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Foreword

This book is conceived as a monograph, and represents an up-to-date collection
of information concerning the use of the method of X-ray photoelectron spec-
troscopy in the study of the electron structure of crystals, as well as a personal
interpretation of the subject by the authors.

In a natural way, the book starts in Chapter 1 with a recapitulation of the
fundamentals of the method, basic relations, principles of operation, and a com-
parative presentation of the characteristics and performances of the most com-
monly used ESCA instruments (from the classical ones—Varian, McPherson,
Hewlett Packard, and IEEE—up to the latest model developed by Professor
Siegbahn in Uppsala), and continues with a discussion of some of the difficult
problems the experimentalist must face such as calibration of spectra, prepara-
tion of samples, and evaluation of the escape depth of electrons.

The second chapter is devoted to the theory of photoemission from crystal-
line solids. A discussion of the methods of Hartree-Fock and Hartree-Fock-
Slater for the calculation of bonding energy levels in multielectronic systems is
presented, and the necessity of including in the theory both relativistic and
relaxation effects is argued. A review of the methods of calculation of energy
bands and wave functions in crystals (the OPW and APW methods, the method
of Green’s functions, the method of the pseudopotential) serves as a basis for the
comparison of experimental data with the theoretical calculations, which follow
in the next chapters. The increased interest, in recent years, in the study of dis-
ordered systems (the alloys of transition and noble metals) justifies the inclusion
of the coherent-potential method in the same chapter. Further, the information
given by the study of angular distribution of photoelectrons is summarized.

Chapter 2 ends with a discussion of the possibilities, limitations, and per-
spectives of the present efforts to correlate the results of photoelectron spec-
troscopy and X-ray emission spectroscopy to the data obtained by using other
experimental methods such as MOssbauer spectroscopy and nuclear magnetic
resonance.

The next four chapters discuss the presently available experimental data in
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the study of the electron and X-ray spectroscopy of crystalline elements, alloys,
and compounds, grouped as follows:

Chapter 3: Metals and alloys

Chapter 4: Sphalerite-type crystals

Chapter 5: Halides of alkali and alkaline-earth metals
Chapter 6: Compounds of the transition metals

In Chapter 3, in which metals and alloys are discussed, the implications of
the finite resolution of presently available instruments are emphasized, as they
affect various regions in the periodic table of elements. The latest achievements
of the coherent-potential method in the interpretation of the highly complex
spectra of alloys are mentioned.

In Chapter 4, the crystals of the zinc blende type are discussed. For this
simple tetrahedral lattice, theoretical models are developed up to an advanced
level. A detailed discussion is given about the possibilities of the pseudopotential
model to describe the band structure of several large groups of crystals such as
diamond, graphite, silicon, germanium, A3;B5, A,Bg. Special attention is paid to
the possibilities and limitations of far-ultraviolet spectroscopy in the study of
valence and conduction bands of semiconductors. The importance of correlation
of photoelectron spectroscopy, X-ray emission, and optical data is shown. The
necessity of considering nonlocal pseudopotentials is commented on, and the
possibility of improving in this way the agreement with experimental data in the
upper part of the valence band is shown. The open problems in the further devel-
opment of the theory are presented, especially concerning the interpretation of
the lower part of the valence band.

In Chapter 5, the class of alkali halide crystals is discussed. Old data ob-
tained by X-ray emission and absorption and by absorption and emission in the
far ultraviolet are reviewed in light of the new possibilities opened up by the
methods of X-ray photoelectron spectroscopy, in which spectra belonging to
different energy regions can be placed on the same scale.

Chapter 6 is devoted to the problem of local states in compounds of transi-
tion metals. Long-range electron-electron correlation effects on the physical
properties of compounds of transition metals are considered. Typical transitions
from the metallic to an insulating state, by varying the temperature, are dis-
cussed in terms of d-electron long-range interactions in partially filled bands of
these compounds.

In Chapter 7, the study of solid surfaces using a group of experimental meth-
ods (Auger electron spectroscopy and X-ray photoelectron spectroscopy) is pre-
sented from the point of view of the scientist interested more in the practical
technological applications than in theoretical research. The topics of adsorption
and oxidation processes, quantitative and qualitative surface analysis, and catal-
ysis are covered.
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The last chapter of the book (Chapter 8) contains an analysis of the structure
of photoelectron spectra. Multiplet splitting, shake-up and shake-off processes,
plasmon excitations, and asymmetry of photoelectron lines in the case of un-
filled d bands are explained, and some guiding recommendations for their inter-
pretation are given.

This monograph collects a large amount of information—mainly experimen-
tal and phenomenological—about the electron band structure of crystals that
at present is widely spread in the literature. The book contains more than 500
references and gives a fairly complete survey of the experimental situation up
to 1975. It is very complete, indeed, in the description of work done in the
USSR, where the authors themselves have been major contributors. The empha-
sis is primarily on the discussion of experimental data and phenomenological
methods of their interpretation. Since the theoretical discussion is limited to
basic concepts and standard theoretical methods, physicists who are more
interested in recent theoretical developments in photoelectron spectroscopy
will have to find other texts to supplement this volume.

We feel that this volume will serve as a useful introduction to the field as
well as a collection of important experimental data.

Stig Lundqvist
Per-Olof Nilsson
Irina Curelaru



Preface

Our knowledge of the electron structure of atoms, molecules, and solid materials
is based mainly on the study of the interaction of photons with electrons in
bound atomic states. As a result of such interactions, secondary photons as well
as electrons are emitted. Investigation of the energy spectra of these electrons
provides information about the electron structure of the sample material. The
incident and the emitted photons may have energies within a wide range of
values, from the optical region to the X-ray region. The experimental method of
investigation is similar for the whole energy range.

The present monograph is devoted mainly to problems related to the study
of the electron structure of crystals by the method of X-ray photoelectron spec-
troscopy. The basic aim of these studies is to extract information about the
electron structure of gaseous, liquid, and solid samples from the energy and
angular distributions of the photoelectrons emitted under bombardment with
an incident beam of photons of given energy.

Prior to the large-scale development of X-ray photoelectron spectroscopy,
studies of the electron structure of materials in various physical states were
carried out using the method of ultraviolet photoelectron spectroscopy. This
method was developed largely through the work of F. 1. Vilesov at Leningrad
University. In ultraviolet photoelectron spectroscopy, the energy of the incident
photons falls in the range of 10-15eV.

At present, He (21.22 eV) or He* (40.81 eV) resonance lines are used as
radiation sources. A number of papers have been published describing the use
of synchrotron radiation in the study of photoelectron spectra in the energy
range of 10 to 100 eV. The synchrotron radiation is characterized by a high
intensity and a high degree of polarization. By using the synchrotron radiation
in the energy region of about 100 eV, it is possible to study not only the valence
and conduction bands, but also some of the core levels. Since the chemical bond-
ing in molecules and solid materials is brought about by the valence electrons,
the interest and efforts of scientists were for a long time focused on the study
of valence states. It was considered that the study of core-level states cannot
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provide useful information about the nature of chemical bonding, since core
electrons do not participate directly in the formation of chemical bonds.

However, the work of K. Siegbahn and his school at Uppsala University has
shown that the study of core states can give a great deal of valuable information
about the type of chemical bonds in molecules and solids. It has been shown
that transitions from one chemical compound to another are accompanied by a
shift of the deeply lying electron levels. The magnitude of this shift usually
amounts to 2-3 eV, and in some cases it can reach values of up to 10 eV. Since
the resolution of most commonly used electron spectrometers is typically be-
tween 0.6 and 1.1 eV, and the accuracy in the determination of the position of
sufficiently narrow core-level lines is of the order of 0.1 eV, it is evident that,
for the majority of chemical compounds, X-ray photoelectron spectroscopy
represents an efficient experimental method for the investigation of the nature
of chemical bonding. For this reason the method has been named ESCA (Elec-
tron Spectroscopy for Chemical Analysis). The principal results obtained by
Siegbahn and his co-workers in the field of chemistry were included in a mono-
graph [1] published in Uppsala in 1967. A second monograph published later
by Siegbahn and his colleagues [2] was devoted to the study of molecules in
the gaseous state. Following the development and construction of commercial
electron spectrometers, the number of experimental studies in this field has
increased rapidly. X-ray photoelectron spectroscopy has at present become a
powerful analytical method which gives information about the electronic and
structural constitution of molecules and about the qualitative and quantitative
elemental composition of the investigated specimens.

It has been found that this method may also be successfully used in the
study of the electron structure of solid materials (metals, insulators, and semi-
conductors). X-ray photoelectron spectroscopy can yield important and reliable
data about the energy-band structure of crystals. Studies performed on chemical
compounds and crystals with unfilled d and f shells have revealed multiplet split-
ting effects resulting from the interaction of the spin and orbital momenta of
deeply lying electrons with the spin and orbital momenta of electrons in unfilled
shells.

Investigation of multiplet splitting effects can lead to a better understanding
of the physical mechanisms in the process of photoelectron emission. Study of
the change in magnitude of the multiplet splitting for different compounds pro-
vides information about the space localization of electron wave functions. Also
important are processes of the ‘“‘shake-up” and “shake-off> type in which,
simultaneously with the emission of one photoelectron, excitation of one or
several electrons in bound states as well as emission of another photoelectron
may take place. Such processes, involving participation of several electrons, are
among a class of multielectron effects that occur relatively frequently in X-ray
photoelectron spectroscopy. When photoelectrons travel through the sample,
they can lose part of their energy both continuously, through inelastic collisions
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with other electrons, and in discrete quantities. The spectra of these plasma
losses may also contain peaks related to the excitation of surface plasmons.

Investigation of the angular distribution of photoelectrons shows that differ-
ent shells make different contributions to the total angular distribution of photo-
electrons. This effect allows the determination of the symmetry type of the
spatial distribution of the electron density.

A field of research in which X-ray photoelectron spectroscopy may be effi-
ciently applied is the study of surface phenomena. It makes possible the investi-
gation of the properties of layers adsorbed on the specimen surface, and conse-
quently of adsorption and catalytic processes.

Thus the method of X-ray photoelectron spectroscopy offers the means of
solving many interesting problems in physics and chemistry. It should not be as-
sumed, however, that this method will provide solutions to all problems related
to the electron structure of crystals and to the electron energy spectra of atoms
and molecules. Other complementary methods are also necessary. In X-ray
photoelectron spectroscopy, the excited electron may be considered as being
free, and therefore the conduction band states provide a small contribution to
the observed structure of photoelectron spectra. Consequently, the method of
X-ray photoelectron spectroscopy is useful for the study of valence band elec-
tron states. Since ultraviolet photoelectron spectroscopy is characterized by a
higher resolution than X-ray photoelectron spectroscopy, it is suitable for the
study of structures related to rotations and oscillations of molecules in gases.
X-ray emission spectroscopy may, in its turn, offer the means to determine
the symmetry type of electron states localized in the valence band of crystals,
while X-ray absorption spectroscopy gives information about the states situated
at the bottom of the conduction band. It is also useful to combine information
about chemical shifts obtained by X-ray photoelectron spectroscopy with that
obtained by y-resonance spectroscopy, since the latter is more sensitive to
changes of s-electron density in the vicinity of the atomic nucleus. It has also
been observed that there is a correlation between the shifts observed in X-ray
photoelectron spectroscopy and those determined by nuclear magnetic
resonance.

At present the method of X-ray photoelectron spectroscopy is being applied
on a very large scale to the study of crystals. The book of Siegbahn and co-work-
ers [1] represents only an introduction to the topic of X-ray photoelectron
spectroscopy and its applications in chemistry.

In the Soviet Union, a review article by Nefedov [3] was published in the
series Advances in Science and Technology. The article gives a general survey of
the results obtained by the method of X-ray photoelectron spectroscopy as ap-
plied in the study of different classes of chemical compounds. At the time of
writing, there exists no similar review article or monograph that is devoted to
solid state materials.

The present work represents an attempt to fill this gap. It is devoted mainly
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to problems related to the application of X-ray photoelectron spectroscopy to
the study of the electron structure of crystals. Theoretical and experimental
studies of crystal band structures by the method of X-ray emission spectroscopy
are treated in two other monographs by Nemoshkalenko [4] and by Nemo-
shkalenko and Aleshin [5]. The latter is devoted to a detailed treatment of the
general theoretical methods and to some specific examples of band structure
calculations for various classes of solid state materials. In the present work,
therefore, the basic concepts concerning the structure of energy spectra and the
theoretical methods of their study are considered only briefly.

Although the present monograph is concerned mainly with results obtained
in the study of the electron structure of solids by the method of X-ray photo-
electron spectroscopy, we have entitled it Electron Spectroscopy of Crystals.
The term “electron spectroscopy™ as used in the present context seems to be
appropriate since it extends the limits of the method by also including the spec-
troscopy of Auger electrons emitted in the processes of interaction of X-ray
quanta with electrons bound in core levels.

The monograph does not claim to be exhaustive in the field of electron
spectroscopy of solids. Detailed discussion is restricted to the most significant
results obtained under the best experimental conditions. Less attention is paid
to the problems related to the use of X-ray photoelectron spectroscopy in the
study of the electron structure of crystal surfaces and of physicochemical sur-
face processes such as chemisorption and catalysis. Similarly, little space is al-
lotted to the influence of many-electron effects on the shape and energy position
of X-ray photoelectron lines. In these cases, as well as in the case of problems
related to chemistry, the authors discuss only those basic results that contribute
to an understanding of effects in X-ray photoelectron spectra, those that demon-
strate the physical characteristics of photon-initiated electron excitation pro-
cesses in crystals, or those that illustrate the practical applications of the method.
Nevertheless, the authors have attempted to select the data in order to offer the
reader a comprehensive background against which can be presented the results
of original research obtained in the last four years at the Institute of Metal Phys-
ics of the Ukrainian Academy of Sciences. The authors realize that such a com-
position of the monograph is not ideal. However, the volume of experimental
results obtained in the last few years is so tremendous that specialists involved in
the study of the electron structure of solids by other methods can hardly cope
with them, and therefore the time has now become appropriate to undertake
their generalization and systematization. To what extent the authors have suc-
ceeded in accomplishing this task is for the reader to judge. Any comments and
proposals that might contribute to improvement of the book will be met with
gratitude.

V. V. Nemoshkalenko
V. G. Aleshin
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Fundamentals of the Method
of Photoelectron

Spectroscopy

Materials bombarded with X-ray quanta emit electrons. If the electron is emitted
from a deeply lying level, the vacancy created on this level is filled by an elec-
tron from other, less tightly bound shells, including the valence band. As a

result of such a transition X-ray quanta may be emitted. Moreover, there is a
finite probability that another competitive, radiationless process will occur.

In this alternative process, the result of the vacancy filling is that one of the
electrons from the same level or from another, less tightly bound shell is emitted
from the crystal. The emitted electron is called an Auger electron. The study of
both of the above-mentioned processes is in itself of particular interest. In X-ray
emission spectroscopy, the energy distribution of the emitted photons is investi-
gated. If the photoelectron does not leave the sample, but is transferred into the
states of the conduction band, absorption of incident X-ray quanta takes place.
The study of this process is the object of X-ray absorption spectroscopy. In
X-ray absorption spectroscopy, the intensity distribution of absorbed photons

is measured. In X-ray photoelectron spectroscopy, the energy distribution of
the emitted photoelectrons and of the Auger electrons is studied.

The rapid progress of electron spectroscopy is mainly the result of the im-
portance of the information that is obtained about binding energies of electrons
in atoms, molecules, and solid state materials. Determination of binding energies
is based on the measurement of the kinetic energy of the electrons emitted from
the system. This kinetic energy can vary over a wide range up to values approxi-
mately equal to the energy of the incident photons, as in the case of valence-
electron ionization processes. In the case of ionization of core electrons, the
kinetic energy of the emitted photoelectrons is considerably lower than the en-
ergy of the incident photons. For the study of different regions of the energy
spectrum, various types of radiation sources may be employed. Valence states

1
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are usually studied by ultraviolet photoelectron spectroscopy, whereas core-level
states are studied by X-ray photoelectron spectroscopy. At present, however, the
resolving power of X-ray photoelectron spectrometers has been significantly in-
creased so that both core-level states and valence states can be successfully
studied by the method of X-ray photoelectron spectroscopy. The progress in the
construction of X-ray photoelectron spectrometers has been made possible by
the development of high-intensity sources of monochromatic radiation, by the
increase of the resolving power of electron analyzers, by the availability of high-
performance detecting systems, and by the development of powerful mathe-
matical methods of processing experimental data.

Though the experimental technique has reached a high level of development,
some of the principal problems of photoelectron spectroscopy have not yet
been completely resolved. Such problems are, for example, the determination
of the charge built up on nonconductive samples, the determination of the
photoelectron escape depth, and the occurrence in the photoelectron spectra
of the surface and bulk properties of the samples under investigation. Therefore,
before going into the discussion of the basic results obtained by X-ray photo-
electron spectroscopy of crystals, it seems appropriate to consider first a series
of problems related to the determination of the binding energies of electrons in
metals, insulators, and semiconductors, as well as to the determination of the
effective escape depth of electrons from the sample, the calibration of electron
spectra for nonconducting samples, and the basic characteristics of electron
spectrometers currently available.

Basic Equation of X-Ray Photoelectron Spectroscopy

The basic relation that describes the process of photoelectron emission is
the Einstein equation:

hv = E’)c (k)—' Ei + EI’(iny (l)

where Av represents the incoming photon energy; £’ " is the total initial energy of
the atom, molecule, or solid state sample; E'/(k) is the total final-state energy
of the system after emission of the electron from the state characterized by the
quantum number k; and Ey;;, is the kinetic energy of the emitted electron. The
energies £' and E'/(k) include the contributions from the electrons themselves
and, for the case of molecules, from the vibrational, rotational, and translational
movements.

E" (k) in equation (1) may be written as

ET(k) = E (k) + E,
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where E” represents the recoil energy. Siegbahn et al. [1] have shown that the
magnitude of the recoil energy corresponding to photon energies of the order of
1500 eV is equal to 0.1 eV for the valence electrons of lithium, and to 0.04 eV

for the valence electrons of sodium (in the case of valence states, the recol en-
ergy is maximal).

Thus E” can be neglected, since the resolving power of currently available
spectrometers does not allow for detection of effects associated with the exis-
istence of the recoil energy. Consequently, from equation (1) one obtains

hv = Eyyq - E(R) — E'.

Since the magnitude of the rotational and vibrational excitations falls outside
the limits of sensitivity of currently available photoelectron spectrometers, the
study of E| (k) can be restricted to consideration of the pure electronic states.
If the binding energy Eg(k) of an electron in the k state is defined as the energy
necessary for the emission of this electron to infinity, with a kinetic energy
equal to zero, then

Eg(k) = E' (k) —E'

and therefore

hv = Exn + Eg (k).

It follows from equation (1) that in order to describe the process of interac-
tion of photons with matter, it is necessary to measure the Kinetic energy of the
emitted photoelectrons, Ey;,. The main components of the instruments used in
photoelectron spectroscopy to determine Ey;, are the X-ray source, the electron
analyzer (which allows the measurement of the kinetic energy of emitted elec-
trons), the detector (which gives information about the number of electrons hav-
ing a given kinetic energy), and the system commanding the operation of the
spectrometer. Any X-ray photoelectron spectrometer should include all of these
basic components. The construction of electron spectrometers is discussed in
more detail in a later part of this work. We only mention here that in all elec-
tron spectrometers, the binding energy of the electrons in solid state samples is
determined relative to the Fermi level of the material from which the spectrom-
eter’s electron analyzer itself is constructed.

In order to determine the electron binding energy, the photoelectron kinetic
energy Ey;, is measured by the spectrometer analyzer. The magnitude of Ey,, is
different from the value Ey,, the latter corresponding to electrons that have left
the sample but have not yet reached the spectrometer. This difference is caused
by the existence of an accelerating or decelerating field between the sample and
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the entrance slit of the analyzer, created by the difference between the work
functions of the sample (gg) and of the spectrometer (pg,).

Figures 1 and 2 show schematically how binding energies are determined for
metals and for insulators. In the case of metal samples, owing to the fact that a
good electric contact exists between the sample and the spectrometer, the Fermi
levels of the sample and of the spectrometer coincide. Consequently, for metal
samples, the binding energy measured with respect to the Fermi level of the
spectrometer £ 5 is given by the expression

Eg = hv — Eyjn— Psp, (2)

where Av is the photon energy, and ¢g, is the work function of the spectrometer
material. In some metals, the position of the Fermi level can be distinguished as
as steep onset of the photoelectron spectrum. Therefore, in such cases, the bind-
ing energies of the sample, as related to the Fermi level £, can be determined
directly, without any need to use relation (2). In order to determine the binding
energies relative to the vacuum level of the sample the following relation is used:

Ej=Ep+ g, 3)
Since the value of the work function of the sample pg cannot be determined by
using the method of photoelectron spectroscopy, it has to be determined by

some other, independent measurement.
In the case of semiconductors and insulators, the determination of binding
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Figure 1. Determination of binding
energy in metals.
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Figure 2. Determination of binding en-
ergy in dielectrics and semiconductors.

energies is even more difficult. As a result of the loss of electrons through emis-
sion, the samples investigated by photoelectron spectroscopy become charged,
and the effective Fermi energy of nonconductive crystal samples undergoes a
shift with respect to the Fermi level of the spectrometer. In this case, the value
of E; 5 cannot be determined simply by measuring the photoelectron kinetic
energy. Moreover, in the spectra of insulators and semiconductors there exists no
steep onset corresponding to the Fermi level. In insulators, it is possible to de-
termine the position of the Fermi level, but its actual physical significance is at
present not yet definitely understood. Therefore, it is convenient to make the
measurement of Eg(k) values relative to the energy of the top of the valence
band. In the following, the electron binding energy as determined with respect
to the top of the valence band will be denoted by Eyp.

In the process of photoelectron emission, X-ray quanta generate photoelec-
trons that, in their turn, can excite secondary electrons. Many of these second-
ary electrons have a relatively high energy, sufficient to enable them to leave the
sample surface. Consequently, the surface gradually becomes positively charged
until the current of photoelectrons together with the current of secondary
emitted electrons /, are balanced by the neutralizing current I,, generated as a
result of the space charge formed in the vicinity of the sample surface. The
magnitude of the currents /I, and I,; depends on the particular type of spectrom-
eter, on the sample properties, and on the sample mounting system. The magni-
tude of sample charging y is determined for the stationary state corresponding
to I, = I,,. Since the sample becomes positively charged, the whole photoelec-
tron spectrum is displaced toward lower kinetic energies. The values of binding
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energies are determined in this case by the relation
Ef = hv— Exin — 9 + ¢. 4

The factors that affect the magnitude of ¢ and the methods of its determination
will be discussed in the section devoted to the calibration of photoelectron
spectra of nonconducting samples.

In a number of cases, if the atoms are bound in various chemical compounds,
instead of binding energies the chemical shifts of the k atomic core level are con-
sidered. By using equation (3), the chemical shift characteristic for a given com-
pound with respect to another may be written as follows:

AEY (k) = AEG (k) + 9g, — @s,-

The occurrence of the term Ayg =g, - ¢g, in this formula, where pg, and ys,
are the work functions of the two considered samples, represents a source of
difficulties when theoretical and experimental results are to be compared, be-
cause in theoretical calculations the energies are referred to the vacuum level.
As a consequence, in the interpretation of experimental data, the difference be-
tween electron work functions is in most cases neglected. The work of Siegbahn
et al. [1, 2] indicates that the magnitude of Ay does not have a significant in-
fluence on the interpretation of experimental results. However, it has been ob-
served that in the diagrams representing the correlation between experimentally
measured chemical shifts and theoretical calculations, a larger scatter of values
occurs for solids than for gases. This is consistent with the fact that in gases

the chemical shifts are determined with respect to the vacuum level of gas
molecules.

X-Ray Sources and the Principle of
X-Ray Monochromatization

The first X-ray photoelectron spectrometer was constructed by K. Siegbahn
[1]. As a source of X rays it used the aluminum Ke; , emission line, having an
energy of 1486.6 eV.

Figure 3 shows the shape of the Ka, , emission line of aluminum, resulting
from superposition of the Ka, and Ka, lines. Since the energy separation be-
tween these two lines is small, this doublet may be treated as a single line having
a full width at half-maximum (FWHM) of approximately 1 eV. The magnesium
Ka, , line is also frequently used in X-ray photoelectron spectroscopy. This has
an energy of 1253.6 eV and a full width at half-maximum somewhat lower than
that of the aluminum line. Both the Ko, , line of aluminum and the Ka; , line
of magnesium have satellites generated by 2p-1s electron transitions in doubly
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Figure 3. Ka, , emission line of aluminum
before and after monochromatization.

0.21eV

or even triply ionized atoms. In Figure 4, the 1s photoelectron line of carbon is
shown, together with its satellite lines. The most intensive satellite that accom-
panies the Ko, , lines of both aluminum and magnesium is the Ko; 4 line,
having an energy some 10 eV higher than the principal Ka, , line. The intensity
of these satellites is approximately 15% of the intensity of the Ka; , line. All
the other satellites have a much lower intensity (of the order of 1%). Also seen
in Figure 4 is the contribution of the magnesium K § line to the photoelectron
spectrum. The satellite generated by the K § line is situated at a distance of ap-
proximately 50 eV from the Ke, , line, and has a relative intensity of the order
of 1%. In order to improve the signal-to-noise ratio in electron spectrometers,
one makes use of filters made of aluminum foils approximately 6 to 9 nm thick.
The function of the filter is to lower the background of bremsstrahlung radia-
tion. The intensity of this radiation depends on the angle 8 (measured with
respect to the incidence direction of the electron beam on the anode) as sin® 0,
for electron energies up to 10 keV, which is just the range of energies char-
acteristic of X-ray photoelectron specirometers. If the electron beam that
excites the characteristic radiation is normal to the anode surface, then the
intensity of bremsstrahlung radiation emitted in this direction is a minimum.
However, in practice, an oblique electron incidence angle is used, since in

1 X 10* imp/24 sec

Figure 4. Photoelectron spectrum of
1s electrons of carbon in graphite.
The satellite lines are also shown. 200 280 270 260 250 240 230 220 210 E, ev
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this case the intensity of the characteristic radiation is higher. By proper choice
of the angle between the anode and the sample to be investigated, it is possible
to realize an optimum intensity ratio of the characteristic-to-bremsstrahlung
radiation, corresponding to the given direction.

At present, the Ka; , lines of magnesium and aluminum are still the stan-
dard sources of X rays. In fact, excitation energies of the order of 1200 eV and
1500 eV allow the study of a great number of energy levels of interest. The
choice of magnesium and aluminum is determined by the fact that the elements
up to magnesium cannot be used as anode materials since, in the elements up
to neon, the 2p levels form a broad valence band; in addition, neon is a gas and
sodium is not a stable anode material. The elements situated after aluminum
(Z=13), as can be seen from Figure 5, are characterized by broad Ka, and Ka,
lines, and by a large separation between them. Use of elements after aluminum
as anode materials, without a preliminary monochromatization, is meaningless.

