Тема 1

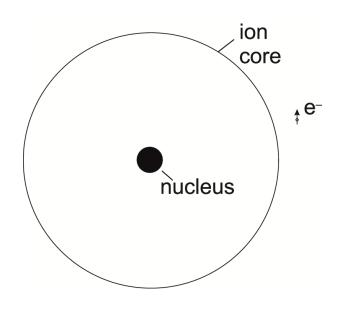
Корреляция между межатомным взаимодействием, кристаллической структурой и свойствами твёрдых тел

Содержание

- 1. Вступление: проблемы в описании электронной структуры кристаллов.
- 2. Экскурс в историю.
- 3. Электронное строение изолированного атома.
- 4. Электронная структура кристаллического твёрдого тела.
- 5. Корреляция между электронной и кристаллической структурами и свойствами химических элементов.

Применение уравнения Шредингера для электронов в кристалле

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + \nu(\overline{r})\right)\psi(\overline{r}) = E\psi(\overline{r})$$


В отличие от изолированного атома проблемой является вычисление потенциала кристалла V(**r**).

Wigner и Seitz, 1933 г.

Расчёт для Na: межатомное расстояние, r_{W-S} , энергия когезии, E_c , объёмный модуль, B, получены с точностью 10 %.

Электронная структура атома Na: {1s²2s²2p⁶} 3s¹

т ионный кор

Проблемы в случае многовалентных металлов

- 1. Самосогласованный расчет потенциала ионного кора.
- 2.1. Статические корреляции (предотвращение кулоновского отталкивания электронов с одинаковой энергией; принцип Паули; метод Хартри-Фока: запрет Паули уменьшает энергию кристалла на величину, называемую обменной энергией.
- 2.2. <u>Динамические корреляции</u> между электронами с антипараллельными спинами понижают энергию кристалла на величину, называемую <u>корреляционной</u> энергией.
- 80-е годы: обменные и корреляционные эффекты моделируются добавкой <u>локального обменно-корреляционного потенциала vxc(r)</u> к кулоновскому потенциалу в уравнении Шредингера.

Метод функционала локальной плотности

Теорема Кона-Шема:

Все физические свойства кристаллического тела можно получить, если известны распределение электронной плотности и потенциал, в котором эта плотность формируется.

Полная энергия системы является функционалом электронной плотности:

$$E_{tot}(\rho_{\sigma}) = T_e + E_{ee} + E_{N,e} + E_{xc} + E_{NN}$$

где ho_σ - электронная плотность,

 $T_{\rm e}$ – кинетическая энергия невзаимодействующих электронов;

 E_{ee} – электрон-электронное отталкивание;

 $E_{N.e}$ –притяжение электронов и ядра;

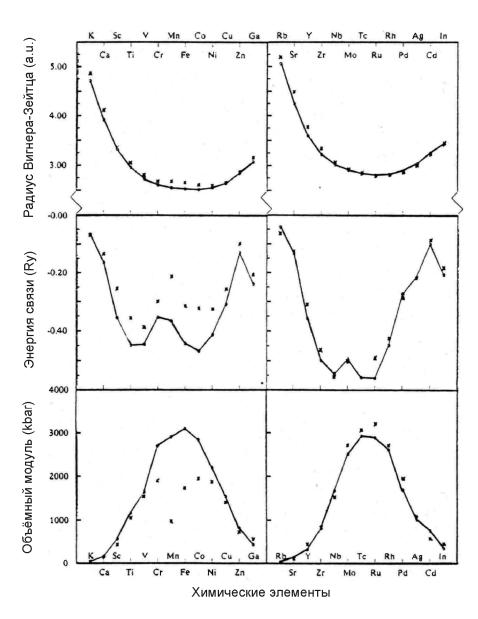
 $E_{\rm xc}$ – обменно-корреляционная энергия;

 $E_{\rm NN}$ - кулоновская энергия фиксированных ядер.

Одноэлектронное уравнение Кона-Шема аналогично уравнению Шредингера, в котором оператор Гамильтона заменён оператором полной энергии и волновая функция заменена электронной плотностью.

Уравнение Кона-Шема:

$$\left[-\nabla^2 + V_{Ne} + V_{ee} + V_{xc}^{\sigma}\right] \cdot \chi_{\sigma,i,k}(r) = \varepsilon_{\sigma,i,k}(r)\chi_{\sigma,i,k}(r)$$


 χ_{σ} - электронная плотность,

 σ - спин электрона, *i* - номер его энергетического уровня,

k - волновой вектор.

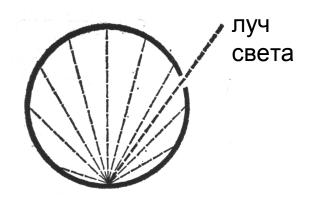
Потенциалы V_{Ne} , V_{ee} , V_{xc} соответствуют притяжению электронов и ядра, электрон-электронному отталкиванию и обменно-корреляционному взаимодействию.

Первый расчет методом функционала локальной плотности (3d и 4d металлы)

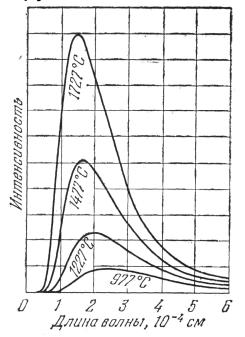
Moruzzi et al., 1983.

кривые – расчет,

точки - эксперимент.


Точность для 4d металлов ~10%

Большие отклонения для значений энергии связи и объёмного модуля в 3d металлах объясняются магнетизмом. Эта проблема была решена с учётом спиновой поляризации в присутствии магнитного поля.


Экскурс в историю

Предтечей квантовой механики была ультрафиолетовая катастрофа.

Абсолютно чёрное тело:

Интенсивность излучения как функция длины волны:

Поверхность абсолютно чёрного тела — **стандартный излучатель.**

Закон Кирхгофа: Для любой длины волны и температуры, отношение энергии, испущенной поверхностью твёрдого тела, к энергии, испущенной абсолютно чёрным телом, равно коэффициенту поглощения для данного материала.

Классическая физика: интенсивность излучения монотонно растёт с частотой. Эксперимент: излучение абсолютно чёрного тела стремится к нулю при малых и больших длинах волн.

Закон смещения Вина: λ_{max} ·T=C₀=0.2898 cm·K

Постоянная Планка

Планк, 4.12.1900: «Осциллятор, совершающий колебания с частотой ∨, получает или излучает энергию квантами E = h∨.»

Закон Планка:
$$E(\lambda, T) = \left(\frac{8\pi hc}{\lambda^5}\right) \frac{1}{\exp\left(\frac{hc}{\lambda kT}\right)} - 1$$

Найдя λ и, решив полученное уравнение относительно λ_{max}, получим квантово-механическую запись закона Вина:

 $[Дж\cdot c] = [r\cdot cm^2\cdot c^{-2}\times c] = [r\cdot cm\cdot c^{-1}\cdot cm] = [импульс\cdot длина] = [момент импульса] = [действие].$

Физический смысл h: Если численное значение некоторой динамической переменной с размерностью действия сравнимо с постоянной Планка, анализ должен проводиться в рамках квантовой механики.

