \pi_{0}(X, x) \rightarrow \pi_{0}(Y, f(x))$ defined by $f_{0}[\alpha]=[f \circ \alpha]$, where $\alpha:\left(S^{0}, 0\right) \rightarrow(X, x)$.
(2) If G and H are topological groups and $f: G \rightarrow H$ is a continuous homomorphism, then $f_{0}: \pi_{0}\left(G, e_{G}\right) \rightarrow \pi_{0}\left(H, e_{H}\right)$ is also a homomorphism.
(3) Formulate and prove previous problem for semigroups.

The set $\pi_{0}(X, x)$

Exercises

(1) Every continuous map $f: X \rightarrow Y$ induces a map $f_{0}: \pi_{0}(X, x) \rightarrow \pi_{0}(Y, f(x))$ defined by $f_{0}[\alpha]=[f \circ \alpha]$, where $\alpha:\left(S^{0}, 0\right) \rightarrow(X, x)$.
(2) If G and H are topological groups and $f: G \rightarrow H$ is a continuous homomorphism, then $f_{0}: \pi_{0}\left(G, e_{G}\right) \rightarrow \pi_{0}\left(H, e_{H}\right)$ is also a homomorphism.
(3) Formulate and prove previous problem for semigroups.

Fundamental group $\pi_{1}(X, x)$

Let X be a topological space, $x \in X, S^{1}$ be the circle and $* \in S^{1}$ be a point.

Fundamental group $\pi_{1}(X, x)$

Let X be a topological space, $x \in X, S^{1}$ be the circle and $* \in S^{1}$ be a point. Then 1-th homotopy group or the fundamental group of X at point x is the set of homotopy classes $\left[\left(S^{1}, *\right),(X, x)\right]$. It is denoted by $\pi_{1}(X, x)$ and was introduced by H . Poincarè.

Fundamental group $\pi_{1}(X, x)$

Let X be a topological space, $x \in X, S^{1}$ be the circle and $* \in S^{1}$ be a point. Then 1-th homotopy group or the fundamental group of X at point x is the set of homotopy classes $\left[\left(S^{1}, *\right),(X, x)\right]$. It is denoted by $\pi_{1}(X, x)$ and was introduced by H . Poincarè.

$$
\pi_{1}(X, x)=\left[\left(S^{1}, *\right),(X, x)\right]=[(I, \partial I) \rightarrow(X, x)]
$$

Fundamental group $\pi_{1}(X, x)$

Let X be a topological space, $x \in X, S^{1}$ be the circle and $* \in S^{1}$ be a point. Then 1-th homotopy group or the fundamental group of X at point x is the set of homotopy classes $\left[\left(S^{1}, *\right),(X, x)\right]$. It is denoted by $\pi_{1}(X, x)$ and was introduced by H. Poincarè.

$$
\pi_{1}(X, x)=\left[\left(S^{1}, *\right),(X, x)\right]=[(I, \partial I) \rightarrow(X, x)]
$$

Theorem. $\pi_{1}(X, x)$ has a structure of a group.

Fundamental group $\pi_{1}(X, x)$

Let X be a topological space, $x \in X, S^{1}$ be the circle and $* \in S^{1}$ be a point. Then 1-th homotopy group or the fundamental group of X at point x is the set of homotopy classes $\left[\left(S^{1}, *\right),(X, x)\right]$. It is denoted by $\pi_{1}(X, x)$ and was introduced by H . Poincarè.

$$
\pi_{1}(X, x)=\left[\left(S^{1}, *\right),(X, x)\right]=[(I, \partial I) \rightarrow(X, x)]
$$

Theorem. $\pi_{1}(X, x)$ has a structure of a group.
Proof. Given two loops $\alpha, \beta:(I, \partial I) \rightarrow(X, x)$, define their product $\alpha * \beta:(I, \partial I) \rightarrow(X, x)$ by the formula:

$$
\alpha * \beta(t)= \begin{cases}\alpha(2 t), & t \in\left[0, \frac{1}{2}\right], \\ \beta(2 t-1), & t \in\left[\frac{1}{2}, 1\right] .\end{cases}
$$

Fundamental group $\pi_{1}(X, x)$

Let X be a topological space, $x \in X, S^{1}$ be the circle and $* \in S^{1}$ be a point. Then 1-th homotopy group or the fundamental group of X at point x is the set of homotopy classes $\left[\left(S^{1}, *\right),(X, x)\right]$. It is denoted by $\pi_{1}(X, x)$ and was introduced by H . Poincarè.

$$
\pi_{1}(X, x)=\left[\left(S^{1}, *\right),(X, x)\right]=[(I, \partial I) \rightarrow(X, x)]
$$

Theorem. $\pi_{1}(X, x)$ has a structure of a group.
Proof. Given two loops $\alpha, \beta:(I, \partial I) \rightarrow(X, x)$, define their product $\alpha * \beta:(I, \partial I) \rightarrow(X, x)$ by the formula:

$$
\alpha * \beta(t)= \begin{cases}\alpha(2 t), & t \in\left[0, \frac{1}{2}\right], \\ \beta(2 t-1), & t \in\left[\frac{1}{2}, 1\right] .\end{cases}
$$

Then the operations in $\pi_{1}(X, x)$ is defined by $[\alpha] *[\beta]=[\alpha * \beta]$.
Exercise. 1) Prove that homotopy class of the constant map I into x is the unit of $\pi_{1}(X, x)$.
2) Prove that inverse to $[\alpha]$ is the homotopy class of the $\operatorname{map} \beta: I \rightarrow X$ given by $\beta(t)=\alpha(1-t)$.

Computation of $\pi_{1}(X, x)$

Exercises.

(1) $\pi_{1}($ point $)=0$.

Computation of $\pi_{1}(X, x)$

Exercises.

(1) $\pi_{1}($ point $)=0$.
(2) $\pi_{1}\left(S^{1}, *\right)=\mathbb{Z}$.

Computation of $\pi_{1}(X, x)$

Exercises.