For the study of the valence bands of crystals, it is, in principle, possible to
use the same radiation sources as in ultraviolet photoelectron spectroscopy,
namely, the resonance lines of He and He*, They are characterized by high
intensity and small linewidth. However, in the region of energies of the order
of 40 eV, the structure of photoelectron spectra is strongly influenced by the
structure of the conduction band, and this results in a more difficult interpreta-
tion of the experimental data. Yttrium has a narrow M line (4p3/,-3ds/,
transition, FWHM equal to 0.45 eV). However, it has a high surface sensitivity
for impurities and a high oxidation reactivity, and the energy of the emitted
radiation, equal to 132.3 eV, is insufficient even for the study of carbon 1s
states.

Monochromatization of X rays for the purposes of X-ray photoelectron
spectroscopy was again first realized by K. Siegbahn {2], who, in the last few
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years, has significantly improved the experimental technique [6-8]. In the
new electron spectrometers constructed in Uppsala, a series of new devices has
been developed. In particular, mention can be made of the new X-ray source,
comprising a high-power electron gun, a rotating anode, and a monochromator
that includes a spherically bent quartz crystal.

The X-ray monochromators used in electron spectrometers are based on the
monochromatization principle proposed by Rowland. The diffracting crystal,
with radius of curvature 2R, is mounted tangentially to a circle of radius R, on
which both the X-ray source and the sample are placed. If the directions of the
incident and diffracted X rays make equal angles 6 with the crystal surface, then
the diffracted X rays that satisfy the Bragg law will be focused on the sample.
The Bragg law relates the X-ray wavelength A to the characteristic crystal inter-
planar distance d through the relation nX = 2d sin 8, where # is an arbitrary in-
teger. Those X rays that do not satisfy this relation will not fall on the sample
surface.

Monochromatization of the Ke, , line of aluminum by using reflection from
the (010) plane of a spherically bent quartz crystal results in an improvement of
the resolution of up to 0.16 eV as compared to the Ka linewidth of 0.83 eV.
Moreover, it removes the background caused by bremsstrahlung radiation and
the Ka; 4 satellites, which results in a considerable increase of the signal-to-
noise ratio. In practice, however, it is difficult to realize a resolution of 0.16 eV
because of monochromator aberrations and because of radiation absorption in
the crystal itself. Absorption in the crystal also causes a decrease of the Ka-peak
intensity down to 45%. Gelius et al. [8] have calculated the shape of the alu-
minum Ka, , line reflected on the (010) plane of an a-quartz crystal. The cal-
culated line shape is shown in Figure 6 together with experimental points mea-
sured with a point X-ray source obtained by using a spherically bent crystal. For
shorter wavelengths the resolution increases and the intensity of the reflected
radiation approaches 10%. It is important to mention that crystal imperfections
represent another factor that contributes to a limitation of the resolving power.

In practice, efforts directed toward achieving a high resolving power en-
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Figure 6. Bragg reflection of the Ka radiation
of aluminum on the (010) plane of a spheri-
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counter a number of difficulties. Only a small part of the entire Ko, , line is
reflected by the crystal. If higher-energy photon lines are used as the source of
incident radiation, the emitted photoelectrons will also have higher energies.
However, retardation of electrons in the electron lens results in a decrease of the
intensity by a factor of (E;/E)Y?, where E; is the energy of the photoelectrons
entering the lens, and E, is their energy after retardation. Other factors that con-
tribute to resolution limitation are aberrations associated with the finite dimen-
sions of the dispersing crystal in the plane of the Rowland circle, possible asym-
metric mounting of the crystal on the Rowland circle, a shift of the crystal from
the Rowland circle, and the finite dimensions of the X-ray source.

In earlier monochromator constructions, cylindrically bent quartz crystals
were used. With this type of monochromator it was possible to eliminate effi-
ciently the bremsstrahlung background and the satellite contribution. Since the
linewidth at the sample site is practically unaffected, improvement of the mono-
chromatization can be achieved by use of a slit placed in front of the sample.
This method of monochromatization is called slit filtration (Figure 7). Its great-
est drawback is that it causes a drastic decrease of the X-ray intensity falling on
the sample.

A more elaborate method of monochromatization is the method of disper-
sion compensation (Figure 8). Since the energy of photons incident on the
sample varies approximately as much as 1 eV over the sample surface, the
emitted photoelectrons originating from the same energy level will have dif-
ferent energies for different points of emission on the sample surface. Before
entering the electron analyzer, the electrons are retarded and focused by an
electron lens. The dispersion of the electron analyzer is chosen in such a way
that electrons with different energies are focused at the exit along a narrow

Figure 7. Principle of monochromatization by slit
A & filtration: A—anode; C—crystal monochromator;
S S—sample.
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A S

Figure 8. Principle of monochromatization by dispersion compensation: A—anode;
C—crystal monochromator; L—electron lens; S—sample.

line. The electrons emitted from another energy level are characterized by an-
other mean energy and are consequently focused at another position at the exit
of the electron analyzer. This type of monochromatizing system allows the use
of X-ray sources having a relatively large area. Care should be exercised in this
case to minimize the surface roughness of the source.

The most advanced monochromatization method is at present the method
of fine focusing. In this method, as can be seen from Figure 9, a rotating anode
is employed, which allows the attainment of sources that are practically ideal
point sources of X rays. As the diffracting component, it is most convenient to
use spherically bent crystals. With point sources, the Bragg-law condition is satis-
fied most closely. Since the rotating anode offers the possibility to extract high-

| Figure 9. Principle of monochromatization by fine
\\\\\\\\\\\\ focusing: RA—rotating anode; C—crystal mono-
RA S chromator; S—sample.
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Figure 10. Efficiency of various methods of monochromatization: a—slit filtration;
b—dispersion compensation; c—fine focusing; I ;—radiation intensity at the anode; I5— X-ray
line profile; 13—radiation intensity after monochromatization.

intensity primary radiation, an additional slit can be mounted in front of the
sample. Moreover, the method of fine focusing obviates the need for specific
sample shapes.

The efficiencies of various monochromatization methods are schematically
illustrated in Figure 10. Characteristic data for radiation sources used in the
X-ray and ultraviolet regions of the radiation spectrum are given in Table 1.

As can be seen from Table 1, titanium, chromium, and copper may be used as

TABLE 1. Sources of Radiation in the Far Ultraviolet and X-Ray Region

Typical value of

Type of radiation the intensity,

Source source? Energy, eV photons/sec Linewidth, eV
He 21.2 1x 10'2 0.003
He* 40.8 1x10M 0.017
Y M 132.3 3x 10! 0.450
Mg Ka, , 1254 1x 10!2 0.680
Al Kay , 1486 1x 1012 0.830
Al Ka; , M 1486 1x 10! 0.165
Al Ko, , M, RA 1486 3 x 1012 0.165
Ti Koy, 4510 5x 10! 2.000
Ti Ka, , M, RA 4510 3 x 1010 0.027
Cr Koy, 5417 1 x 1012 2.100
Cr Koy, M, RA 5417 1x 1010 0.016°
Cu Ka, , 8055 2x 10'2 2.550
Cu Kay , M,RA 8055 3x 10° 0.004%

M = monochromatic radiation; RA = X rays obtained with a rotating anode.
Because of crystal imperfections the linewidth will probably be larger than 0.020 eV.
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anode materials. In the case of titanium, for example, the energy of the Ka; ,
radiation is approximately three times greater than that of the corresponding
line of aluminum. This means that for its monochromatization the same dif-
fracting crystal plane may be used, but this time in the third order, whereas the
Bragg reflection angle will be only slightly different. Titanium, however, is char-
acterized by a very low thermal conductivity, and according to the data from
Table 1, moreover, the intensity obtained will be two orders of magnitude lower.

For chromium and copper, after monochromatization (which is absolutely
necessary for these metals), relatively low radiation intensity is obtained (see
Table 1). This is perhaps the reason why at present no experimental work has
been reported in which monochromatized radiation generated from these ele-
ments is used.

Construction Features of Modern Electron Spectrometers

Let us consider in more detail some of the main features of the new electron
spectrometers developed in the past few years at Uppsala. We have already men-
tioned that these instruments include high-power electron guns, electrostatic
electron analyzers, and a more advanced monochromatizing system using the
method of fine focusing. In monochromators based on the principle of fine
focusing and using rotating anodes, it is necessary to use high-power electron
guns.

In spite of its high electron density, the electron beam should exhibit a fine
focus. The position and shape of the focal spot should be rigorously fixed.
Focusing is realized by using an electrostatic field. The electron gun is equipped
with an indirectly heated cathode. A small electron gun, using a tungsten spiral
filament, is used to heat a disk-shaped tungsten cathode. Since during operation
the electron gun reaches temperatures up to, e.g., 2400°C, the isolators are made
of beryllium oxide. The electron gun developed by Gelius et al. [6] provides
emission currents of the order of 500 mA, at accelerating voltages from 6 to
15-20 kV. The latest electron gun developed at Uppsala [8] allows the use of
accelerating voltages of 20 kV and currents of 1 A. An overall view of this gun
is shown in Figure 11.

The electron beam falls obliquely on the anode surface so that the shape of
the focal spot is an ellipse of 4 mm length and 2 mm width. The power devel-
oped by the electron gun over this spot may be even greater than 100 kW/cm?.
Such power intensity cannot be tolerated by any material at rest. Therefore it is
necessary to use rotating anodes. Such an anode was manufactured of an alu-
minum alloy (97.5% Al, 1% Si, 0.8% Mg, 0.7% Mn) and was provided with an
efficient water cooling system. For a power of 6 kW in the X-ray source and an
anode rotation speed of 5000 rpm, the useful anode surface is heated up to a
temperature of 575°C. This temperature is low enough to preclude evaporation
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Figure 11. Quter view of the electron gun.

of the aluminum. The anode has a diameter of 11 cm. Its cooling is achieved bv
a water flow of S liters/min. An overall view of the rotating anode is shown in
Figure 12.

Monochromatization of X rays by the method of fine focusing is achieved
by using a spherically bent quartz crystal (Figure 13). The crystal has a diameter
of 60 mm, and the radius of the Rowland circle is 389 mm. To allow bending,
the crystal is very thin, having a thickness of 0.1 mm. As the diffracting plane,
the (010) plane is used. The Bragg diffraction angle for the Ka, ; line of alu-
minum is equal to 78.5°. The shape of this line after monochromatization is
shown in Figure 3.

The first electron analyzers used in X-ray photoelectron spectroscopy were
of magnetic type. A detailed description of these analyzers may be found in the
literature [1]. The main drawback of magnetic analyzers is their high sensitivity
to accidental magnetic disturbances. In order to obtain energy resolutions of
the order of 0.01%, it is necessary to reduce the extraneous magnetic fields to
10™* G, which is realized by using large compensating coils. These coils caused
the large dimensions of the magnetic spectrometers. Another drawback is the
fact that in magnetic spectrometers it is difficult to use the technique of pre-
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Figure 12. Outer view of the rotating anode,

Figure 13. The spherically bent
crystal monochromator.

15
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Figure 14. Principle of operation of the spherical
condenser electron analyzer.

liminary electron retardation. For this reason, electrostatic-type analyzers are
being used in X-ray photoelectron spectroscopy.

The new electron spectrometer developed in Uppsala includes an electro-
static analyzer of the spherical condenser type shown schematically in Figure 14.
The central electron trajectory is situated in the plane of the figure. Its radius of
curvature r, is the same as the radius of the corresponding equipotential surface
in this plane. Since the field has spherical symmetry, this equipotential surface
also has the same radius of curvature r in the orthogonal direction. The electron
source is placed at the point A. The angle ¢ is chosen as 157.5° and the radius of
the central trajectory as 360 mm. The spherical electrodes are placed 80 mm
apart. In the azimuthal direction, the spherical sector is confined inside an open-
ing angle of 60°.

In order to give an idea of the progress of experimental techniques, Figure
15 shows the spectrum of the gold 4f level, as recorded (1) by the first [1] and
(2) by the latest, most advanced [6] electron spectrometers. The resolving
power has in the second case become sufficient to reveal that the actual shape
of the line is described by a Lorentz distribution. A great difference is also ob-
served in the spectra of trifluoracetate. As can be seen from Figure 16, the new
photoelectron spectrum exhibits different ratios of the line intensities, which is
due to the absence of overlapping effects.

1, arb. units

05 0% Figure 15. Photoelectron spectra of 4f [2 and

4f7/2 electrons of gold as obtained (1) without
i and (2) with monochromatization of the excit-
90 80E,eV  ing X rays.
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Figure 16. Photoelectron spectrum of carbon
Is electrons in trifluoracetate as obtained (1)

without and (2) with monochromatization of |
the exciting X rays. 295 290 285
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Construction Features of Commercial Electron Spectrometers

The new systems developed in the last few years in Uppsala and incorporated
in new photoelectron spectrometers have not yet been exploited in currently
available commercial electron spectrometers. For example, these spectrometers
do not make use of rotating anodes and do not apply the principle of fine focus-
ing for the monochromatization of X rays.

The first in the series of commercial electron spectrometers was the IEE-15
spectrometer manufactured by the firm Varian in 1969. At present, it is one of
the most widely used instruments and is to be found in a great number of labora-
tories all over the world. An overall view of the IEE—15 spectrometer is shown
in Figure 17, and its principle of operation in Figure 18. The IEE-15 spectrom-
eter is a highly automated instrument. Its principal components are the source
of X rays, the vacuum system with two pumps (a titanium sublimation pump
and a turbomolecular pump), the electrostatic electron analyzer, an oscilloscope,
a teletypewriter, an X-Y recorder, and a computer of VARIAN 620/i type. The
spectrometer analyzer is protected against accidental magnetic field perturba-
tions (in particular the earth’s magnetic field) by a shield made of y-metal. The
vacuum level in the spectrometer is of the order of 1077 torr. The spectrom-
eter is equipped with a special preparation chamber inside which the samples
can be cleaned, cooled down to ~180°C, or heated up to +250°C. As X-ray
source, the spectrometer uses the Ka, , line of aluminum or magnesium. An
aluminum filter is placed between the sample and the anode. It improves the
signal-to-background ratio and also damps the satellite Ka; , radiation.

By varying the voltage on the electrostatic electron analyzer, the width of
the analyzed line can be changed. For example, the width of the 41, line of
gold is 1.8 eV for 100 V on the analyzer, and 1.1 eV for 30 V on the analyzer,
when an aluminum anode is used. One drawback of the IEE-15 spectrometer is
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Figure 17. Outer view of the IEE-15 electron spectrometer.

its relatively low resolving power. This can only partially be compensated for by
mathematical processing of the experimental data with the computer connected
on-line to the spectrometer.

The computer is used not only as a multichannel analyzer but can also perform
some of the operations required in the mathematical processing of the experi-
mental data. Thus, for example, special programs have been developed for the
calculation of mean values and even for improving the resolving power of the
spectrometer by eliminating the broadening introduced by the analyzer. These
programs make use of the technique of Fourier analysis. Figure 19 shows as
an example the results of the mathematical processing of the photoelectron
spectrum of the chlorine 2p doublet in KCl. This doublet (curve 1) was re-
corded in 10® sec with a voltage of 40 V on the analyzer. The photoelectron
spectrum of this doublet, after Fourier analysis, is shown as curve 2 in Figure
19. Convolution of this spectrum with the “filter” 3 gives the Fourier spec-
trum 4, which by reversed Fourier analysis leads to the spectrum 5. Compar-
ison between the initial spectrum 1 and the final spectrum 5 shows a substan-
tial improvement in resolution, which is, however, accompanied by some
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Figure 18. Principle of operation of the IEE-15
electron spectrometer: (1) electron multiplier;
(2) ring slit; (3) focusing control; (4) ring slit;
(5) sample; (6) X-ray beam; (7) scanning volt-
age; (8) anode of the X-ray source; (9) cathode
of the X-ray source; (10) photoelectron trajec-
tories; (11) spherical condenser; (12) cylindrical
condenser.

Figure 19. Successive steps in the mathe-
matical processing of the photoelectron
spectrum of the chlorine 2p doublet in KCl
by the method of Fourier transformation:
(1) photoelectron spectrum of chlorine 2p
doublet in KCl; (2) Fourier image of the
photoelectron spectrum; (3) filter; (4)
convolution of the Fourier image and the
filter; (5) finally processed photoelectron
spectrum.

19
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decrease in sensitivity. In order to perform this transformation, it is necessary to
use an appropriate “filter.” In the above example, the filter was constructed by
using the Fourier-type spectrum of the 1s line of carbon in graphite, produced
with energies of 100 eV and 50 eV on the analyzer. Such a filter can correct the
spectra for experimental broadening introduced by the analyzer. Other types of
“filter” can be devised, however, that provide correction of the spectra for
effects resulting from the X-ray source (line asymmetry, satellites).

The above-mentioned example demonstrates that since experimental effects
that result in broadening of the lines may be corrected for by choosing appropri-
ate filters, well-resolved spectra can finally be obtained within reasonable times.

The spectrometer HP-5950A developed by the firm Hewlett-Packard has a
greater resolving power. A monochromator based on the principle of dispersion
compensation is used in order to remove the satellites accompanying the Ka; ,
radiation of aluminum or magnesium, as well as the bremsstrahlung radiation
that introduces an additional contribution to the structure of photoelectron
spectra resulting from inelastically scattered electrons.

An overall view of the HP-5950A electron spectrometer is shown in Figure
20, and its principle of operation in Figure 21. The monochromator incorporates

Figure 20. Outer view of the HP-5950A electron spectrometer.



PHOTOELECTRON SPECTROSCOPY FUNDAMENTALS 21

Figure 21. Principle of operation of the
HP-5950A electron spectrometer: (1)
display; (2) multichannel analyzer; (3)
multichannel detector; (4) electron ana-
lyzer; (5) electron lens; (6) photoelectron
trajectories; (7) Rowland circle; (8) crystal
monochromator; (9) sample; (10) anode of
the X-ray source.

three bent crystals, one of which is shown in Figure 21. The other two crystals
are situated symmetrically with respect to that shown, in two planes that also
pass through the X-ray source and the sample. In this way, each of the crystals is
situated on its own Rowland circle. This special construction was adopted in
order to increase the X-ray intensity on the sample. This monochromator design
and the small sample size necessitate the use of advanced electron detectors. A
single electron falling on the active surface of such detectors causes the emission
of approximately 10® electrons. These electrons irradiate a phosphorescent
screen, and the generated light signals are recorded by a television tube. The sig-
nals are then directed toward a multichannel analyzer. The most noteworthy
characteristic of the analyzer in this system is the absence of the slit. The spec-
trometer has a high resolution—0.6 eV.

Besides the IEE-15 and HP-5950A instruments, there exist several other
types of spectrometers. The firm McPherson (USA), for example, has developed
the spectrometer ESCA-36, and Vacuum Generators (United Kingdom) the spec-
trometer ESCA-2 and subsequently the more elaborate ESCA-3 spectrometers.
Since these spectrometers have performances similar to those of the IEE-15 in-
strument we shall discuss here only those characteristics that make them differ-
ent from the IEE-15 spectrometer. In the ESCA-36 it is possible to change the
anode rapidly without breaking the vacuum. This allows the study of binding
energies over a wide energy interval 0-4000 eV. It is also possible to change
samples without breaking the vacuum. The vacuum level in the spectrometer is
approximately 10~° torr.

The ESCA-3 spectrometer is operated at an even better vacuum, of the
order of 107-1071° torr. An advantage of the spectrometer is the possibility of
investigating samples of small dimensions (approximately 1 cm?), and also the
capability of data handling and processing with the help of a dedicated program-
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mer. Among the facilities available on the data system are spectral averaging,
smoothing and deconvolutton of peaks, background subtraction, and peak posi-
tion determination

Let us now consider the parameters that may be used in comparing various
types of electron spectrometers

S  sgnal  Ip—lp
B~ background = Iz
S _ signal
N = nose
Ip—1g
sensitivity = C ,
A

where Ip 1s the intensity (number of counts) of the peak of the photoelectron
line, I 1s the corresponding value of the noise level, and C4 1s the concentration
of A-type atoms on the surface of the sample under mnvestigation The spectrom-
eter resolution 1s characterized by the quantity AE determined by the relation

(AEP =~ (AE,} + (AE ) + (AE).

TABLE 2. Characteristics of the Principal Types of Electron Spectrometers?

Precision of

X ray the peak
Electron photo position
spectrometer electron Iy, S S Sensi determ1  Reproduc
type line mp/sec FWHM B N twvity AE,eV nation 1bility
Vanan IEE 15 Audf 1000000 16 7 — 8800 — — —
Ag 3d 24 000 0388 13 - 220 09 — —
C 1s 11700 10 17 - 110 - 01 003
Hewlett-Packard Au 4f 120000 08 120 — 1200 — — -
HP-5950A Ag 3d 26 000 087 33 - 250 - — —
C Is 12000 08 200 1500 120 OS 01 003
Mc Pherson Au 4f 75000 135 14 350 700 — — -
ESCA-36 Ag 3d 18700 088 19 270 180 088 004 015
C 1s 14500 100 53 470 140 - — -
Vacuum Au 4f 30000 236 — — — - - —
Generators, Ltd ~ Ag 3d - - — — — — — —
ESCA 2 C 1s 10000 183 — - — 10 01 005
Vacuum Au 4f 35000 105 10 - — — - -
Generators, Ltd ~ Ag 3d 25000 0095 — — — — — -

ESCA 3

%For the HP 5950A and ESCA 2 spectrometers, the data refer to the aluminum anode Before the mea
surements of the characteristics of the HP 5950A spectrometer the surface of the gold sample was
cleaned by argon 10n bombardment
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Here, AE, is the width of the X-ray line incident on the sample, AE, the effec-
tive width of the probed core level, and AE the magnitude of the spectrometer
aberration. Some basic parameters of the most widely used spectrometers are
shown in Table 2 using data from Lucches [9, 10].

At present, many other different types of spectrometers are being con-
structed. We have considered here only those instruments that have been most
widely used.

Calibration of Electron Spectra

When nonconducting samples are investigated, in order to obtain accurate
values of binding energies, as given by equation (4), it is essential to determine
the magnitude of sample charging ¢ under the action of X radiation. This can
often be determined by measuring the charge of hydrocarbon layers formed on
the surface of the sample under investigation, or the charge of a thin gold layer
evaporated onto the sample surface. To ensure that these methods are suffi-
ciently reliable, it should be demonstrated that the magnitude of the charges
developed on the sample surface layer is equal to that of the hydrocarbon or
gold overlayer. It would be desirable to perform the measurements under such
experimental conditions that sample charging is minimal. The problem of sam-
ple charging is important and difficult. In the following, we shall discuss briefly
the results obtained in this field.

The simplest case is the study of metals covered by an oxide layer. Johansson
et al. [11] have shown, using the photoelectron spectrum of a polished alumi-
num foil as an example, that the incident X radiation causes charging of the sur-
face oxide layer but does not alter the position of the photoelectron line corre-
sponding to the pure metal. The difference between the metal and oxide 2p
lines is 2.6 €V. If an external positive potential of +5 V is applied to the sample,
the magnitude of this difference is reduced to 2.4 eV, whereas if a negative po-
tential of —5 V is applied the difference is increased to 2.8 eV. In both cases, the
metal lines are displaced in proportion to the magnitude of the applied potential.

A far more difficult situation is encountered in the case of nonconducting
samples. Khatowich et al. [12] have reported results obtained for such samples
deposited on gold or palladium substrates and coated with a sputtered layer of
gold or palladium. The positions of the photoelectron lines corresponding to the
surface layer and to the substrate were compared, and the energy difference was
attributed to the charging effect. By applying an external potential to the sub-
strate, the lines corresponding to the sample itself and to the noble metal layer
suffered a shift of the same magnitude. For the 4d5/, level of barium the same
binding-energy value was obtained regardless of whether gold or palladium was
used as the sputtered layer. Therefore, it can be concluded that the thin noble-
metal layer has the same potential as the surface of the nonconducting sample.
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Consequently, the electron lines corresponding to such sputtered overlayers may
be used for calibration purposes.

A more difficult experiment has been performed by Johansson et al. [11].
On the sample—a NaCl monocrystal with a 0.5-cm? surface area mounted on a
platinum substrate—a small (1-mm diameter) spot of gold was deposited. The
observed shift of the carbon 1s line from the NaCl crystal surface and from the
platinum foil was determined as 3 eV. The measured energy value of the gold
4f7/2 line, as compared to the 4 f4/2 line of platinum, corresponded to a binding
energy of 86.8 eV; the correct value is 83.8 eV. This result also shows that the
magnitude of the charge is equal to 3 V. When a voltage of +5 V or —5 V was
applied to the specimen holder, the lines corresponding to the substrate, i.e.,
the 4f7, line of platinum and the 1s line of carbon, were also shifted by —5 eV
or +5 eV on the kinetic energy scale, but the 45, line of the gold, the Auger
line of sodium in NaCl (KL,L3('D,)), and the 1s line of carbon from the crystal
surface were shifted by only —2.5 eV and +1 eV, respectively. The photoelectron
lines of gold were also shifted as much as the lines corresponding to the holder,
if electric contact was established between the gold sheet and the sample holder.
Experimental measurements showed that the lines of carbon, gold, and sodium
are shifted equally when the voltage on the sample holder is changed. It follows
that, with this arrangement, the lines of gold and carbon may be used for the
determination of sample charging and therefore for the calibration of spectra.

The magnitude of sample-charging effects depends on the sample thickness.
Johansson et al. [11] deposited a thin NaCl layer of approximately 20 A thick-
ness on a gold substrate. It was observed that the shift of the carbon 1s line aris-
ing from the hydrocarbon layer on the sample surface was 0.2 eV greater than the
shift of the carbon 1s line arising from the hydrocarbon layer on the substrate,
toward greater binding energies. For thicker layers (of the order of 2000 A),
shifts as great as 0.6-0.8 eV were observed. For monocrystals, the charging ef-
fects are even greater, reaching values of the order of 2-3 eV.

The magnitude of sample charging depends on the substrate material. This
was found experimentally in the case of a thin NaCl layer deposited simulta-
neously on beryllium, aluminum and gold foils. Although the magnitude of sam-
ple charging for the sample deposited on aluminum was found to be twice as
great as that for the sample deposited on gold, the charge for the beryllium sub-
strate was intermediate between those for the aluminum and gold substrates.
This experiment shows that, in order to minimize the magnitude of sample charg-
ing, gold is a good substrate material.

Calibration of photoelectron spectra may also be achieved by mixing the
sample to be investigated with a suitable reference material. It has been shown
experimentally that graphite is suitable as a calibration material. In this case, the
mixture should be pressed and mounted on a conducting substrate. However,
not all substances can be used for calibration purposes, and particular caution
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should be exercised when this method of calibration is considered. Bremser and
Linneman [13], for example, have suggested the use of LiF for calibration of
photoelectron spectra. However, as is demonstrated by the work of Johansson
et al. [11], the magnitude of LiF charging depends on the duration of the spec-
trum recording. Furthermore, as a result of nonuniform charging in samples
mixed with LiF, spurious lines may appear. For example, in the case of BN
mixed with LiF, two 1s lines of nitrogen were observed.