Элементарные сведения об электронной структуре изолированного атома

Квантовые числа

<u>Главное квантовое число *n*</u> характеризует энергию электрона. n = 1, 2, 3, ... (уровни энергии K, L, M, ...), $\mathbf{E_n} = -\mathbf{n}^2 \, \mathbf{Ry}, \, \mathbf{Ry} = \mathbf{13.6} \, \mathbf{eV} -$ энергия электрона водородного атома в невозбуждённом состоянии.

Второе квантовое число, орбитальное, I, - мера момента импульса электрона. I = 0, ..., n-1. Орбитальный момент многоэлектронного атома $\mathbf{L} = \sqrt{I(I+1)} = 0, \sqrt{2}, \sqrt{6},$ Электроны с I = 0, 1, 2, 3... обозначаются как s, p, d, f Орбитальный момент атома — вектор. Проекция на выделенное направление $\mathbf{L}_{\bullet} = \mathbf{m}_{I} \hbar$.

Магнитное квантовое число $m_{\underline{I}} = 0, \pm 1, ..., \pm I - 1$ мера проекции момента импульса на выделенное направление. Вырождение в отсутствие поля (2/+1).

<u>Четвёртое квантовое число, спиновое</u> $m_s = \pm 1/2$. Вырождение **2(2/+1)**.

Количество электронов в каждой электронной полосе: **2n**².

Радиус стационарной орбиты электрона в атоме: $a_n = n^2$ a.u. 1 a.u. = 0.529 Å = «радиус орбиты» электрона атома водорода в основном состоянии (боровский радиус).

Запись электронного строения атомов

Гелий (2 электрона): **1s**² (n=1, l=0, максимальное число электронов = 2).

Натрий (11 электронов): $1s^22s^22p^63s^1$ (уровень с n = 2 заполнен, $2n^2$ = 8, 3-й уровень с n = 3 начал заполняться).

Калий (19 электронов): $1s^22s^22p^63s^23p^64s^1$. Особенность переходных металлов: $E_{4s} < E_{3d}$.

Кальций:3s²3p⁶4s²

Подуровень 3d заполняется со следующего элемента **скандия**: 3s²3p⁶3d¹4s².

В конце периода соотношение энергий станет противоположным, $E_{3d} < E_{4s}$, и 3d оболочка заполнится раньше, чем 4s.

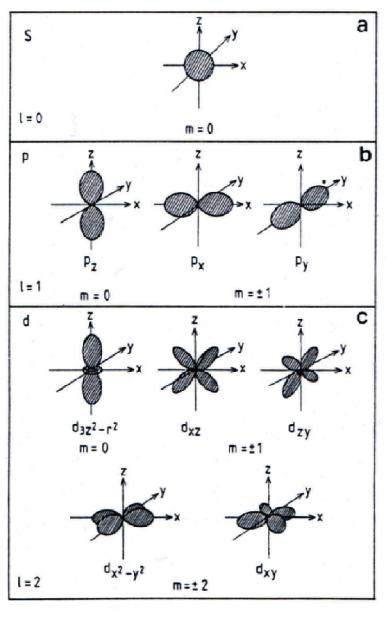
Медь:3d¹⁰4s¹.

Пространственная симметрия электронов

Определяется значением орбитального момента, характеризующего угловую зависимость волновой функции.

Электроны **s**, **p**, **d** и **f** с различными значениями орбитального квантового числа имеют различную пространственную симметрию.

Решение уравнения Шредингера для движения электрона в сферически симметричном поле ядра:


$$\psi = R_s(r) Y_{lm}(\theta, \varphi),$$

где $R_s(r)$ –радиальная и $Y_{lm}(\theta,\phi)$ - угловая части волновой функции, θ и ϕ - полярный и азимутальный углы радиусвектора электрона.

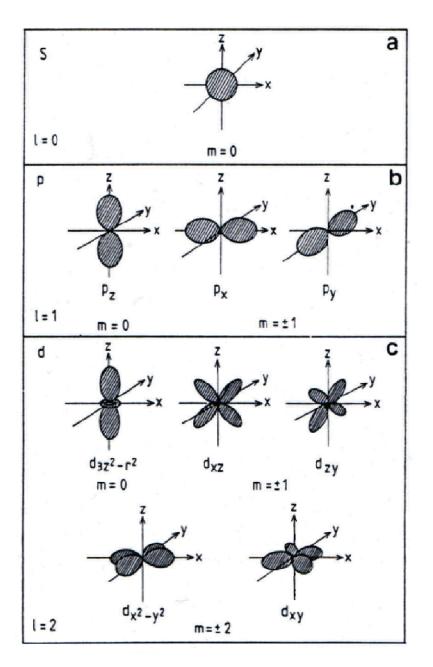
При I = 0, $m_I = 0$ (**s**-электроны), угловая часть:

$$Y_{lm}(\theta, \varphi) = 1/\sqrt{4\pi}$$
.

Пространственная симметрия электронов

Для *s*-электронов волновая функция не имеет угловой зависимости:

$$\psi_{ns} = R_{ns}(r)$$
.


В **р**-состоянии с I = 1, $m_I = 0$, ± 1 , и угловая зависимость, определяется $\cos \theta$, где θ - полярный угол. Из соотношения между декартовыми и полярными координатами **z** = $\mathbf{rcos}\,\theta$,

р_z орбиталь формируется с вероятностью 1 для электрона вдоль оси z

 $(\cos\theta = 1 \text{ для } \theta = 0, \pi; \text{ и } 0 \text{ для } \theta = \pi/2.)$ $\mathbf{p_{x_i}} \mathbf{p_y} - \text{линейная комбинация}$ состояний с I = 1 и

$$m_1 = \pm 1.$$

Пространственная симметрия электронов

Пять **d орбиталей** с *l* = 2 распределены вдоль диагоналей плоскостей ху, хz, уz и вдоль оси z, но на расстояниях от ядра, существенно превышающих радиусы электронных оболочек р-электронов.

Из пространственного распределения электронов в изолированном атоме следует: межатомная связь в кристаллах и, следовательно, тип кристаллической решётки должны существенно зависеть от углового момента атомных валентных электронов.

Стационарные состояния многоэлектронных атомов

Стационарное состояние атома определяется решением уравнения Шредингера для системы электронов, движущихся в кулоновском поле ядра и электростатически взаимодействующих друг с другом.

Оно характеризуется значениями <u>полного орбитального</u> момента **L** и полного спина **S** как суммы соответствующих моментов электронов.

В отсутствие внешних полей, энергетический уровень атома с заданными значениями L и S вырожден.

При наличии поля, векторы **L** и **S** могут принимать различные значения в пространстве.

