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@ Hartree-Fock approximation

@ Introduction to Density Functional Theory

© Approximations to exchange and correlations



Slater determinants
antisymmetrized n-electron wave function:
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¢a(r): orthonormalized solutions of the single electron Hamiltonian

h=-V24Voui(r);  (Baldp) = bap

Vewt(r): external (nuclear) potential; o = nlms: quantum numbers
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R, (r): radial solution

Yim (%): spherical harmonics

Xs: spin functions

e atomic units: A=1,e2 =2, m=1/2



matrix elements
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one-electron Hamiltonian:
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two-electron Coulomb interaction:
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Coulomb U, and J,5 exchange terms; 32" = a #



Hartree-Fock energy (HF)

Electron energy calculated using a Slater determinant |y ... a,):
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exchange
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sums over n occupied orbitals
Variation of Egp w.r.t. ¢, gives a set of Hartree-Fock equations



Hartree-Fock equations

Vh(r1)¢a(r1)

ha(r1) Z [ drvasitra)os r2>| ba(r1)

nonlocal (Ve )(r1)

- ; Suues | [ dradirapontea) L 500) = e

sums over occupied orbitals
o f‘r r,‘{zﬁ op(r ] ”‘(: f,"“ (r) is charge density
o exchange term (Vo )(r fV r, '), (r")dr’ is nonlocal
e Coulomb and exchange terms with @ = 3 cancel exactly
no “self-interaction” of an electron with itself
e the equations to be solved self-consistently
e only lowest n states are occupied; others are exciting states
e Koopmans' theorem: &, is the ionization energy;
€q — €8 are excitation energies

missing are correlations



configuration interaction

Hartree-Fock equations <= single Slater determinant

each electron moves independently in the Coulomb potential
corresponding to average positions of all electrons

Hartree-Fock is a mean field theory

configuration interaction (Cl):
to take multiple Slater determinants which include also excited orbitals

“exact”, controllable solution
allows to calculate, e.g., atomic multiples

basis size N grows exponentially with the number of electrons n and
orbitals m (N = m!/n!/(m —n)!).

For f shell (m=14):

N(1)=14, N(2)=91, N(3)=364, N(4)=16.016, N(5)=800.800;

N (6)=43.243.200, N(7)=2.421.619.200

applicable only to small molecules

correlation energy:
energy difference between the exact (Cl) and Hartree-Fock energies



from Hartree-Fock to density functional

weighted average of exchange density:

X J A5 (0)65 () i 64 (1) ()

(Vada)(r1) > ¢5(r)ds(r)

Pa(r) = Vx (r)¢a(r)

J. C. Slater, PR 81, 385 (1951)
e V,(r) has a form of potential energy!
o less accurate but much easier to implement
e the Bloch theorem can be used

for uniform electron gas

= (3p (r)>1/3 = SV Vialr) = 0 (ip(ﬁ)l/s

™

e an electron at r is surrounded by an exchange hole which contains
exactly one electron with the same spin (no correlation hole yet)

e « > 2/3: an adjustable parameter which mimics correlations
gave name to Xa-Scattered Wave (SW) method



Density Functional Theory (DFT)
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“This paper deals with the ground state of an interacting electron gas in an external potential o(r). It is
proved that there exists a universal functional of the density, F[#(r)], independent of 2(r), such that the ex-
pression E= [v(c)n (x)dr+F[n(r)] has as its minimum value the correct ground-state energy associated with
o(r). The functional F[n(r)] is then discussed for two situations: (1) n(r) =no+ii(r), #/n<<1, and
(2) n(x) = ¢(r/ro) with p arbitrary and ro — = In both cases F can be expressed entirely in terms of the cor-
relation energy and linear and higher order electronic polarizabilities of a uniform electron gas. This approach
also sheds some light on generalized Thomas-Fermi methods and their limitations. Some new extensions of
these methods are presented.
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Self-Consi t Equations Including Excl and Correlation Effects*
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From a theory of Hohenberg and Kohn, approximation methods for treating an inhomogencous system
of interacting electrons are developed. These methods are exact for systems of slowly varying or high density.
For the ground state, they lead to self-consistent equations analogous to the Hartree and Hartree-Fock
equations, respectively. In these cquations the exchange and correlation portions of the chemical potential
of a uniform electron gas appear as additional effective potentials. (The exchange portion of our effective
potential differs from that due to Slater by a factor of 2.) Electronic systems at finite temperatures and in
magnetic fields are also treated by similar methods. An appendix deals with a further correction for
systems with short-wavelength density oscillations.