It may be concluded from these studies that interaction of X radiation with
nonconducting samples leads to the emission of photoelectrons, Auger electrons,
and secondary electrons from the sample surface, leaving it electrically charged.

There exist a number of factors that contribute to a reduction of the charg-
ing effect. These include the surface conductivity of the sample stimulated by
the X radiation and the existence of a photoelectron current from the window
of the X-ray tube. The studies of Ebel and Ebel [14] performed on the electron
spectrometer ESCA-36 have shown that, at a constant current, the magnitude of
sample charging increases when the voltage applied to the anode is increased. In
the region of low anode voltages (of the order of 2.5 kV), the sample may be-
come negatively charged. In order to elucidate the effect on sample charging
resulting from the electron current arising from the aluminum foil (0.008 mm
thick) that covers the window of the X-ray tube, the window was covered with
a gold layer on the side facing the sample. Under identical excitation conditions,
the number of electrons emitted by gold was about five times greater than the
number of electrons emitted by aluminum. In this case, the magnitude of the
specimen charge was found to be lower. A variation of the anode potential from
2 to 6 kV resulted in a variation of the charge from approximately 1 to 1.5 eV.
This experimental fact shows that the electrons arising from the aluminum foil
lower the sample charging.

Ebel and Ebel [14] also studied the electron spectrum excited by the X radi-
ation and by the electrons scattered from the anode. For this purpose, the exper-
imental arrangement was modified as follows. The window of the X-ray tube was
left open and the foil was placed in the spectrometer so that the electrons emitted
by it could be collected. In this case, the electrons scattered by the anode had a
considerable effect, since they caused secondary electron emission from the
aluminum foil. In the region of anode potentials of the order of 3-6 kV, the
number of secondary electrons was proportional to the anode current i, and was
nearly independent of the anode voltage. However, the flux of electrons arising
from the anode, and the current i, corresponding to it, is determined mainly by
the anode voltage and only to a much lower extent by the anode current.

Consequently, one can understand why in some cases the sample may get
negatively charged. The flux of electrons emitted by the sample decreased
quickly when the anode potential decreased, but at a constant anode current
(#,) the flux of electrons emitted by the aluminum foil (i) was independent of
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the anode potential and remained constant. Therefore, at low voltages (of the
order of 2.5 kV) the number of electrons hitting the sample was greater than the
number of electrons leaving it. Since both the electron emission from the sample
and the flux of electrons coming to the sample are proportional to i,, it follows
that the magnitude of sample charging, being the difference between two linear
variations, also has a linear dependence on i,. In fact, at low currents a linear
behavior is observed, whereas at high currents a saturation does occur. For dif-
ferent samples, the first region of the curve of y versus i, may be different, but
in all cases ¢ becomes independent of i, at a current of i; ~ 20 mA. The empir-
ically determined dependence of ¢ on i, can be represented by the simple relation
Bi
¢ = A ﬁaBTa‘ ) (5)

where A and B are constants. This dependence suggests that a further mechanism
may exist, which has not yet been considered and which causes a decrease of
sample charging. It is presumably caused by the X radiation and results in a flux
of electrons directed toward the charged surface layer of the sample. It can be
supposed that such a mechanism arises from photoconductivity.

Let us consider the current i through the circuit formed by the sample sur-
face and the sample holder. It has been found experimentally that this current
depends linearly on i,. By using the Kirchhoff law, one obtains for the current i
the following expression (see Figure 22):

i=1i —i,
Since i; = K, i, and i, = K, i,, it follows that

i=%: (Kl’-Kz)ia-

By making use of the empirical formula (5), one may write

. 1 ‘___KI—K2
C=fx=—a T

a

KI—K'Zi
A

Since the flux r of photons hitting the sample is proportional to the current i,
this expression agrees with the formula giving the dependence of the photocon-
ductivity o on n, namely,

6 =0, En.

This formula, which is characteristic for photoconductivity, is similar to formula
(5), and this provides evidence of the significant influence of photoconductivity
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Figure 22. Schematic diagram of the
circuit for determination of the current
passing through the sample and the sam-
ple holder: (1) window of the X-ray
tube; (2) sample surface.

on the process of sample charging. The experimental data reported by Ebel and
Ebel [14] were obtained for glass covered by gold, for Teflon, and for Teflon
covered by a silver foil.

The magnitude of sample charging depends on the state of the surface. If the
sample surface is covered by oxide particles, the magnitude of the charge on each
particle will depend on its dimensions. It will also vary over the surface of each
particle, and will be different for particles of different shapes. These problems,
however, have not yet been studied experimentally. One fact is clear, namely,
that the sample to be investigated should have a smooth surface.

Before proceeding with a consideration of methods of calibration of photo-
electron spectra of insulators and semiconductors, let us discuss the experiment of
Hedman et al. [15], in which n- and p-type silicon samples were studied. The sam-
ples were prepared by alloying silicon with a concentration of 2 X 10*° atoms/cm?
phosphorous and with 4 X 10'® atoms/cm?® boron. At such concentrations, the
mixed levels form a band, and the conductivity has in both cases a metallic char-
acter. Consequently, the samples do not become charged under the action of
X radiation. It follows that the Fermi level is situated at the top of the valence
band in the case of p-type silicon, and at the bottom of the conductivity band in
the case of n-type silicon. To avoid changes of the characteristics of the alloyed
samples, their surfaces were not exposed to any chemical poisoning.

The measurements were performed under a vacuum of 107° torr. In the
photoelectron spectrum, a low-intensity line was observed on the high-energy
side of the silicon 2p binding-energy peak. The occurrence of this line was due
to the presence of an oxide layer on the sample surface. As a result of the dif-
ferent position of the Fermi level in the samples, it was to be expected that a
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shift of the silicon 2p core level would appear. Such a shift was, in fact, de-
tected experimentally, and its magnitude, 1.0 £ 0.2 eV, was close to the value

of the forbidden bandwidth (1.1 eV). For the two particular samples considered
here, the following binding energy values were obtained: 100.0 eV for n-type
silicon and 99.0 eV for p-type silicon. The photoelectron spectrum for silicon
2p electrons is shown in Figure 23. When the specimens were subjected to chem-
ical poisoning, a binding energy of 99.5 + 0.2 eV was obtained. This was the
same value as that obtained for silicon with a low concentration of the second
component.

Ley et al. [16] have studied the problem of the Fermi-level position in insul-
ators and semiconductors. The magnitude of ¢ was determined as follows. After
recording the photoelectron spectra of the sample, its surface was covered with a
thin layer of gold, and the binding energy of the gold 4/, electrons was mea-
sured, together with one of the intense core-level lines. Since in gold the position
of the 4f5, line relative to the Fermi level is well known (ES = 84.0 eV), it fol-
lows that the binding-energy value of the core level under investigation could be
obtained with respect to the Fermi level of the deposited gold layer. This proce-
dure makes possible the determination of the Fermi-level position with respect
to the top of the crystal valence band, and also the determination of the magni-
tude of sample charging ¢. Very careful experiments were performed in order to
determine the charging effect for 26 semiconductors and insulators. Figure 24
shows the measured y values of these crystals, as a function of the width of their
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Figure 24. Dependence of the charge of dielectrics and semiconductors on the magnitude
of the forbidden bandgap of the crystal: (1) PbS, PbSe, PbTe, InSb; (2) Ge; (3) Si (film);
(4) CdTe; (5) CdSe; (6) diamond.

forbidden band. This figure shows clearly that some correlation exists between
the charge ¢ and the width of the forbidden band of semiconductors and insula-
tors. Materials with narrow forbidden bands become charged up to values close
to or somewhat lower than the width of the forbidden band itself. Crystals
characterized by wide forbidden bands become charged up to values close to or
somewhat greater than the width of the forbidden band.

Unexpectedly, high charging was observed for the compound ZnSe (22 eV),
which may result from the influence of the photovoltaic effect. The existence of
the above correlation indicates that, at high values of the current that neutralizes
the specimen charging, a mechanism of the Zener breakdown switches becomes
active. This mechanism is particularly probable for materials with high carrier
concentration. It is also necessary to take into account the surface conductivity,
which can introduce a significant contribution to the neutralizing current in
those cases in which the magnitude of charging is lower than the width of the
forbidden band. Thus, the procedure described above allows a quite accurate de-
termination of the Fermi energy position with respect to the top of the valence
band. However, the significance of this £ value remains as yet incompletely
understood.

(A similar situation arises when special techniques are used with the aim of
canceling out the charging effect. This can be achieved by irradiating the sample
under investigation with low-energy electrons or with ultraviolet radiation.

The position of the Fermi level, as determined from ultraviolet photoemis-
sion experiments, depends on the stoichiometry, on alloying, and on the surface
states of the sample. Deformation of the electron energy bands caused by sam-
ple surface charging should be taken into account. Wagner and Spicer [17] have
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shown that, in order to determine the position of the Fermi level, each of the
aforementioned parameters should be carefully examined. Consequently, the ex-
periments should be performed on sample surfaces of atomic-scale purity, and it
is also absolutely necessary to know the precise stoichiometric composition and
the degree of alloying. These factors are usually more easily controlled in silicon
and germanium than in binary semiconductors. Unfortunately, a great deal of
experimental work has been performed on specimens for which at least one, and
very often even several of the aforementioned parameters have not been deter-
mined. Exceptions to this are several photoemission measurements performed in
the vacuum ultraviolet region [17, 18]. As is seen in Table 3, the Fermi level is
preferentially localized near the center of the forbidden band.

Vesely et al. [19] have determined the position of Ex for CdS, CdSe, CdTe,
Zn0, ZnSe, ZnTe, and for the semiconductors HgSe and HgTe with a small for-
bidden band, by comparing £} obtained from measurements in the ultraviolet
region of the spectrum with £} obtained from X-ray photoelectron spectra. The
different values of E} explain the discrepancy between the results obtained by
Ley et al. [16], on the one hand, and by Vesely et al. [19], on the other. Use of
monochromatized X radiation is of great importance in the determination of the
magnitude of E'y g, which in this case can be obtained by extrapolating the steep
side of the low-energy valence band peak toward the background line.

In the spectra of the semiconductors and insulators investigated by Ley et al.
[16], sharp and narrow core-level lines were observed, even when the magnitude
of the charging ¢ was 10 eV or even more. Therefore, it can be concluded that in
spite of the fact that the sample surface is charged throughout the whole depth

TABLE 3. Position of the Fermi Level inside the Forbidden Bandgap
of Dielectrics and Semiconductors

Approximate
Magnitude of the location of
Compound Ep-Eypg forbidden bandgap Ep,ev4

ZnTe 0.17 1.19 B
GaAs 0.0 1.40 B
GaP 0.15 2.26 B
InSb 0.12 0.18 C
ZnSe 1.13 2.80 C
ZnS 1.08 3.6 C
Zn0 1.63 3.3 C
CdTe 0.47 1.40 C
CdsS 1.27 2.58 C
InAs 0.3 0.35 U
CdSe 1.88 1.84 U

2B = pottom; C = center; U = upper part of the forbidden bandgap.
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of X-ray penetration (approximately 10%-10° A), the charge potential has a step-
wise variation at the surface.

It should be noted that although the calibration of the photoelectron spec-
tra of nonconducting samples by covering them with a thin layer of gold gave
consistent and noncontradictory results for the semiconductors and insulators
studied by Ley et al. [16], it is not completely certain that this calibration
method is universally valid. This is indicated, for example, by the results of other
experiments [20, 21], in which it has been found that deposition of gold on the
sample surface may result in chemical reactions with the sample material, and
consequently in a chemical shift of the gold 4f, line toward greater or lower
values of the binding energy. Another factor that affects the shape and the posi-
tion of both the gold and the sample lines is the thickness of the deposited layer.

Effective Escape Depth of Electrons

The effective escape depth of electrons is an important parameter that deter-
mines whether the experimental information obtained characterizes the bulk or
the surface properties of the sample under investigation. In order to elucidate
this problem, it is necessary to be able not only to measure the effective depth
of electron escape from the sample under the action of X radiation, but also to
determine the values of the effective depths that correspond to the bulk or to
the surface properties of the sample, respectively.

By ultraviolet photoemission studies the effective escape depth of electrons
has been determined for a number of crystals. These measurements have been
mainly made in the region of incident photon energies up to 10 eV. It has been
found that the escape depth depends strongly on the kinetic energy of the elec-
tron. For electron kinetic energies that are greater than the energy of the Fermi
level by some tenths of an electron volt, the effective escape depth can reach
values of the order of 10* A [22]. It decreases rapidly to values of the order of
20-30 A when the electron kinetic energy Ey,, increases.

A number of experiments have been performed for the determination of
this parameter by X-ray photoelectron spectroscopy, for electron energies up to
3500 eV. It has been shown that, in the X-ray region of photoelectron excita-
tion, typical values of the effective electron escape depth are of the order of
20-30 A, corresponding to electron energies in the range 1-2 keV. If the elec-
tron energy is further increased, an increase of the effective escape depth is
observed.

Two methods are employed for the determination of the effective escape
depth in X-ray photoelectron spectroscopy. The first method consists in mea-
suring the thickness of a layer deposited onto a substrate made from a different
material; the intensity of a given line from the deposited layer sample is com-
pared with the intensity of the same line from a bulk sample of the same mate-
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rial. In the second method, the substance under investigation is also deposited on
a substrate, but in this case the intensity of a given characteristic line from the
covered substrate is compared with the intensity of the same line from the sub-
strate material.

When analyzing the intensities in photoelectron spectra, it may be assumed
that the intensity of the X-ray photon beam does not suffer significant modifica-
tion in the vicinity of the sample surface. Therefore, for the intensity of photo-
electrons with given energy, one may write the following expression:

dl = FoNke—*/Adx, ©6)

where F is the intensity of the X-ray photon flux, o is the photoionization cross
section for the given photon energy and given atomic level, N is the number of
atoms of a given type inside unit volume of the sample, k is a factor determined
by the geometry of the spectrometer and by the counting efficiency of the
photoelectron detector, x is the distance traveled by the photoelectron inside
the sample material, and A is the effective electron escape depth.

From formula (6), the following expression is obtained for the intensity of
the photoelectron flux emitted from a surface layer of the specimen, of thick-
ness d:

[ = Fo,N kA, (1 — e=d/%) = [, (1 — e—d/Ay), %)

Here, I, is the intensity of the photoelectron flux emitted by the bulk sample.
The subscript 1 refers to the sample under investigation. From formula (7), by
using the first of the above-mentioned methods, one can determine the value of
A;. By using the second method, the intensity of photoelectrons traversing a
sample layer of thickness d can be obtained from

[ = Ie=d4/A,

where I, is the intensity of the photoelectron flux emitted from the uncoated
substrate material, i.e., I, = Fo,N,kA,. Here g5, N;, and A, are the correspond-
ing characteristic parameters of the given sample.

Particularly stringent requirements are imposed on the quality of the sample
layer deposited onto the substrate. It should be homogeneous since the presence
of lower-density regions or of uncovered regions would result in an increased
value of the escape depth A. There are several methods for the deposition of uni-
form layers onto substrates. One of these methods, proposed by Steinhardt ez al.
[23], consists in depositing the layer through a narrow slit onto a rotating cylin-
der. It is desirable to perform the deposition inside the spectrometer chamber it-
self, in order to avoid atmospheric exposure of the sample even for relatively
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short times. If, for practical reasons, this requirement cannot be met, it is neces-
sary to heat the specimen after mounting it in the spectrometer, until the 1s-peak
signals of oxygen and carbon decrease and the characteristic signal of the depos-
ited substance increases. Deposition of the desired layer on the substrate is usu-
ally achieved by electron bombardment of a separate piece of material. Carlson
and McGuire [24] deposited thin layers of tungsten trioxide on tungsten sub-
strates by anodization.

Let us consider the results of some experiments that have been carried out
to determine the magnitude of A. In one of the first experiments, Klasson et al.
[25] determined A for gold and for aluminum oxide (Al,O3). The magnitude of
1-e~9" for three energy values of the electrons emitted from gold is shown in
Figure 25. The full lines were drawn through the experimental points by using
the least-squares method. In experiments devoted to the determination of A, the
intensity ratio I/I is usually measured, since it is less sensitive to surface impu-
rity contamination of the bulk sample and of the deposited layer.

For gold, the magnitude of A was also determined at a photoelectron energy
of 3208 eV. Its value was found to be 37 A. With available experimental data it
was possible to establish the energy dependence of A in the investigated energy
region as A(E') = CE", where the value of n was found to be 0.5 £ 0.1 by the
least-squares method. It should be mentioned that the accuracy in the determi-
nation of A depends to a great extent on the accuracy in the determination of
the sample thickness. In the work of Klasson et al. [25], the latter was deter-
mined by the standard interferometric method [26] to within +10%. For gold,
A was determined with an accuracy of £15%. For Al,03, at a photoelectron
energy of 1389 eV, A was determined as 13 A, and at 3856 eV it was found to
be 22 A.

Let us now consider the experiment of Carlson and McGuire [24], in which
A was determined for tungsten trioxide WOj3. The photoelectron spectra of the
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Figure 25. Dependence of the intensity of gold photoelectron lines on sample thickness,
at three values of the kinetic energy of electrons: 0—940 eV (4p3)2, Al-Kay 5); +—-1403 eV
(4f7/2, Al-Ka, ,); @-2671 eV (3p3/2, Cr-Ka ).
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4f2)2,5/2 levels of pure tungsten and of its oxide WOj; are different because of
the chemical shift of these tungsten levels in the oxide (Figure 26). For an oxide
layer of thickness d’, the intensity ratio may be expressed as follows:

1 N,A —d'1As
R= - — Moy e ®

Iyo, Nidy (1 — =91y

The ratio N, /N, for tungsten and for WO; is known from the ratio of densities.
The ratio A, /A; may be obtained experimentally by measuring the intensity of
4f lines of pure tungsten and of pure WO3;, under identical conditions. Since the
intensity of the photoelectron flux emitted from a bulk sample may be expressed
by the formula

[ = FoNEA,
it follows that
!
* __ v NyA,
R = Iyo,  MiA T ©)

The ratio R*, as determined in a separate experiment, is equal to 1.74. Equation
(9) shows that if A is known for a particular energy and for a particular com-
pound, it is possible to determine its value for any other compound containing
the given element. As can be seen from Figure 26, when the thickness of the
oxide layer increases, the signal corresponding to pure tungsten decreases, while
the signal corresponding to WO; increases. It should be noted that the energy

W0,
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L

Figure 26. Photoelectron spectra of 4f7/2 and 4f /2

electrons of tungsten and of tungsten oxide, for vari-
N ous thickness of the oxide layer: (1)d = 2.3 A, (2)
460 380 300 E,ev 1494, (3)21.3 A, (4) 30.6 A
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Figure 27. Intensity ratio of photoelectron lines of tungsten and of tungsten oxide as a
function of the thickness of the oxide layer.

distance between the characteristic lines of pure tungsten and its oxide remains
constant at all oxide thicknesses, except when the thickness of the oxide layer is
approximately equal to one monolayer. The experimental values of the intensity
ratio are shown in Figure 27. The curve in this figure was derived by using for-
mula (8) with the experimental value R* = 1.74 and by choosing the optimum
value of A;. This curve, giving the dependence of R on d’, agrees well with the
experimental data, in spite of the fact that the experimental values of R vary
over three orders of magnitude. The best agreement with experiment was ob-
tained for A = 26.3 A. The value of A, in this case was 12.8 A. The thickness
of the oxide layer was determined by the method proposed by McCargo et al.
[27], who determined a relation between the anodization potential and the
thickness of the oxide layer. An additional check was achieved by irradiation of
the tungsten sample with neutrons before anodization, followed by dissolution
of the oxide layer in a solution of KOH and determination of its radioactivity.
The authors estimated the error in the determination of A; to be +20%. This
error value includes the uncertainties in the determination of the layer thickness
d’ and of the ratios R and R*.

Klasson et al. [28] have determined the value of A for silicon. A silicon film
was deposited on copper and chromium substrates and the intensity of the pho-
toelectron lines of silicon, copper, and chromium were studied as a function of
the thickness of the deposited layer. The magnitude of the exponent # in the
equation A(E) = CE"™ was evaluated for the energy range from 321 to 3574 eV.
It was found to be 0.7 + 0.2, which is fairly close to the value n = 0.5 £ 0.2, ob-
tained earlier for gold. Figure 28 shows the energy dependence of A for silicon
and gold, based on the data from Klasson et al. [25, 28].
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In the above discussion, our aim has been to give the reader a description of
the experimental approach to the problem. Therefore, we have considered only a
few, but characteristic experiments for the determination of the effective escape
depth of electrons. All currently available data on the values of A, measured
over a large energy range, for pure metals and for compounds, are shown in Fig-
ure 29.

We shall not discuss the methods used for the determination of A in ultravio-
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Figure 29. Effective escape depth of electrons as a function of the electron kinetic energy.
The curves and the points are taken from the following papers: (1) Cu, Ag, Au [29-31] ;

(2) Ag [32]; (3) Au [25] ; (4) Au [33]; (5) Al [34]; (6} Al [35]; (7) Al [36] ; (8) Al,03
[25];(9) C [37]; (10) W [24]; (11) W [38]; (12) WO3 [24]; (13) Mo [38]; (14) K [39];
(15) Cs [40]; (16) Sr [22]; (17) Ba [41]; (18) Yb [41]; (19) Ce [22]; (20) Cl [41]; (21)
Gd [42]; (22) Y [42]; (23) Ni [42]; (24) Fe [43]; (25) Si [44]; (26) Si [45]; (27) Si [28];
(28) GdTe [46]; (29) NaKSb [47]; (30) Be [48]; (31) GeO, [49].
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let photoelectron spectroscopy. Even there, however, the method used is based
on the deposition of a layer of one material onto a substrate made from a differ-
ent material, followed by a study of the contribution of these two substances to
the photoelectron spectrum as a function of the thickness of the deposited layer.

In the energy region down to approximately 10™2 eV, there exist great dif-
ferences between the A values of different materials. For cesium, strontium, and
barium, at energies of the order of 10 eV, small values of A have been found,i.e.,
A~ 1-2 A. However, the physical significance of A remains unclear if its magni-
tude is lower than the lattice constant of the elementary cell. In such cases, par-
ticular care should be exercised in the interpretation of the experimental energy
distribution of electrons. In the majority of cases, however, at photoelectron
energies lower than 10 eV and greater than 1 keV, the electrons are usually
emitted from a depth of approximately 8-10 monolayers. In the intermediate
energy range, a tendency has been observed toward a decrease of A. In the fu-
ture, the most promising development will probably come from the study of
photoelectron spectra by using synchrontron radiation, since this enables mea-
surements to be made over a wide range of excitation energies. Since within this
energy region the magnitude of A decreases, the study of the photoelectron spec-
tra will allow a comparison of the bulk and surface properties of solid materials.

The effective escape depth of electrons is, in fact, a measure of their mean
free path. It is defined by the expression

{ xd!
6x
1

A\=

and represents the thickness d = A of the layer that causes a decrease of e times
in the photoelectron line intensity. Sometimes, instead of A, the value A, is
used, defined by the condition that the intensity decreases to half of its initial
value. The values of A and Ay, are related to each other through the expression
Ay =Aln2=0.693A.

The theoretical treatment of the problem of electron scattering processes in
the energy range from ultraviolet light to ultrasoft X rays is at present insuffi-
ciently developed. The photoelectrons traveling toward the surface lose their
energy as a result of electron-electron and electron-phonon scattering, whence
we can write

N Vi v

The electron-phonon scattering is characterized by a relatively weak energy
dependence and by small energy losses, of the order of 10-50 meV. Energy
losses caused by electron-phonon scattering processes are important only for
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metals, at energies lower than 5-6 eV. Therefore, at higher energies, the predom-
inant effect is that of electron-electron scattering, which is characterized by a
strong energy dependence and by large energy losses resulting from energy
transfer in the collision processes. In the X-ray energy range, account should be
taken of the contribution of core-electron ionization processes. However, this
contribution is not great, amounting to approximately 4% at energies of 100 eV
and approximately 14% at energies of 1500 eV [50]. The main difficulty is
related to the evaluation of the contribution of valence electrons. In conclusion,
in spite of the fact that the photoelectrons are emitted from a depth of material
much larger than A, the effective depth of their escape from the sample is, as a
result of inelastic collisions, relatively low, being of the order of 20 A. At present,
there are strong reasons to believe that, for such values of A, X-ray photoelec-
tron spectroscopy gives information about the bulk rather than surface prop-
erties of the samples under investigation. This is confirmed by the good agree-
ment between the shape of the experimental energy distribution of valence
electrons and the density-of-states curves calculated without taking into account
the surface states or the theoretical energy distributions of valence electrons.
Further on, we shall return to a discussion of these problems, showing that by
studying the angular distribution of photoelectrons emitted from solid materials
it is possible to distinguish at least semiquantitatively between the contributions
to the photoelectron spectra of the bulk and the surface atoms.

Sample Preparation

The studies of effective electron escape depth have established that, in the
process of X-ray photoelectron emission, only thin surface layers of material
(20-30 A) are involved. Consequently, the surface condition of the sample may
have a marked influence on the results obtained. This is particularly true of
metal samples on which oxide layers can be formed by contact with the atmo-
sphere. Metal samples are usually in the form of foils, plates, or cylinders. In
order to remove surface oxide layers, various methods may be used.

Fadley [51] and Baer et al. [52] have studied the effect of heating the
sample to high temperatures (7> 500°C) in a hydrogen atmosphere at 1072 -
1072 torr. The method of X-ray photoelectron spectroscopy has a great advan-
tage over other methods of studying the electron structure of solid state mate-
ridls, since it allows measurement of the degree of sample surface contamination
during the entire duration of the experiment. For this purpose, it is sufficient
to monitor the core-level photoelectron spectra of oxygen, carbon, and other
elements present on the sample surface. The intensity of the observed peaks
will serve as a measure of the degree of cleanliness of the sample surface. Fig-
ure 30 shows the results obtained by Fadley [S51] after several successive steps
in the cleaning of an iron sample surface.
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As this figure shows, the oxygen 1s line at room temperature has a consider-
able intensity and contains two components. As the temperature of the sample
was increased, a significant modification of the line intensity was observed.
First, the component on the high-energy side, on the electron kinetic-energy
scale (which corresponds to the low-energy side of the binding-energy scale),
gradually disappeared. It seems reasonable to assume that this component origi-
nated from the oxygen molecules adsorbed on the sample surface, while the
more intensive component originated from the iron oxides. It should be noted
that after specimen cleaning the oxygen line did not disappear completely, but
only decreased markedly in intensity. For the iron 3p photoelectrons a signifi-
cant change in shape of the lines was observed. As the sample temperature was
increased, the line component situated on the high-energy side, on the binding-
energy scale, gradually decreased and finally disappeared completely.

