Эффект Мессбауэра и его применение В физическом материаловедении

Введение в лабораторную работу

Эффект Мессбуэра:

«Резонансное поглощение гамма квантов ядрами кристаллической решётки без отдачи», 1957 г.

Энергия переходов для внешних электронов мала, а уровни размыты. Поэтому мала энергия отдачи.

Эксперимент Вуда для переходов между энергетическими уровнями внешних электронов в атомах натрия.

Проблемы для резонанса на ядерных уровнях

1. Большая энергия гамма квантов и, соответственно, большая энергия отдачи мешают получить резонанс:

2. Допплеровский сдвиг энергии гамма квантов из-за тепловых колебаний ядер в источнике и поглотителе со скоростью v:

 $\Delta v = -v(v/c)\cos\theta.$

Для поглотителя, движущегося навстречу квантам, изменение их энергии: E_r(1 + v/c). В случае обратного движения поглотителя: E_r(1 – v/c).

Общее уширение линии: 2(v/c)Er

Доплеровская ширина линии выражается через энергию отдачи как

$$D = 2\sqrt{E_R kT}$$

Общее уширение линии способствует резонансу на хвостах.

Попытки получить ядерный резонанс до открытия Мессбауэра

1. Резонансное поглощение благодаря перекрытию на «хвостах» Лоренцевского уширения резонансных линий.

2. Использование эффекта Допплера для компенсации 2-х энергий отдачи.

Открытие Мессбауэра (1957-1959-1961)

1. 1957 г. Эксперимент на изотопе иридия ¹⁹¹Ir при 20 °C. Чтобы измерить «фон» установки, Мессбауэр понижал температуру до 88 К с целью ослабить перекрытие резонансных линий. Вместо ослабления резонансного поглощения наблюдалось его усиление.

2. <u>Сущность эффекта – восприятие энергии отдачи всей</u> кристаллической решёткой. Вместе с энергией отдачи исчезает и Допплеровское уширение резонансной линии.

3. Парадокс: 20-ю годами ранее Лэмб наблюдал несмещённую резонансную линию при облучении нейтронами ядер в кристаллической решётке.

4. Пари в Лос-Аламосе (1959): скорости колебаний атомов ~10² км/с, а вариация энергии квантов в эксперименте ~мм/с. (возможное объяснение: длина волны гамма кванта ~10⁻² Å, амплитуда колебаний ядер в решётке ~10⁻⁴ Å).

5. Нобелевская премия в 1961 г.

Схема экспериментальной установки

Общая значимость Мессбауэра

- 1. Общая физика (Pound, Rebka). Определение гравитационного сдвига энергии фотонов, Частота гамма квантов должна зависеть от гравитационного потенциала земли. На высоте h она уменьшится на величину
- $\Delta v = v \frac{gh}{c^2}$, что составляет 10⁻¹⁶v на метр высоты. (Сверка хода часов на спутниках и на земле. Опыт на башне высотой 22.5 м).
- 2. Ядерная физика. Прямое наблюдение расщепления ядерных уровней во внешних магнитных полях (Зеемановское расщепление): (i) повышение точности определения энергии гамма квантов в миллиарды раз; (ii) определение магнитного момента атомов в возбуждённом состоянии; (iii) определение изомерных сдвигов.
- Наиболее интересны применения в физическом металловедении.

Параметры ЯГР спектров. Изомерный сдвиг

Электростатическое взаимодействие между ядром и s-электронами. Изменение зарядовой плотности sэлектронов на ядре изменяет энергию ядра, что сдвигает ядерный уровень, т.е. сдвигается центр тяжести ЯГР спектра.

Пропорционален различию радиусов ядра в стационарном и возбуждённом состояниях.

Квадрупольное взаимодействие

$$\varepsilon = \frac{e^2 q Q}{8} (3\cos^2 \Theta - 1)$$

Обусловлено взаимодействием квадрупольного момента ядра с градиентом электрического поля.

- Q квадрупольный момент ядра,
- q градиент электрического поля,
- Θ- угол между направлениями
 градиента электрического поля
 и поляризации атомных
 магнитных моментов.

дублет в парамагнетике

При наличии магнитного поля выражается в неоднородном сдвиге резонансных линий 4*ɛ*.

Сверхтонкое поле на ядре (эффект Зеемана)

Твёрдый раствор Fe-13Cr, 4V, 1Mo, 2.2 C, (mass%)

-1/2

-3/2

-1/2

+1/2

I = 1/2

Распределение сверхтонких полей обусловлено наличием в твёрдом растворе атомов с различным атомным окружением и, соответственно, различным магнитным моментом.

Интерпретация компонент ЯГР спектров в твёрдых растворах

b

$$\varepsilon = \frac{e^2 q Q}{8} (3\cos^2 \Theta - 1)$$

Спектры для **а** и **b** отличаются знаком и в два раза величиной квадрупольного расщепления;

для **а** и **с** совпадают с точностью до величины изомерного сдвига;

для **с** и **d** отличаются знаком и в два раза величиной квадрупольного расщепления.