(1) π_{1} (point $)=0$.
(2) $\pi_{1}\left(S^{1}, *\right)=\mathbb{Z}$.
(3) every path $\gamma: I \rightarrow X$ with $\gamma(0)=x$ and $\gamma(1)=y$, induces an isomorphism

$$
\gamma^{*}: \pi_{1}(X, x) \rightarrow \pi_{1}(X, y), \quad \gamma^{*}(\alpha)=\gamma * \alpha * \gamma^{-1}
$$

Computation of $\pi_{1}(X, x)$

Exercises.

(1) π_{1} (point $)=0$.
(2) $\pi_{1}\left(S^{1}, *\right)=\mathbb{Z}$.
(3) every path $\gamma: I \rightarrow X$ with $\gamma(0)=x$ and $\gamma(1)=y$, induces an isomorphism

$$
\gamma^{*}: \pi_{1}(X, x) \rightarrow \pi_{1}(X, y), \quad \gamma^{*}(\alpha)=\gamma * \alpha * \gamma^{-1}
$$

So $\pi_{1} X$ depends only on the path component of X, and for such spaces sometimes we can omit base point.

Computation of $\pi_{1}(X, x)$

Exercises.

(1) π_{1} (point $)=0$.
(2) $\pi_{1}\left(S^{1}, *\right)=\mathbb{Z}$.
(3) every path $\gamma: I \rightarrow X$ with $\gamma(0)=x$ and $\gamma(1)=y$, induces an isomorphism

$$
\gamma^{*}: \pi_{1}(X, x) \rightarrow \pi_{1}(X, y), \quad \gamma^{*}(\alpha)=\gamma * \alpha * \gamma^{-1}
$$

So $\pi_{1} X$ depends only on the path component of X, and for such spaces sometimes we can omit base point.
(4) $\pi_{1}(X \times Y) \cong \pi_{1} X \times \pi_{1} Y$.

Computation of $\pi_{1}(X, x)$

Exercises.

(1) π_{1} (point $)=0$.
(2) $\pi_{1}\left(S^{1}, *\right)=\mathbb{Z}$.
(3) every path $\gamma: I \rightarrow X$ with $\gamma(0)=x$ and $\gamma(1)=y$, induces an isomorphism

$$
\gamma^{*}: \pi_{1}(X, x) \rightarrow \pi_{1}(X, y), \quad \gamma^{*}(\alpha)=\gamma * \alpha * \gamma^{-1}
$$

So $\pi_{1} X$ depends only on the path component of X, and for such spaces sometimes we can omit base point.
(4) $\pi_{1}(X \times Y) \cong \pi_{1} X \times \pi_{1} Y$.
(5) $\pi_{1} \prod_{\lambda \in \Lambda} X_{\lambda} \cong \prod_{\lambda \in \Lambda} \pi_{1} X_{\lambda}$.

Computation of $\pi_{1}(X, x)$

Exercises.

(1) π_{1} (point) $=0$.
(2) $\pi_{1}\left(S^{1}, *\right)=\mathbb{Z}$.
(3) every path $\gamma: I \rightarrow X$ with $\gamma(0)=x$ and $\gamma(1)=y$, induces an isomorphism

$$
\gamma^{*}: \pi_{1}(X, x) \rightarrow \pi_{1}(X, y), \quad \gamma^{*}(\alpha)=\gamma * \alpha * \gamma^{-1}
$$

So $\pi_{1} X$ depends only on the path component of X, and for such spaces sometimes we can omit base point.
(4) $\pi_{1}(X \times Y) \cong \pi_{1} X \times \pi_{1} Y$.
(5) $\pi_{1} \prod_{\lambda \in \Lambda} X_{\lambda} \cong \prod_{\lambda \in \Lambda} \pi_{1} X_{\lambda}$.
(6) $\pi_{1}\left(S^{1} \times S^{1}\right) \cong \mathbb{Z}^{2}$ (for 2-torus)

Computation of $\pi_{1}(X, x)$

Exercises.

(1) π_{1} (point) $=0$.
(2) $\pi_{1}\left(S^{1}, *\right)=\mathbb{Z}$.
(3) every path $\gamma: I \rightarrow X$ with $\gamma(0)=x$ and $\gamma(1)=y$, induces an isomorphism

$$
\gamma^{*}: \pi_{1}(X, x) \rightarrow \pi_{1}(X, y), \quad \gamma^{*}(\alpha)=\gamma * \alpha * \gamma^{-1}
$$

So $\pi_{1} X$ depends only on the path component of X, and for such spaces sometimes we can omit base point.
(4) $\pi_{1}(X \times Y) \cong \pi_{1} X \times \pi_{1} Y$.
(5) $\pi_{1} \prod_{\lambda \in \Lambda} X_{\lambda} \cong \prod_{\lambda \in \Lambda} \pi_{1} X_{\lambda}$.
(6) $\pi_{1}\left(S^{1} \times S^{1}\right) \cong \mathbb{Z}^{2}$ (for 2-torus)
(7) Every homotopy equivalence $f:(X, x) \rightarrow(Y, y)$ of pointed spaces induces an isomorphism $\pi_{1}(X, x) \rightarrow \pi_{1}(Y, y)$.

Computation of $\pi_{1}(X, x)$

Exercises.

(1) π_{1} (point) $=0$.
(2) $\pi_{1}\left(S^{1}, *\right)=\mathbb{Z}$.
(3) every path $\gamma: I \rightarrow X$ with $\gamma(0)=x$ and $\gamma(1)=y$, induces an isomorphism

$$
\gamma^{*}: \pi_{1}(X, x) \rightarrow \pi_{1}(X, y), \quad \gamma^{*}(\alpha)=\gamma * \alpha * \gamma^{-1}
$$

So $\pi_{1} X$ depends only on the path component of X, and for such spaces sometimes we can omit base point.
(4) $\pi_{1}(X \times Y) \cong \pi_{1} X \times \pi_{1} Y$.
(5) $\pi_{1} \prod_{\lambda \in \Lambda} X_{\lambda} \cong \prod_{\lambda \in \Lambda} \pi_{1} X_{\lambda}$.
(6) $\pi_{1}\left(S^{1} \times S^{1}\right) \cong \mathbb{Z}^{2}$ (for 2-torus)
(7) Every homotopy equivalence $f:(X, x) \rightarrow(Y, y)$ of pointed spaces induces an isomorphism $\pi_{1}(X, x) \rightarrow \pi_{1}(Y, y)$. (This means that there exists $g:(Y, y) \rightarrow(X, x)$ such that $g \circ f$ is homotopic to id_{X} relatively to x, i.e. and that homotopy fixes point x, and similarly for $f \circ g$.)