The above method of cleaning sample surfaces is, however, not universally
valid, since it causes removal of surface oxides, but not of carbides and nitrides.
Moreover, hydrogen is an explosive gas and its handling in the experiment re-
quires extreme care. A more efficient method consists in bombarding the surface
to be investigated with argon ions. The method of surface cleaning by argon ion
bombardment was first used by Hiifner ez al. [53], and has subsequently been
used in a great number of experiments. This method generally allows the removal
of surface layers of sample material together with the impurities contained in
them. Therefore, it can be sufficiently used for cleaning not only noble metals,
but also metals characterized by a high reactivity, as well as insulators and
semiconductors.

The method of surface cleaning by argon ion bombardment has also been
used by the present authors. The cleaning was carried out in a special chamber,
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separated by a valve from the electron spectrometer. The argon pressure in the
chamber was 0.1 torr, the voltage between the chamber walls and the sample
holder 1 kV, and the current 15 mA. The cleaning was more efficient if a con-
tinuous flow of fresh argon toward the specimen was maintained. The duration
of the cleaning process by argon discharge was 3-5 min.

Figure 31 shows how the spectra of iron, oxygen, and carbon change after
progressive cleaning of an iron surface by argon ion bombardment [54] . Particu-
larly pronounced changes are apparent in the valence band, which means that
the study of the photoelectron spectra of pure iron is possible only on cleaned
surfaces. As can be seen from Figure 31, this method of cleaning allows an effi-
cient removal of oxygen and carbon from the surface layer of the sample. How-
ever, since the vacuum level in the spectrometer was only 1077 torr, and the
evacuation was performed by a turbomolecular pump, a layer of hydrocarbons
was continuously built up on the sample surface, and consequently the 1s line of
carbon appears in the photoelectron spectrum. The intensity of this line re-
mained unchanged, however, for several hours. This is somewhat surprising and
could perhaps be explained in terms of the formation of a surface hydrocarbon
layer that protects the cleaned iron from oxidation. Of course, some argon ions
are implanted into the sample, but the intensity of argon photoelectron lines is
so low that this effect may be neglected.

The values of binding energies for a number of metals that have an even
higher chemical reactivity than iron can be determined after mechanical cleaning
of the sample surface. Let us consider, for example, determination of the bind-
ing energies of niobium 3d;;, and 3ds, electrons. Figure 32 shows the niobium
photoelectron spectrum over the energy range where the 3dy, and 3ds, lines
are situated [55].

The spectra were recorded for foils of 0.2 mm thickness, made from thin
sheets of metallic niobium. A magnetic electron spectrometer was used with the
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magnesium Ko, , line as the source of photons. The experiment was performed
in a rather poor vacuum of only 10™* torr. As can be seen from Figure 32, the
spectrum of the uncleaned specimen exhibits two well-defined peaks, situated
at energy values corresponding to the 3dy/, and 3ds;, electronic states of metal-
lic niobium. After mechanical cleaning and subsequent heating of the sample up
to 400°C, the lines corresponding to the metallic state are increased in intensity.
After mechanical cleaning, the intensity of 3d,/, and 3ds, lines corresponding
to the oxide state is also increased, as compared to the uncleaned foils. This
demonstrates that on the sample surface, besides niobium oxides, there also
exist adsorbed gases such as oxygen and hydrocarbons.

The presence of adsorbed oxygen on the sample surface is confirmed by the
study of the oxygen 1s lines. For the uncleaned sample this line is rather broad
(3.8 eV). The energy position of its maximum (532.4 eV) indicates the prepon-
derance of adsorbed oxygen on the sample surface. After mechanical cleaning of
the sample, a second component appears in the structure of the 1s oxygen line.
The high-energy component is situated at approximately the same binding-
energy value as the peak in the previous case, but the second component is
shifted by 2.6 eV toward lower binding-energy values. This last line corresponds
to niobium oxide. After heating up to 400°C, there remains only one peak in
the photoelectron spectrum. This corresponds to oxygen in niobium oxide, with
the adsorbed oxygen driven from the surface. Thus, in this case, even a simple
operation of cleaning the sample surface makes it possible to determine the
values of core-level binding energies for pure niobium as 204.3 eV for 3dy,
electrons and 202.1 eV for 3d;/, electrons. A drawback of this method is that
in the spectrum obtained after mechanical cleaning the lines corresponding to



42 CHAPTER 1
metallic niobium are still rather broad. This introduces errors, albeit small
(0.3-0.4 V), in the determination of binding-energy values.

The study of the valence band photoelectron spectra of metals requires more
stringent conditions, as far as sample surface cleanliness is concerned, than the
study of core-electron spectra. As we have seen in the case of iron, for example,
the structure of valence band photoelectron spectra may be strongly affected
by the actual composition of the sample surface. For this reason, ultrahigh
vacuum in the spectrometer is necessary and should be maintained at a level
of about 107!° torr during recording of the photoelectron spectra, especially in
the case of samples with high oxidation affinity. One way to study oxidation-
sensitive metal samples is to prepare them by evaporation onto a substrate under
high-vacuum conditions. This method was used by Baer and Busch in the study
of valence band photoelectron spectra of aluminum [56]. A thin aluminum
layer was evaporated onto the optically flat surface of a quartz crystal substrate.
During 1 min of rapid evaporation, the pressure increased to 1 X 10~ torr, but
10 min after the evaporation it had decreased again down to 2 X 107! torr.
However, even in this experiment, in spite of the very careful sample prepara-
tion, weak 1s lines of oxygen and carbon were observed. Their intensity was
lower than 1% of the intensity of the aluminum 2s lines. The valence band
photoelectron spectrum of aluminum obtained in this experiment is shown in
Figure 33. The weak structure observed at 10-eV binding energy can be attrib-
uted to the 2p electrons of oxygen, since its intensity is directly correlated to
the intensity of the oxygen 1s lines. This was shown by using sample layers evap-
orated under a vacuum of 1077 torr.
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Figure 33. Valence band photoelectron spectrum of aluminum.
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Fuggle et al. [57] have studied the photoelectron spectra of some alloys of
noble metals with aluminum. The samples were obtained by successive evapora-
tion of layers of both materials, one over the other, followed by diffusion under
appropriate conditions. The total thickness of the evaporated layers was approx-
imately equal to 1000 A. The evaporation was performed twice, under a vacuum
of 1078 torr, and was followed by immediate monitoring of the presence of oxy-
gen and carbon on the sample surface. Shortly after evaporation, the pressure
level in the reaction chamber dropped down to 107! torr, and the sample was
transferred to the analyzing chamber, which was kept constantly under a pres-
sure of 5 X 1071° torr. The observed intensity of oxygen and carbon 1s lines
after each of the evaporation operations was insignificant. The sample with the
two layers evaporated one over the other was heated up to a temperature greater
than 180°C. The diffusion process was allowed to take place for about 10 min,
and was considered to be complete when the photoelectron spectrum ceased to
change with time. Various stages in the diffusion process are shown in Figure 34.

The cleaning of semiconductors and insulators is often performed by using
an argon ion gun operated at a voltage of 1 kV and a current of 10 mA. More-
over, the sample is heated from behind by electron bombardment with an elec-

I, arb. units

Figure 34. Valence band photoelectron
spectra of aluminum and gold in Al-Au
films at various stages of the diffusion
process: (a) gold; (b, c, d, e, f, g) inter-
mediate stages of the diffusion process; a
(h) final product of the diffusion pro- |
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tron gun. In order to increase the efficiency of photoelectron counting, the
sample surface is first mechanically polished and then electropolished. Good
sample flatness is also necessary for calibration by deposition of a gold layer
on the sample surface,

For the preparation of clean sample surfaces, evaporation of the desired
substance on a substrate under high vacuum conditions gives better results than
bombardment with argon ions. Hiifner et al. [58] have shown that the cleaning
of palladium samples by argon ion bombardment for a rather long time (up to
30 min) results in the formation of a layer of amorphous palladium on the sur-
face. This explains why the valence band photoelectron spectra of this sample
were different from the spectra of palladium deposited on a gold substrate. Not
only were the fine details of the photoelectron spectrum changed, but also the
intensity of the Fermi level was decreased. It has been found that the valence
band photoelectron spectrum of palladium undergoes a greater modification
than the spectra of some other metals such as copper, silver, and gold. For nickel,
however, the trend of spectra behavior is similar to that observed in the case of
palladium.

In the IEE-15 spectrometer, because of its construction, the sample is
cylindrical with a diameter of 11 mm and length 20 mm. When the preparation
of appropriately shaped bulk samples is not possible, and when nonconductive
specimens are to be investigated, use is made of the powdered material deposited
on an adhesive tape, which is then placed on a metallic cylinder.

In conclusion, it should be noted that X-ray photoelectron spectroscopy
allows the study of the electron structure, not only of solid materials, but also
of gases, metal vapors, and liquids. In the present work, however, we shall limit
ourselves to discussion of problems related to the study of solids. X-ray photo-
electron spectroscopy as applied to the study of gases has been treated in detail
in a monograph by Siegbahn et al. [2], although at present the study of metal
vapors and liquids is still at an early stage. The first metal vapors studied by
X-ray photoelectron spectroscopy were bismuth and lead [59]. The metal sam-
ples were placed in a molybdenum crucible having an opening of 1 mm diameter,
and were heated in a high-temperature furnace. The experimental arrangement
was such that the exciting X-ray beam was perpendicular to the stream of molec-
ular metal vapor. The photoelectrons were then admitted into the analyzer of
the electron spectrometer. In the study of liquids [60], it has been found that it
is important to produce a nonturbulent stream of liquid material, having a low
diameter and passing very near to the entrance slit of the spectrometer.
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Physical Principles of
Electron Spectroscopy

In the field of X-ray photoelectron spectroscopy there exists at present a large
amount of experimental data that requires a complete theoretical analysis.
Before the first papers reporting experimental data on photoelectron spectra
were published, it was considered that the energy eigenvalues determined for
multielectron systems by applying the Hartree-Fock or Hartree-Fock-Slater
methods were an adequate approximation for the electron binding energies.
However, it has been shown that the magnitude of the binding energies of
deeply lying core electrons is affected significantly not only by relativistic ef-
fects but also by relaxation effects. Creation of holes in the photoionization
process results in a modification of the electron wave functions of the system,
and this introduces a significant contribution to the values of binding energies.
However, in the case of core electrons, both the relativistic and the relaxation
effects are not very sensitive to the environment of the given atom incorporated
in a molecule or in a solid material, and consequently the magnitude of core-
level chemical shifts is determined mainly by modifications of the density-of-
state distribution of the valence electrons.

Another interesting effect observed in the photoelectron spectra, that is also
related to the existence of a hole in the core levels of atoms with incomplete
valence shells, is the multiplet splitting of photoelectron lines. This effect is due
to the interaction of the spin and orbital momenta of the hole with the spin and
orbital momenta of the valence band electrons. In some cases, as a result of the
photoionization process, one additional electron may be emitted, or an excita-
tion of the system of electrons may occur.

For the interpretation of experimental photoelectron spectroscopy data in
the study of valence states of molecules and solid state materials, it is in general
necessary to take into account the dependence of the photoionization cross
section on the nature of the particular state under investigation. For solid state
materials, the different magnitude of the photoionization cross sections cor-
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responding to electrons of different symmetry types is the main factor that
determines the difference observed experimentally between the energy distribu-
tions of photoelectrons and the density-of-state distributions of valence band
electrons in crystals. However, even in these cases, the valence band photoelec-
tron spectra reflect the van Hove singularities in the density-of-states distributions.

At present, there exists a number of methods for the calculation of energy
bands and electron wave functions in crystals, the most popular ones being the
method of orthogonal plane waves (OPW), the method of augmented plane
waves (APW), the method of Green’s functions (KKR), and the pseudopotential
method. In this chapter, we will discuss briefly the basic ideas of these methods.
Subsequently, spectra calculated on the basis of the various theoretical models
will be compared with the experimental results. First, it should be noted that
the energy positions of the van Hove singularities, as determined experimentally
from electron spectra, may be used as parameters in the determination of
pseudopotential form factors in the pseudopotential method.

In recent years, special attention has been devoted to the study of such
disordered systems as the alloys of transition and noble metals. We have there-
fore included a discussion of one of the most important methods used in the
study of disordered systems, namely, the coherent potential approximation.

The method of X-ray photoelectron spectroscopy also allows the determina-
tion of the angular distribution of emitted photoelectrons. Study of angular
distributions gives information about the partial density of states of electrons of
various types of symmetry.

The results obtained by the use of X-ray photoelectron spectroscopy may in
a number of cases be supplemented by results obtained from other techniques.
In the present work, we will therefore discuss the present and future possibilities
of a supplementary use of the method of X-ray photoelectron spectroscopy in
combination with X-ray emission spectroscopy and, in some cases, with data
obtained by the use of Mossbauer spectroscopy or nuclear magnetic resonance.

Binding Energies and Chemical Shifts of Core Levels

In order to evaluate the binding energy Eg (k) = E” &k)-E !itis necessary to
calculate the total energy of the multielectron system corresponding to the
initial and the final states. Total energies may be calculated by the methods of
Hartree-Fock or Dirac-Fock, in the nonrelativistic and relativistic approxima-
tions, respectively. Let us consider the simplest case, when the wave function
¥ of the system of N = 2n electrons may be represented as a single Slater
determinant

VR 6, (MY a (V) @y (N B(N) ... ¢, (V) (V)
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in which each spin-orbital, relativistic effects being neglected, is represented as
the product of functions that depend only on space coordinates and functions
that depend only on the spin. In the given spin-orbital, the space parts of the
wave functions are here assumed to be the same for both spin orientations,
which gives the so-called restricted Hartree-Fock approximation.

The single-electron wave functions y(r) are determined from the Hartree-
Fock equations. For the Hamiltonian
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which describes the system consisting of V electrons and P nuclei, the Hartree-
Fock equations may be written as follows:

P n
[_ % Vi— Z %} o (r) + Z [2/; —Kj] ¢ (r) = &, (ry), (11)
=1 j=1
where

I () = { 0} () 7= 0, () g (r) 0V,

Ko (r) = { 4] () 7 00 () () Vs,

Representation of the wave function ¥ by the expression (10) is generally valid
only for systems with completely filled shells, since in this case the function (10)
is also an eigenfunction of the operators §2 and S2, which commute with the
Hamiltonian H. For systems with incompletely filled shells, the wave function
W is usually represented as a sum of Slater determinants.

After finding the self-consistent solution of the system of equations (11), the
orbital energies €; may be determined by using the formula:
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and J;; and K; represent the Coulomb and exchange integrals, respectively:

Zi=(oldilo) = [ ¢ ) 0 (1) ,—F @, (ry) @7 () dV,dV,

Kij= (| K; | 9 = S j 9 (1) € (1) 7= @, (1) @ (1) V.V,

The total initial energy E* is not equal to the sum of the single-electron energy
values:

E'=(¥,|H|Y,) —22 & + ) (2J;; —Ky). (13)

l['—

It is to be noted that this expression does not include the term that describes the
nuclear repulsion. With nuclei in fixed positions, inclusion of the additive term
does not raise difficulties. Calculation of the energy of the system after the
X-ray photoionization process has taken place represents a more difficult
problem, since creation of holes results in relaxation of the wave functions ;(r)
which enter into the expression (10) for ¥;. In order to avoid the difficulties
related to such hole effects, the calculation of binding energies in the past has
often made use of the Koopmans’ theorem [61]. The Koopmans’ theorem is
valid under the condition that the one-electron wave functions p;(r) that enter
into the expression for the electron wave function W; of the whole system in the
initial state coincide with the corresponding wave functions ;(r) that enter into
the expression for the electron wave function W of the system in the final state.
In this case, the expression for the energy £7(k) may be obtained from formula
(13) by eliminating the terms related to one of the two electrons in the kth
orbital:
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It then follows that

n
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i=1

E% (k) = — e

and, by taking into account the expression (12), one obtains
Ep (k) = —ei",

which represents the Koopmans’ theorem. In deriving this expression, it has
been assumed that in the photoionization process the nuclei do not change their
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positions. This assumption is based on the fact that the oscillation periods of the
nuclei (of the order of 1073 sec) are much longer than the time interval in
which the photoionization process takes place.

In some cases, particularly in the study of energy band structures of crystals,
the wave functions ¢, and the energies £, are deduced from the one-electron
equation

Hq, = Eyqy, (14)

where
H=—— V4V (). (15)

Here, it cannot be assumed that the energy eigenvalues E, are close to the bind-
ing energies of electrons in the & state. Therefore, in order to obtain the binding-
energy values, it is necessary to add a correction term §Ey, to the energy Ey:

— Ep (k) = E, + SE,,

where
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The term 8E; was introduced for the first time by Lindgren [62]. This cor-
rection improves appreciably the agreement with the one-electron energy values
calculated by the Hartree-Fock method for atoms [1]. The expression for the
total energy E*, including the correction, may be written as follows:

!

E=2Ye+ ¥ (2y—K)=2De-— ¥ (2/5—Ky) =
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Snow et al. [63] have calculated the energies E ! for atoms, by taking into ac-
count the Slater-type exchange potential V5, =-6 [(3/87) p]"/3, but without
including the term 2L, 8 E;. The agreement with the energy values E* obtained
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by the Hartree-Fock method is significantly improved if one takes into account
the contribution of this term. Lindgren has also proposed the use of a modified
Slater-type exchange potential:

81 1o n, ™ \m
Vee = — Clggar| 0 (N, (16)

where § = 4nr? p is the radial density of electrons, and the parameters C, n, m,
which are equal to unity in the Slater approximation, can be determined from
the condition of minimum total energy of the electron system.

In the calculation of binding energies for heavy elements, account should be
taken of relativistic effects. The relativistic equation for one particle, as pro-
posed by Dirac, is

HY, = [ca - p+ Bmyc® +V (M) ¥, = ¢ ¥, 17)

(3 o)
ﬁ=<(1) __(;);

o represents the Pauli matrices, / is a unitary matrix of dimension 2 X 2, and ¥;
represents a bispinor:

where c is the velocity of light,
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If the energy E is measured against the rest energy as reference, then equation
(17) may be written as follows:

Y, =

ca-p+@B—1c+V(NY, =EY, (18)

The approximate multielectron Hamiltonian that includes relativistic effects,
but does not include magnetic interactions and retardation effects, may be
written

1= Yo n @ —ne— 2]+ YL

i>j U
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By using this Hamiltonian, Rosén and Lindgren [64] obtained the following
expression for the total energy of the electron system:

E'= (Y, |fI¥,) + %U/’Iglt'i),
where

<11ff|f1‘1fi>—“—gw)[ca-p+(ﬁ—1>c2——f—]llf.-<1>drl,
<if|g:if>=§§ ¥ Q) 2 (1) Y (2) drdr,

Here, P, , represents the operator of permutation of the variables that character-
ize the first and the second particles. The Coulomb and exchange terms enter
into both the nonrelativistic and the relativistic equations. In the relativistic
equation, the nonlocal exchange potential may be replaced by the local Slater
potential. The total energy is in this case given by

E=XYE—5 3CVO+ 7|+ D08 )

L

where V(r) represents the sum of the Coulomb and exchange potentials,

v ==L+ forrar + (2O v e
0 r
and
o8, = D(ifl gl — |V O +F] >
{ ; r /

W¥; and E; are the eigenfunctions and the eigenenergies, respectively, of the
relativistic one-electron equation (18) with the potential (20). As exchange
potential, use may also be made of the type of exchange potential given by
formula (16). The parameters that enter into this potential are determined by
minimization of the total energy of the system, as given by equation (19). For
relatively light elements (i.e., Z < 29), C ~ 0.8-0.9, and n ~ 1.1-1.3, while for
heavy elements (Z > 36), C ~ 0.7-0.8, and n ~ 1.10-1.20. In all of the cases
considered, m = 1. It is worth noting that, by choosing the parameters C = 1 and
n =1, one obtains the Slater-type exchange potential.

In the discussion of the binding energy we should distinguish two different
models. One, which we can denote by method A, is built upon identifying the
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binding energy with the corresponding Hartree-Fock energies. The more appro-
priate procedure is to recognize that the levels seen in the spectrum are the
levels of the ion left behind, i.e., the (V- 1)-particle system. In this method,
referred to as B, one obtains the energies by solving the self-consistent problem
for the ionic state. Figure 35 shows the comparison with experimental data for
1s electrons. For valence electrons, where the hole wave function is extended,
the two methods agree rather well, whereas for strongly bound electrons only
method B gives a satisfactory agreement.

The existing disagreement between the theoretical and experimental values
of binding energies may be attributed to the fact that the correlation effects, the
magnetic retardation effects, and the quantum-electrodynamical effects have not
been taken into account. Since the large majority of experimental data have
been obtained from solid specimens, it is also necessary to take into account
the energy shift resulting from the transition from single atom states to solid or
molecular states. The magnitude of this shift (5-10 eV) is of the same order as
the chemical shift. Magnetic and quantum-electrodynamical effects are partic-
ularly important in the case of heavy atoms.

The total energy £'7 may be written as follows:

Er=E¥f L E¢ + ER (21)

The first term in this expression represents the nonrelativistic Hartree-Fock
total energy, the second represents the electron-electron correlation energy, and
the third represents the relativistic energy including also the quantum-electro-
dynamical effects. In order to calculate the correlation energy, it is necessary to
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Figure 35. Discrepancy between theoretical values of binding energy of 1s electrons as
calculated by methods A(®) and B (O). The corresponding experimental data are also shown.
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express the wave function of the electron system as a linear combination of
functions, each of them expressed by a Slater determinant. In this linear com-
bination of determinants, besides the determinant corresponding to nonexcited
orbitals, it is also necessary to include the Slater determinants that contain
singly and multiply excited molecular orbitals. This method of calculating
energies is called the method of configuration interaction (CI). By taking into
account expression (21), the binding energy may be written as follows:

Ep=E —E' = EMT _E“7F L AEC + AER,

where AEC and AER represent the differences between the final-state and
initial-state correlation and relativistic energies, respectively. By making use of
the Koopmans’ theorem, it is found that £ HF - phHF g equal to - ¢/7F A
more accurate expression for the binding energy should account for the relaxa-
tion effects, and therefore

EY = — " 4 ER—" 1 AEC L AE®. (22)

Table 4 shows the values of the energies in equation (22), for the case of water
molecules, as reported by Meyer [65] . The values of E§’ include the oscillation
energy and the relativistic effects.

The theoretical values of binding energies obtained by the method of con-
figuration interaction agree well with the experimental data. Good agreement
between calculated and experimental values of binding energies is also obtained
when account is taken of the relaxation, correlation, and relativistic energies.
The value of E§F, calculated by taking into account the relativistic effects and
the oscillation energies, is lower than the experimental value. This indicates that
the total correlation energy is somewhat larger for the initial state of the 2N-
electron system than for the final state of the (2/V - 1)-electron system. This
condition is, however, not fullfilled for 2a, electrons, which may perhaps be
explained by the fact that it is difficult to perform Hartree-Fock calculations
for electron systems with an incompletely filled shell, if in these systems there

TABLE 4. Comparison between the Theoretical and Experimental Values of the Binding
Energies of the Water Molecule

Orbital EB(exp) E§ EFF  _HF  _pR-n ApC AR
la; (O1s) 540202  540.0  5$39.5  559.5  —20.4 0.5 04
2a, 322+ 02 324 342 368  —25 —19 00
15, 186:02 187 174 19.5 -1.9 13 00
34, 147:01 146  13.2 15.9 —2.5 14 00

154 12.6 124 11.0 13.9 —-2.8 1.4 0.0
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exist deeply lying states of the same type of symmetry, characterized by close
energy values [66]. The relaxation energy for the 1s states of oxygen in the
water molecule is large (20.4 ¢V). For valence electrons, it is an order of magni-
tude lower, but can vary for different states by approximately 1 eV. Conse-
quently, the orbital energies calculated without taking into account AER =" are
not always in the correct sequence for the closely spaced valence orbitals.

By using equation (22), one may write for the magnitude of the chemical
shift of the core level i the following expression:

AE, = — A&l + AER™" + SAES 4 SAER.

The magnitudes of the energies AER™™ §AES,and § AE R are much lower than
the corresponding individual contributions to the binding energies of electrons in
the ith state for the atom in the first and in the second compound.

The energy Aef’F is determined by the ground state of molecules and solids,
while AER ™" is determined by a more complicated function that reflects the
dynamics of the photoionization process itself. In formula (22), the relaxation
energy ER ™" is determined as

HF HF —
— & =EB -—-ER n,

where

EgF _ phHF __ pULHF.

ER-" is negative, since |[EFF| < |efF|, and eHF <0.
The relaxation energy for molecules and crystals may be expressed as the
sum of two terms¥:

R—n I,R—n 2,R—
EA - EA + EA fl,

where the energy E}{R ~" is determined by the increase of the local electron
density in the vicinity of atom 4, and E3-® ™" is determined by the additional
redistribution of charge over the whole molecule or crystal. In the redistribution
of the electron density, a tendency towards an increase of electron density in the
direction of atom A is observed. Tables 5 and 6 show the values of energies

TEditors’ note: One might remark that the configuration-interaction approach is useful only
for molecules and is not applicable to valence electrons in solids.

tEditors’ note: The relation is only approximately valid. In practice it is limited to the
A SCF approximation.
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TABLE 5. Values of the Relaxation Energies
for Atomic States Obtained by the Modified
Hartree-Fock-Slater Method (Nonrelativistic

Calculations)

Atom 1s 2s 2p
He 1.5
Li 3.8
Be 7.0 0.7
B 10.6 1.6 0.7
C 13.7 24 1.6
N 16.6 3.0 2.4
0 19.3 3.6 3.2
F 22.0 4.1 3.8

ER =" for the series of elements from helium to copper, taken from the data

of Gelius et al. [67].
Snyder [68] has shown that the relaxation energy of an isolated atom may

be represented as the sum of the contributions of different electronic shells. The
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TABLE 6. Values of the Relaxation Energies for Atomic States Obtained by the Modified

Hartree-Fock-Slater Method (Relativistic Calculations)

Atom 1s 2s 2p 3s 3p 3d 45
F 22.1 4.1 3.9

Ne 24.8 4.8 4.7

Na 23.3 4.1 4.7 0.3

Mg 24.6 5.2 6.0

Al 26.1 6.1 7.1 1.0 0.2

Si? 27.1 7.0 8.0

P 28.3 7.8 8.8

S 29.5 8.5 9.6 1.4 0.9

cl 30.7 9.3 10.4

Ar 31.8 9.9 11.1 1.8 1.4

K 31.2 9.1 10.5

Ca 32.0 9.6 11.1

Sc 33.8 11.5 12.9

Ti 35.4 13.0 144 3.6 3.4 2.0 0.3
A 37.0 14.5 16.0

Cr4 38.6 15.9 174

Mn 40.1 17.2 18.8 3.6 0.4
Fe 41.6 18.5 20.0 5.7 53

Co 43.2 19.8 21.6 4.1

Ni 44.7 21.1 22.9 6.7 6.3

Cub 48.2 23.7 25.7 7.7 7.2 5.3 0.3

%Interpolated values.
Values taken from [64].
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contribution of each shell is proportional to the occupation number. These
arguments are applied by Gelius [66] to molecules. For £ j’R ~". one may write

Ef™" = Kqa+ L. (23)

The constant k' is approximately equal to 2.5 eV for the 15 electrons of ele-
ments in the second period and to 1.5 eV for those of elements in the third
period; )y is a nearly constant term, approximately equal to £ =" for the free
atom. According to Table 5, the electron relaxation energy for the 1s state
of the oxygen atom is -19.5 eV. By introducing this value into equation (23),
together with the approximate value of the charge g 4 = 0.3, one obtains
E}R~"=-18.5¢eV. From Table 4, it can be seen that the total relaxation
energy for this case is 20.4 eV. Therefore, E2> R =™ represents only a small part
of the relaxation energy. Since the relaxation energy is always negative, it fol-
lows that the magnitude of SAE% R =" is even smaller. The magnitude of
8 AE%R=™ in molecules (or solid state materials) depends on the degree of
localization of the molecular orbitals (or orbitals of the solid), on the type of
symmetry, and on the distance to neighboring atoms. Knowledge of the magni-
tude of £3°® " for molecules is at present limited.