Полный момент атома **J=L+S** сохраняется. **J** может принимать значения от **L–S** до **L+S** и кратность вырождения полного момента атома равна произведению **(2L+1)(2S+1)**.

Стационарные состояния атомов

Значения полного орбитального момента **L** обозначаются большими буквами латинского алфавита:

Для описания атомного уровня энергии используют следующую символику:

- 1. Обозначают полный орбитальный момент атома, L;
- 2. Слева вверху: число возможных атомных подуровней, называемое мультиплетностью уровня:
- **2S+1** (если S≥L) или **2L+1** (если L≥S);
- 3. Справа внизу: значение полного момента **J**:

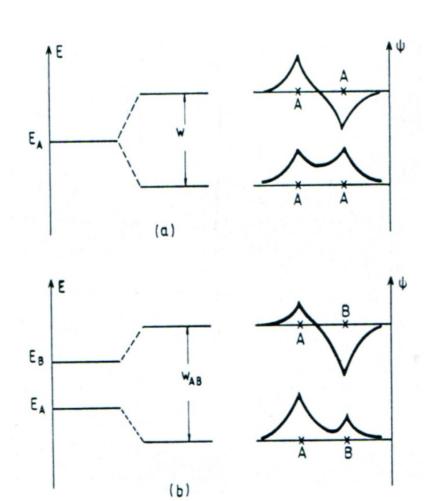
Примеры обозначения электронной структуры атомов

1. **He**, основное состояние: $1s^2 \, ^1S_0$. Поскольку 2 электрона находятся в состояниях s, L = 0, S = 0, J = 0.

Если возбудить атом гелия, переведя один **s**-электрон на **p** подуровень, электронная конфигурация запишется как $1s^11p^1 {}^3P_0$, что означает: L = 1, S = 1, J = 0. J = 0 - наименьшее возможное значение полного момента, пробегающего значения от **L-S** до **L+S**.

2. **Мп**, основное состояние ...3d⁵4s² 6 S_{5/2}. В валентной зоне - **пять** 3d электронов и **два** 4s электрона. Их волновые функции распределены в пространстве так, чтобы полный орбитальный момент атома **L=0**. Полный спин атома **S = 5/2**. Соответственно, полный момент атома **J = 5/2**.

Правило Хунда


определяет распределение электронов в изолированном атоме, если при одной и той же электронной конфигурации возможны различные варианты, не противоречащие принципу Паули.

Наименьшей энергией обладает антисимметричная конфигурация с наибольшим возможным значением атомного спина S и, при таком S, минимально возможным значением орбитального момента L.

Пять **d** электронов в атоме Mn со спином 1/2 формируют максимальный атомный магнитный момент с суммарным спином 5/2, т.е., **наибольшее возможное число спинов будут неспаренными**.

Полный орбитальный момент пяти электронов, у каждого из которых I = 2, может пробегать значения от 0 до 10, и минимальное значение равно нулю.

Симметричные и антисимметричные комбинации волновых функций

 x_1 , x_2 - координаты 2-х атомов, ψ_1 , ψ_2 - волновые функции их электронов.

$$\psi_1(x_1)\psi_2(x_2)\pm\psi_1(x_2)\psi_2(x_1).$$

Возможны 2 решения уравнения Шредингера. Меньшей энергией обладает симметричное (связующее) состояние в сравнении с антисимметричным (антисвязующим). Причина — увеличение энтропии.

Классификация межатомных связей

Ионная (гетерополярная) связь возникает, если атомы соединяемых элементов отдают или получают электроны, приобретая тем самым электронную структуру инертных газов.

Пример: NaCl или MgS.

Na: ...2s²2p⁶3s¹, Mg: ... 2s² 2p⁶3s², избыток **s**-электронов в сравнении с оболочкой Ne (...2s²2p⁶).

CI: $3s^23p^5$, S: $3s^23p^4$, нехватает **p**-электронов чтобы получить заполненную оболочку аргона ... $3s^23p^6$.

Если атом Na отдаст свой 3s электрон атому CI, а атом Mg свои два 3s электрона атому S, получаются пары противоположно заряженных ионов с оболочками неона и аргона.

Эта связь возникает благодаря электростатическому притяжению.

Взаимное проникновение электронов не имеет места вследствие ограничения, накладываемого принципом Паули, вследствие чего возникают силы отталкивания.

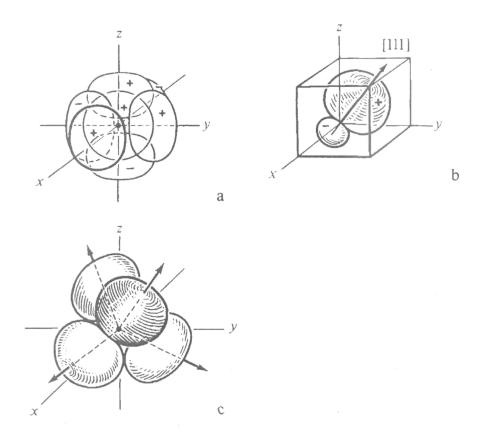
Соотношение между силами притяжения и отталкивания было установлено Борном и Майером:

$$u = \frac{-Ae^2}{d} + B \exp \frac{d}{\rho} \quad ,$$

где **е** – заряд электрона, **d** – расстояние между ионами, **A** – постоянная Маделунга, ρ - вычисляется из измерений сжимаемости.

Ограничение для структуры ионного соединения $A_x B_y$: количество атомов в первой координационной сфере ионов А и В, должно соотноситься как **х**:**у**, чтобы кристалл оставался электронейтральным.

Ковалентная (гомеополярная) связь


Получается путём обобществления электронов, принадлежащих разным атомам с образованием стабильной ns+np конфигурации.

Например, во внешней электронной оболочке атома **CI** (...3s²3p⁵) нехватает одного **p** электрона в сравнении с конфигурацией аргона.

В молекуле \mathbf{CI}_2 по одному электрону каждого атома обобществлены и осуществляют направленную связь между атомами.

Число единичных ковалентных связей, которые может образовать каждый атом, равно числу электронов, необходимых для заполнения внешних ns+np оболочек.

Ковалентная связь в алмазе

R.W. Cahn, P. Haasen. Physical Metallurgy. North Holland, vol.1 p.7.

Внешняя оболочка атома углерода: 2s²2p² →2s¹2p³. Нехватает 4 электрона для получения структуры неона.

(a) 4 ненасыщенные sp гибридные связи каждого атома обобществляются;

(b,c) обобществление происходит вдоль осей тетраэдра.

В кристаллах, аналогичных структуре алмаза: высокая температура плавления, твёрдость и хрупкость (малейший сдвиг разрывает связи).

Связи Ван-дер-Ваальса

Существуют между всеми атомами, ионами и молекулами. Они малы. В конденсированных инертных газах являются единственными силами, удерживающими атомы в кристаллах.