The Nobel Prize in Chemistry 1998

Walter Kohn John A. Pople
Prize share: 1/2 Prize share: 1/2

The Nobel Prize in Chemistry 1998 was divided equally between Walter
Kohn "for his development of the density-functional theory” and John A.

Pople " for his development of computational methods in quantum
chemistry” .



spin-density matrix

The independent variable in the SDFT is the space-diagonal density

matrix:
o’y — (Mt(r) mpy(r)
n{re,xo’) (nu(r) NMI‘))

It is given by the product of wave functions ¥;(r) of occupied states:
Moo () = Y 0(er — i) (Xo | Wi () (Ui (r) [xo)
3

The off-diagonal elements can often be neglected:
nyy(r) = nup(r) = 05 ngp(r) = np(r); nyy(r) = ny(r)
collinear spin-density are expressed in terms of electron and spin densities
n(r) = ns(r) + ny(r); m(r) = n4(r) —ny(r)

A.R. Mackintosh and O.K. Andersen in “Electrons at the Fermi Surface”, 1980



DFT

Two basic theorems:
e the ground state wave function is a unique functional of the charge
density
e there exists a ground state energy functional which is stationary with
respect to variations in the charge density

We can determine the ground state energy of a real system if we manage
to construct an appropriate functional and to minimize it with respect to
the charge and spin density

The total energy of the real system:
E{n(ro,ra’)} = To{n(ro,ra’)} + Ug{n(r)} + Evc{n(ro,ra’)}
+/vewt(r)n(ra, ro’)dr
trial densities are generated by auxiliary fictitious non-interacting system

Z [—V? +0(ro,r0")] i(ro’) = expr(ro), o =1l

o’

n(ro,ro’) = Z(‘)(&F — &)Y (ro)y(ra’)
k



DFT

Kinetic energy of the non-interacting system:
To{n(ro,xo’)} => 0(ep — sk)/zwl’;(ra)(—vz)wk(ra)dr
k o

Coulomb (Hartree) energy:

1 2 n !
Ug{n(r)} = 3 /n(r) ( Ty I_,|n(r )dr > dr = 3 /n(r)vH(r)dr
Exchange-correlation energy functional:

Exe{n(ro,ra’)} = T{n(ro,v'o")} — To{n(ro,ra’)}
+ U{nP(ro,x'c")} —Ug{n(r)}

accounts for the difference between kinetic and Coulomb energies of the
real and non-interacting systems
External potential:

Vet (ro, ra’)

includes potential created by nuclei, spin-orbit coupling,. ..



DFT

Let us require that £{n(ro,ro’)} and
Eo{n(ro,ro’)} = To{n(ro,ro’)} + Z/v(ra, ro’)n(ro,ra’)dr

are minimized by the same n(ro,ro’) under condition of constant
number of electrons

zﬂ:/n(ra, ro’)dr = N

This defines the effective one-electron potential
v(ro,ro’) = vy (r) 4+ vee(ro, v0") + vegt (ro, ro’)
with the (still unknown) exchange-correlation potential

0Ezc{n(ro,ra’)}

on(ro,ro’)

Vze(ro, ro’)



Local Spin Density Approximation (LSDA)

Exchange-correlation functional is approximated by
Ercln(ro10")} % [ 37 2ueline (0), 1y ) (1 =[2sclr1(0) m, (1))

eze(ny,nq) the exchange-correlation energy of homogeneous electron gas
with density n(r) = n4(r) +ny(r) and spin density m(r) = nq(r) — ny(r)

Exchange-correlation potential is diagonal in spin:
8 [ eac(ny(r),ny(r))n(r)dr _ dege(ny, ny)n
0Ny ong

3 [ eae(ny(r), ny (r))n(r)dr
Omty

’UCL‘CD' -

=0

Vzet) =

nqg 7& ng = Vget 7& Vzel



LSDA

new variables: average electron radius s and spin-polarization ¢

47

S 7s=1n C=m/n=(nr—ny)/(ng+ny)

€zc 1S sum of exchange and correlations energies:

EQJC(annT) = Ew(nivnT) + EC(nivnT)

£(Q) is interpolated between fully polarized F' and nonpolarized P limits

Ew/c = Ef/c + (65/0 - 55/c)f(<)

b, 20 FF/P
el ==, B —9l/3:P, ef/P — _ F/PF< )
Ts
RPA results for homogeneous electron gas
U. von Barth and L. Hedin (1972)
or more accurate parameterizations of quantum Monte-Carlo results
+ correct ¢ — 0 and g — oo limits
J.P. Perdew and Y. Wang (1992), D.M. Ceperely and B.J. Alder (1980)



exchange and corelation holes in LSDA

interaction with an exchange-correlation hole:

Eyc(ny,ne) :/drn(r)/dunxc(r,rJru)/u

O. Gunnarsson and B. Lundqvist (1976)
LSDA hole density is that of uniform electron gas:

nge Ve, u) = 0 (ng (r), ny (r); u)
the LSDA hole satisfies sum rules
/dunm(r,r—l—u) =-1
/dunc(r,r—l—u) =0

ng(r,r+u) <0



Generalizd Gradient Approximation (GGA)

e LSDA underestimates exchange energies of atoms and molecules

e underestimates by ~ 1% equilibrium lattice constants, i.e.,
overbinds atoms in solids

e underestimates gaps in insulators and semiconductors

“obvious” extention to LSDA:
Exe [Ny, 1] z/ f(ny,ny, Vng, Vny)dr

- straightforward gradient expansion does not converged
- incorrect long-range behaviour of an exchange-correlation hole

expansion in generalized gradienltls s and t with real space cut-off
s =|Vn|/2kpn, kp = (3n2n)'/3
t=|Vn|/2k(On, ks = (4kp/m)'"?

Fermi wavelength 27 /kr and Thomas-Fermi screening length 1/k;

e improved atomization and total energies (PW91, PBE)
J. Perdew. .. PRB (1992), J. Perdew, K. Burke, M. Ernzerhof PRL (1996)

e improved lattice parameters, chemical bonds (PBEsol)
J. Perdew. .. PRL (2008)



GGA vs LSDA: equilibrium lattice constants

TABLE 1. Errors in equilibrium lattice constants (in Ax
1072) on our data set of 18 solids, relative to experiment with
estimates of the zero-point anharmonic expansion removed [28].

Class LSDA PBE TPSS PBEsol

Mean error TABLE II.  Errors in atomization energies (¢V) for the AE6 set
4 simple metals —9.0 29 53 -0.3 of molecules, using the 6-311 + G(3df, 2p) basis set.
5 semiconductors —L1 7.9 6.2 3.0 N
5 fonic solids ~84 85 638 20 Error LSDA  PBE  TPSS  PBEsol
4 transition metals —4.0 6.4 2.5 0.0 Mean error 3.35 0.54 0.18 1.56
Total -55 6.6 54 13 Mean abs. error 335 0.67 0.26 1.56

Mean absolute error

4 simple metals 9.0 34 53 23
5 semiconductors 13 79 6.2 3.0
5 ionic solids 8.4 85 6.8 27
4 transition metals 4.0 6.4 2.7 1.9
Total 5.6 6.7 5.4 25

J. Perdew. .. PRL 100, 136406 (2008)
meta-GGA TPSS adds to the functional the kinetic energy density

occ

To(r) =D [Vea (r)[?

[e3



GGA vs LSDA: equilibrium lattice constants

Solid LSDA PBE TPSS PBEsol Expt-ZPAE
Li 3383 3453 3475 3.453 3.451
Na 4.049 4199 4233 4.159 4210
K 5.093 5296 5362 5.232 5.212
Al 4.008 4.060 4.035 4.038 4.020
C 3.537 3.579 3579  3.562 3.556
Si 5410 5479 5466 5.442 5.423
SiC 4355 4404 4394 4381 4.349
Ge 5.634 5776 5.744  5.693 5.646
GaAs 5.626 5772 5745  5.687 5.643
NaCl 5471 5.696 5.696 5.611 5.580
NaF 4.505 4700 4.706 4.633 4.594
LiCl 4968 5.146 5113 5.072 5.090
LiF 3904 4.063 4.026 4.002 3.987
MgO 4.178 4270 4247 4229 4.197
Cu 3530 3.635 3.593 3.578 3.596
Rh 3.791 3.871 3.846 3.819 3.793
Pd 3851 3950 3917 3.888 3.877
Ag 3.997 4.129 4.076  4.045 4.064

J. Perdew. .. PRL 100, 136406 (2008)



GGA vs LSDA

improved
e atomization and total energies
e equilibrium lattice constants
e optimized crystal structures

e phonons

no improvement
e for gaps in semiconductors and insulators

o for ionization energies, electron affinities

similar band structures for the same crystal structure



hybrid functionals (PBEO, B3LYP ...)