Hedin and Johansson [69] have expressed AER ™" in terms of the polariza-
tion potential arising from the presence of the hole on the kth orbital. The
Hamiltonian was written as

H=h+V=h+XV,

where # is the one-electron operator, and the operator ¥; describes the Coulomb
and exchange interactions. The Hamiltonian H* corresponds to the system in
which one electron has been removed from the kth orbital:

H=h+4V*=h+V—Vg+Vp
The polarization potential is given by the expression

Ve=2X (V; — V).
ik

The binding energy may be written as follows:
— Ep(k) = E(N)— E¥(N—1, k) =
= —(E*(N—1, k) —E((N—1, k)) =
1 1 4
=€£IF+'2_<(PI: lel(Pk)+—2~Z (O¢, | H* — H— el | 8¢p,),

where the function 8y; is determined from the expression np;-k =gt 0¢;.
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Theoretical calculations have shown that the magnitude of the last term in
the above expression is small, compared to the first two terms, so that

— ES (k) = b 4 (k| Vol k). (24)

The model polarization potential proposed by Hedin [69] has given good re-
sults in the calculation of binding energies of electrons in core orbitals.

For sodium and potassium in the atomic state and in the single-ionized
state, calculation of the contributions of various orbitals to the magnitude of
binding energy, as given by formula (24), has shown that the relaxation inside
the given shell is small compared to that corresponding to outer shells, while
for the more deeply lying shells it is negligibly small.

Shirley [70] has used the method of polarization potential for the calcula-
tion of binding energies of electrons in neon, argon, krypton, and xenon. It
follows from equation (24) that in order to determine £ g (k), it is necessary
to know the polarization potential Vp. This can be calculated directly for atoms
having a hole on the given level. Rather good results, however, are also obtained
here by using the approximation of equivalent cores in which it is assumed that
the electron lying on an inner shell almost completely screens the outer shell
electrons from the nuclear charge equal to unity. Therefore, the outer orbital
of an atom having a nuclear charge Z and a hole on an inner level can be approxi-
mated fairly well by the outer orbital that describes the ground state of the next
element, i.e., the element with nuclear charge Z + 1. Although this approxima-
tion is no longer valid for deeply lying electronic states, this does not appreci-
ably affect the magnitude of those Coulomb and exchange integrals that are de-
termined by the wave functions of the deeply lying electrons, and of the valence
electrons of the atom.

It can therefore be assumed that the magnitude of the integrals that describe
the hole states of atoms with nuclear charge Z will be approximately equal to
the integrals corresponding to the ground state of the atom with nuclear charge
Z + 1. By using Slater’s approach [71], this approximation, for n’ > n, may be
expressed as follows:

Fo(ul, n'l'y Z(ny*y=F, (nl, n'l'; Z+ 1)
G, (nl, n'l'; Z(nl)) =G, (nl, n'l'; Z +1).

b

As we have already mentioned, the relaxations of the inner orbitals, n' <n,
and of the orbital from which the electron has been removed, n’ = n, are small
and may therefore be neglected. Slater [71] has derived expressions for the
interaction energy of electrons with angular momenta / and /’. Summation over
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the external shells enables one to write
(nl|Vg|nl) = 22 57 +1 f(ll)A[F (nl, n'l")] —
f (g (1) Gy (n', n'l’)]},

where

AF, (nl, n'l) = Fy(al, n'l's Z 4 1) —F, (nl, n'l'; Z);
AGy (nl, n'l') = Gy (nl, W'l's Z+1)—Gy (nl, n'l'; Z);

N(n'l') represent the occupation numbers of the n'l’ subshells. Therefore, the
quantity N(n'l')/2(2!' + 1) determines the degree of filling of the given subshell.
For completely filled subshells, it is equal to 1. The factors f(!I') and g(/I') are
given by other expressions also deduced by Slater [71].

The approximation discussed above has been used for the calculation of
relaxation energies of the noble gases neon, argon, krypton, and xenon. The
method allows quite an accurate determination of binding energy values. The
poor agreement obtained for the binding energies of 1s electrons in xenon is due
to quantum-electrodynamic effects [64]. Figure 36 shows the difference
between the theoretical values of binding energies, calculated for noble gases on
the basis of various approximations, and the corresponding experimental values.

Shirley [70] has studied the problem of relaxation in condensed systems. He
pointed out the fact that the binding energy of electrons in atoms belonging to
condensed systems is lower than for the corresponding free atoms. For example,
the binding-energy values in graphite and in free carbon atoms differ by 10 eV.
Shirley explained this effect by the presence in solids of a superatomic relaxa-
tion related to the effect of a hole in a given atom on the neighboring atoms.
This results in an additional redistribution of the electronic charge.

In order to get an idea of the magnitude of the correlation energy, let us
consider the results for neon, an atom with completely filled shells [72].

The magnitude of correlation corrections AE€ for the 1s level of neon may be

represented as the sum of paired-electron correlation energies corresponding to

the 1s electron coupled to all of the other electrons of the atom. These energies
depend on the overlapping and orientation of the spins, since the exchange cor-
relation partly takes into account the correlation in the movement of electrons
with parallel spins. For the 1s level of neon, we can write

AE® =g (lsa, 1s) +
+ & (s, 2sa) + &(lsa, 2s) +
+ 3e (lsa, 2pa) + 3¢ (1sa, 2pP), (25)
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where the quantities e(i,f) have the values

e(lsa, 1sf) =1.09eV, e(lsx, 2sa) = 0.07eV,
e(lsa, 2sf) = 0.06eV, e(lsa, 2pa)=0.11¢V,
e(lsa, 2pB) = 0.15eV.

We observe that the e(i, /) take lower values for electrons with parallel spins.
Since the wave functions of 1s electrons overlap strongly, it follows that they are
characterized by large values of paired correlation energies. The experimental
value of the binding energy is E (15) = 870.2 eV [73]. The correlation energy,
as calculated by using equation (25), is 1.4 eV, and the value of the binding
energy EJ (1s) obtained by Verhaegen et al. [72] is 870.8 eV. More accurate
calculations performed later by Moser et al. [73] have given values of E} (1s) =
870.0 eV and AE€ =06 eV.



60 CHAPTER 2

Regarding relativistic effects, it can be stated that the magnitude of AER is
approximately 0.5-1.0% of the values of E% [73, 74]. The relativistic effects
do not depend appreciably on the type of chemical bond.

Let us consider now the magnitude of the shifts determined by the one-
electron energies €/ for systems with filled shells. In this case

e’ —\cpl(————VI)(P,>+Z\(P,‘—“ (Pl> 24 (24, —K.),

where y; represents the orbital centered at the nucleus of atom A. This expres-
sion can also be written [66]

— Y K+ 2 2J,, FE E ¢, —% (pt>. (26)
1=

1#Ca

In this expression, j = C4 and j = Cp indicate that the summation is performed
over all the core orbitals of atoms 4 and B, while j = v indicates summation over
all the valence orbitals. Watson [75] has shown, in a series of binding-energy
calculations performed by using the Hartree-Fock method, that the first term in
equation (26) is constant to within approximately 0.03 eV for 1s, 25, and 2p
core electrons, in the case of ionization of 3d valence electrons. The shape of the
core-electron wave functions does not change significantly by changing the
charge distribution of outer electrons, or by ionization of outer electrons.
Therefore, the first two terms in equation (26) are almost constant. The third
term in the equation represents the exchange integrals between two core elec-
trons localized at different nuclei. The exchange integrals between core and
valence electrons are rather small. The core electrons of other atoms efficiently
screen the nuclear charge. The interaction of an inner electron of an atom with
the nucleus and core electrons of another atom may be considered as being
equivalent to an interaction between two point charges. Therefore, for the
chemical shift, the following expression is valid:

Y A
AEHF~ —-AS,, = A(“—'/\_; 2JL]+ Z R—B>’ (27)
j=0 B=£A AB

where Zj represents the reduced effective charge of atom B, i.e., the nuclear
charge minus the charge corresponding to the total number of core electrons.
The second term in this expression contains the two last terms in equation
(26). Equation (27) shows that the chemical shift may be rather well described
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by an electrostatic potential that accounts for the distribution of valence
electrons. By using the approximation suggested by Pople et al. [76]:

< Havp

(which is rather accurate if vg represents a core orbital), the expression (27) may
be written as follows:

1
Ras

o N\ ~
Tuv )MAVB/~

. I S Z;
wad— Y P ——+ ¥ =1, (28)
/ Bi—’A Rap B:_,_-JA Rap

1

AE,=A [— PA‘<1'MA

where 14 represents the valence orbital of atom A. On the basis of the LCAO
method, P4 is given by

Pa=2Y XCy;

[Y
By introducing the atomic charges g 4 , we obtain
Ga=2,—P,

Equation (28) may then be written as follows:

\ Y q *
AEtzA (kqu T }.: RAB )"—A(kLZA)v

B=+A

where k; is a constant equal to the integral of the Coulomb interaction between
core and valence electrons. The variation A(k;Zf) may be considered as being
practically equal to zero. Since the chemical shift is measured relative to a given
compound for which the energy of the corresponding level is taken as reference,
the following expression is obtained for AE;:

AE,=kg, + Y 7239- ) (29)
B+A AB

Here, [ is a constant determined by the position of the reference level on the
energy scale. Equation (29) expresses the basic idea of the potential model in
the ESCA method. In practice, the quantities k; and / are considered as adjust-
able parameters that may be determined by the method of least squares to give
the best fit to a large series of chemical shifts for a given element. If the atomic
charges in molecules are calculated, then by using these theoretical values and
the experimental data on chemical shifts, the values of the constants k and / can
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be determined. If, instead, the magnitude of the chemical shifts and the con-
stants k and / are determined, then by using equation (29) the magnitude of the
charges can be obtained.

Another variant of the potential model for the determination of chemical
shifts is a model that does not use adjustable parameters. If it is assumed that
the core orbitals are localized in the immediate vicinity of nucleus 4, then from
equation (27) we obtain

AE,zAuz,-:A(_zgv@‘ )¢/+BEA Zy ) (30)

AB

In this expression, the one-electron integral {y;|2/r; 4 |¢;) is already included.
Since the potential Uy does not contain any core orbitals it can be calculated
by semiempirical methods. Such a model will evidently give good results only if
it is used for the calculation of chemical shifts of the most deeply lying levels.

A further variant can be developed from the potential model if use is made
of the condition of electroneutrality:

ga = — ZQB-
B+#A

By choosing the reference level so that I = 0, equation (29) leads to

AE,= Y (-

—k .
B+A ( Rap A) s

In this expression, the summation is performed first over the nearest-neighbor
atoms around the given atom A4, and then over all of the groups of such atoms:

AEA:Z’ Z(RA kA)

G | BcG

S‘ AEg. (1)

AE is called the group shift. Introduction of group shifts will be useful if the
shift due to the given group of atoms situated around the atom A is not af-
fected by the presence of the other groups of atoms. This assumption is, of
course, only approximately valid. In fact, both the charge of the given atom
itself and the charges of the other atoms in the group will influence the atoms
belonging to other groups, so that a single group cannot be considered as being
isolated.

Multiplet Splitting in Core-Electron Spectra

In considering the problems related to binding energies and chemical shifts
of core electrons, we have limited the discussion to the systems having com-



PHYSICAL PRINCIPLES 63

pletely filled valence shells. In this case the total angular and spin momenta of
the system in the initial state are equal to zero (L = § = 0). If a system having in-
completely filled shells is ionized, the created ion is characterized by an orbital
momentum L' and a spin momentum S, which satisfy the condition [77]

IL—l|<L' <L+l §=S8St—+, 830, (32)
where L and S represent the orbital and the spin momenta, respectively, of the
atom with incompletely filled shell, while / represents the orbital momentum of
the emitted electron.

For systems with completely filled shells, only one ionic final state is pos-
sible, namely, L' =land §' = -12— Therefore, in the electron spectrum only one
line will appear, corresponding to the binding energy of the emitted electron.
For systems with incompletely filled shells, at least one of the momenta L and §
is different from zero. The rule of addition of momenta (32) predicts that, in
this case, several final states are possible and, according to equation (1), it can
be expected that a number of lines will appear in the electron spectrum. This
effect is called multiplet splitting of electron lines. This process can be repre-

sented symbolically as follows:

h
(nl)? (n'1')? — (nl)"™" (n'I')P & photoelectron. (33)

Here, the filled subshell (n/)? contains g electrons, while the unfilled valence
subshell (n'l')? contains p electrons. Since for the (n/)? shell both the spin mo-
mentum and the orbital momentum are equal to zero, the momenta L and S
correspond to the orbital and spin momenta of the valence subshell (n'I')?.
There exist several possible types of systems with incompletely filled shells. The
majority of free atoms have incompletely filled outer valence shells. Such un-
filled shells also exist in atoms of compounds of the transition and rare-earth
metals, in free radicals and in a number of covalent molecules.

The unpaired d and f electrons are, to a great degree, localized around the
given atom, and, therefore, to identify these orbitals, it is possible to use the
atomic quantum numbers, as well as the notations from the atomic theory of
multiplets. The simplest case occurs when one electron from the s shell is
emitted. In this case, only two final states are possible, corresponding to §' =
S+ %, and the intensity ratio of the peaks corresponding to them will be equal
to the ratio of their multiplicity, i.e.,

I(L,S-}—T
,(L’S__;_) =75 - (34)
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The energy interval between these components will be given by the following
expressions:

A[Es(ns)] = E(L, S— ‘21‘),_ E(L, S+ —;-)f

ALEs(n)] = @5 + D Kngwr  for S0, (35)
A[Eg(ns)] =0 for S=0,

where K,y represents the ns —n'l' exchange integral,

Kos,nrrr = 2[,+1 S \ rl'H Pns(fl nl'(fz)Pns(f2) X
00
X Py (ry) drydrs, (36)

and r. and r, represent the smaller and the greater of the radiir, and r,, re-
spectively; P,/r and P,yp/r represent the radial wave functions of the ns, and

n'l’ electrons, respectively. A characteristic feature of the doublet obtained is
that the more intensive peak corresponds to the lower binding energy. As can
be seen from formula (36), the exchange integral K g 7y is determined by the
space distribution of the core and valence electrons.

In the one-electron approximation, as will be shown later on, the transition
probability is determined by the square modulus of the transition matrix ele-
ment [{@,;Irlppp )|, where ¢,; and g, represent the one-electron orbitals corre-
sponding to the initial and final states, respectively. Therefore, the orbital mo-
mentum of the electron is equal to /,, =1 * 1. Conservation of spin and orbital
angular momenta imposes the following selection rules:

AS=S’-—S=¢—;~;

AL=L"—L=0, +1, +2, ..., &1L

(7

As has been shown by Cox and Orchard [78], in the spin-orbit approximation,
the intensity (L', S") is given by

I(L', S')~ (28" + 1)(2L" + 1), (38)

Let us consider as an example the photoemission spectra corresponding to
electronic transitions from the 35 and 3p levels of the free Mn?* ion. The
ground state of the ion in the L-S coupling is 3d* S (S = 3, L = 0), with all
five 3d electron spins oriented parallel to each other. After the emission of one
3s electron, two final states are possible, namely, (35) (3d)® S (S =2, L = 0),
or (35) (3d)° 'S (S = 3, L = 0). The difference between them is that for the S
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state, the spin of the remaining 3s electron is oriented antiparallel to the spin
of the five 3d electrons, while for the S state, the spins of the 35 and 3d
electrons are parallel to each other. Since the exchange interaction exists only
for electrons with parallel spins, it follows that the energy of the 'S state is
lower than the energy of the S state. The magnitude of energy splitting, ac-
cording to formula (35), is proportional to the 3s-3d exchange integral:

A[E5(3s)] = AE (3s3d%) = 6K3534 =

-+ 1
More complicated is the process of X-ray photoemission of 3p electrons of
Mn?*. In this case, (n)?™! =3p*, (n'I')P = 3d®, and the initial state is, as above,
€ (S = %,L = 0). The selection rules (37) allow only those final states corre-
sponding to P (S = 3,L = 1) and to °P (S = 2, L = 1). However, the P state can

be obtained in three different ways from the interaction of the 3p° and 3d°
configurations:

Pis (ry) Pag (rg) Pss(ry) Paa (ry) drdr,.

Sy
vwl,\w

3p° (2P) [3d° (S)] °P,
3p° (°P) [3d° (*D)] °P,
3p° (*P) [3d° (P)] °P.

Consequently, these three states will interact with each other, and in the method
of configuration interaction they will enter into the operation of diagonalization
of the interaction matrix. The eigenfunctions that describe the 5P states will be
expressed as linear combinations of the functions:

Y (°P)) = ¢, ¥ (°S) + ¢, ¥ (*D) + ¢, ¥ (*P),
W (°Py) = ¢, ¥ (5S) -+ ¢, ¥ (*D) + ¢35 ¥ (*P),
W (°Py) = ¢y ¥ (°S) -+ 3, ¥ (*D) + ¢ ¥ (*P).

With the energy values corresponding to these eigenfunctions, it is possible to
calculate the energy difference between the 5p states. The eigenfunctions and
the eigenenergies are determined by diagonalization of (3 X 3) matrices, in
which every matrix element is expressed as a linear combination of I534_34,
K3d-3d, I3p-3a and K5,,_34. The ratio of the total intensities of 5P and P states
is given by

L CP)1 ("P) = [I °Py) + 1 (°Py) + 1 CPy))/1; (P) =

The intensity ratio corresponding to two electronic 3s emission lines is also equal
to 5/7: Ip(3S)/Ir("S) = 5/7. The intensity of each component is determined by
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the square modulus | ¢;1?. The position of the calculated multiplet lines and
their intensities are schematically shown in Figure 37.

A detailed discussion of the most important experimental data on the multi-
plet splitting of photoelectron lines will be given in Chapter 8. Here we only
mention that particular care should be exercised in the interpretation of ex-
perimental data.

Other phenomena can produce additional structures in X-ray photoelectron
spectra that can be erroneously interpreted as being the result of multiplet
splitting. Common among those are: multielectron excitations, Auger electrons,
structures due to the presence of satellites of the excitation line or to the pres-
ence of small quantities of impurities in the sample. It should be pointed out
that the Auger electrons are characterized by constant kinetic energy, while
the intensity and the position of the satellites of the X-ray excitation line
depend on the anode material of the X-ray tube.

Inelastic diffusion processes also generate satellites. These are situated on the
high-energy side of the main lines on the binding energy scale. Lines generated
by inelastic electron scattering are separated from the corresponding main pho-
toelectron lines by an approximately similar interval regardless of the binding
energy.

Lines caused by chemical reactions on the sample surface can hardly be dis-
tinguished from multiplet splitting effects. In this case, it is necessary to analyze

Mn3* 3523p%34°
3ps[3d° WP 3p%[30° D] °P 3ps[3¢° “P]°P 3pS[3d° °S] 7P
P
' R
b,
)
?,
| ] |
30 20 10 0 E eV

Figure 37. Structure of the photoelectron spectrum generated by photoionization of the 3p
shell of the Mn%* ion.
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the positions, shapes, and relative intensities of the core and valence photo-
electron lines of all the chemical compounds that can possibly be formed on the
sample surface.

It is particularly difficult to distinguish between multiplet splitting and the
effects due to multielectron excitation. This is due to the fact that multielectron
excitations often possess their own multiplet splittings.

Multielectron Excitation Effects in Photoelectron Spectra

Multielectron processes in X-ray photoelectron spectroscopy were first ob-
served and studied by Krause and Carlson [79-85]. Gaseous neon and argon
were irradiated with X rays in the energy range 270 eV-1.5 keV. The charge
distribution of the resulting ions and the kinetic energy of the emitted electrons
were measured. The authors demonstrated that, as a result of X-ray absorption,
not only one-electron, but also two-electron, and three-electron transitions are
observed, with a total probability of approximately 20% for each absorbed
photon. The two-electron process has about a 10-times greater probability than
the three-electron process. Therefore, we will limit our discussion to the two-
electron processes. There exist two possible types of two-electron transitions
depending on whether the second electron is excited up to a higher bound state
(“shake-up”) or to an unbound state situated in the continuum spectrum
(“shake-off’). These two types of transition may be symbolically represented as
follows:

hv
shake-up  (n)? (n'l'Y — (n)* (') (n" ") + photoelectron,

h
shake-off  (al)? (") — (al)= (0'I'Y’~" (Exunl"}* + photoelectron.

The second electron is excited from the subshell (n'l')P, which can be com-
pletely or partially occupied. In the shake-up and shake-off processes, excitation
or emission of the additional electron requires an additional amount of energy.
As a result, a satellite structure appears on the high-energy side of the main line
on the binding energy scale. Increasing the excitation energy from the value of
the electron binding energy up to a value several times greater increases the prob-
ability of shake-off-type processes from zero up to some constant value. The
existing theoretical calculations of the position and intensity of the lines gen-
erated by multielectron excitations are based on the quantum-mechanical model
of “sudden perturbations™ [86]. This model is based on the assumption that,
the emission of the photoelectron taking place very rapidly, the valence elec-
trons do not have enough time to feel the potential change in the region of core
levels. In this sense, the initial excitation may be considered as instantaneous.
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The theoretical criterion for the validity of the “sudden perturbation” approxi-
mation has been expressed by Aberg [87] with the following inequality:

[E'(nl, n'l') — E' (nD)]t & H#, (39)

where Ef (nl,n'l") is the total energy of the final state after the shake-up process
has taken place, E/ (nl) is the total energy of the final state for the one-electron
transition, and 7 is the time interval during which the nl electron, leaving the
atom, passes the n'l’ subshell.

An estimation of how well the inequality (39) is fulfilled for a typical case
has been performed by Fadley [88]. At a photoelectron energy Ey;, = 1000 eV,
the electron velocity v is approximately 2 X 10° cm/sec, and, in the case of an
atom of approximate dimension 2 A, the value of 7is 7~ 1077 sec. In this case,
7/h ~ 1/65 eV!, and therefore the above approximation is valid if the distance
between the satellites and the main line in the electron spectrum is greater than
65 eV. Thus, the criterion (39) imposes significant limits on the use of the
“sudden perturbation’ method for calculation of the probability of shake-up
processes. However, it has been shown that such calculations are in reasonable
agreement with experiment, even in cases when the criterion is evidently not
fulfilled [87].

Let us consider an arbitrary system of N electrons in the ground state. It is
described by a wave function ¥4 (IV), a solution of the Schrodinger equation:

H(N) ¥, (N) = Eg ¥, (N).

Let us express ¥ (V) as the antisymmetrized product of the one-electron
orbital nl and the function ¥ (N - 1):

¥, (N) = A ¥r(N—1), (40)

where A represents the antisymmetrization operator. In the photoionization
process, the N-particle Hamiltonian H(V) undergoes a sudden change: H(V) -
H(N — 1). In the “sudden perturbation” approximation, one can consider that
the orbitals of the remaining electrons do not have time to relax. Consequently,
the electron system now containing (N — 1) electrons is left in a state described
by the wave function ¥ (NV - 1), which, however, is not an eigenfunction of
the (N — 1)-particle Hamiltonian H(NV — 1).

The new Hamiltonian has the eigenfunctions ¥/(V — 1):

HNN—1)¥'N—-1)=E(N—-1)¥(N-1).

The superscript fis used in order to distinguish between the various final states
generated by the excitation of the second electron, or between the various mul-
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tiplet states appearing after the one-electron or two-electron transitions have
taken place. The wave function W5 (N — 1) represents a mixture of the wave
functions ¥/(W — 1):

Yr(N—1)= X C¥ (N—1), 41)
f

where the coefficients Crare determined by the integrals
Cr= (¥ (N—1)| ¥R (N —1)).

The probability that the system of (N — 1) electrons will be left in the state f
after the photoionization process has taken place is given by the expression

Pp=|(¥'(N =1 |¥r(N—=1)] 42)

From this expression it can be seen that the operator that determines the tran-
sition probability is a unitary operator. In this case, the transitions are called
monopole transitions. From equations (41) and (42) it follows that only tran-
sitions between states with the same symmetry are allowed:

Al =AL =AS =AM, =AM, =AMs=0. 43)

As an example of shake-up-type processes, let us consider the photoelectron
spectrum generated by the X-ray ionization of the 1s electrons of neon. Figure
38 shows the photoelectron spectrum of neon over a wide range of kinetic en-

1, arb. units
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Figure 38. Photoelectron spectrum of neon over a wide energy range.
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ergies [66]. The group of lines with kinetic energy values situated in the interval
570-580 eV corresponds to the shake-up transitions. The intensity of the line
corresponding to a kinetic energy of 600 eV is pressure dependent, indicating
that this line is generated by inelastic scattering processes. The two most intense
peaks in the group of shake-up lines correspond to the final states originating
from the excitation of a 2p electron into a 3p state. Therefore, the kinetic en-
ergy of these lines with respect to the 1s line of neon is determined by the
relation

Eit, = hv — Es— AE%,

where hv — E| }'3 is the kinetic energy of the main peak corresponding to the
ground state of the ion and AE fgk is the additional energy necessary to move one
valence electron up to an excited orbital of the ion. The selection rule (43) for
monopole transitions ensures that the final states of the neon ion (Ne*) will have
a symmetry of the 25 type. For each (15)%(25)%(2p)°np configuration, there
exist two possible schemes of momenta summation that lead to the state %S,
namely, 1s[2p3np(1S)] and 1s[2p3np(3S)]. Therefore, two states having the
same configuration will interact with one another. This process can be treated
by using the multiconfiguration approximation, in which both the coefficients
of the wave functions and the orbitals in the Slater determinant are simulta-
neously optimized. The calculated difference AE 12," for the two most intense
peaks is equal to 35.6 eV and 39.5 eV, respectively. To this energy should be
added the correlation energy, which amounts to 1.4 eV. The resulting values
(37.0 eV and 40.9 eV) are in good agreement with the experimental data
(37.3 eV and 40.7 eV). The less intensive lines in Figure 38 correspond to tran-
sitions from the 2p level to the 4p, and 5p levels.