В некоторых полупроводниках (напр., Se) с их помощью осуществляется связь в определённых кристаллографических направлениях.

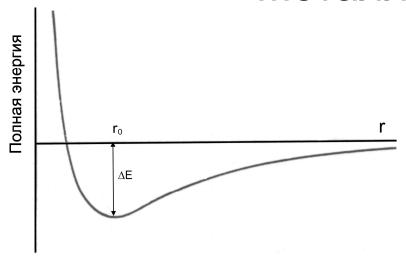
Источник сил Ван-дер-Ваальса - поляризационный эффект: электроны, движущиеся в одном атоме, влияют на движение электронов соседнего атома.

Электронные оболочки соседних атомов деформируются, поляризуясь, так что возникает электрический диполь.

Диполь-дипольное взаимодействие обеспечивает Ван-дер-Ваальсову связь.

Вклад сил Ван-дер-Ваальса в энергию решётки:

$$u = 3\hbar \, \nu_0 - \frac{3\hbar \, \nu_0 \alpha^2}{4a^6}$$


где \hbar - постоянная Планка, v_0 - частота колебаний соседних атомов, α - константа поляризации, d - расстояние между атомами.

Первый член - энергия изолированных атомов, Второй — энергия их взаимодействия.

Силы Ван-дер-Ваальса быстро убывают с увеличением расстояния между атомами.

Поскольку эти силы ненаправленные, имеется тенденция к плотной упаковке атомов в решётке.

Металлическая связь

Источник - силы притяжения между решёткой положительно заряженных ионов и окружающим газом свободных электронов. Может быть интерпретирована как ослабленная ковалентная связь. Следующие компоненты дают вклад в энергию решётки:

$$u=-rac{Ae^2}{\Omega^{1/3}}+rac{Be^2}{\Omega^{2/3}}+rac{Ce^2}{\Omega}$$
 где Ω - атомный объём.

Первый член – потенциальная энергия свободных электронов; Второй – их кинетическая энергия; Третий – кинетическая энергия электронов на более низких уровнях.

Минимум соответствует равновесному расстоянию между атомами. Энергия ∆Е - теплота сублимации. Радиус кривизны в области минимума характеризует сжимаемость металла.

Сравнение групп в терминах металлической связи:

металлы группы **1A (Na, K, Rb), ...np**⁶(**n+1)s**¹, металлы группы **1B (Cu, Au, Ag)**, ...**np**⁶**nd**¹⁰(**n+1)s**¹.

Расчёт <u>периодов решётки, теплоты сублимации и</u> <u>сжимаемости для щелочных металлов</u> хорошо согласуется с экспериментальными данными.

Для благородных металлов рассчитанные значения оказываются существенно заниженными.

Объяснение:

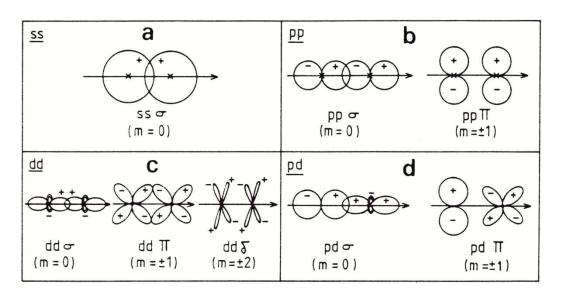
в благородных металлах невелико различие между атомным и ионным радиусами, и ионные остовы приходят в соприкосновение до того как межатомное расстояние достигнет равновесного значения r_0 .

И как следствие,

чтобы уменьшить межатомное расстояние, металлы группы 1В кристаллизуются в плотноупакованные структуры (**ГЦК**), тогда как в металлах группы 1А равновесное расстояние между атомами получается уже при менее плотной упаковке (**ОЦК**).

Величина сил взаимного притяжения между электронами и ионами в случае металлической связи может варьироваться в широких пределах из-за возможного частичного вклада р- или d-электронов. Поэтому в металлах нет строгих ограничений на число ближайших соседей.

Межатомная связь в терминах симметрии волновых функций (пример: двухатомная молекула)


Цилиндрическая симметрия. Угловой момент сохраняется вдоль оси.

Состояние молекулы характеризуется квантовым числом **m**,

m,**ħ** - компонента углового момента вдоль её оси.

В отличие от изолированного атома, в молекуле вырождение снимается.

По аналогии с **s**, **p**, **d**, ... состояниями электронов для изолированного атома с квантовыми числами I = 0, **1**, **2**..., состояния молекулы с значениями $\mathbf{m}_I = \mathbf{0}$, $\pm \mathbf{1}$, $\pm \mathbf{2}$, ... обозначаются как σ , π , δ . Соответствующие связи называются σ -, π -, δ -связями.

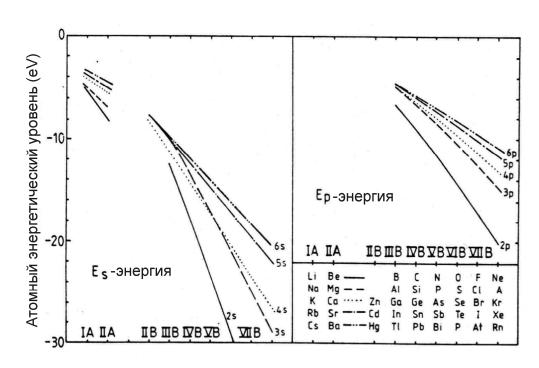
Тип связи определяется симметрией связываемых атомных орбиталей.

Если ψ_A и ψ_B - сферически симметричные s-орбитали, формируется **ss** σ связь.

Если ψ_A и ψ_B - p-орбитали, атомный уровень расщепится на однократно вырожденное pp σ (m_i = 0) и двукратно вырожденное pp π (m_i = ±1) состояния.

Если ψ_A и ψ_B - d-орбитали, атомный уровень расщепится на однократно вырожденное dd σ молекулярное состояние (m_i = 0) и два двукратно вырожденных dd π (m_i = ±1) и dd δ (m_i = ±2).

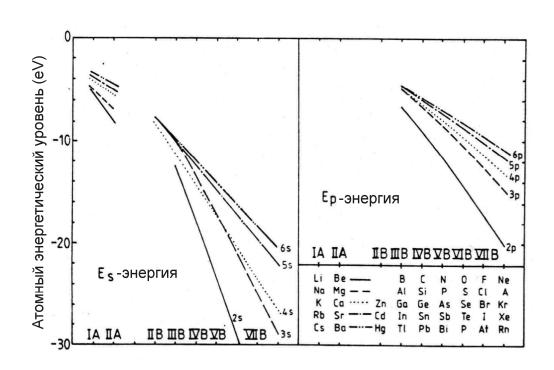
Случай гетероядерной молекулы, например NbC.


р-орбитали углерода перекрыты с **d-орбиталями** ниобия, **pd** связь формируется из **pd** σ (m_i = 0) и **pd** π (m_i = ±1) состояний.