“adiabatic connection”
1
Emc:/ Eacc,)\d)‘
0

e )\ is the strength of Coulomb interaction A/|r; — ra|

e )\ = 0 noninteracting Kohn-Sham reference system
single Slater determinant = only exchange without correlations

e )\ =1 fully interacting system

in hybrid functionals E.,. ¢ is replaced by exact exchange EXF
EPP = cBY" + (1 - o) EGEA
c is an adjustable parameter
A.D. Becke (1993), J.P. Perdew, M. Ernzerhof, and K. Burke (1996)
e even more accurate atomization and total energies for molecules

- difficult to implement for solids because of E&¥

sEX (screened EXchange) may reduce computations efforts



modified BJ potential

TABLE 1. Theoretical and experimental fundamental band
gaps (in eV). The structure is indicated in parenthesis. For
comparison, results from the literature which were obtained
by other methods are also shown (HSE03, HSE06, G, W,, and

GW). The experimental values were taken from
Refs. [4,7.10,14,18,23-26].

Solid LDA MBILDA HSE G,W, GW  Expt
Ne (Al) 1142 2272 19.59° 22.18 2170
Ar(Al) 816 1391 1034 1328° 149% 1420
Kr(Al) 676 1083 116
Xe (Al) 578 852 9.8

C (A4) 411 493 549" 550° 618 548
Si (A4) 0.47 1.17 128" 1.12° 1418 1.17
Ge(A4) 000 085 083" 066' 095 074
LiF(Bl) 894 1294 13275 159 1420
LiCl Bl) 606 864 9.4
MgO (BI) 470 717 667" 725 916°  7.83
SeN (BI)  —0.14 095" 14" ~09
MnO (BI) 0.76 2.8° 35" 39+04
FeO (Bl) —0.35 182  22° 24
NiO (Bl) 042 416  42° LI' 48 40,43

SiC(B3) 135 228 240" 227°
BN (B3) 439 585 599" 610°
GaN (B3) 163 281 314" 280°
GaAs (B3) 030 1.64 1L12° 1.30° 1.858
AIP (B3) 146 232 251% 244° 290¢
ZnS (B3) 184 366 349" 329° 4.15¢
Cds (B3) 086 266 225" 2065 287¢
AIN (B4) 417 555 581" 583

ZnO (B4) 075 268 249" 251" 38F

16 LDA *
O MBJLDA N
HSE
14 GQWn
x GW )
12 b
=
©°
2 g g *
o 10 2 3
g 9
S g o 5 .
E o
8 8 ] z +
2 5 =
8 2 g o + 5
3 8,2 & 4
S e .%o + z
g 8¢
£ Q 2% 0 +
4 I
z% @
38 @
o &% .+
.
o +y e
-
o 2 4 6 8 10 12 14 16

Experimental band gap (eV)

FIG. 1 (color online). Theoretical versus experimental band
gaps. The values are given in Table I (Ne is omitted).

F. Tran and P. Blaha, RPL 102, 226401 (2009)

e band gaps are much closer to experimental values than LSDA(GGA)

e computationally inexpensive



modified BJ potential

20
VI (r) = PR (r) + (3¢ - 2) \/ o (r)
’ I‘

e optimized exchange potential v2J : local potential with orbitals
minimizing the energy of the correspondlng Slater determinant
A.D. Becke and E.R. Johnson J. Chem. Phys. 124, 221101 (2006)
o vfz(r): an approximation to the Slater weighted exchange
A.D. Becke and M.R. Roussel, PRA 39, 3761 (1989)

o 7,(r) =3, |Vtpa(r)[?*: the kinetic energy density

L 19ne )] P e g
ec=a+p (V f R dr’ ) with adjustable parameters « and

- is not variational, i.e., no E, such that v7'%) = 6 E, /dn,

- should not be used for total energy calculations



self-interaction

electron density

n(r) =Y ¢h(r)os(r) =na(r) + > ng(r)

B B#«

LSDA(GGA) «a contribution to Hartree (Coulomb) and exchange energies:

EHaZ/Md 'dr

’ v —r'|

Ezc,a :/fxc(nT(I‘),n¢(r),Vw.szl’)na(r)dr

e in HF Coulomb U, and exchange J,. terms cancel each other

e no cancellation in LSDA; « electron interacts with its own density n,,
self-interaction

e negligible for delocalized electrons in metals

e strong for localized electrons (atoms, core electrons,. . .)