Manne and Aberg [89] T have studied the expression for Ex (N — 1):

ER(N—1)= (Yr| H(N—1)| ¥g) =,§OE’(N— D (Y| W) P

Since the equality

UL SIS
=0

TEditors’ note: The sum rule for the spectrum of the hole was first discussed by B. L.
Lundqyvist, Phys. Kondens. Mat. 9, 236 (1967) and fully discussed by D. C. Langreth,
Phys. Rev. B 1,471 (1970). The discussion by Manne and Aberg is restricted to the
Hartree-Fock approximation.
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is valid, it follows that

Esr=En(N—1)—E, (V)= B¢ Vo Iy

If the wave function ¥y (V) is calculated by using the Hartree-Fock approxima-
tion, it is found that the magnitude of Egp coincides with the binding energy
value in the Koopmans approximation E' § T given by the relation

EKT:[0+§|(Wi’lPR)l2(lf—lo)» (44)

where Iy = Eq(N — 1) — Eo(V) is the binding energy value obtained by taking
into account the relaxation of electron states.

Photoionization Cross Section in the
One-Electron Approximation

Problems involved in the calculation of photoionization cross sections for
free atoms and molecules in the one-electron approximation have been treated
by a number of authors [90-96] . Usually, the calculations are performed with
several simplifying assumptions, namely:

(1) The action of X-ray photons is treated as a perturbation.

(2) The photon wavelength X is assumed to be greater than the dimension of
the subshells from which the electrons are emitted. This assumption is completely
justified if the Ka, , lines of magnesium or aluminum are used as the X-ray ex-
citation source, since in these cases A~ 10 A.

(3) The wave function of the initial and final states may be represented as
antisymmetric products of the one-electron wave functions g,;, ¢, with the
functions W (N — 1), ¥/(NV — 1), respectively, where ¥ (N — 1) and ¥W/(NV — 1)
describe the (N — 1) passive electrons.

The wave functions /() and W/(V) are often written as Slater determi-
nants. Use of these approximations implies that the main effect in the X-ray
photoelectron process consists in the excitation of the electron from the state
@n1 to the state gpp.

(4) In the process of photoelectron emission only one electron changes its
orbital, while the passive electron orbitals remain unchanged. This assumption
is equivalent to using the Koopmans’ theorem.

(5) In order to describe the initial and final states, the L-S scheme of mo-
menta summation is utilized.

The photoionization cross section is, by definition, given by the following
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formula:

4naa0

N
Op; = Opy (h,V) = Ony (Ekm) = _1 | lyt \ (45)

kv \W’ (

where « is the fine-structure constant and a, is the Bohr radius.
With the wave function (40), expression (45)—as will be demonstrated in
the next section—may be written as follows:

4noca0

O = () (o | T ) PL (Y (N — )| WR(N —1)) 2. (46)
Use of the symmetry properties of the functions entering the matrix elements

of this expression leads to the selection rule (37). The functions W¢(N — 1)

and W (N — 1) should have the same type of symmetry. If the wave functions
W{(NV) and ¥/ (V) can be expressed as Slater determinants, then equation (46)
may be written as follows:

dnoal ,
ot = —5— (W) (@an @) P 1T (@103 P (47)

If the final state relaxation is neglected then o, is given by a simpler formula

4naa0

S (pphr(pnldV (48)

(hv)

Ony =

obtained from equation (47) with ¢; = ¢;.

In order to calculate the ionization cross section for the whole n/ subshell
from (48), it is necessary to perform a summation over all of the final states and
to take the average over all of the orbitals ¢,,;. These operations are performed
for the two possible orbital momenta (/ + 1) and (/ — 1) of the photoelectron,
as well as for all of the values (initial and final) of the magnetic quantum num-
bers. The photoionization cross section for the n/ subshell is finally determined
by the expression obtained by performing the integration in formula (48):

4naa) ag

(hv) [lRe -+ ({+1) R: 11l (49)

Oy =

where

co

Reis1 = ‘ Pry(r) rPeys1 (r) dr,
0
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Ppyfr =Ry and P ;. [r are the radial functions of the orbitals g,; and ¢,
and e = Ekin-

A number of authors [92, 94, 98-100] have calculated photoionization
cross sections and, with the exception of the regime at or near absorption edges,
the values obtained agree quite well with experiment. If the photon energy hv
is greater than the edge, then the term (I + 1)RZ ;,, in formula (49) has a
greater value than (/ — 1) RZ ; _, . The ionization cross section o, is a function
that decreases with increasing Av or with increasing photoelectron kinetic energy
Eyin- However, when hv takes values near the edge, large oscillations and even
zeros may appear in a,;. These oscillations are due to variations in the degree of
overlapping of the functions Py;(r) and P, ; ., (r). The magnitude of 0,, may be
different for different subshells, for the same value of excitation energy.

The total photoionization cross section g, is expressed by the integral over
all of the electron emission angles. The angular dependence of photoemission
may be determined by using the differential photoionization cross section
do,;/dS2. Cooper and Manson [94] have derived the following expression for
the differential photoionization cross section:

2]~ )] -

—[j';;”l | %(_2_511129_1)] (50)

v

where f is the asymmetry parameter, § is the angle between the photon and
electron directions, and P, (cos ) is the second-order Legendre polynomial:

P, (cos 8) = —% (3 cos? 8 — 1). The asymmetry parameter 8, like the photoioniza-
tion cross section a,;;, depends on the electron kinetic energy E\;,,, and is given
by the formula

B {1t — 1R+

(2/ + DIRE (U +1RE ] J©

Here, §,,, and §;_; are the phase shifts, dependent on E};,,. The range of varia-
tion of §is determined by the inequality —1 < § < 2. Positive values of § in-
dicate that the electrons are preferentially emitted in directions perpendicular to
the directions of the photons (6 = 90°), while negative 3 values indicate that
photoelectron emission takes place preferentially in parallel or antiparallel direc-
tions with respect to the direction of the exciting photons (§ = 0°, or § = 180°).
For s electrons I = 0, and therefore only waves with / = 1 are possible. In this
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case =2, and

Uns 1a2
o = g7 Sin 6.

Maximum intensity is obtained at 8 = 90°, and zero intensity at § = 0° and
6 =180°. Forg=—1,

ns ons

dQ 4n

cos?0,

and the intensity of photoelectron emission is zero at § = 90° and maximum at
6 =0and 6 = 180°.
Equation (50) is equivalent to

do,, -
o= A - Bsin? 0, (52)

where A and B are constants,

A= Z;l(l————g—-) and B=(Z;l).

If 4 and B are determined empirically, 8 can be found by using the formula

B =4B/(3A + 2B), obtained on the assumption that the radiation is unpolar-
ized. It is worth mentioning that here we have only discussed the case of un-
polarized radiation since, at present, efficient sources of polarized radiation do
not exist in the X-ray region of the spectrum. For molecules and for unpolarized
radiation, formulas similar to (49)-(51), have been derived by Cooper and Zare
[96], Tully et al. [101], and Grimm [102].

Gelius [103] has shown that, in the case of molecules, one may correlate the
relative photoionization cross sections of molecular orbitals with the photoioni-
zation cross sections of atomic valence subshells. In his calculations he used the
Born-Oppenheimer approximation, “frozen orbitals,” for the description of the
ion and plane waves as the wave functions of the excited electrons. In this case,
for a given molecular orbital, labeled g;, the photoionization cross section is
given by the expression

"% ~ | (9; | P) I, (3)

where P is the electron momentum. Since the variation of electron kinetic en-
ergy in the energy range corresponding to the localization of the j orbital is not
large, the energy dependence of the photoionization cross section may be ne-
glected. Since a typical value of the de Broglie wavelength is of the order of
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0.35 A, it follows that the most significant contributions to the integral (53)
come from regions in which the wave function ¢ changes rapidly. To a first ap-
proximation, the photoionization cross section does not depend on the shape
of the molecular orbital in the interatomic region, and therefore expression (53)
may be written as

MO
O

= 2;] 0, (54)
Since the electron in the molecular orbital y; is localized mainly in the vicinity
of the atom A, the molecular orbital ¢; can be expressed as follows in the LCAO
approximation:

¢ = 2 Cap @4,
A\ !

where the summation is performed over all atoms A and over all types of sym-
metry X for each atom. The LCAO approximation describes the shape of the
orbital near the nucleus particularly well, since in this region the orbital shape is
determined mainly by the condition of orthogonality of the given molecular
orbital and core orbital, both of which are rather atomlike. Therefore, each
term in equation (54) may be expressed in terms of the photoionization cross
section of atomic subshells. The following expression is then valid:

04 = Z PAMOI/‘:;?» (55)
A

where P4, ; is the contribution of the atomic AX orbital to the jth molecular
orbital, and 04 is the photoionization cross section for the atomic A\ sub-
shell. Using equations (54) and (55), the final expression for the photoionization
cross section is obtained:

oM’ = 1\; P04 (56)

In the interpretation of experimental results, it is convenient to use not the
absolute but the relative values of the photoionization cross section. Therefore,
if all of the photoionization cross sections are referred to the given subshell
AgA,, the intensity I,M O s given by

M~ % Paj - GAr/040,. (57)

Gelius has performed calculations using formula (57) for a large number of
molecules, namely, C¢Hg, C4H,0,C4H, S, CF,, SF¢, and C50,. Figure 39
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. Figure 39. Photoelectron spectrum of
N . 1 ] * valence electrons in CF 4 excited by the
50 40 30 20 10E, eV Koy 5 radiation of magnesium.

shows the experimental and theoretical results for the CF4 molecule. The cal-
culated values agree very well with the experimental ones. In the calculations,
the contribution of each molecular orbital to the electron spectrum was approx-
imated by a Gaussian curve with a half-width determined experimentally, and an
area proportional to the calculated transition intensity.

Nefedov et al. [104] have used formulas (56) and (57) to calculate the
valence electron spectra for a large group of molecules, viz., CO, CO,, C;HsN,
LiNO;, and a few others. For Pyy;, the authors used prev1ously published
values, while 044 values were calculated by using the atomic relativistic electron
wave functions. Thelr theoretical calculations agree well with the experimental
results. The authors have also measured experimentally the photoionization
cross sections for the atomic subshells of the series of elements from carbon to
calcium. The relative photoionization cross sections (theoretical and experi-
mental) for the inner atomic subshells, normalized to one electron, are shown in
Figure 40.

2s
p|fs
0.2471.
3 0.1810.9
5
0.12106 Figure 40. Comparison between the relative
photoionization cross sections of internal
006403 shells. The cross sections are normalized to
: * a single electron, and the value of the photo-
ionization cross section of Na Is electrons
0 ) is taken as unity: ®@—experimental data;

5 10 ‘ 15 20 27 X-—theoretical results.
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The theoretical and experimental values of the relative photoionization cross
sections are in good agreement in the case of 1s electrons. Large disagreement
is observed for the 2s electrons and especially for the 2s electrons of sodium,
for which the experimental value is about twice as great as the theoretical one.

Influence of Multielectron Transitions and Multielectron Processes
on the Magnitude of the Photoionization Cross Section

The problem of the influence of multielectron transitions on the magnitude
of the photoionization cross section, as determined by the approximation of the
“sudden perturbation” theory, has been treated by Fadley [105]. As the wave
functions of the initial and final states, he used functions of the type given by
formula (40):

V' (N) = AQuimn, (1)@ (N—1),

Y (N) = AQe, mr, o ()Y (N —1),
where gpim;m, is the one-electron orbital describing the state of the electron
before the transition, ®(N — 1) is the wave function describing the initial state
of those electrons that do not participate in the transition, ey my’, my is the
wave function of the electron with kinetic energy € and angular momentum
I""=1+1,and ¥/(N — 1) is the wave function of the electrons of the ionic
core. The author treated both the case of one-electron and of two-electron transi-
tions, which may be represented schematically as follows:

one-electron transition:

hv
Sl @Y L, S— ()T (Y LS e
¥ (N, E'(N) ¥ (N —1)s, EN(N—1)g;

two-electron transition of the shake-up, or shake-off type:

hv
e () (UYL, S— .. () (YT (L, S -
+ Qe i1
¥ (N)a, E'(N) YN —1)y, E'(N—1),

The subshell (n'l")? is completely or partially occupied. In the final state, the
second electron which participates in the transition is labeled (n"1")! . In the case
of processes of the shake-off type, n" is replaced by €, ; it is assumed that the
initial state is the same for all of the possible transitions. The final state may be



78 CHAPTER 2

characterized by different energies, including the possible structure due to
multiplet splitting. The indexes «, 8, and v indicate the magnetic quantum
numbers and the scheme of addition of momenta for the subshells.

The probability of transition from the initial state a to one of the final states
g or v is determined by the expression

0”[ a_ﬁ(v) ~ l<Aq)8 ’YH 'l" ’ ’"W - I)B(V)

X Auim . ® (N — 1)a>\ . (58)

The representation of electron wave functions by formula (40):

N
1
¥y (N) = T ,2; (— 1) ou () YR(X1y ooy Ximty Xigly oo vy %)

implies that correlations between the electron and the rest of the system are
negligible. The functions ¢,; and ®x (N — 1) are usually restricted by an addi-
tional condition [106] :

g O (%) YR(Xy, X9 ooy Xn—1)dx, = 0. (59)

When ¥y (V) is represented by a Slater determinant, this condition is satisfied
automatically. Let us write expression (58) as

Oni,a—B(y) ~ l 1+ 12) |2
where

L= (9 v () W (X Koy o, Xned)| T ] X
SB(V),I’”,ml ) ms

X A(PnlmlmscD (N — 1)a),

N—1
12 = <(P86(v) m o ()CN)‘Ir (xl, Xoy ooy xN_l)

2N
=1

X A(pn,ml,nsd) (N— 1)a> :

Due to the orthogonality condition (59), I, is equal to zero and the photoioniza-
tion cross section becomes

Onla—B(y) ~ | ((psﬂ(v),l'", m'l”’ m;” I r I (Pnlmlms> 12 X

X (¥ (N —Dpen | @ (N — 1) 2. (60)
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Overlapping of the wave functions W/(V — 1) and ®(V — 1), is nonzero only
when both of these states have the same values of the quantum numbers L, S,
M; , Mg, while the one-electron orbitals in both of the functions are char-
acterized by the same values of the orbital momenta /. These conditions lead to
the known monopole-selection rules (43), which comprise the condition
Al=]"—1"=0.

In order to determine the photoionization cross section of the subshell, it
is necessary to take the average of the expression (60) over all the degenerate
initial states and to perform the summation over all of the final states related to
the given configuration. Finally, the following expressions are obtained for the
ionization cross sections for the one-electron and two-electron transitions
[0, and a,,4(n'l' —n"1")], where the initial and final states of the second
electron are indicated in parentheses:

Ont ~ |Cit1Re 111 + CioiRE 1 (PN — 1) |O(N—1)), B (61)

Onin'l'—n"'y ~ [C1+1Rg.1+1 + Ct—1R£,1~1] X
X ¥V — Dy | O (N — 1)), P, (62)

where € = Ey;, represents the kinetic energy of the electron; the subscript 0
refers to the final-state configuration of the one-electron transition, and r indi-
cates that only the overlap due to the radial integrals remains to be calculated.
The wave function ®(N — 1), may be represented as a series (41):

DN — 1), = >B:<‘Iff(1v—1>ﬁ|<b(/v — D) ¥ (N — ) +
+§<Wf<1v— Dy D (N — 1)) ¥ (N—1)y +

The terms included in the sum over y correspond to transitions of the shake-up
and shake-off type. The state ®(V — 1), is normalized, and therefore,

(¥ (N—1)|ON—1)), P+
+ 2 N =Dy | DN — 1)), 2+ oo =1, (63)

n'l’,n"l

As already discussed, the binding energy EX7 (nl) satisfies the relation

T(nl) = 2101” — 1)s|® (N — 1)) 2 Eg (nl)s.

Therefore, the contribution of each binding energy to £ § T(nl) is proportional
to the magnitude of the corresponding photoionization cross section.
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The expression for the photoionization cross section, without taking into

account relaxation processes, is
N .
O'ZI,u—a ~ l<qﬂ (N)zz 2{ rj v (N)a>
l=

N
21| Agninn® (N — D >
j= /

2
a,l"’,m';,m:l l‘l (Pnlmlm) ] .

2

2

=|<agt e DW= 1),
8(1'[ ,m

1+

= |(¢"
£

Performing the necessary summation and averaging gives us
o ~ [CiriRerps + CimiRe il (64)

and combining expressions (61)-(64):

0'r’:l == Op; ~+ 2 Onin't'—n"1" ==« +» (65)
n'l’n"l"
Therefore, without taking into account relaxation processes, the photoionization
cross section is represented by the total photoionization cross section for one-
electron and multielectron processes. This result may be generalized to take into
account multiplet splitting:

0:;1 = Z Ont, 5. (66)
6=0

where the ionization cross section 6,,; 5 corresponds to all final states of the
given configuration having the same values of L', S’ and the same energy. By
using the jonization cross sections o}y, 0, 5 determined by equations (64)-(66),
EXT (nl) [= E% (nl)] can be written

o0

r E OVII,BEB (nl)é
E5’ (nl) = =0

u

0nl

The “sudden perturbation” method is less appropriate for the description of
the process of valence electron ionization at energies near to the absorption
edge. There exist more efficient theoretical descriptions of the process of
electron photoemission. These treatments take into account multielectron
effects in the photoionization process. However, because of their sophisticated
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character, they have not yet been used extensively. The photoionization cross
sections calculated by Amusia [10], Wendin [108, 109], and Lundqvist and
Wendin [110] using the random-phase approximation and taking into account
exchange processes are in quite a good agreement with the experimental data.
We mention here that inclusion of multielectron effects is particularly important
for the outer subshells, since in this case all the electrons of the subshell take
part in the photoionization process [107, 111].

Energy Distribution of Valence Electrons in Crystals

The problem of the structure of the photoelectron spectra of the valence
electrons of crystals has been treated by Hedin ez al. [112] . After excitation,
the final-state electron wave function may be written

|‘I’,)—_=a:£]N——l, s),

where k is the momentum of the emitted electron. The transition probability
is given by the formula

1(8.:)~;H‘IGIPI‘F»F&(O»—B+E,-)=

= 2|(N—1, Slafk%Pkk'alj—’ak’NHzG(w—Sﬁ'—}—85).

ks
Since E; = e + E(N—1), E, = E (N), follows that
g,=EWN)—EWN —1, s).

In this formula, the matrix elements Py;’ of the momentum operator P = —i#iV
have been used. If ag|V>= 0, then

leg) = 2 |(N—1, s|§Pk~kak|N>|26(m_e;+eS)=
k,s

=2 l; Pi_i(Pl:k’Akk' (8 —(.0),
k

where

Ao (8 —0) = D|(N—1, s|af [N—1, s) X
X (N—1, s]ax|N)|8 (0 —¢,).
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The number of vectors k for which the energy is ey = € is proportional to e'/? ,
and therefore

1(8) ~ V_i; kkz' Akkl (8 -_ (0) P‘l:;kpl’(‘l‘(’ (67)

When a core electron is emitted, then by neglecting the excitation of the
remaining electrons and by taking into account the fact that

aC|N>=acaj_|va Nc’“l)v

the following is obtained:

[©) ~ D1 (N, sIN,) Pg, P X
k,s
X 8(0—er +¢),

where |N,, s > describes the state of the valence electrons including the effect
of the core hole. This formula gives the radiation intensity in the “sudden per-
turbation” approximation. If the nondiagonal terms in the spectral function
Ay and the dependence of Py on the momenta k and k can be neglected, then
instead of formula (67) the following is obtained:

1(g) ~ Ve P3N (e — o), (68)
since

N(F) = ;Sk_ A (E) = SpA(E).

If the dependence of Pgy on the momenta k and k cannot be neglected, then cal-
culations should be based on formula (67). In the one-electron approximation,
Ay (€ — w) is given by the following expression:

Akkr (8 ——(.0) ~ 6kk:6 (8 —_w— Sk).

In discussing the problem of the X-ray photoelectron emission of crystals,
we have not considered the processes that determine the emission of the excited
electron with momentum k outside the sample. For simplicity, it has been con-
sidered that the process of photoemission takes place through the following
stages:

(1) The valence electron is excited into a state in the conduction band.

(2) The electron travels toward the surface (and possibly undergoes inelastic
scattering processes).
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(3) The electron passes through the surface (or is possibly reflected back-
wards).
Before considering the experimental and theoretical calculations of photo-

electron spectra, we will discuss briefly the basic methods for the calculation of
energy bands in crystals.

Methods of Calculation of Energy Bands in Crystals

In order to be able to calculate the valence band photoelectron spectra of
crystals it is necessary, as indicated by equations (67) and (68), to know the
wave functions and the energy values corresponding to one-electron states.

At present, the methods that are most extensively used for calculation of
the structure of energy bands and of electron wave functions are the methods of
augmented plane waves (APW), the method of Green’s functions, the method of
orthogonal plane waves (OPW), and the method of the pseudopotential. These
methods are described in detail in a number of monographs devoted to the band
theory of solids [113-119, 5], as well as in a number of review articles [119-
125] . Some of these works are entirely devoted to just one of these methods.
Thus, the monographs of Slater [113] and Loucks [117] deal only with the
APW method, the book of Harrison [115] considers the method of the pseudo-
potential, the review article of Woodruff [124] discusses the OPW method, and
that of Dimmock [125] the APW method.

Of course, the question arises why have so many different methods been
developed to describe the electron energy spectra of crystals? Can it be ex-
plained by the fact that each method should be used only for a limited number
of solids? To answer these questions, attention should be paid to the period in
which the methods were developed. The first method for calculation of energy
bands of crystals was proposed by Bloch at the end of the 1920s in those years
when the quantum theory of matter was founded [126] . It was immediately
used to obtain results of a general character on the dynamics of the motion of
electrons in crystals. The development of the APW and OPW methods is asso-
ciated with the names of Slater [127] and Herring [128], respectively. However,
specific band-structure calculations for various materials did not immediately
follow the development of these methods. The reason for the delay in applica-
tion and progress of these methods arises from their great mathematical diffi-
culty and the necessity to perform tedious calculations. The situation only
changed in the 1950s when the first computers appeared. Even though they were
far from advanced, their arrival initiated a period of intensive calculations of the
band structure of crystals. Since the 1960s progress in our knowledge of the
band structure of the most important solid materials has been closely related to
advances in computer techniques.

A number of distinct directions in the development of band-structure
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theories have now emerged, and groups of scientists involved in the use and
development of each particular method have formed. Thus, Herman has
achieved great success in the development of the OPW method, Slater has made
the APW method one of the most extensively used in band calculations, while
Harrison, Heine, and Cohen have made valuable contributions to the develop-
ment of the pseudopotential method, proposed at the end of the 1950s. These
groups of scientists are still involved in development of improved methods.

The first calculations for a given crystalline material using different methods
yielded quite different results. Usually, the ordering of the energy bands and the
main characteristics of their structure are well reproduced. The quantitative
differences that are observed may be partly attributed to differences in the
approximations used, the character of these approximations, and the different
convergence properties (dependence of calculated energy values on the number
of functions in the basis).

It is well known that the crystal potential varies rapidly in the vicinity of
atomic nuclei and only slowly in the region between the atoms. Consequently,
the wave function of electrons in crystals is also characterized by rapid and
abrupt changes (with characteristic critical points) in the vicinity of nuclei
and a relative smooth behavior in the region between the atoms. This property
of the potential and of wave functions is expressed differently in the different
methods, and this leads to different final results. Thus, in the APW and Green’s
function methods, some simplifying assumptions are made concerning the
shape of the crystal potential. The potential is chosen to have a muffin-tin shape.

Outside a sphere of given dimensions, the potential is assumed to be con-
stant. This assumption is justified since in the region between atoms the
potential varies slowly (see Figure 41).

In the OPW method, it is not necessary to use a muffin-tin (MT) potential.
For this reason alone the results obtained by the APW, Green’s function, and
OPW methods may differ. This discrepancy might be reduced by using a poten-
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Figure 41. MT potential for a mon-
atomic crystal.
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tial deviating from the muffin-tin shape. This, however, could not be easily done
at the beginning of the 1960s, since at that time the memory and calculation
speed of computers were not high enough for the large volume of calculations
necessary. By the end of the 1960s, when computers with calculation speeds of
the order of 10° operations/sec became available, it was possible to perform
calculations based on a smaller number of simplifying assumptions, and with a
greater accuracy. As a consequence, use has begun to be made of equivalent
crystal potentials and certain other approximations, so that the final results
obtained by using different methods have become quantitatively similar.
Nevertheless, the different methods provide different opportunities to
perform empirical corrections, to vary parameters, or to include relativistic
effects. It has been shown that the calculation of the band structures of insula-
tors and semiconductors is easier to perform by using the OPW method or the
pseudopotential method, while for the transition and rare-earth metals, it is
easier to use the APW method or the method of Green’s functions. For transi-
tion metal compounds and intermetallic compounds, it is preferable to use
the APW method. At present no universal method exists for the calculation of
the band structures of all types of crystals. However, the group of existing
methods allows an approach to most problems of interest in solid state physics.
The basic equation of the band theory is the one-electron Schrodinger
equation:

(— V2 V() ¥ (1) = EY (1), (69)

where V(r) is the crystal potential. For crystals, V(r) is a periodic function in
the space of lattice vectors V(r + R,,) = V(). The solutions of equation (69)
that are of interest in the energy-band theory should satisfy the boundary
condition

¥Y(r+R,)=-expik-R,Y¥(r), (70)

where k is the wave vector or the electron quasimomentum; this takes N dif-
ferent values in the vector space of the reciprocal lattice in the Brillouin zone.
(MV is equal to the number of elementary cells in the crystal.) A consequence of
condition (70) is that the solutions of equation (69) are quasimomentum
dependent and that it is possible to represent them as Bloch functions: ¥(k, r) =
exp ik - rU,(r), where U (r) is a periodic function: Up(r + R,;) = U(r).

The quasimomentum dependence of the energies Ey and the wave functions
W (K, r) has enabled an interpretation to be performed in terms of energy-band
structure of crystals. For each k, equation (69) has an infinite number of solu-
tions, which may be ordered so that E,,(k) < E,;; (k) for all of the n values. The
totality of the energy values E,,(k), when k takes all values in the Brillouin zone,
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is called the nth energy band, and the system of energy bands constitutes the
energy-band structure of the crystal. In each band, the energy £, (k) is a con-
tinuous function of the vector k. According to the Pauli principle, there are two
electrons on each energy level E,,(k), and 2V electrons in each energy band.
Therefore, in insulators, several of the first energy bands are completely occu-
pied, while the remaining bands are empty. In metals, there exist energy bands
that are only partially occupied. In this case, the energy value of the highest
level that separates the occupied states from the empty ones is called the Fermi
energy Ef, and the surface in the k space determined by the equation E(k) = Er
is called the Fermi surface. Before proceeding to a treatment of the basic sym-
metry properties of energy bands and of wave functions, we will briefly discuss
the methods for their determination.