о связь является сильной, так как лепестки направлены вдоль оси молекулы, что обеспечивает большое перекрытие атомных орбиталей.

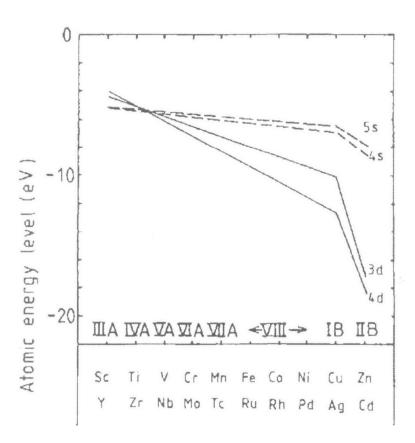
Связи рр π и **dd** δ много слабее, так как их угловые доли растянуты в плоскости, перпендикулярной оси молекулы.

Особенности энергетических уровней изолированного атома


Уравнение Шредингера для изолированных атомов решили в 1963 году <u>Herman и Skillman</u> для всей периодической таблицы элементов. **Три особенности:**

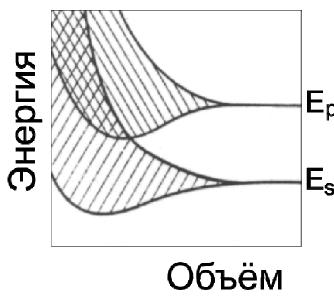
1. Энергия электронных уровней изменяется линейно вдоль периода (от одной группы к последующей), хотя с увеличением заряда ядра Z следовало ожидать её увеличения пропорционально Z².

Линейное поведение является следствием влияния других валентных электронов.


Особенности энергетических уровней свободного атома

- 2. С увеличением **Z**, **s** и **p** электроны становятся всё менее связанными с ядром, что естественно в модели водородоподобного атома. Исключение **3s и 4s** электроны. d-оболочка неполно экранирует ядро от 4s- электронов.
- 3. Разность энергий $E_p E_s$ уменьшается, если двигаться справа налево вдоль периода. Поэтому в простых металлах **s** и **p**-электроны гибридизируются, образуя sp полосы.

s и **d** энергетические уровни атомов **3d** и **4d** переходных металлов. _{Линейная зависимость от **z**.}


Представлены для конфигурации d^{N-1}s, где N – общее количество валентных электронов.

- Наклон кривых меняется после заполнения **d** полосы.
- 2. При её заполнении, **d**-электроны сильнее связываются с ядром, чем **s**-электроны. Исключение группа IIIA с одним **d** электроном.
- 3. **s**-уровни слабее связываются с ядром с увеличением **n**, E_{5s}<E_{4s}. Однако, E_{4d}>E_{3d}. 3d-орбитали более компактны, и кулоновское отталкивание сильнее.
- 5. E_s E_d (3 eV в Cu, 6 eV в Ag) больше, чем между Sc и Y, Ti и Zr. Поэтому свойства близлежащих благородных металлов отличаются сильнее, чем в начале периодов.

Эволюция представлений об электронной структуре твёрдых тел

Полосы электронных состояний в простых металлах

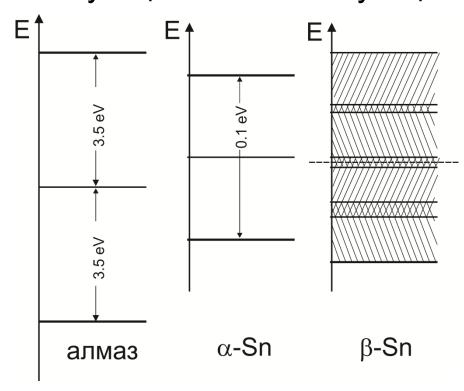
Аналогично связующим и антисвязующим состояниям Е_р двухатомной молекулы, в кристалле одиночные уровни свободного атома Е_s расщепляются на N уровней при сближении N атомов, сохраняя тем самым общее число электронных состояний.

Если сближать атомы, появляется возмущающий потенциал. Это потенциал каждого атома в той его части, которая перекрывается с потенциалами других атомов.

Соответствующая энергия возмущения E_s равна среднему значению возмущающего потенциала, умноженному на электронную плотность в данной точке пространства.

Энергия возмущения в расчёте на один атом может быть представлена состоящей из двух частей:

$E_s = (1/N)\{\sum кулоновские интегралы + \sum интегралы перекрытия}$


Интегралы первой суммы содержат электронную плотность в окрестности отдельного атома и потенциал от соседних атомов, т.е. от атомов в первой координационной сфере.

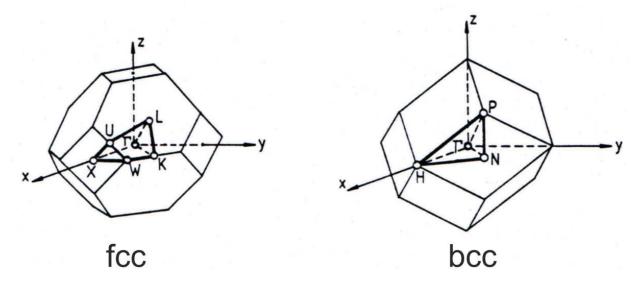
Они отражают электростатическое отталкивание между атомами.

Интегралы второй суммы содержат электронные плотности двух соседних атомов в той части, где они перекрываются, и потенциал, создаваемый этими атомами. Они отражают притяжение между атомами.

Примеры полос в простых металлах

Выражение для E_s имеет два экстремальных значения. В первом случае электронный заряд сгущается между соседними атомами в решётке, во втором заряд оттуда оттягивается и возникает минимум электронной плотности. Таким образом, атомный уровень при сближении атомов расщепляется и получаются две различных полосы: связующая и антисвязующая.

Связующая полоса обладает меньшей энергией и лежит ниже энергетического уровня изолированного атома.


Примеры: диэлектрик, полупроводник, металл.

Приближение почти свободных электронов

В реальном металле на поведение электронов влияет периодический потенциал кристаллической решётки. Он изменяется периодически как **v**(**r**+**R**) = **v**(**r**). Электроны рассеиваются на узлах решётки.

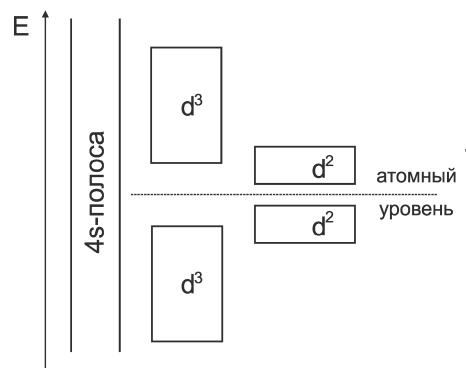
Поэтому на кривой зависимости энергии свободного электрона от волнового вектора появляются разрывы непрерывности, разделяющие эту кривую на зоны Бриллюэна.