Конфигурации атомов углерода и азота в парамагнитных ГЦК твёрдых растворах Fe-C и Fe-N

Взаимодействие между атомами внедрения в ГЦК твёрдых растворах на основе железа

(расчеты методом Монте Карло с использованием данных ЯГР)

Атомы углерода образуют пары в 1-й координационой сфере, атомы азота – во второй.

Фазовый состав

Совместное легирование азотом и углеродом стабилизирует ГЦК фазу.

Переход $-1/2 \rightarrow -3/2$ в твёрдом растворе Fe-2.03 mass %C A(1,2) -атомы железа без

А (1,2) – атомы железа без атомов углерода в пределах двух первых координационных сфер;

В (3,4) – атомы железа, имеющие1 атом углерода, соответственно, во второй и первой координационных сферах;

C(5,6) – атомы железа с парой атомов углерода в первой координационной сфере, но с различным квадрупольным взаимодействием.

Ближний атомный порядок

Сталь Cr15Mo1...

Закалка + отпуск 550 °С.

Углерод и азот удалены из твёрдого раствора.

Однородность распределения хрома увеличивается в последовательности легирования С—N—C+N.

Дилатация решётки углеродом изменяет распределение сверхтонких полей, приближая его к таковому в инварном сплаве Fe-36Ni.

Задача для лабораторной работы:

- 1. Ознакомление с Мессбауэровским спектрометром WISSEL.
- 2. Измерение спектра твёрдого раствора Fe -9.1%C-9.3%N (at. %).
- 3. Анализ полученного спектра в терминах распределения атомов углерода и азота в парамагнитной (аустенит) и ферромагнитной (мартенсит) компонентах спектра.

<u>Применение метода Монте Карло к расчету энергий парного</u> взаимодействия атомов углерода или азота в ГЦК железе.

Многомерный вектор **R**_j описывает координаты атомов в изучаемом растворе. *E*(**R**_j) энергия системы в состоянии **R**_j. Вероятность (плотность вероятностей) найти систему в этом состоянии:

$$P(R_{j}) = \frac{1}{Z} \exp\left[-\frac{E(R_{j})}{k_{B}T}\right]$$

где Z – статистическая сумма состояний системы. Параметр A(**R**_j), характеризующий данное состояние системы (т.е. параметр ближнего порядка), является термодинамическим средним значением

$$=\frac{1}{N}\sum_{j=1}^{N}A\(R_{j}\)$$

где *N* – количество случайных вычислений этого параметра в произвольно выбранных состояниях системы.

Вначале атомы углерода или азота произвольно располагаются по междоузлиям системы. Вероятность переходов *P*_{tr}(**R**_j→**R**_i), ведущих систему к равновесию:

$$P_{tr} = \frac{\exp[-\frac{\delta E}{k_{B}T}]}{1 + \exp\left[\frac{\delta E}{k_{B}T}\right]}$$

где $\delta E = E(\mathbf{R}_i) - E(\mathbf{R}_j)$. Модель решёточного газа выбрана для твёрдого раствора внедрения, и энергия системы определяется как сумма парных взаимодействий между атомами внедрения:

$$E = \frac{1}{2} \sum_{j \neq i} w(r_i - r_j) C(r_i) C(r_j)$$

где суммирование выполняется по всем междоузлиям **r**_i, *w*(**r**_i – **r**_j) – энергия парного взаимодействия атомов внедрения в позициях **r**_i и **r**_j, C(**r**_i) равно 1, если атом внедрения занимает данную позицию, или 0, если нет.

- междоузлие с некоторой вероятностью; (5) процедура повторяется от стадии 1 пока система не достигнет термодинамического равновесия (т.е. когда энергия системы и параметры ближнего порядка начинают флуктуировать вокруг некоторых средних значений);
- (1); (4) если нет, атом внедрения может прыгнуть в это можломалие с некоторой веродтностью:
- (1) оккупированное междоузлие выбирается случайно;
 (2) соседнее междоузлие также выбирается случайно;
 (3) если оно занято, процедура повторяется со стадии
- Процесс моделирования выглядит следующим образом. Конечная ГЦК решётка (напр. 24×24×24 параметра решётки в кубе) выбрана с периодическими граничными условиями. Атомы внедрения определённой концентрации случайно распределены по междоузлиям Затем реализуются следующие шаги:

(6) После того как система достигнет термодинамического равновесия, выполняется статистическое усреднение полученных параметров.

T.O, если известны значения энергий взаимодействия между атомами внедрения, можно получить параметры их распределения в твёрдом растворе. Зная долю каждой атомной конфигурации из ЯГР спектра, можно решить обратную задачу.