Fundamental group $\pi_{1}(X, x)$

Exercises

(1) Every continuous map $f: X \rightarrow Y$ induces a map
$f_{1}: \pi_{1}(X, x) \rightarrow \pi_{1}(Y, f(x))$ defined by $f_{1}[\alpha]=[f \circ \alpha]$, where $\alpha:\left(S^{1}, *\right) \rightarrow(X, x)$.

Fundamental group $\pi_{1}(X, x)$

Exercises

(1) Every continuous map $f: X \rightarrow Y$ induces a map $f_{1}: \pi_{1}(X, x) \rightarrow \pi_{1}(Y, f(x))$ defined by $f_{1}[\alpha]=[f \circ \alpha]$, where $\alpha:\left(S^{1}, *\right) \rightarrow(X, x)$.
(2) Let $f: S^{1} \rightarrow S^{1}$ be given by $f(z)=z^{k}$. Compute the induced homomorphism $f_{1}: \pi_{1} S^{1} \rightarrow \pi_{1} S^{1}$.

Fundamental group $\pi_{1}(X, x)$

Exercises

(1) Every continuous map $f: X \rightarrow Y$ induces a map $f_{1}: \pi_{1}(X, x) \rightarrow \pi_{1}(Y, f(x))$ defined by $f_{1}[\alpha]=[f \circ \alpha]$, where $\alpha:\left(S^{1}, *\right) \rightarrow(X, x)$.
(2) Let $f: S^{1} \rightarrow S^{1}$ be given by $f(z)=z^{k}$. Compute the induced homomorphism $f_{1}: \pi_{1} S^{1} \rightarrow \pi_{1} S^{1}$.

H-spaces

Let X be a topological space and $e \in X$ be a point.

H-spaces

Let X be a topological space and $e \in X$ be a point. In general $\pi_{1}(X, e)$ is not abelian.

H-spaces

Let X be a topological space and $e \in X$ be a point.
In general $\pi_{1}(X, e)$ is not abelian.
(X, e) is called H-space if there exists a continuous map $\mu: X \times X \rightarrow X$ such that

$$
\mu(x, e)=\mu(e, x)=e
$$

for all $x \in X$.

H-spaces

Let X be a topological space and $e \in X$ be a point.
In general $\pi_{1}(X, e)$ is not abelian.
(X, e) is called H-space if there exists a continuous map $\mu: X \times X \rightarrow X$ such that

$$
\mu(x, e)=\mu(e, x)=e
$$

for all $x \in X$.
Exercises.
(1) Every topological semigroup (and group) is an H -space.

H-spaces

Let X be a topological space and $e \in X$ be a point.
In general $\pi_{1}(X, e)$ is not abelian.
(X, e) is called H-space if there exists a continuous map $\mu: X \times X \rightarrow X$ such that

$$
\mu(x, e)=\mu(e, x)=e
$$

for all $x \in X$.

Exercises.

(1) Every topological semigroup (and group) is an H -space.
(2) If (X, e) is an H-space, then $\pi_{1}(X, e)$ is abelian.

H-spaces

Let X be a topological space and $e \in X$ be a point.
In general $\pi_{1}(X, e)$ is not abelian.
(X, e) is called H-space if there exists a continuous map $\mu: X \times X \rightarrow X$ such that

$$
\mu(x, e)=\mu(e, x)=e
$$

for all $x \in X$.

Exercises.

(1) Every topological semigroup (and group) is an H -space.
(2) If (X, e) is an H-space, then $\pi_{1}(X, e)$ is abelian.

Higher homotopy group $\pi_{k}(X, x)$

Let X be a topological space, $x \in X, S^{k}$ be the circle and $* \in S^{k}$ be a point, and $k \geq 0$.

Higher homotopy group $\pi_{k}(X, x)$

Let X be a topological space, $x \in X, S^{k}$ be the circle and $* \in S^{k}$ be a point, and $k \geq 0$. Then k-th homotopy group of X at point x is the set of homotopy classes $\left[\left(S^{k}, *\right),(X, x)\right]$. It is denoted by $\pi_{k}(X, x)$, and these groups were introduced by W. Hurevicz.

Higher homotopy group $\pi_{k}(X, x)$

Let X be a topological space, $x \in X, S^{k}$ be the circle and $* \in S^{k}$ be a point, and $k \geq 0$. Then k-th homotopy group of X at point x is the set of homotopy classes $\left[\left(S^{k}, *\right),(X, x)\right]$. It is denoted by $\pi_{k}(X, x)$, and these groups were introduced by W. Hurevicz.

$$
\pi_{k}(X, x)=\left[\left(S^{k}, *\right),(X, x)\right]=\left[\left(I^{k}, \partial I^{k}\right),(X, x)\right]
$$

Higher homotopy group $\pi_{k}(X, x)$

Let X be a topological space, $x \in X, S^{k}$ be the circle and $* \in S^{k}$ be a point, and $k \geq 0$. Then k-th homotopy group of X at point x is the set of homotopy classes $\left[\left(S^{k}, *\right),(X, x)\right]$. It is denoted by $\pi_{k}(X, x)$, and these groups were introduced by W. Hurevicz.

$$
\pi_{k}(X, x)=\left[\left(S^{k}, *\right),(X, x)\right]=\left[\left(I^{k}, \partial I^{k}\right),(X, x)\right]
$$

Theorem. $\pi_{k}(X, x), k \geq 2$, has a structure of a group and that group is always abelian.

Higher homotopy group $\pi_{k}(X, x)$

Let X be a topological space, $x \in X, S^{k}$ be the circle and $* \in S^{k}$ be a point, and $k \geq 0$. Then k-th homotopy group of X at point x is the set of homotopy classes $\left[\left(S^{k}, *\right),(X, x)\right]$. It is denoted by $\pi_{k}(X, x)$, and these groups were introduced by W. Hurevicz.

$$
\pi_{k}(X, x)=\left[\left(S^{k}, *\right),(X, x)\right]=\left[\left(I^{k}, \partial I^{k}\right),(X, x)\right]
$$

Theorem. $\pi_{k}(X, x), k \geq 2$, has a structure of a group and that group is always abelian.
Proof. Let $\alpha, \beta:\left(I^{k}, \partial I^{k}\right) \rightarrow(X, x)$ be two maps.