Зоны Бриллюэна удобно представлять в пространстве волновых векторов $\mathbf{k} = 2\pi l \lambda$.

Принципиальная трудность приближения почти свободных электронов заключается в том, что значение потенциала, действующего на электроны со стороны ионного кора, оказывается примерно в 10 раз больше реальных значений, а кинетическая энергия электронов в расчетах достигает сотни keV.

Природа этой ошибки заключается в том, что волновые функции почти свободных электронов имеют узлы внутри ионного кора, а расчет не учитывает, что они должны быть ортогональны к **s**- и **p**- волновым функциям ионного кора.

Эта трудность была устранена в методе ортогонализованных плоских волн, где потенциал дополнительно содержит компоненту потенциала отталкивания, что уменьшает притягивающий терм потенциала ионного кора и обеспечивает более слабый потенциал, соответствующий поведению почти свободных электронов.

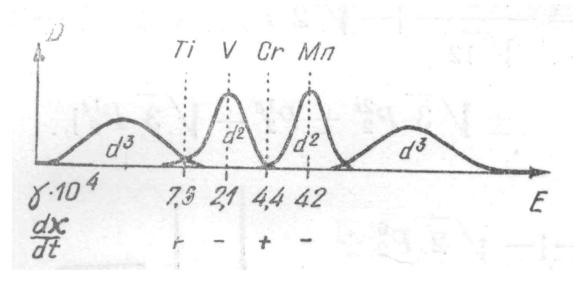

Псевдопотенциалы

Эти разработки привели к концепции псевдопотенциала, в которой потенциал **v**(**r**) в уравнении Шредингера заменён более слабым **v**_{ps}(**r**), выбранным так, чтобы сохранить значения энергии коровской оболочки свободных атомов, поскольку она не участвует в межатомной связи.

Тогда собственные псевдоволновые функции валентных электронов не содержат узлов в области ионного кора и отличаются от истинных волновых функций,.

Наиболее последовательно концепция псевдопотенциала была разработана в 1982 г. (Schlüter et al.): ab initio определяются потенциалы ионного кора, и затем в одноэлектронном приближении рассчитываются валентные электроны различной симметрии как доли одного электрона. Т.о. удовлетворительно описывались простые металлы.

Связь в переходных металлах. Приближение сильной связи.


d-полоса не заполнена полностью.

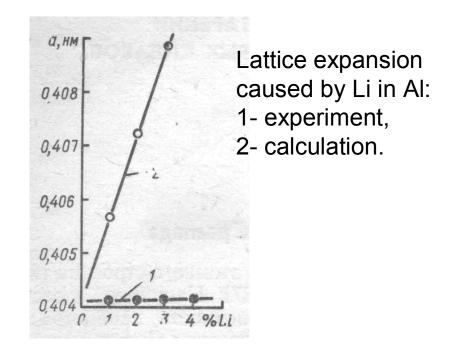
d-электроны частично локализованы на атомах и частично свободны.

Согласно Ганцхорну, в кубической и гексагональной кристаллических решётках вырожденный атомный **d** уровень с 10 возможными **d**-электронами расщепляется на два уровня:

трёхкратно вырожденный триплет d^3 и двукратно вырожденный дублет d^2 .

Изменение межатомной связи вдоль периода

От скандия до меди происходит заполнение 3d орбиталей.


Предполагается модель жёсткой полосы.

Уровень Ферми перемещается по мере заполнения полосы, и после хрома заполняется её антисвязующая часть, т.е. межатомная связь, образуемая **d** электронами, начинает уменьшаться.

Хром обладает максимальной межатомной связью: связующая полоса полностью заполнена. Марганец со структурой $3d^54s^2$ имеет ещё один s электрон, что увеличивает металлическую компоненту связи, т.е. смягчает решётку.

Связь между электронным строением, кристаллической структурой и свойствами

Группа IA, щелочные металлы: Li, Na, K, Rb, Cs. np⁶(n+1)s¹ Внешняя оболочка заполнена только ns-электроном. Ионизация удаляет его, уменьшая атомный радиус. Напр., в Li атомный радиус равен 1.56 Å, а ионный радиус 0.60 Å.

К.В. Чуистов. Старение металлических сплавов. Академпериодика, Киев, 2003.

Поскольку межатомная связь осуществляется свободными электронами, логично ожидать максимальное число ближайших соседей в кристаллической решётке, т.е. максимально плотную упаковку атомов с максимальным координационным числом.

Наличие единственного внешнего электрона не экранирует перекрытие **р**-электронов ионного остова при кристаллизации, и потому **р**-электроны участвуют в межатомной связи.

Остов **р**⁶ имеет шесть ненасыщенных связей, которые могут образовать связи с **р**-электронами шести соседних атомов, что соответствует простой кубической решётке. Благодаря коллективизированным **s**-электронам осуществляется связь между атомами двух простых подрешёток.

Все щелочные металлы первой группы имеют **ОЦК решётку** с 8 ближайшими атомами в 1-й координационной сфере и 6 во 2-й.

С возрастающим атомным номером щелочного элемента увеличивается зависимость атомного объёма от давления. Объяснение: экранирование связи внешних s-электронов с ядром из-за увеличения числа внутренних электронных оболочек.

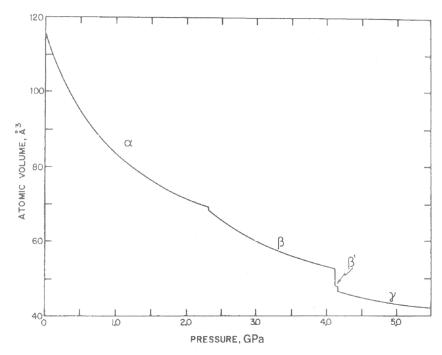


Иллюстрация на примере цезия со структурой $(... 5s^25p^6)6s^1$.

R.W. Cahn, P. Haasen. Physical Metallurgy, North Holland, Vol. 1, p. 19.

С увеличением давления индуцируются фазовые переходы при комнатной температуре, поскольку меняется характер валентных электронов от **s** к **d**:

2.37 GPa 4.22 GPa 4.27 GPa 10 GPa 72 GPa
$$\alpha$$
-Cs $\longrightarrow \beta$ -Cs $\longrightarrow \beta$ -Cs $\longrightarrow \beta$ -Cs $\longrightarrow \epsilon$ -Cs

Группа IIA, Число коллективизированных электронов удваивается. Из-за электростатического

щелочно-

притяжения электронов к ядру атомный радиус

земельные

металлы:

уменьшается на 20-30%, и плотность **s**-

электронов увеличивается ещё вдвое.

Be

Mg р-электроны не участвуют в межатомной связи.

Ca

Стабильны ГПУ (α -Be, Mg, β -Sr) или ГЦК (α -Ca,

Sr

 α -**Sr**) структуры.