Self-Interaction Correction (SIC)

p100] = B0 30 | farar ™) 4 [aen0.c(na).0)

J. P. Perdew and A. Zunger (1981), A. Svane and O. Gunnarsson (1990)

e removes unphysical self-interaction for occupied electron states

e reduces errors in the total exchange and correlation energies of atoms
e improves agreement between orbital energies and ionization energies
e improves gaps in insulators

e broken symmetry solution lifts degeneracy of a partially filled shell

- nonlocal orbital dependent potential

- orbitals are non orthogonal

- not invariant under the unitary transformation of occupied orbitals

exactly zero for a Bloch state
but finite for localized Wannier orbitals



LSDA(GGA) total energy

not just a sum of eigenenergies: £ = To{ny,n, } +Uc{n} + Eze{ny, ny}
Kinetic energy

o= fens) /Z% (~ V2 (r)dr
ko
=3 ferolere =3 / vy (£) g (x)dr
ko o

f(eko) = 0(cF — €ko): Fermi function
Vo (T) = Vegt (r) + vE (r) 4+ vge, o (r): effective Kohn-Sham potential

(—V2 + Ua)wka = €koVkos na(r) = Z f(gkU)wZU(r)lpkU(r)
k
Coulomb energy:

1 2 2ZZ
2//|r_rf|” drdr/Z|r—R| Z|R “R,|

Exchange-correlation energy:

Eve{n(ro,ro’)} = [ezc(ns(r), ny(r))n(r)dr




exchange energy as a function of spin density
The exchange energy of homogeneous electron gas
3 3 TLE —|—7’L§ 3 3 4 4
" , — _6 - _ 7 = —3 _— [ ]_ 3 ]. - 7:|
) =0 (&) S s (Za) [a w0t v a- o

and the exchange potential (o0 = 1= —1, 0 = |= +1)

=2 ey = -8 (2| = -8 (2n) ' (1moe)}
vxg—anaax ny,ne)(ne+ny) = e e o

The larger ny (n/2 < ny < n) the deeper the potential = Hund’s rule is satisfied
Expansion in ¢ around non-spin-polarized densities:

ex(n,¢) =~ -3 (in) ’ (142¢%/9) quadratic

8 /(3

o(Q) = 01 (C) — vas(O) = —5 (an ¢ linear



Stoner criterion

Q Why not all metals are ferromagnets?
A gain in the exchange-correlation energy due to spin-polarization
M = ['m(r)dr is (over)compensated by loss in the kinetic energy

Stoner criterion for ferromagnetism: N (Ep)-I >1
for 3d (I = 2) transition metals:

I g [ b)) r)de

O. Gunnarsson, J. Phys. F 6 587 (1976)

Susceptibility:
_ Xo
~ 1—-IN(EF)

The magnetic instability is driven by I instead of U as in the Hubbard model

X

Let us consider
M

Xo(A) = N

M is magnetic moment induced by external spin splitting



Xo(A) for Fe

Xo(A — 0) = N(EF) > 1/]

Fed

DOS (1/eV/atom)
o n

Energy (eV)

M(A) is approximately equal to the self-consistent moment of 2.26 ug



Xo(A) for Fe

Xo(A — 0) = N(EF) > 1/]

Fed

N
DOS (1/eV/atom)
o

A(eV) Energy (eV)

M(A) is approximately equal to the self-consistent moment of 2.26 ug



Xo(A) for Fe

Xo(A — 0) = N(EF) > 1/]

2.0 ,/\ /‘/,/‘ Fed
o 21
_ 1, —
154 5
8
§ lLspa / = 5 0
10 gea o 1 @ W
T o]
0.5+ " 2l
i T — T+ 0 + + +
00 0 1 2 3 -6 -4 -2 0 2
A(eV) Energy (eV)
M) 1
A 1

M(A) is approximately equal to the self-consistent moment of 2.26 ug



Xo(A) for Fe

Xo(A — 0) = N(EF) > 1/]

2.0 e Fed
4 2
_ 1, —
154 é
§ lLspa = 3 0 \\
1.0 Vigon T . = W
(]
0.5+ M 2
0.0 ¥+t 0 . | |
0 1 2 3 -6 -4 -2 0 2 4
A(eV) Energy (eV)
M) 1

M(A) is approximately equal to the self-consistent moment of 2.26 ug



Xo(A) for Pd

e High DOS peak almost at Ep
e but [ is low due to larger extent of Pd 4d states

0.6

Pdd

371/ |

1 ‘GGA

+0.4

T0.2

N
DOS (1/eV/atom)
o

%0 o5 T a0? 6 - 2 0 2
AeV) Energy (eV)
M 1
A=<=

Stoner criterion is not fulfilled



Xo(A) for Pd

e High DOS peak almost at Ep
e but [ is low due to larger extent of Pd 4d states

0.6
31 1 ] Pdd
o P
GGA / . 1+
€
10.4 S
2 M/A s \\
[%2]
14 0.2 Q
\\\ A4
0 —— e 0.0 ‘ ‘ !
0.0 05 1.0 6 4 -2 0 2
Energy (eV)

AeV)

M 1
XO(A)*K < 7

Stoner criterion is not fulfilled
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