Higher homotopy group $\pi_{k}(X, x)$

Let X be a topological space, $x \in X, S^{k}$ be the circle and $* \in S^{k}$ be a point, and $k \geq 0$. Then k-th homotopy group of X at point x is the set of homotopy classes $\left[\left(S^{k}, *\right),(X, x)\right]$. It is denoted by $\pi_{k}(X, x)$, and these groups were introduced by W. Hurevicz.

$$
\pi_{k}(X, x)=\left[\left(S^{k}, *\right),(X, x)\right]=\left[\left(I^{k}, \partial I^{k}\right),(X, x)\right]
$$

Theorem. $\pi_{k}(X, x), k \geq 2$, has a structure of a group and that group is always abelian.
Proof. Let $\alpha, \beta:\left(I^{k}, \partial I^{k}\right) \rightarrow(X, x)$ be two maps. Regard I^{k} as $I \times I^{k-1}$ with coordinates (x, y).

Higher homotopy group $\pi_{k}(X, x)$

Let X be a topological space, $x \in X, S^{k}$ be the circle and $* \in S^{k}$ be a point, and $k \geq 0$. Then k-th homotopy group of X at point x is the set of homotopy classes $\left[\left(S^{k}, *\right),(X, x)\right]$. It is denoted by $\pi_{k}(X, x)$, and these groups were introduced by W. Hurevicz.

$$
\pi_{k}(X, x)=\left[\left(S^{k}, *\right),(X, x)\right]=\left[\left(I^{k}, \partial I^{k}\right),(X, x)\right]
$$

Theorem. $\pi_{k}(X, x), k \geq 2$, has a structure of a group and that group is always abelian.
Proof. Let $\alpha, \beta:\left(I^{k}, \partial I^{k}\right) \rightarrow(X, x)$ be two maps. Regard I^{k} as $I \times I^{k-1}$ with coordinates (x, y). Define $\alpha * \beta:\left(I^{k}, \partial I^{k}\right) \rightarrow(X, x)$ by the formula:

$$
\alpha * \beta(x, \mathbf{y})= \begin{cases}\alpha(2 x, y), & x \in\left[0, \frac{1}{2}\right], \\ \beta(2 x-1, y), & x \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

where $x \in I$ and $y \in I^{k-1}$.

Higher homotopy group $\pi_{k}(X, x)$

Let X be a topological space, $x \in X, S^{k}$ be the circle and $* \in S^{k}$ be a point, and $k \geq 0$. Then k-th homotopy group of X at point x is the set of homotopy classes $\left[\left(S^{k}, *\right),(X, x)\right]$. It is denoted by $\pi_{k}(X, x)$, and these groups were introduced by W. Hurevicz.

$$
\pi_{k}(X, x)=\left[\left(S^{k}, *\right),(X, x)\right]=\left[\left(I^{k}, \partial I^{k}\right),(X, x)\right]
$$

Theorem. $\pi_{k}(X, x), k \geq 2$, has a structure of a group and that group is always abelian.
Proof. Let $\alpha, \beta:\left(I^{k}, \partial I^{k}\right) \rightarrow(X, x)$ be two maps. Regard I^{k} as $I \times I^{k-1}$ with coordinates (x, y). Define $\alpha * \beta:\left(I^{k}, \partial I^{k}\right) \rightarrow(X, x)$ by the formula:

$$
\alpha * \beta(x, \mathbf{y})= \begin{cases}\alpha(2 x, y), & x \in\left[0, \frac{1}{2}\right], \\ \beta(2 x-1, y), & x \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

where $x \in I$ and $y \in I^{k-1}$.
Then the operation in $\pi_{k}(X, x)$ is defined by

$$
[\alpha] *[\beta]:=[\alpha * \beta] .
$$

Computation of $\pi_{k}(X, x)$

Exercises.

(1) $\pi_{1}($ point $)=0$.

Computation of $\pi_{k}(X, x)$

Exercises.

(1) $\pi_{1}($ point $)=0$.
(2) Every continuous map $f: X \rightarrow Y$ induces a map
$f_{k}: \pi_{k}(X, x) \rightarrow \pi_{k}(Y, f(x))$ defined by $f_{k}[\alpha]=[f \circ \alpha]$, where $\alpha:\left(S^{k}, *\right) \rightarrow(X, x)$.

Computation of $\pi_{k}(X, x)$

Exercises.

(1) $\pi_{1}($ point $)=0$.
(2) Every continuous map $f: X \rightarrow Y$ induces a map
$f_{k}: \pi_{k}(X, x) \rightarrow \pi_{k}(Y, f(x))$ defined by $f_{k}[\alpha]=[f \circ \alpha]$, where $\alpha:\left(S^{k}, *\right) \rightarrow(X, x)$. This map is a homomorphism for $k \geq 1$.

Computation of $\pi_{k}(X, x)$

Exercises.

(1) $\pi_{1}($ point $)=0$.
(2) Every continuous map $f: X \rightarrow Y$ induces a map $f_{k}: \pi_{k}(X, x) \rightarrow \pi_{k}(Y, f(x))$ defined by $f_{k}[\alpha]=[f \circ \alpha]$, where $\alpha:\left(S^{k}, *\right) \rightarrow(X, x)$. This map is a homomorphism for $k \geq 1$.
(3) Every homotopy equivalence $f:(X, x) \rightarrow(Y, y)$ of pointed spaces induces an isomorphism of all homotopy groups $f_{*}: \pi_{k}(X, x) \rightarrow \pi_{k}(Y, y)$.

Computation of $\pi_{k}(X, x)$

Exercises.