At present, in the most widely used methods for the determination of the
energy eigenvalues and eigenfunctions, in equation (69) the wave function
¥, (k, r) is represented as a series:

¥,k r)= ;C? k) ¢; (k, 1), (71)

where each of the basis functions g;(k, r) satisfies the Bloch condition (70). In
this series the coefficients C7 (k) of the basis functions are unknown and may be
determined by solving the following system of linear homogeneous equations

2 (H;— ES;) C! = 0, (72)
I
where
Hj = S cp; (ryHe; (r)dV, Si= S o (r)o;(r)av.
v 1%

Since the series (71) is limited to a finite number of terms, it follows that the
system of linear homogeneous equations (72) is also finite. The energy values
E, (k) are determined by the condition that the determinant of the system is
equal to zero:

det[ H[j-——ES,'il =0.

In this way, the difficult problem of solving the differential equation (69) is
reduced to the much simpler problem of solving the system of algebraic equa-
tions (72). These can be obtained from the condition of minimization of the
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functional
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In some cases, equation (69) is transformed into an integral equation,
obtained by varying in a determined way the chosen functional. By introducing
expression (71) for the functions ¥ (k, r) into this functional, one obtains
instead of the integral equation, a system of algebraic equations for the energies
E,(k) and the coefficients C7 (k). When applying the variation principle to the
integral equations, the treatment can be limited to a single elementary cell, since
knowledge of the Bloch function for a single elementary cell is sufficient to
allow determination of its values over the whole crystal by simply applying rela-
tion (70). In this case, the wave function in each elementary cell should satisfy
some boundary conditions. An elementary cell represents a geometrical figure
determined by the intersection of pairs of parallel planes such that to each point
r; situated on one boundary, there always corresponds a point r, situated on the
second boundary, at a distance from r, given by a translation vector a, i.e.,

r, =r, +a. Here a is a constant vector, characteristic for each pair of parallel
planes and having different magnitude for different pairs. Therefore, the follow-
ing relation is valid: W(k, r,) = exp (¢k - a) ¥ (k, r, ). Since on opposite bound-
aries of the elementary cell the external normals are oriented in opposite
directions, n; =—n,,

d . d
W;W(k’ r,) = —expik - a—aTl‘I’(n, ry),

where d/dn denotes differentiation with respect to the direction of the external
normal to the boundary of the elementary cell.

The same simple choice of the basis functions ;(k, r) is made in the
methods of tight binding and of plane waves. In the tight-binding method, which
is sometimes called the method of linear combination of atomic orbitals
(LCAO), the functions y;(k, r) are represented as linear combinations of the
atomic orbitals @, = anim (r) = R ()Y (0, @):

o, (k, 1) = -ﬁ RZ expik - R, - a;(r—R,). (73)
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The LCAO method has not been used extensively because the calculation of the
overlapping integrals for atomic functions centered at different points of the
lattice proves to be very difficult. Recently, some modifications of the LCAO-
method have been proposed [129, 130], but they have as yet only been used for
band-structure calculations of crystals of the light elements lithium and carbon.
We mention here that the functions (73) may be used for describing the core
electrons of atoms in crystals.

The method of plane waves is based on the use of the plane waves

_ expik+K)-r
¢, (k, 1) ~ Ve

as basis functions, where €, is the volume of the elementary cell, and K; is the
vector of the reciprocal lattice. Plane waves are conveniently used as basis func-
tions in the determination of the matrix elements of the Hamiltonian in equa-
tions (72). In the method of plane waves, the solution depends on the Fourier
components of the potential:

V(K)= % Sexp iK, -tV (r)dV,

1%

which may be determined with great accuracy. However, V(K;) decreases rapidly
only at large values of the vectors K;, and therefore the energy values obtained
depend strongly on the order of the equations. In order to determine the
valence-electron wave functions and energies with a sufficient accuracy, it is
necessary to choose several thousand basis functions g;(k, r). Consequently, this
method, which is simple in principle, becomes very tedious when used for per-
forming practical calculations.

The method of plane waves has been considerably improved by Herring
[128]. In order to reproduce the rapid variation of the wave functions in the
neighborhood of atomic centers in the crystal, he has suggested the construction
of functions orthogonal to the wave functions of the core electrons. Such func-
tions, constructed from LCAO functions and plane waves, are called orthogonal
plane waves:

(I (k, l') = _IIVQ— exp { (k + K‘) cF— E Bnlm (k —E" K‘) IP‘nlm (k, I'), (74)
V ] nim

where By, is given by B, (k + K;) = 8,,04,,;(Ik + K;|) in the system of
coordinates having the z axis parallel to the vector k + K;; A,;{k + K;] is the
orthogonality coefficient determined by the atomic wave functions Py (r).
The functions ;(k, r) are constructed to be orthogonal to ¥,,,,,, (k, r):
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(@i ¥m ) =9, for all of the quantum numbers 7, 1, m over which the summa-
tion in expression (74) is performed, provided that the atomic functions entering
into W,,;,,,(k, 1), localized at nearby points in the lattice, do not overlap appre-
ciably. This condition is quite accurately satisfied, and therefore the orthogonal
plane waves constitute a convenient system of basis functions to be used for the
determination of the wave functions of valence electrons, although it is not an
orthogonal system in itself. The energies E, (k) and the wave functions W, (k, r)
are determined by the coefficients of the Fourier components of the potential,
by the values of the energies of the core electrons E,;, and by the coefficients of
orthogonality. In this method, the coefficients C7 (k) decrease more rapidly than
in the method of plane waves, and 150-200 OPW functions are usually sufficient.
In accurate calculations, the core functions should be determined by taking into
account the crystal potential field.

The OPW method also has drawbacks. The convergence of series (71) is con-
siderably worsened if the orthogonal plane waves (74) do not contain core
functions of a given symmetry type. Thus, at the point k = 0 of diamond, in the
determination of valence band p-state energies the series (71) contains only
plane waves because the carbon atoms have only 1s-core states. The wave func-
tion for k = 0, constructed from symmetrized plane waves, is characterized by a
p-type symmetry, and therefore, being orthogonal to the ground 1s state, it
expresses to some extent the characteristics of the structure of valence-band
p states. The convergence of p states in diamond is very slow. Euwema et al.
[131] consider that a good convergence is obtained if the number of basis func-
tions is of the order of 5000.

In contrast, silicon has core states of both s and p type, which improves the
convergence considerably. For silicon the convergence is usually satisfactory
with only about 150-200 OPW basis functions. The OPW method is not recom-
mended for the band-structure calculations of transition metals, since in the
transition metals of the first transition period there are no core states of d-type
symmetry.

It is, of course, possible to add to the expansion in OPW functions some
localized wave functions of d-type symmetry, determined by the crystal poten-
tial field. In doing so, a boundary condition may be used, namely that the
d functions should be equal to zero outside a sphere of radius approximately
equal to the radius of the muffin-tin sphere for the given atom of the crystal.
Due to the complexity of this procedure, the OPW method is usually applied to
band-structure calculations of the compounds of type A3Bs and A, B . The
convergence in the OPW method for these compounds is affected by the follow-
ing factors: the presence or the absence of the corresponding core function, the
relative dimensions of the cores of the various atoms in the elementary cell, and
the degree of localization of the valence wave function. Studies performed by
Euwema et al. [131] have shown that the convergence for the p-type states is
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determined to a greater extent by the dimensions of the anion than by those of
the cation. More localized valence states are characterized by a worse con-
vergence. Thus, solid argon is situated in the same line of the periodic system as
silicon, but for argon it is necessary to use twice as many orthogonal plane waves
as for silicon. Poor convergence is also characteristic for compounds with strong
ionic character, such as NaCl.

Better results are obtained if self-consistent calculations are performed. In
order to improve the non-self-consistent calculations, Herman et al. [132] have
suggested that empirical corrections may be used. Such corrections are easy to
introduce into the crystal potential and the energy values of core electrons. By
making these corrections, the potential ¥ is transformed into a new potential
V + AV, where the magnitude of AV is chosen so that the calculated energy
values agree as well as possible with the experimental ones. By using empirical
corrections, it is possible to compensate to some extent for the neglected rela-
tivistic and correlation effects, and for the insufficient number of basis func-
tions. Thus, for example, in calculating the band structure of diamond-type
crystals, Herman et al. [132] used three parameters: AV(111),-AV(220),
AV(311). For compounds with a crystal lattice of the sphalerite type, Herman
et al. [133] as well as Shay et al. [134] used a somewhat different three-param-
eter scheme. This included the following parameters: AVg (111) determining
the change of the symmetrical Fourier component of the potential Vg (111), AE?
and AE? representing the core shifts of the anion and cation, respectively. The
magnitude of the shifts was chosen identically for all of the core states of both
the cation and the anion.

The APW method, which has been applied extensively for the calculation of
the energy bands in transition metals and their compounds, is also based on the
use of the variation principle. It also makes use of plane waves and localized
functions. It differs from the OPW method, however, in a number of ways. First,
in the APW method the potential usually has a muffin-tin shape:

V(lrl), for r < Rmmi

Ve, for r > Rumr.

V)=
As a consequence of the fact that the elementary cell is divided into two
regions, each of the basis functions consists of two parts. Outside the muffin-tin
sphere, the basis functions g; (k, r) behave like plane waves, while inside the muffin-
tin sphere they are represented as linear combinations of the functions R, (r),
which are solutions of the radial Schrodinger equation for the potential V' (r):

— 5 () + [T+ VOLR ) = ER ). 09)
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R;(p) should satisfy a boundary condition; that is, it should be regular at p = 0.
Since there is only one boundary condition, it follows that £’ in equation (75)
may take arbitrary values, and in particular it may be equal to the initia] value

of the energy E' = E. The magnitude of the coefficients A,,,, in the series expan-
sion of the functions y;(k, r) inside the muffin-tin sphere,

[
_2 Alm (k + K[) Rl (r) Ylm (6’ (P) y

IIMS

@k, r

are determined by equating this expression with the expression of the plane
wave, exp i(k + K;) - r, at the surface of the sphere:

ani'Y , (KFK) Y, 0

Aim = R{Ryp)

Therefore, the basis functions y;(k, r) in the APW method are given by the
following formulas:

\ 7 (k’ I') =

o0 !

. + K| Ry
lzo 21(21+l)l1 IRt(R o Rife, E)Y’m(k+K1 YIM(P)
- (76)

expi(k +K)-r.

These functions are constructed to be continuous at the surface of the sphere,
but their derivatives exhibit discontinuities. This is the reason why a functional
is used that takes into account the existence of these derivative discontinuities.
If the region of the elementary cell inside the sphere is labeled I, and that out-
side the sphere II, then the functional in the APW method is given by the
expression:

E{ wnvay = { wervay o ([(Fu—) (5 Yi+
I 11 $

0 * * * Iv) 0
+ S ‘I’l) —(¥Yu+ ¥ (_67 ¥Yiu— e l1’1)] ds,

where the derivative 8/9dp is taken in the direction of the external normal of the
first region. The values of the energies E,(k) and wave functions ¥, (k, r) in the
APW method are determined mainly by the logarithmic derivatives R;(p)/R;(0)
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at the surface of the muffin-tin sphere. The convergence depends not only on
the number of functions in the series (71), but also on the number of harmonics
in the expansion (76). Typically, 50 basis functions are used for each atom
situated inside the elementary cell, /,,,, being taken as 12. The convergence

in the APW method is better than in the OPW method. It has been found that
the muffin-tin potential represents a good first approximation to the crystal
potential. If necessary, account can be taken of the nonspherical symmetry of
the potential inside the muffin-tin sphere and its nonconstancy outside it. The
latter feature has the greater importance. In this case, the secular equation
comprises the Fourier components of the crystal potential outside the sphere.

A modification of the APW method including deviation of the crystal poten-
tial from the muffin-tin shape has been proposed by Slater and de Ciceo [135].
In the APW method, the series expansion of the wave function contains localized
functions of s, p, d, f, . . . type and therefore no difficulties arise in calculating
the energy values for any type of symmetry. This is the reason why the APW
method is so efficient for the calculation of energy bands for a large class of
materials, particularly for the transition metals and their compounds.

The results obtained by the method of Green’s functions are similar to those
obtained by the APW method since both methods use similar approximations for
the potential. In the method of Green’s functions, it is convenient to choose the
potential with a muffin-tin shape. The equations used in the method of Green’s
functions also contain the logarithmic derivatives of the radial functions R;(r) at
the surface of the muffin-tin sphere. For r <Ry, the solution obtained by
applying the method of Green’s functions is expressed as a series

718

!
_ZJ Ile f) ylm (6 (P)

where the functions R, (r) are determined from equation (75). In the method
of Green’s functions, the following functional is varied:

A= \"I’*(r)V(r)‘I’(r)dV——S S‘F*(r)V(r)G(r, r)V (') x

Q, 9, &,

X ¥ (r')dvdV’,

where G(r, 1') is the Green’s function determined by the equation

(V2+ E)G(r, F)=08(r—T').

The convergence in this method is high. Usually it is sufficient to consider only
4-6 harmonics in the expansion of the wave function ¥ (r). However, in using
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the method of Green’s functions, as compared to the APW method, it is more
difficult to solve the secular equation; the deviation of the potential from the
muffin-tin shape is less readily accounted for, and it is also more difficult to
determine the electron wave function outside the muffin-tin sphere.

Recently, particularly wide use in band-structure calculations has been made
of the pseudopotential method, in which the wave functions are expanded in
series of plane waves. In a number of cases, this method allows a considerable
simplification of calculations of the energy-band structure for crystals. Phillips
and Kleinman [136] have pointed out that, in the equations used in the OPW
method, the terms containing the orthogonality coefficients compensate for the
values of the Fourier components of the potential. This allows a determination
of the pseudopotential, which contains the repulsion terms present in the equa-
tion of the OPW method. This potential compensation depends on the number
of functions in the core. Since the system of core functions is far from being
complete, it follows that the potential compensation is also incomplete. It
should be noted that the pseudopotential represents in general a nonlocal
operator. The action of ¥, on an arbitrary function ¢(r) may be expressed by
the relation

Vet (1) = V() o) + X (E—E)Wo(n) [ Y. (M) o () dV"

It has been shown that, on the basis of data obtained from the study of
scattering properties, it is possible to construct pseudopotentials of a more
general shape [137] . The pseudopotential wave function (Figure 42) is charac-
terized by the fact that it does not contain the radial nodes that are character-
istic for the real function. Since the scattering amplitude is determined by the
logarithmic derivative of the radial wave function, the potential can be replaced

Figure 42. Wave function ¥ (1) and
pseudo-wave-function ¢(r) corre-
sponding to the potential V (t) and the
pseudopotential Vp (@), respectively.
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by a pseudopotential that has exactly the same scattering amplitude. For this,

it is necessary that the logarithmic derivative of the wave function R;(r) be equal
to the logarithmic derivative of the pseudowave function at the surface of a
sphere of radius equal to the effective ion radius in the crystal. On the basis of
these considerations, Abarenkov and Heine [137] have constructed a model
potential, which, for an ion of charge Z, may be written as follows:

N “%:AI(E)PI(E)v r < Rwmt,
Vps:: (77)
—_—, f>RMT,

where E is the energy of the state, 4;(E) is a factor that depends on £ and I,
and P, is the projection operator that, when applied to wave functions, separates
the components having the azimuthal quantum number [:

{ 2n

14
PHE B, 0)= X Yin| [ Vin(®, &) f(r, ©, ¢)sin©d'dy’.
0 0

m=—I!

The factor 4;(E)is determined experimentally, i.e., is chosen so that the pseudo-
potential (77) generates the spectroscopically observed one-electron energy
levels. For the total collection of ions distributed at the nodes of the crystal
lattice, the pseudopotential may be written as

Vos(r, 1/, E)= 3V (r—R;, ' —R;, E). (78)
i

Due to its nonlocal character, the potential depends on r and r’. In calculations
performed using the pseudopotential method, the secular equation contains the
matrix element

kV, (r, ¥, E) k'),
which may be written as follows:

(K| Vos | K') = S (q) Vas (q),

where

q=k —k, S(q)=%2e><piq-kf
I
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is a structure factor, and ¥,(q) is the ionic pseudopotential form factor:

Vos(@=Vu(a k K, E)=
= Q7! § exp (— ik - 1) Vs (r, ©')exp (k' - r)dVd}". (79)

Often, in the treatment of electronic properties, only the local approxima-
tion is considered—the energy E in expression (79) is assumed to be equal to the
Fermi energy Er, and the vectors k and k', for ¢ = |k —k'| < 2k, are taken as
being equal to kr and g — kr, respectively, being oriented in opposite directions
if g > 2kg. In order to obtain the pseudopotential of the crystal from the pseu-
dopotentials of the free ions situated at the nodes of the crystal lattice, account
should be taken of the fact that the electrons in the conduction band are screen-
ing the pseudopotential (78). For the Fourier components, the following expres-
sion is then obtained:

Vs (@)
& (9)

ps — ’
where € (g) is the dielectric permeability.

The local approximation of the pseudopotential has been applied success-
fully in studies of the energy-band structure of a great number of crystals. More-
over, it can be stated that existing knowledge of the band structure of A3Bs and
A, Bg compounds has been gained from the use of the pseudopotential method
in its local-approximation form. It has been found that in order to describe the
band structure of these crystals, six parameters are sufficient, namely, the
Fourier components of the pseudopotential. In this case, the pseudopotential is
represented by a fragment of a Fourier series:

Vps (r) = % Vps (K) exp ’:K T,

For crystals of the sphalerite type, it is convenient to set the origin of the coor-
dinate system between the atoms, and then the following relation is valid:

Vos (K) = S° (K) V° (K) + iS” (K) V* (K),
where
S%(K) = 2cosK - 7, S*(K) = 2sinK - T,
VEK) = (V1 (K) + Vy (K), VA(K) =V, (K)— V, (K)),
T = (111).
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Here, V,(K) and ¥, (K) are the Fourier components of the pseudopotentials
corresponding to the atoms of type 1 and 2 [138].

To calculate the band structure of molecules and cluster groupings in solids,
the X, -cluster method proposed by Johnson and Smith [139] can be used. In
this method, multicenter integrals that complicate the calculations for selection
of a basis related to atomic orbitals do not appear. This fact also significantly
reduces the computer operation time necessary for calculation of the electron
band structure. When calculations are performed for clusters in solids, it is con-
venient to consider a single isolated cluster. The volume occupied by the cluster
(see Figure 43) may be divided into three types of regions:

(I) the atomic region, consisting of spherical volumes centered at the atoms
in the cluster;

(I1) the interatomic region, between the inner atomic spheres and an outer
sphere enclosing the whole cluster and centered at its central atom (the Watson
sphere);

(III) the extra-atomic region, outside the Watson sphere.

If the extra-atomic region is neglected, the division of the space is analogous
to that in the muffin-tin approximation, though here the muffin-tin spheres may
intersect each other. The radii of the spheres depend on the particular Hartree-
Fock model potential chosen as a first approximation in the self-consistent
calculations.

For an arbitrary point in the cluster, the potential may be written as follows:

V() =VE(Ir—Ro|)+ 2V (Ir—Ry]), (80)
=

where R, defines the position of the central atom in the cluster, and R; deter-
mines the position of the other atoms. This expression for the potential is aver-

Ir

2
@

Figure 43. Atomic (1), interatomic (II),
and extra-atomic (III) regions in the
cluster.
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aged inside each atomic sphere j and also over the extra-atomic region. For
region II, the potential value averaged over the volume is used.

The Watson sphere is used in order to obtain stabilization of the cluster
orbitals. Watson [140] used it first for the stabilization of orbitals in a Hartree-
Fock calculation of the electron structure of the negative double-charged oxy-
gen ion. The Watson sphere is assumed to have an electric charge opposite to
the charge of the cluster. For each atomic center situated inside the correspond-
ing atomic sphere, one can write the following series expansion of the wave
function:

= DCLRI(E, nY.L(r) (0<r<R), 81)

I.

where Y (r) is the real spherical harmonics of index L =(/, m). The functions
Rj(r, E) represent the solution of the radial Schrédinger equation for the poten-
tial (80), spherically averaged with respect to the center of the jth sphere. As in
the APW method and in the method of Green’s functions, it is assumed that the
wave function is finite at the center of the sphere, for r = 0. A similar series ex-
pansion is also used for the partial wave representation of the wave function in
region III:

‘Fm(f):%:D(ll_R?(E, f)YL(/;) (Rw << r << o), (82)

where Ry is the radius of the Watson sphere. The functions R} (E, r) represent
the solutions of the radial Schrodinger equation for the spherically averaged po-
tential in region III. The radial wave functions of the molecular orbitals should
decrease exponentially at large distances from the center of the cluster. This
represents a boundary condition for the orbitals. In the interatomic region, one
makes use of the multicenter partial wave representation of the wave function:

¥y (r "ZBLIJ xro) ( ZA Lfi (nry) YL(’/) (83)
(R;

(Ry < ry < Rw), 1) (ro Rw).

!
In this expression, » = (E — V,) ?;

" (%r), » imaginary, E<<V,<0,

1 (nr) =
n,(»r), » real, V,<E <0,
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V', is the mean value of the interatomic potential;j; is the spherical Bessel func-
tion; h,(‘) is the spherical Hankel function of the first type;and n; is the spherical
Neuman function. The molecular orbital functions (81)-(83) and their corre-
sponding first derivatives should be continuous when passing through the spher-
ical surfaces. This condition can be satisfied by using the theory of multiple
scattering [141]. The coefficients A5 and BY are found to be correlated to C},
and DY . The equations obtained for the energy and for the coefficients A} and
BY include the functions R}(E, R; 1), fi(kR;), their first derivatives taken at the
surface of the corresponding spheres and the structure factors, i.e., factors of
the type f;(kRj;'), Y1 (R;;"), which depend on the interatomic distances and on
the vectors R;;.

One advantage of the method proposed by Johnson is the fact that it can
also be used for the calculation of the band structure of crystals. In this case,
such a cluster grouping that repeats itself periodically should be considered to
give the whole crystal structure. Moreover, the cluster orbitals should satisfy the
Bloch boundary conditions.

Let us consider the secular equations of the energy eigenvalues. In the
methods of OPW, pseudopotential, APW, and Green’s functions, the secular
equation may be written as follows:

det | {(k + K)* — E} 8k + Fr,x, (k, E)|=0. (84)

In the OPW method, the function F' K Kj (k, £) is given by the expression
Fiii; (b, E) =V (K, —K))— Z E, (k + K, | ) (clk + K,

where V(K; —K;) is the Fourier component of the crystal potential. For a local
pseudopotential, F£5 KK k,E)=VPSK; —K; 7). Even for a nonlocal potential,
however, the energy elgenvalues are determmed from equations (84), with

FﬁiKl (k! E) =V (Ki!Kf)'

The pseudopotential also depends on the quasimomentum k and on the energy
E.

In the APW method, the function F K,-K,-(k, E) is given by the following
expressions:

FAPY 4“&%”{ . Iy (1 Ki - Kj | Rypp)
k(o B) = —g = = Ik + K = El =Ry, F

+,§o<2’+ D) Py (K K)) (& + K, | Run)iy (& + Kf] Rygr) X

R’l (RMT’ E) _ /;( 1k 4+ K;| RMT)
Ri Ry E) it (1k+Ki| Ryp)
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where P; are the Legendre polynomials, and j; are the spherical Bessel functions.
The convergence in the APW method is better than that in the OPW method,
since in the former the wave function reproduces better the oscillations at the
atomic core in the crystal.

In the method of Green’s functions, the rows and the columns of the deter-
minant that gives the energy values are numbered by the values of the orbital
momenta, included in the series expansion of the wave function. This implies
that the partial wave representation is utilized. Ziman [142] has shown that the
matrix equations in the method of Green’s functions may also be written in a
similar way to equation (84), where

4 R‘Z ) —~
Fiow, (k, E) = —5 4T 3 (@ + 1) Py (R, -K)) 1y [k + K, [ Rur) X

R RypB) f}(VTERMT>]
Ri(Ryy.E) i (VERyp) 1

X jr (1k 4+ K; | Ry

As can be seen from this expression, the function F %:7 Kj (k, E) is similar to
Fﬁ’i” % (k, E), but differs from it by the terms that contain the Bessel functions
ji-In t‘le APW method, they depend on k, while in the method of Green’s func-
tions, such a dependence does not exist. This improves the / convergence in the

method of Green’s functions, owing to the compensation of the terms

Ry (RypE) _ jj(VERyy)
RiRyr:E) ™ ji(VERyp)

The slow  convergence in the APW method arises from the fact that the sum that
contains the spherical functions describing the behavior of the crystal electron-
wave function inside the muffin-tin sphere requires increasingly more terms for
waves with high kinetic energies. The plane wave convergence in the method of
Green’s functions is lower than in the APW method. Johnson [143] has shown
that the APW method has the optimal convergence among all the methods in
which plane waves are used.

In the method of Green’s functions, equation (84) may be more conveniently
written in the partial wave representation:

det| VE 8,8 + tann, X ComymDint (k, E)| =0,
LM

where 7 is the phase shift determined by the function R;(r); C{‘,,I,"I,m are the co-
efficients given by

ClLrgl’m’ = g YLMYleI'm’dQv
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and Dy s are structure factors, which coincide with the coefficients in the partial
wave expression of the one-electron Green’s function:

ik k) R
Ge(R) =—- }-a K+KF—E

l

VER Y , ~
= 3‘4 iDyw (k, E)j, (VER)Y 1 R).

The good ! convergence results in the fact that the secular equations in the
method of Green’s functions have a lower order, as compared to other methods.
However, the matrix elements are more complicated, and it is difficult in this
method to calculate the structure constants because of the bad plane-wave con-
vergence. The convergence may be improved by using the method proposed by
Ewald [144]. Here, the constants contain exponential functions, spherical har-
monics, and integrals. In performing the band calculations with different
methods, approximately similar efforts are involved, since the drawbacks of a
given method are balanced by the advantages of some others, and conversely.
Direct calculations have shown that, in performing similar calculations with the
APW method and with the method of Green’s functions, approximately the
same computer time is necessary.

We would like to point out once again that in each of the methods discussed,
it is possible to introduce empirical parameters that yield a better agreement be-
tween theory and experiment and make possible a more reliable interpretation
of experimental data. In the OPW method, this is accomplished by varying some
of the Fourier components of the potential and by making use of the core-level
energy shifts, whereas in the APW method and in the method of Green’s func-
tions a change in the value of the crystal potential outside the atomic spheres is
considered.

