Рентгенодифракционные методы исследования структуры материалов

Полные функции радиального распределения атомов: чистого графита (черная линия) и каменного угля (серая линия), как пример обработки дифрактограмм от аморфного и кристаллического материала по методике для аморфных материалов

ЗАВИСИМОСТЬ МАССОВЫХ КОЭФФИЦИЕНТОВ ОСЛАБЛЕНИЯ ОТ ЭЛЕМЕНТА И ДЛИНЫ ВОЛНЫ

Глубина проникновения в Fe для интенсивности отражения 99%

	(111)	(400)
Cu	20	45
Со	122	282

О-2О дифрактограммы сплава Cr15Ni25Cu2 после насыщения водородом на разных стадиях процесса дегазации

Fe-25Cr-20Ni после электролитического наводораживания 50 мA/см², 72 часа

Дифрактограмма ОЦК стали с выделением карбида, как пример чувствительности фазового анализа

Влияние длины волны на чувствительность к разным фазам на примере пирита в каменном угле (изменения в 3 раза)

Пример качественного фазового анализа трехфазного сплава на основе железа

Рентгеновские полюсный фигуры образца в исходном состоянии, Fe -15Cr-40Ni, рефлекс (111)

После прокатки

Отжиг 1050 °С, 30 мин

Полюсные фигуры полученные в разных рефлексах

Полюсные фигуры полученные в рефлексе (111) в трех взаимноперпендикулярных направлениях образца

Электролитическое наводораживание сопровождается активной пластической деформацией поверхностного слоя образцов. Степень деформации аустенита (аксиальная компонента текстуры) зависит от склонности к образованию ГПУ-мартенсита.

Полюсные фигуры после дегазации при комнатной температуре, рефлекс (111) аустенита

Ga в сплавах железа

1 Адсорбируется на плотноупакованных атомных плоскостях.

2. Изменяет соотношение интенсивности рефлексов на рентгенограммах.

Возможная причина изменения соотношения интенсивности рефлексов: кристаллографическая текстура вследствие пластической деформации при растворении галлия.

3d полюсная фигура сдвойникованного мартенситного монокристалла сплава Ni2MnGa

Определение систем двойникования в 5-тислойном мартенсите сплава Ni2MnGa

Кривые качания Fe-36Ni при разной степени пластической деформации, вызванной электролитическим насыщением водородом

Влияние различных параметров на кривую рентгеновской рефлектометрии

Пример результатов измерения методом рефлектометрии на дифрактометре общего назначения

Определение периода упорядоченной структуры графитоподобных кластеров углерода с высокой плотностью турбостратных дефектов

Расстояние между центрами кристаллитов в антрацитах

Образец	10	11	12	13	14
l, nm	1.9	2.3	2.0	2.3	2.8