(1) $\pi_{1}($ point $)=0$.
(2) Every continuous map $f: X \rightarrow Y$ induces a map $f_{k}: \pi_{k}(X, x) \rightarrow \pi_{k}(Y, f(x))$ defined by $f_{k}[\alpha]=[f \circ \alpha]$, where $\alpha:\left(S^{k}, *\right) \rightarrow(X, x)$. This map is a homomorphism for $k \geq 1$.
(3) Every homotopy equivalence $f:(X, x) \rightarrow(Y, y)$ of pointed spaces induces an isomorphism of all homotopy groups $f_{*}: \pi_{k}(X, x) \rightarrow \pi_{k}(Y, y)$.
(4) Every path $\gamma: I \rightarrow X$ with $\gamma(0)=x$ and $\gamma(1)=\boldsymbol{y}$, induces an isomorphism

$$
\gamma^{*}: \pi_{k}(X, x) \rightarrow \pi_{k}(X, y)
$$

Computation of $\pi_{k}(X, x)$

Exercises.

(1) $\pi_{1}($ point $)=0$.
(2) Every continuous map $f: X \rightarrow Y$ induces a map $f_{k}: \pi_{k}(X, x) \rightarrow \pi_{k}(Y, f(x))$ defined by $f_{k}[\alpha]=[f \circ \alpha]$, where $\alpha:\left(S^{k}, *\right) \rightarrow(X, x)$. This map is a homomorphism for $k \geq 1$.
(3) Every homotopy equivalence $f:(X, x) \rightarrow(Y, y)$ of pointed spaces induces an isomorphism of all homotopy groups $f_{*}: \pi_{k}(X, x) \rightarrow \pi_{k}(Y, y)$.
(4) Every path $\gamma: I \rightarrow X$ with $\gamma(0)=x$ and $\gamma(1)=\boldsymbol{y}$, induces an isomorphism

$$
\gamma^{*}: \pi_{k}(X, x) \rightarrow \pi_{k}(X, y)
$$

So $\pi_{k} X$ depends only on the path component of X, and for such spaces sometimes we can omit base point.

Computation of $\pi_{k}(X, x)$

Exercises.

(1) $\pi_{1}($ point $)=0$.
(2) Every continuous map $f: X \rightarrow Y$ induces a map $f_{k}: \pi_{k}(X, x) \rightarrow \pi_{k}(Y, f(x))$ defined by $f_{k}[\alpha]=[f \circ \alpha]$, where $\alpha:\left(S^{k}, *\right) \rightarrow(X, x)$. This map is a homomorphism for $k \geq 1$.
(3) Every homotopy equivalence $f:(X, x) \rightarrow(Y, y)$ of pointed spaces induces an isomorphism of all homotopy groups $f_{*}: \pi_{k}(X, x) \rightarrow \pi_{k}(Y, y)$.
(4) Every path $\gamma: I \rightarrow X$ with $\gamma(0)=x$ and $\gamma(1)=\boldsymbol{y}$, induces an isomorphism

$$
\gamma^{*}: \pi_{k}(X, x) \rightarrow \pi_{k}(X, y)
$$

So $\pi_{k} X$ depends only on the path component of X, and for such spaces sometimes we can omit base point.
(5) $\pi_{k}(X \times Y) \cong \pi_{k} X \times \pi_{k} Y$.

Computation of $\pi_{k}(X, x)$

Exercises.

(1) $\pi_{1}($ point $)=0$.
(2) Every continuous map $f: X \rightarrow Y$ induces a map $f_{k}: \pi_{k}(X, x) \rightarrow \pi_{k}(Y, f(x))$ defined by $f_{k}[\alpha]=[f \circ \alpha]$, where $\alpha:\left(S^{k}, *\right) \rightarrow(X, x)$. This map is a homomorphism for $k \geq 1$.
(3) Every homotopy equivalence $f:(X, x) \rightarrow(Y, y)$ of pointed spaces induces an isomorphism of all homotopy groups $f_{*}: \pi_{k}(X, x) \rightarrow \pi_{k}(Y, y)$.
(4) Every path $\gamma: I \rightarrow X$ with $\gamma(0)=x$ and $\gamma(1)=\boldsymbol{y}$, induces an isomorphism

$$
\gamma^{*}: \pi_{k}(X, x) \rightarrow \pi_{k}(X, y)
$$

So $\pi_{k} X$ depends only on the path component of X, and for such spaces sometimes we can omit base point.
(5) $\pi_{k}(X \times Y) \cong \pi_{k} X \times \pi_{k} Y$.
(6) $\pi_{k} \prod_{\lambda \in \Lambda} X_{\lambda} \cong \prod_{\lambda \in \Lambda} \pi_{k} X_{\lambda}$.

Computation of $\pi_{k}(X, x)$

Exercises.

(1) $\pi_{1}($ point $)=0$.
(2) Every continuous map $f: X \rightarrow Y$ induces a map $f_{k}: \pi_{k}(X, x) \rightarrow \pi_{k}(Y, f(x))$ defined by $f_{k}[\alpha]=[f \circ \alpha]$, where $\alpha:\left(S^{k}, *\right) \rightarrow(X, x)$. This map is a homomorphism for $k \geq 1$.
(3) Every homotopy equivalence $f:(X, x) \rightarrow(Y, y)$ of pointed spaces induces an isomorphism of all homotopy groups $f_{*}: \pi_{k}(X, x) \rightarrow \pi_{k}(Y, y)$.
(4) Every path $\gamma: I \rightarrow X$ with $\gamma(0)=x$ and $\gamma(1)=\boldsymbol{y}$, induces an isomorphism

$$
\gamma^{*}: \pi_{k}(X, x) \rightarrow \pi_{k}(X, y)
$$

So $\pi_{k} X$ depends only on the path component of X, and for such spaces sometimes we can omit base point.
(5) $\pi_{k}(X \times Y) \cong \pi_{k} X \times \pi_{k} Y$.
(6) $\pi_{k} \prod_{\lambda \in \Lambda} X_{\lambda} \cong \prod_{\lambda \in \Lambda} \pi_{k} X_{\lambda}$.

Weak homotopy type

A continuous map $f: X \rightarrow Y$ is a weak homotopy equivalence if for each $x \in X$ and $k \geq 0$ the induced map

$$
f_{k}: \pi_{k}(X, x) \rightarrow \pi_{k}(Y, f(x))
$$

is an isomorphism.