Ba):

np⁶(n+1)s². Лишь при высоких температурах, когда

атомный радиус увеличивается и плотность **s**-

электронов уменьшается, становится

возможным перекрытие остовных \mathbf{p}^6 оболочек и,

соответственно, появляются ОЦК структуры:

 β -Be, β -Ca, γ -Sr.

Элементы от 3-й до 10-й групп — переходные металлы. Частично заполненные **d**-орбитали слабо экранируются внешними **s**-электронами и принимают существенное участие в формировании межатомных связей и, следовательно, влияют на кристаллическую структуру и свойства. **d**-электроны частично локализованы и частично обобществлены.

Группа IIIA

Sc Но всего один **d**-электрон в

несущественно изменяет условия, в

La которых формировалась структура

Ас щелочноземельных металлов.

 $np^6nd^1(n+1)s^2$

Поэтому низкотемпературные модификации имеют плотноупакованные структуры, а при высоких температурах тепловое расширение может приводить к перекрытию **р**-орбиталей и устойчивым **ОЦК** модификациям.

Группа IVA Ti Zr Hf

Картина в общем сохраняется для переходных металлов четвёртой группы, хотя имеются уже 3 d-электрона.

Th $np^6nd^3(n+1)s^1$

Плотная гексагональная структура обусловлена сферической симметрией внешней электронной оболочки.

четыре **s+d** ионного кора.

При повышенных температурах возбуждается оболочка **р**⁶, перекрываются **р**-орбитали и электрона вне появляются **ОЦК** фазы (например, β-титан).

> При дальнейшем увеличении числа **d**электронов увеличивается энергетическая щель между p^6 остовом и внешними s+dэлектронами.

Поэтому р-электроны не принимают участия в межатомной связи.

Межатомное взаимодействие осуществляется только **s**- и **d**-электронами.

Группы
VA и VIA
V Cr
Nb Mo
Ta W

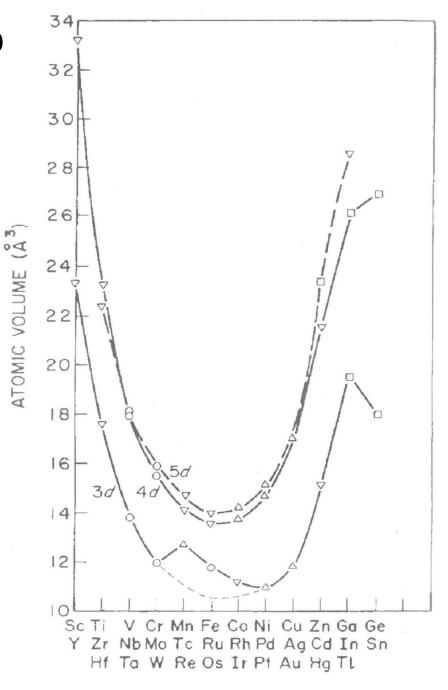
Тугоплавкие металлы характеризуются сильной межатомной связью, обусловленной ковалентной компонентой от локализованных **d**-электронов.

 $nd^{4}(n+1)s^{1}$ $nd^{5}(n+1)s^{1}$

d-электроны заполняют связующую часть **d**-полосы. Соответственно, связь усиливается, и ковалентная компонента становится доминантной. Следствия: стабильность **ОЦК** структуры (нет полиморфизма) и хрупкость (направленные связи).

При переходе к седьмой (Mn, Tc, Re) и восьмой (Fe, Co, Ni) группам заполняется разрыхляющая часть полосы. Связь ослабевает и носит более выраженный металлический характер.

Стабильными становятся плотноупакованные структуры.


Исключением из этого правила является железо, в котором существует **ОЦК** модификация и, более того, рыхлая **ОЦК** решётка устойчива при низких температурах, а плотноупакованная **ГЦК** решётка появляется при высоких температурах.

Возможное объяснение: сильный ферромагнетизм **ОЦК** железа, понижающий энергию этой модификации.

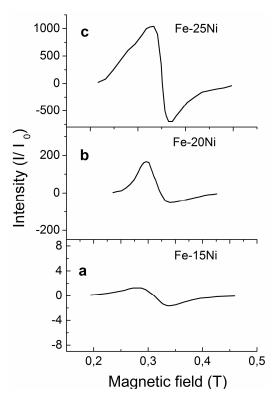
Изменение атомного объёма

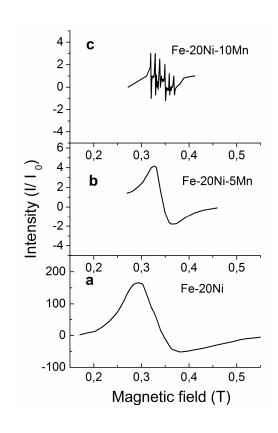
Атомный объём резко уменьшается с увеличением числа электронов в связующей полосе и увеличивается при заполнении антисвязующей полосы.

Аномальное поведение Mn, Fe, Co связывают с возможным неучастием некоторых **3d**-электронов в формировании связи.

Изменение температуры плавления

Она возрастает с заполнением <u>связующей 3d-</u> полосы (от скандия до ванадия и хрома) и начинает существенно уменьшаться, когда электроны заполняют <u>антисвязующую 3d-полосу</u>.


Катастрофическое уменьшение имеет место для марганца, что объясняется особенностями электронного строения его атомов.


Температура плавления элементов третьего периода

Элемент	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu
T, °C	63	842	1541	1608	1917	1877	1245	1539	1492	1455	1063

Аномальная электронная структура марганца

Спектры ЭСР

d-электроны Mn локализованы на атомах и мало участвуют в межатомном взаимодействии. Интенсивность сигнала пропорциональна концентрации свободных электронов.

Shanina, Gavriljuk (1998). J Physics: Condensed Matter 10: 1825-1838

Марганец уменьшает её. При его содержании 10 %, она уменьшается настолько, что на фоне слабого сигнала ЭСР наблюдается ЭПР на локализованных электронах атомов Mn.

Связь между электронным строением, кристаллической структурой и свойствами

Группа IA, щелочные

Li,

металлы:

Na,

K,

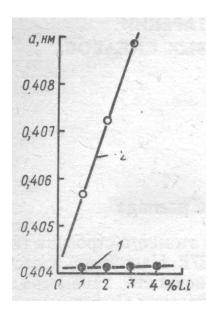
Rb,

Cs.

 $np^{6}(n+1)s^{1}$

Внешняя оболочка заполнена только nsэлектроном.

Ионизация удаляет


его, уменьшая

атомный радиус.

Напр., в Li атомный

радиус равен 1.56 Å, а

ионный радиус 0.60 Å.

Lattice expansion caused by Li in Al: 1- experiment, 2- calculation.

Поскольку межатомная связь осуществляется свободными электронами, логично ожидать максимальное число ближайших соседей в кристаллической решётке, т.е. максимально плотную упаковку атомов с максимальным координационным числом.