Weak homotopy type

A continuous map $f: X \rightarrow Y$ is a weak homotopy equivalence if for each $x \in X$ and $k \geq 0$ the induced map

$$
f_{k}: \pi_{k}(X, x) \rightarrow \pi_{k}(Y, f(x))
$$

is an isomorphism. As noted above every homotopy equivalence is also weak.

Weak homotopy type

A continuous map $f: X \rightarrow Y$ is a weak homotopy equivalence if for each $x \in X$ and $k \geq 0$ the induced map

$$
f_{k}: \pi_{k}(X, x) \rightarrow \pi_{k}(Y, f(x))
$$

is an isomorphism. As noted above every homotopy equivalence is also weak.

Theorem (J.H.C. Whitehead)
Let X and Y be connected CW-complexes and $f: X \rightarrow Y$ be a continuous map. TFAE:
(1) f is a homotopy equivalence
(2) f is a weak homotopy equivalence

Weak homotopy type

A continuous map $f: X \rightarrow Y$ is a weak homotopy equivalence if for each $x \in X$ and $k \geq 0$ the induced map

$$
f_{k}: \pi_{k}(X, x) \rightarrow \pi_{k}(Y, f(x))
$$

is an isomorphism. As noted above every homotopy equivalence is also weak.

Theorem (J.H.C. Whitehead)
Let X and Y be connected CW-complexes and $f: X \rightarrow Y$ be a continuous map. TFAE:
(1) f is a homotopy equivalence
(2) f is a weak homotopy equivalence

Theorem
Every CW-complex X is weakly homotopy equivalent to some Alexandrov space (a space in which intersection of arbitrary family of open sets is open).

Weak homotopy type

A continuous map $f: X \rightarrow Y$ is a weak homotopy equivalence if for each $x \in X$ and $k \geq 0$ the induced map

$$
f_{k}: \pi_{k}(X, x) \rightarrow \pi_{k}(Y, f(x))
$$

is an isomorphism. As noted above every homotopy equivalence is also weak.

Theorem (J.H.C. Whitehead)
Let X and Y be connected CW-complexes and $f: X \rightarrow Y$ be a continuous map. TFAE:
(1) f is a homotopy equivalence
(2) f is a weak homotopy equivalence

Theorem
Every CW-complex X is weakly homotopy equivalent to some Alexandrov space (a space in which intersection of arbitrary family of open sets is open).

Relative homotopy group $\pi_{k}(X, A, x)$

Let X be a topological space, $A \subset X$ and $x \in A$.

Relative homotopy group $\pi_{k}(X, A, x)$

Let X be a topological space, $A \subset X$ and $x \in A$. Let also
(1) $I^{k}=\underbrace{I \times I}_{k}$ be a k-cube,

Relative homotopy group $\pi_{k}(X, A, x)$

Let X be a topological space, $A \subset X$ and $x \in A$. Let also
(1) $I^{k}=\underbrace{I \times I}_{k}$ be a k-cube,
(2) I_{+}^{k-1} be the "upper" face of ∂I^{k}, and

Relative homotopy group $\pi_{k}(X, A, x)$

Let X be a topological space, $A \subset X$ and $x \in A$. Let also
(1) $I^{k}=\underbrace{I \times I}_{k}$ be a k-cube,
(2) I_{+}^{k-1} be the "upper" face of ∂I^{k}, and
(3) $I_{-}^{k-1}=\overline{\partial I^{k} \backslash I_{+}^{k-1}}$.

Relative homotopy group $\pi_{k}(X, A, x)$

Let X be a topological space, $A \subset X$ and $x \in A$. Let also
(1) $I^{k}=\underbrace{I \times I}_{k}$ be a k-cube,
(2) I_{+}^{k-1} be the "upper" face of ∂I^{k}, and
(3 $I_{-}^{k-1}=\overline{\partial I^{k} \backslash I_{+}^{k-1}}$.
Then the relative k-th homotopy group of the triple (X, A, x) is the set of homotopy classes

$$
\pi_{k}(X, A, x):=\left[\left(I^{k}, \partial I^{k}, I_{-}^{k-1}\right),(X, A, x)\right]
$$

Again they introduced by W. Hurevicz.

Relative homotopy group $\pi_{k}(X, A, x)$

Let X be a topological space, $A \subset X$ and $x \in A$. Let also
(1) $I^{k}=\underbrace{I \times I}_{k}$ be a k-cube,
(2) I_{+}^{k-1} be the "upper" face of ∂I^{k}, and
(3) $I_{-}^{k-1}=\overline{\partial I^{k} \backslash I_{+}^{k-1}}$.

Then the relative k-th homotopy group of the triple (X, A, x) is the set of homotopy classes

$$
\pi_{k}(X, A, x):=\left[\left(I^{k}, \partial I^{k}, I_{-}^{k-1}\right),(X, A, x)\right]
$$

Again they introduced by W. Hurevicz. Remark. $\pi_{0}(X, A, x)$ is the same as $\pi_{0}(X, x)$.

Relative homotopy group $\pi_{k}(X, A, x)$

Let X be a topological space, $A \subset X$ and $x \in A$. Let also
(1) $I^{k}=\underbrace{I \times I}_{k}$ be a k-cube,
(2) I_{+}^{k-1} be the "upper" face of ∂I^{k}, and
(3) $I_{-}^{k-1}=\overline{\partial I^{k} \backslash I_{+}^{k-1}}$.

Then the relative k-th homotopy group of the triple (X, A, x) is the set of homotopy classes

$$
\pi_{k}(X, A, x):=\left[\left(I^{k}, \partial I^{k}, I_{-}^{k-1}\right),(X, A, x)\right]
$$

Again they introduced by W. Hurevicz. Remark. $\pi_{0}(X, A, x)$ is the same as $\pi_{0}(X, x)$.
Theorem. $\pi_{k}(X, A, x), k \geq 2$, has a structure of a group and that group is abelian for $k \geq 3$.

Relative homotopy group $\pi_{k}(X, A, x)$

Let X be a topological space, $A \subset X$ and $x \in A$. Let also
(1) $I^{k}=\underbrace{I \times I}_{k}$ be a k-cube,
(2) I_{+}^{k-1} be the "upper" face of ∂I^{k}, and
(3) $I_{-}^{k-1}=\overline{\partial I^{k} \backslash I_{+}^{k-1}}$.

Then the relative k-th homotopy group of the triple (X, A, x) is the set of homotopy classes

$$
\pi_{k}(X, A, x):=\left[\left(I^{k}, \partial I^{k}, I_{-}^{k-1}\right),(X, A, x)\right]
$$

Again they introduced by W. Hurevicz.
Remark. $\pi_{0}(X, A, x)$ is the same as $\pi_{0}(X, x)$.
Theorem. $\pi_{k}(X, A, x), k \geq 2$, has a structure of a group and that group is abelian for $k \geq 3$.
Proof. In fact the operation is defined by the same formula as for $\pi_{k}(X, x)$.

Relative homotopy group $\pi_{k}(X, A, x)$

(1) Compute homotopy set $\pi_{1}(\mathbb{R},[-1,1], 0)$.

Relative homotopy group $\pi_{k}(X, A, x)$

(1) Compute homotopy set $\pi_{1}(\mathbb{R},[-1,1], 0)$.
(2) Every continuous map $f:(X, A, x) \rightarrow(Y, B, y)$ induces a map $f_{k}: \pi_{k}(X, A, x) \rightarrow \pi_{k}(Y, B, f(x))$ defined by $f_{k}[\alpha]=[f \circ \alpha]$, where $\alpha:\left(I^{k}, \partial I^{k}, I_{-}^{k-1}\right),(X, A, x)$.

Relative homotopy group $\pi_{k}(X, A, x)$

(1) Compute homotopy set $\pi_{1}(\mathbb{R},[-1,1], 0)$.
(2) Every continuous map $f:(X, A, x) \rightarrow(Y, B, y)$ induces a map $f_{k}: \pi_{k}(X, A, x) \rightarrow \pi_{k}(Y, B, f(x))$ defined by $f_{k}[\alpha]=[f \circ \alpha]$, where $\alpha:\left(I^{k}, \partial I^{k}, I_{-}^{k-1}\right),(X, A, x)$. This map is a homomorphism for $k \geq 2$.

Relative homotopy group $\pi_{k}(X, A, x)$

(1) Compute homotopy set $\pi_{1}(\mathbb{R},[-1,1], 0)$.
(2) Every continuous map $f:(X, A, x) \rightarrow(Y, B, y)$ induces a map $f_{k}: \pi_{k}(X, A, x) \rightarrow \pi_{k}(Y, B, f(x))$ defined by $f_{k}[\alpha]=[f \circ \alpha]$, where $\alpha:\left(I^{k}, \partial I^{k}, I_{-}^{k-1}\right),(X, A, x)$. This map is a homomorphism for $k \geq 2$.
(3) Let G be a topological group with unit e and H be its subgroup. Then $\pi_{1}(G, H, e)$ has a structure of a group. Moreover, the maps

$$
\pi_{1}(G, e) \xrightarrow{j_{1}} \pi_{1}(G, H, e) \xrightarrow{\partial_{1}} \pi_{0}(H, e)
$$

are group homomorphisms.

Long exact sequence of homotopy groups

Let (X, A, x) be a triple, so $x \in A \subset X$.

Long exact sequence of homotopy groups

Let (X, A, x) be a triple, so $x \in A \subset X$. Let also
(1) $i: A \subset X$ be a natural inclusion.

Long exact sequence of homotopy groups

Let (X, A, x) be a triple, so $x \in A \subset X$. Let also
(1) $i: A \subset X$ be a natural inclusion. It induces a homomorphism $i_{k}: \pi_{k}(A, x) \rightarrow \pi_{k}(X, x)$.
(2) Let $\alpha:\left(I^{k}, \partial I^{k}\right),(X, x)$ be a representative of an element of $\pi_{k}(X, x)$.

Long exact sequence of homotopy groups

Let (X, A, x) be a triple, so $x \in A \subset X$. Let also
(1) $i: A \subset X$ be a natural inclusion. It induces a homomorphism $i_{k}: \pi_{k}(A, x) \rightarrow \pi_{k}(X, x)$.
(2) Let $\alpha:\left(I^{k}, \partial I^{k}\right),(X, x)$ be a representative of an element of $\pi_{k}(X, x)$. Then, in particular, it is also a map of triples

$$
\alpha:\left(I^{k}, \partial I^{k}, I_{-}^{k-1}\right),(X, A, x)
$$

so it is also a representative of some element in $\pi_{k}(X, A, x)$.

Long exact sequence of homotopy groups

Let (X, A, x) be a triple, so $x \in A \subset X$. Let also
(1) $i: A \subset X$ be a natural inclusion. It induces a homomorphism $i_{k}: \pi_{k}(A, x) \rightarrow \pi_{k}(X, x)$.
(2) Let $\alpha:\left(I^{k}, \partial I^{k}\right),(X, x)$ be a representative of an element of $\pi_{k}(X, x)$. Then, in particular, it is also a map of triples

$$
\alpha:\left(I^{k}, \partial I^{k}, I_{-}^{k-1}\right),(X, A, x)
$$

so it is also a representative of some element in $\pi_{k}(X, A, x)$. This gives a homomorphism

$$
j_{k}: \pi_{k}(X, x) \rightarrow \pi_{k}(X, A, x)
$$

Long exact sequence of homotopy groups

Let (X, A, x) be a triple, so $x \in A \subset X$. Let also
(1) $i: A \subset X$ be a natural inclusion. It induces a homomorphism $i_{k}: \pi_{k}(A, x) \rightarrow \pi_{k}(X, x)$.
(2) Let $\alpha:\left(I^{k}, \partial I^{k}\right),(X, x)$ be a representative of an element of $\pi_{k}(X, x)$. Then, in particular, it is also a map of triples

$$
\alpha:\left(I^{k}, \partial I^{k}, I_{-}^{k-1}\right),(X, A, x)
$$

so it is also a representative of some element in $\pi_{k}(X, A, x)$. This gives a homomorphism

$$
j_{k}: \pi_{k}(X, x) \rightarrow \pi_{k}(X, A, x)
$$

(3) Let $\alpha:\left(I^{k}, \partial I^{k}, I_{-}^{k-1}\right),(X, A, X)$ be a representative of an element of $\pi_{k}(X, A, x)$.