Наличие единственного внешнего электрона не экранирует перекрытие **р**-электронов ионного остова при кристаллизации, и потому **р**-электроны участвуют в межатомной связи.

Остов **р**⁶ имеет шесть ненасыщенных связей, которые могут образовать связи с **р**-электронами шести соседних атомов, что соответствует простой кубической решётке. Благодаря коллективизированным **s**-электронам осуществляется связь между атомами двух простых подрешёток.

Все щелочные металлы первой группы имеют ОЦК решётку с 8 ближайшими атомами в 1-й координационной сфере и 6 во 2-й.

С возрастающим атомным номером щелочного элемента увеличивается зависимость атомного объёма от давления. Объяснение: экранирование связи внешних ѕ-электронов с ядром из-за увеличения числа внутренних электронных оболочек.

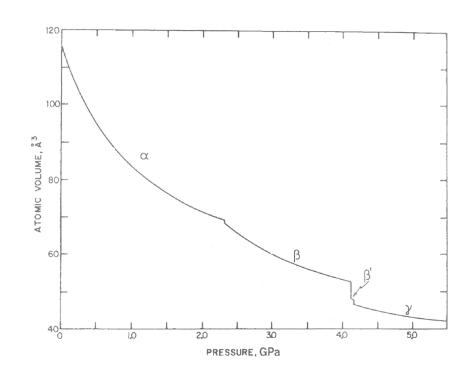


Иллюстрация на примере Cs со структурой $5s^25p^6)6s^1$. R.W. Cahn, P. Haasen. Physical Metallurgy. North Holland, vol.1 p.19.

С увеличением давления индуцируются фазовые переходы при комнатной температуре, поскольку меняется характер валентных электронов от **s** к **d**:

2.37 GPa 4.22 GPa 4.27 GPa 10 GPa 72 GPa
$$\alpha$$
-Cs β -Cs β -Cs δ -Cs ϵ -Cs

Группа IIA,

щелочноземельные металлы: Число коллективизированных электронов удваивается. Из-за электростатического притяжения электронов к ядру атомный радиус уменьшается на 20-30%, и плотность **s**-электронов увеличивается ещё вдвое.

Be

Mg

Ca

Sr

Ba):

 $np^{6}(n+1)s^{2}$.

р-электроны не участвуют в межатомной связи. Стабильны **ГПУ** (α -**Be**, **Mg**, β -**Sr**) или **ГЦК** (α -**Ca**, α -**Sr**) структуры.

Лишь при высоких температурах, когда атомный радиус увеличивается и плотность \mathbf{s} электронов уменьшается, становится возможным перекрытие остовных \mathbf{p}^6 оболочек и, соответственно, появляются ОЦК структуры: $\mathbf{\beta}$ -Be, $\mathbf{\beta}$ -Ca, γ -Sr.

Элементы от 3-й до 10-й групп — переходные металлы. Частично заполненные **d**-орбитали слабо экранируются внешними **s**-электронами и принимают существенное участие в формировании межатомных связей и, следовательно, влияют на кристаллическую структуру и свойства. **d**-электроны частично локализованы и частично обобществлены.

Группа IIIA

Sc

Y

La

Ac

 $np^6nd^1(n+1)s^2$

Но всего один **d**-электрон в несущественно изменяет условия, в которых формировалась структура щелочноземельных металлов.

Поэтому низкотемпературные модификации имеют плотноупакованные структуры, а при высоких температурах тепловое расширение может приводить к перекрытию **р**-орбиталей и устойчивым **ОЦК** модификациям.

Группа IVA Ti Zr Hf Th np⁶nd³(n+1)s¹

четыре **s+d** электрона вне ионного кора.

Картина в общем сохраняется для переходных металлов четвёртой группы, хотя уже 3 d- электрона.

Плотная гексагональная структура обусловлена сферической симметрией внешней электронной оболочки.

При повышенных температурах возбуждается оболочка **р**⁶, перекрываются **р**-орбитали и появляются **ОЦК** фазы (например, β**-титан**).

При дальнейшем увеличении числа **d**электронов увеличивается энергетическая щель между **p**⁶ остовом и внешними **s+d** электронами.

Поэтому **р**-электроны не принимают участия в межатомной связи.

Межатомное взаимодействие осуществляется только **s**- и **d**-электронами.

Группы VA и VIA V Cr Nb Mo Ta W

Тугоплавкие металлы характеризуются сильной межатомной связью, обусловленной ковалентной компонентой от локализованных d-электронов.

 $nd^{4}(n+1)s^{1}$ $nd^{5}(n+1)s^{1}$

d-электроны заполняют связующую часть d-полосы. Соответственно, связь усиливается, и ковалентная компонента становится доминантной.
 Следствия: стабильность ОЦК структуры (нет полиморфизма) и

хрупкость.

При переходе к седьмой (Mn, Tc, Re) и восьмой (Fe, Co, Ni) группам заполняется разрыхляющая часть полосы. Связь ослабевает и носит более выраженный металлический характер.

Стабильными становятся плотноупакованные структуры.

Исключением из этого правила является железо, в котором существует **ОЦК** модификация и, более того, рыхлая **ОЦК** решётка устойчива при низких температурах, а плотноупакованная **ГЦК** решётка появляется при высоких температурах.

Возможное объяснение: сильный ферромагнетизм **ОЦК** железа, понижающий энергию этой модификации.

Приложение 1. Структура элементов, символы Пирсона и заполнение объёма

Элемент	Структура тип, с/а	Заполнение объёма	Элемент	Структура Тип, с/а	Заполнение объёма
Cu	cF4	0.740	Po	cP1	0.523
Mg	hP2, 1.63	0.740	Bi	hR2, 2.60	0.446
Zn	hP2, 186	0.650	Sb	hR2, 2.62	0.410
Pa	tl2	0.696	As	hR2, 2.80	0.385
In	tl2	0.686	Ga	oC8	0.391
W	cl2	0.680	Те	hP3	0.364
Hg	hR1	0.609	C(diamond)	cF8	0.340
Sn	tl4	0.535	P (black)	oC8	0.285
α-U	oC4	0.534			

cF4: c- кубическая решётка, F – гранецентрированная упаковка, 4 – число атомов в элементарной ячейке.

hR3: h - гексагональная решётка R – ромбоэдрическуая упаковка (a=b=c, α = β = γ #90°), 3 атома в элементарной ячейке.

Приложение 2: смысл символов Пирсона

Crystal family		Braves lattice type			
a	triclinic (anorthic)	Р	primitive		
m	monoclinic		body centered		
0	orthorhombic	F	all-face centered		
t	tetragonal	C	side- or base-centered		
h	hexagonal	R	rhombohedral		
С	cubic				

Контрольные вопросы

1. Почему электронное строение изолированного атома предопределяет кристаллическую структуру химического элемента?

2. Причины гибридизации электронов различной пространственной симметрии в конденсированном состоянии?

3. Какова взаимосвязь между типом межатомных связей и электронной структурой изолированного атома?