Long exact sequence of homotopy groups

Let (X, A, x) be a triple, so $x \in A \subset X$. Let also
(1) $i: A \subset X$ be a natural inclusion. It induces a homomorphism $i_{k}: \pi_{k}(A, x) \rightarrow \pi_{k}(X, x)$.
(2) Let $\alpha:\left(I^{k}, \partial I^{k}\right),(X, x)$ be a representative of an element of $\pi_{k}(X, x)$. Then, in particular, it is also a map of triples

$$
\alpha:\left(I^{k}, \partial I^{k}, I_{-}^{k-1}\right),(X, A, x)
$$

so it is also a representative of some element in $\pi_{k}(X, A, x)$. This gives a homomorphism

$$
j_{k}: \pi_{k}(X, x) \rightarrow \pi_{k}(X, A, x)
$$

(3) Let $\alpha:\left(I^{k}, \partial I^{k}, I_{-}^{k-1}\right),(X, A, x)$ be a representative of an element of $\pi_{k}(X, A, x)$. Then, in particular, $\alpha\left(I_{+}^{k-1}\right) \subset A$ and $\alpha\left(\partial I_{+}^{k-1}\right)=x$.

Long exact sequence of homotopy groups

Let (X, A, x) be a triple, so $x \in A \subset X$. Let also
(1) $i: A \subset X$ be a natural inclusion. It induces a homomorphism $i_{k}: \pi_{k}(A, x) \rightarrow \pi_{k}(X, x)$.
(2) Let $\alpha:\left(I^{k}, \partial I^{k}\right),(X, x)$ be a representative of an element of $\pi_{k}(X, x)$. Then, in particular, it is also a map of triples

$$
\alpha:\left(I^{k}, \partial I^{k}, I_{-}^{k-1}\right),(X, A, x)
$$

so it is also a representative of some element in $\pi_{k}(X, A, x)$. This gives a homomorphism

$$
j_{k}: \pi_{k}(X, x) \rightarrow \pi_{k}(X, A, x)
$$

(3) Let $\alpha:\left(I^{k}, \partial I^{k}, I_{-}^{k-1}\right),(X, A, x)$ be a representative of an element of $\pi_{k}(X, A, x)$. Then, in particular, $\alpha\left(I_{+}^{k-1}\right) \subset A$ and $\alpha\left(\partial I_{+}^{k-1}\right)=x$. Thus we get the restriction map $\left.\alpha\right|_{I_{+}^{k-1}}:\left(I^{k-1}, \partial I^{k-1}\right) \rightarrow(A, x)$ being a representative of some element $\pi_{k-1}(A, x)$.

Long exact sequence of homotopy groups

Let (X, A, x) be a triple, so $x \in A \subset X$. Let also
(1) $i: A \subset X$ be a natural inclusion. It induces a homomorphism $i_{k}: \pi_{k}(A, x) \rightarrow \pi_{k}(X, x)$.
(2) Let $\alpha:\left(I^{k}, \partial I^{k}\right),(X, x)$ be a representative of an element of $\pi_{k}(X, x)$. Then, in particular, it is also a map of triples

$$
\alpha:\left(I^{k}, \partial I^{k}, I_{-}^{k-1}\right),(X, A, x)
$$

so it is also a representative of some element in $\pi_{k}(X, A, x)$. This gives a homomorphism

$$
j_{k}: \pi_{k}(X, x) \rightarrow \pi_{k}(X, A, x)
$$

(3) Let $\alpha:\left(I^{k}, \partial I^{k}, I_{-}^{k-1}\right),(X, A, x)$ be a representative of an element of $\pi_{k}(X, A, x)$. Then, in particular, $\alpha\left(I_{+}^{k-1}\right) \subset A$ and $\alpha\left(\partial I_{+}^{k-1}\right)=x$. Thus we get the restriction map $\left.\alpha\right|_{I_{+}^{k-1}}:\left(I^{k-1}, \partial I^{k-1}\right) \rightarrow(A, x)$ being a representative of some element $\pi_{k-1}(A, x)$. In fact, $\left.\alpha \mapsto \alpha\right|_{l_{+}^{k-1}}$ induces a so called boundary homomorphism:

$$
\partial_{k}: \pi_{k}(X, A, x) \rightarrow \pi_{k-1}(A, x)
$$

Long exact sequence of homotopy groups

Thus we get an infinite sequence of homomorphisms:

$$
\begin{aligned}
& \cdots \xrightarrow{\partial_{k+1}} \pi_{k}(A, x) \xrightarrow{i_{k}} \pi_{k}(X, x) \xrightarrow{j_{k}} \pi_{k}(X, A, x) \xrightarrow{\partial_{k}} \\
& \pi_{k-1}(A, x) \xrightarrow{i_{k-1}} \pi_{k-1}(X, x) \xrightarrow{j_{k-1}} \pi_{k-1}(X, A, x) \xrightarrow{\partial_{k-1}} \cdots \\
& \cdots \xrightarrow{\partial_{2}} \pi_{1}(A, x) \xrightarrow{i_{1}} \pi_{1}(X, x) \xrightarrow{j_{1}} \pi_{1}(X, A, x) \xrightarrow{\partial_{1}} \\
& \pi_{0}(A, x) \xrightarrow{i_{0}} \pi_{0}(X, x) \xrightarrow{\cong} \pi_{0}(X, A, x) .
\end{aligned}
$$

Theorem
The long sequence of homotopy groups for the triple (X, A, x) is exact.

Long exact sequence of homotopy groups

(1) Compute homotopy groups $\pi_{k}(I, \partial I, 0)$.

Glossary

Homotopy

Glossary

Homotopy
 Homotopy equivalence

Glossary

Homotopy
Homotopy equivalence Contractible space

Glossary

Homotopy
Homotopy equivalence
Contractible space Retract

Glossary

Homotopy
Homotopy equivalence
Contractible space
Retract
Deformation onto subspace

Glossary

Homotopy
Homotopy equivalence
Contractible space
Retract
Deformation onto subspace
Deformational retract

Glossary

Homotopy
Homotopy equivalence
Contractible space
Retract
Deformation onto subspace
Deformational retract

Glossary

Homotopy
Homotopy equivalence
Contractible space
Retract
Deformation onto subspace
Deformational retract