Special interpolation methods exist, to be used in calculations based on ex-
perimental values of the parameters, or on parameters determined by other cal-
culation methods. First, there is the scheme based on the LCAO method [145].
In this case, the complicated overlapping integrals of atomic functions are not
calculated exactly, but are considered to be parameters, determined from the
condition of optimal agreement between the calculated and experimental results.
Very good results for the interpolation of energy bands are achieved for pure
transition metals with the method proposed by Hodges et al. [146] in which,
besides the tight-binding functions describing mainly the d bands, use is also
made of four orthogonal plane waves. The presence of hybridization between
the localized functions and the plane waves allows a very accurate description of
the energy band structure in transition metals. In this case, 15 parameters are
used, these being partly obtainable from experimental data.

A number of other methods have also been developed [147-149], based on
the use of the symmetry properties of the energy bands and on the Fourier series
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expansion of the dispersion functions of electrons in the crystal. By taking into
account the symmetry properties, the number of the necessary parameters may
be diminished. As a convenient semiempirical scheme, the pseudopotential
method may also be used.

One of the fundamental problems is the determination of the crystal poten-
tial. The problem is to construct for a multielectron system a potential that takes
into account the average effects of interactions between the electrons in the sys-
tem. It must be admitted that the potentials used in energy-band calculations
are in a high degree phenomenological. In the one-electron approximation, the
crystal potential is represented by the sum of the Coulomb and exchange terms.
Evaluation of the contribution of the Coulomb term in the total potential is not
difficult, since it is determined by the density of electrons in the crystal. To a
first approximation, the electron density in the crystal may be taken as equal to
the sum of the electron densities of the free atoms. For the exchange term, Slater
[150] has proposed an expression that we have already mentioned in the dis-
cussion of the magnitude of electron binding energies in atoms:

L
3

VS =— [3 ] (85)

8

Prior to 1965, when Kohn and Sham [151] proposed a new formula for the ex-
change potential, calculations were performed by using the Slater potential. The
Kohn-Sham exchange potential may be obtained in an analogous way to the
Slater potential; it is necessary to take the value of the exchange potential for
the gas of free electrons at the Fermi surface, but not average it over the states
inside the Fermi sphere. Subsequently, Slater and Johnson [152] have proposed
the exchange potential X,,.

The charge density of electrons with spins oriented up and down can be ex-
pressed as follows:

Pt = Z+ ¥, p_=Xn¥¥, p=pr+p-,  (86)
i i

where the summation in the formula for p . is performed over the spin-orbitals
of the electrons with spin oriented upward, while in the formula for p_ it is per-
formed for electron spins oriented downward; n; is the occupation number of
the spin-orbital, equal to 0 or 1. Let us consider the total energy of the system:

(Exa>—2n RAOIAACEI 28 gp 0 (2) g1 dV 1AV, +

+_;‘§ [0+ (1) U (1) + p— (D) U~ (D1 AV . (87)
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Here, f; is a one-electron operator, related to the first electron. The first term in
this expression represents the sum of the kinetic and potential energies in the field
of all the nuclei, while the second term represents the Coulomb interaction be-
tween two electron charge distributions, including also the interaction of the
electron on the ith spin-orbital with itself. Of course, any terms that describe
the interaction of electrons with themselves should not enter into the expression
for the total energy of the system. The last term in equation (87) represents the
exchange term, which not only compensates such terms in the expression for the
total energy, but also takes into account the characteristic exchange effects.
Thus, it would be more appropriate to call this last term an exchange-correlation
term. A term for the Coulomb interaction between all of the pairs of nuclei
should be added to equation (87) but, since this term is a constant, it can be put
aside and added to the energy only at the end of the calculations. By doing so,
the exchange potential U X+(1) representing a generalization of the potential
(85) is given by the expressmn

1

U (0 = — 2| {5 o+ - (38)

An analogous formula may also be written for U x; (1). By varying expression
(87) with respect to the spin-orbital ¥,, the followmg equation is obtained:

[—V2+ VCoul(l) + an+] \Pl'i- (1) = S;Xa.,_qf‘-f' (N, (89)

where Vcou(1) represents the Coulomb potential acting upon the electron. It
is determined by the total density of electronic and nuclear charge, while the
exchange potential in the X, method is given by

1

Vi () = - Ungo (1) = —at[6(--p1) " |-

The eigenvalue €;x , may be obtained by multiplying equation (89) on the
left side by ¥;, (1) and by subsequent integration over the electron coordinates,
taking into account the condition of orthonormality of the functions ¥;. On
the basis of equations (86)-(88), it can be demonstrated that

0(EX,)
Slxa = Tla— 5 (90)
by differentiating expression (87) with respect to the occupation numbers for
the spin-orbitals characterized by upward spin orientation. Equation (89) is
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solved self-consistently. It should be mentioned that the eigenvalues given by
equation (90) do not coincide with the eigenvalues obtained by the Hartree-
Fock method, which represent the difference between the total energies of the
free atom and those of the ion in which the ith electron has been removed; that
is:

eirr = (EHF ) =1 — (EHF )p —o. 1)

The difference between the energy calculated by formula (90) and the
Hartree-Fock value (91) becomes evident if the total energy (E is considered,
by making use of the fact that it depends on »; in both the X, method and the
Hartree-Fock method. With a precision up to the terms of second order in n;,
one obtains

O0(E 1 0%(E
(E)‘—‘(E)o-%——(;;l% (n; — o) + - a<ng> (n,—nw)P+ ...
0 £ 92)
When n; = 0 and n;, = 1, the following equality is valid:
0B I 8 (E)
<E>ni=l "’(E)ni:o—- 0/1,' ‘ —Q— _6?

Therefore, the eigenvalue obtained by the Hartree-Fock method is equal to the
eigenvalue obtained by the X, method minus the second derivative:

1 0KEY
2 an

0

It can be demonstrated that the second derivative of the energy with respect
to the occupation number is positive, and therefore the energy eigenvalue in the
Hartree-Fock method is greater in absolute value than the energy eigenvalue in
the X, method.

The value of a may be chosen so as to yield as good a description of the indi-
vidual atoms as possible [153]. For this, it is necessary that the energy (E'x )
coincide exactly with the Hartree-Fock energy of the same atom (if the atom
has completely occupied shells), or with the energy averaged over all the multi-
plet levels determined for the core-state configuration. Lindgren [154] has pro-
posed a method for the determination of the magnitude of a in which the spin-
orbitals, calculated with the X, method using equation (89), are introduced into
the Hartree-Fock expression of the total energy, after which its minimum is
found as a function of a. In general, a single value of a is not completely satis-
factory for all the spin-orbitals, and it is preferable to use various values of a for
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the various spin-orbitals. For molecules or crystals, a is determined inside each
atomic sphere in a similar way as for the corresponding atoms, while in the inter-

atomic region, a value averaged over different atoms is used.
An exchange potential, V%, has been proposed by Herman et al. [155]:

Vep =[5+ 86 ()] Var

where B & %,

o0 e[+~ 2]

Another expression for the exchange potential has been proposed by Liberman
[156]:

Vi (o) [ EEETEL)

ex = 8 (3n%p () Ys

This potential is characterized by the fact that different electron states have dif-
ferent exchange potentials, since in this expression E), is included within the
square root.
Orthenburger and Herman [157] have proposed the following exchange
potential:
1

Vaapn (0) = —6 [ £ [+ BG (9) + 101 (0) + 1.6 (0) +
+ 1303 (0)],

where G(p), G,(p), G,(p), G3(p) are corrections for the nonhomogeneity of
the exchange term, namely, G(p) is the correction of the second order, while
the others are corrections of the fourth order. The terms of fourth order exhibit
a convergence behavior as a function of 7. The use of this exchange potential,
however, is perhaps not necessary since the X, approximation may offer a suf-
ficiently great accuracy in the description of the electron structure of atoms in
crystals.

The problem of the inclusion of correlation effects in the one-electron
approximation will not be discussed here, since it has not yet reached a suffi-
ciently advanced stage.

In conclusion, the Hamiltonian used at present for determination of electron
energy spectra has the shape

H=—-V? + Vo + Vex- (93)



PHYSICAL PRINCIPLES 105

As V., one may use the exchange potential proposed by Slater, Kohn and
Sham, Liberman, or the exchange potential X, .

Symmetry Properties of the Energy Bands in Crystals

The fundamental problem of the theory of energy bands in crystals is to
solve the Schrodinger equation with the Hamiltonian (93). Nevertheless, impor-
tant conclusions about the properties of the solutions, i.e., the electron wave
functions ¥ (k, r) and energies E,(k), may be drawn from a study of the sym-
metry properties. Thus the possible multiplicity of the energy eigenvalues can
be determined, and it may be established that certain matrix elements of various
types, in particular those related to electromagnetic radiation, are equal to zero.
Study of the symmetry properties of the Hamiltonian (93) allows classification
of the eigenvalues £, (k) and prediction of the possible behavior of £,,(k) when
k varies in the Brillouin zone. One can therefore realize how important it is to
study the symmetry properties of the Schrodinger equation.

The Hamiltonian H remains invariant under the action of all the symmetry
operations of the crystal space group. The space group consists of translations,
rotations, and reflections, followed by translations either by the lattice vector,
or by another vector different from the lattice vector. The elements of the space
group may be written as {R;|R,, +;}, where R; represents a rotation or a re-
flection, R,, represents the lattice translation vector, and 7; represents a vector
that is not a translation vector (in particular, the vector 7; may be equal to zero).
The rotational parts of the elements of the space symmetry group {R;|0} form a
group that is called the point-symmetry group. In crystals, there exist 32 point
groups. The elements of the space group {R;|R, + 7;} transform the vector r
into the vector r' = R it +7;+ R, where R is the matrix corresponding to the
transformation R;. Let us now see how the function ¥ (r) is transformed by the
operation {R;IR, +7.}:

(RIR, +7) ¥ (M) =¥ (Rr+ 1, +R,).

The groups for which the vector 7; is equal to zero, for all of the operations R;
of the point group, are called symmorphic groups. The requirement that the
elements {R;|R,, + 7;} form a group imposes stringent limitations on the vectors
R,, and 7;. There exist only 230 space groups out of which 73 are symmorphic.
The most usual crystals have face-centered, body-centered, or hexagonal
lattices. For example, such semiconductors as silicon and germanium have a
diamond-type crystal structure. Their crystal lattice may be represented as two
face-centered cubic lattices, displaced with respect to each other by the vector
(2/4)(1, 1, 1), where a is the lattice constant. The crystals GaAs, GaP, and GaSb
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are characterized by a zinc-blende-type structure. This also consists of two face-
centered lattices, displaced with respect to each other by the vector (a/4)(1, 1, 1).
The crystals NaF, NaBr, and Nal have an NaCl-type structure, which consists of
two face-centered lattices, displaced with respect to each other by the vector
(a/2)(1, 1, 1). The compounds CsBr and Csl are characterized by a structure of
CsCl type, formed by two simple cubic lattices displaced with respect to each
other by the vector (a/2)(1, 1, 1). In these cases, one of the sublattices contains
the atoms of one type, while the other contains the atoms of the other type. In
the hexagonal crystals of wurtzite type, such as AIN, GaN, and ZnO, the ele-
mentary cell contains 4 atoms. Metals such as copper, palladium, silver, gold,
platinum, and lead have a face-centered crystal lattice, while lithium, sodium,
potassium, titanium, and vanadium have a body-centered crystal lattice. Several
compounds and pure elements can exist in more than one type of crystal lattice.
Thus, BN may crystallize in the cubic or in the hexagonal system, while iron can
have a body-centered or face-centered lattice.

Let us label the unitary element of the point group R;. By using the Bloch
condition, it can be demonstrated that, for the elements of the group {R,IR,},
the function {R,IR,} ¥ (k, r) is transformed under the irreducible representa-
tion of the translation group. For an arbitrary element of the group, the follow-
ing relation is valid:

{Rilw+ R} ¥, (k, r) =expik - (v, + R,)expi (R7'k) - r X
X Unc (Rir + %) = expi (R7K) - r1U" _, (r)

which confirms that {R;|7; + R,} ¥ (k, r) is a Bloch function with a wave vector
R; 'k and an energy E,,(R; k). Since the Hamiltonian H is invariant under the
operation {R;|7; + R, } of the space group, it follows that E,(R; k) = E,, (k).
Each energy band has a complete point-symmetry group.

Among the elements {R;|r; + R, } of the space group, there exist some that
lead again to Bloch functions with the same wave vector k: R; 'k =k, or with
the equivalent wave vector ﬁfl k =k + K;. These elements form a subgroup of
the space group, and this is called the group of the wave vector k. Such a sub-
group determines the degeneration multiplicity and the symmetry of the energy
band states belonging to the given point k of the Brillouin zone. Let us consider
the wave vector groups for Ga$ and germanium crystals. The Brillouin zone
for these crystals is shown in Figure 44. The wave vector group at the point
k = (0, 0, 0) for the GaAs crystal is the whole symmorphic space group T3. Let
E,(0) be a p-times degenerated energy level with wave vector k = (0, 0, 0), and
W0, (r) the basis functions of the m-dimensional irreducible representation of
the wave vector group at the point I'. Then
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Figure 44. Brillouin zone for the bcc
lattice.

(R 1R,.) oty (1) = 3] M, (5).
s=1

On the other hand,

{Ry IR} Whoj (r) = Wnos (Rir) = R Wao; (r).

For the elements {R)IR,,,}, with / fixed and m variable, the following is obtained:

MlszlS:__ .. ’—“‘Ml.

Therefore, all the elements of the space group having the same element {R,|0} of
the point group are represented by the matrix M &

p
RY 1o (r) = > Mi]'qfllos (r), =12, ..., 24.
s=1

The Bloch functions form the basis of the p-dimensional irreducible representa-
tion of the point group T;. The elements of the point group are represented by
the matrix M’. Therefore, in order to find the irreducible representations of the
group of the wave vector k, it is only necessary to find the irreducible represen-
tations of the group T, since each irreducible representation of Ty corresponds
to an irreducible representation of the group of the wave vector k = 0. The group
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T, has five irreducible representations: Ty (1), ', (1), T'12(2), I'; (3), and T',5(3),
whose dimensions are indicated in parentheses.

Let us consider the direction A. Let E,(A) be the p-times degenerated energy
level with the wave vector oriented in the direction A and the wave functions
V,ki(®) (j=1,2,...,p). In this case, for all of the elements {R;|R,, } in the
group of the wave vector k, the following equality is valid:

p
{R;[R,,} Waij () = exp (ik - R,) R Wi (r) = 3 MW s (1),
s=1
Therefore,

RY, (k, r) Zexp — ik-R,) MW . (k, ).

For the elements with different translation vectors, the following is obtained:
exp(—ik - R)M™ =exp(— ik - R)YM* = ... =M,

and consequently,

Rl nkj (l‘) == Z M nks )

Therefore, the Bloch functions ¥, ;,(r) s =1, 2, . . ., p) form a selection of basis
functions for the p-dimensional irreducible representation of the point group of
the direction A.Consequently, in order to construct the irreducible representations
of the group of the wave vector A, the irreducible representations of the point
group should be used. The matrices of irreducible representations of the wave
vector group may be obtained from the irreducible representations of the point

group:
M"® =M expik - R,

In the case of the GaAs crystal, the point group of the vectors k distributed
along the direction A has four irreducible representations, A, A,, A3, A4 of di-
mension 1. Let us consider the wave vector group for the point X = (2n/a)(1, 0,
0). The matrices representing the element {R;|R,,,} correspond to the irreducible
representation of the wave vector group in the given point, and may be written
asexp (tkxyRm) M ! where M" are the matrices of the irreducible representations
of the point group in the point X. This point group has five irreducible represen-
tations X, X,, X5, X,, Xs. Since the dimension of representation X is 2, the
states with symmetry X will be twice degenerated.
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The space group of the diamond crystal is nonsymmorphic, which makes the
construction of its irreducible representations more difficult. In general, however,
even in this case, the method of construction of the irreducible representations
of the space group is analogous to that discussed above. At the point k = 0, the
classification of electronic states is performed by using 10 irreducible representa-
tions of the group 05: Ty (1), I'(1), T, (1), T5(1), T'12(2), T12(2), T'15(3),
Ii5(3), T,5(3), and I'y5(3). For diamond, the group of the wave vector k along
the direction A is characterized by five irreducible representations: A, A}, A,,
A}, and A, the last one two dimensional. The group of the wave vector at the
point X has four irreducible representations, all two dimensional.

As we have already mentioned, from the orders of the irreducible representa-
tions the degree of degeneracy of the energy levels can be determined. However,
in some cases, additional degeneration may occur. Besides the conditions of
space symmetry, the time-reversal symmetry of the Schrodinger equation repre-
sents an additional condition, which may cause the degeneracy of energy bands
along certain directions in the Brillouin zone. The equation which is the complex
conjugate of (14) is

HY o (r) = E,, (k) Yo (1).

Therefore, the wave function ¥}, (r) also represents an eigenfunction of the
Hamiltonian H and corresponds to the same eigenvalue E, (k). However, since
Wy (r) is a Bloch function corresponding to the wave vector k, it follows that

Yok (r) = exp (— ik - r) Upk (r)
and therefore,
E, (k) = E, (—k).
In this case, the wave function
Wik (r, — 1) = exp (—iE, (k) t) Yo (r)

satisfies the same time-dependent Schrodinger equation as the function W,y (x, ),
namely

ov . (r, !
HY o (r, £) = i —'lat(-——)—
For example, in the case of the compound GaAs, the states that transform under
the irreducible representations Az and A 4 have the same energy E (k).
The change of symmetry that occurs on passing from a point k to a neighbor-
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ing point ko may have a stepwise character. Therefore, some of the symmetry
elements of the first point may be absent for the second point. Let us consider
a transition from a point with a large number of symmetry elements to a point
with a lower number of symmetry elements. The representations that were irre-
ducible at the first point may be reducible at the second point. By studying the
properties of the totality of irreducible representations, it is possible to deter-
mine the possible types of states between which a given irreducible representa-
tion (for a given energy) is divided, at points contiguous to ke. Let us consider,
for example, that the representation at the point kg is three dimensional. The
compatibility relations made it possible to establish that at a point neighboring
ko this representation is divided into three one-dimensional representations.
Unfortunately, however, these relations do not provide an answer to the ques-
tion: which of the states has the highest or the lowest energy value? One repre-
sentation may be compatible with representations of different types, and which
of these will in fact occur can only be determined by calculation. Nevertheless,
the compatibility relationships and the time-reversal symmetry properties pro-
vide a means of reducing considerably the number of possible band structures
for the given crystal. Figure 45 shows several of the possible and impossible
types of band structure for crystals of the diamond type and of the zinc-blende
type.

In conclusion, the energies and electron wave functions of crystals may be
classified by using the irreducible representations of the space group. In an
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arbitrary point k of the Brillouin zone, only translation symmetry exists, and
therefore the wave functions should satisfy the Bloch condition. The series ex-
pansion of the valence electron wave functions in an arbitrary point k contains
harmonics of s, p,d, f, . . . type. At points of high symmetry in the Brillouin
zone, some of the harmonics do not appear in the series expansion of the wave
function. Thus, at the point k = 0, the principal types of symmetry for cubic
crystals will be: s for the T state, d for T';,, p for I'; 5, f for Iy 5, g for T'y 5 and
d for I'ys. At the point X, the representation X; will have s- and d-type sym-
metry, and the representation X5 will have p-type symmetry.

Electron States in Disordered Alloys

The essential difference between the theoretical treatment of disordered and
of ordered systems is that, for disordered systems, the Bloch theorem is not
valid. However, in disordered binary alloys, the atoms of the two components
are situated at the lattice points of a periodic lattice. A more complicated situa-
tion is encountered for amorphous semiconductors, in which there exists short-
range but not long-range atomic ordering. One of the most advanced methods
for the calculation of the electron properties of disordered binary alloys is the
method of coherent potential, proposed by Soven [158, 159] . The principle of
this method is rather simple. Let us consider a point R,, of the crystal lattice, at
which the probability of finding an atom of type A4 is ¢ (c is identical to the con-
centration of the 4 component in the alloy), and the probability of finding an
atom of type B is (1 — ¢). Therefore, in the vicinity of the point R,,, the alloy
potential will be described either by the function U, or by the function Up.

Let us introduce the potential ¥, corresponding to some periodical struc-
ture. If G, is the Green’s function describing the electron behavior in the lattice
with potential ¥, and G, the Green’s function of a free electron, then

Go=Go-Go(£V3)

In this model, the alloy is characterized either by the potential ¥, — V,, or by
the potential Vg — V. The ¢ matrix of the various centers in the alloy may be
determined by the relation

ti = (Vt - Vo) + (Vz - Vo) Goti- %4)

The Green’s function of electrons in the alloy may be written as follows:

G= G_o + 2 Gotaao + Z 2 aotaéotﬁao + o
(3 o Bsta
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By assuming that the average of {¢;) over all the configurations is zero,

(4,)=0=cta+ (1 —c¢)!p,

and using equation (94), the following expression for ¥, is obtained:

VeVy=Va—Vy)G,(Vs—Vy),

where V=cV, +(1 —c)Vp.
The use of the above approximation in the determination of ¥, is called the
method of coherent potential. This approximation implies that

(G)=G, + RIDNDNPY (GotaGotgGutyGotsGo) + -+

a B y+P 6+y

Frequently in practice only the first term of the expansion is retained, i.e.,
(G)=~ G,. The reliability of this approximation has been confirmed in practice
in a number of electron band-structure calculations for alloys.

Comparison between Electron Spectroscopy
and Some Other Methods of Investigation
of the Electron Structure of Crystals

Prior to the development of the method of X-ray photoelectron spectros-
copy, the valence band structure in crystals was studied mainly by X-ray emis-
sion spectroscopy, by photoelectron spectroscopy in the far-ultraviolet range,
and by optical-reflection and absorption spectroscopy.

The intensity of emitted X-ray radiation is given by the formula [5] :

?7(v)—v2§ llé/’bﬁ:{zi ds, 95)

where the integration is performed over the isoenergetic surface E = E,, (k) — E¢;
M, (k) is the matrix element of the probability of transition from the valence
band to the core levels, i.e.,

M, (k) = (Ipnk l \% Ilpck>- (96)

This matrix element is determined by the wave functions ¥, (r) of the valence
electrons, and ¥, (r) of the core electrons. Aleshin and Smirnov [160] and
Topol et al. [161] have demonstrated that the matrix elements of the transition
probability, especially in semiconductors and in insulators, may change appre-
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Figure 46. Probability of transition from the valence band to the Is-core states of (a) boron
and (b) nitrogen in BN.

ciably when k changes in the Brillouin zone, even on the same isoenergetic
surface. Therefore, |M,,(k)I*> cannot be extracted from the integral in equation
(95). This means that the intensity J(v) cannot be considered to be proportional
to the electron density of states, which is given by

ds
p(E) = g TVE®RT® 7

since the proportionality factor varies significantly with energy. Such a matrix
element will be different for the same k but different energy bands.

In the case of binary compounds, |M,,(k)|* may be significantly different for
the transitions corresponding to the core levels of the different components.
Figures 46 and 47 show the quasimomentum dependence of the square modulus
of the matrix elements of transition probability for BN and GaP compounds,
according to the data of Aleshin and Smirnov [160] and Topol et al. [161]. As
a result of the difference in the magnitude of |M,,(k)I* for the various compo-
nents in compounds, the emission bands will be significantly different, even for
transitions on levels of the same type of symmetry. In some compounds, there
exist valence subbands for which the electron wave functions are localized in the
vicinity of the nuclei of one of the components in the compound. This usually
results in great differences between the probabilities of transition from this sub-
band to the core levels for different components.

The wave function of a valence electron in the vicinity of the atomic nucleus
may be represented as a series expansion in spherical harmonics:

¥, (k, 1) =3 Cin (k) R,Y in (8, ¢).
im
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Since the wave function of a core electron in the vicinity of the nucleus of any
one of the components is approximately the same as the atomic function ¢,(r) =
R Y (0, ¢), it follows that the matrix elements (96) will be different from
zero if the dipole selection rules Al = 1, Am = *1 are satisfied. Therefore,
X-ray emission spectroscopy allows the determination of the energy localization
of states with different types of symmetry in the valence band of the crystal.

There exist points k in the Brillouin zone for which |AE (k)| = 0. Conse-
quently, singularities appear in the structure of the density-of-state curves of
valence band electrons; these are the so-called “van Hove singularities” [162] .
Comparison of formulas (95) and (97) indicates that these singularities should
also appear in the curves of the X-ray intensity distribution, in spite of the fact
that formula (95) contains the square modulus of the matrix element of the
transition probability (96).

The X-ray emission spectra of the various components in compounds may
differ significantly from each other because of the differences in the transition
probability matrix elements. Therefore, a general criterion for identifying the
X-ray emission bands of the different components of the crystal on the same
energy scale does not exist. Such identification can be achieved efficiently by
using X-ray photoelectron spectroscopy data. The states situated at the bottom
of the conduction band may also be studied by using X-ray absorption spectros-
copy. Figure 48 illustrates schematically the possibility to use the method of
X-ray spectroscopy in the study of electronic states in crystals. It should be
mentioned that, because of the influence of the transition probability on both
the X-ray emission spectra and the X-ray absorption spectra, the determination
of the width of the forbidden band in insulators by analysis of X-ray spectra of
the different components may lead to different results. In this case, the lowest
of these values should be accepted as the most reliable value of the forbidden
band width.

In optical spectra, the shape of the lines corresponding to interband transi-
tions is given by the following relation [163] :

- dp
gy (0) ~ E,fil" dEI'" ’
i /
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Figure 48. Use of X-ray photoelectron spectroscopy for the study of the electron structure
in compounds of the AB type.

where dp/dE};' represents the interband density of states, i.e.,

dp ds
dE]-]-, _S |Vk(Ej‘—E,")| ’
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and f” is the mean value of the oscillator strength:

N _i kj | PIKj
fll' (k) -3 (k)— El (k)

If the mean value of the oscillator strength f” cannot be calculated, €, (w)
can be obtained from the expression

(S
& (0) ~ ZS le(E,—E)I

€,(w) and dp/dE;; have analytical singularities at those frequencies for which,
at some point k on the isoenergetic surface av = Ej'(k) — E;(k), the following
condition is satisfied:

ViE ;i (k) = VkEj» (k)— VkE;(k) =0

Therefore, the interband density of states is characterized by singularities,
which in this case are the van Hove singularities.

The real and imaginary parts of the dielectric permeability are related to the
optical constants by the following simple relations:

g, =n*—k% e,=2nk,

where n and k are the coefficients of refraction and extinction, respectively. By
using the Kramers-Kronig relationship (a relationship between the amplitude and
the phase) and the Fresnel equations, the optical constants can be calculated.
The Fresnel equation for the reflected radiation is

n—ik—1

i0
w1 =lrle

V=
The measured reflectance is equal to the square of the amplitude:

_ (n— 1)t + k2
R=r =G T rE (98)

and the phase angle is determined by the expression

0 (Q)) = arctan ('—,;2_}_—25?1— ) . (99)
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The phase 8(w) for any frequency may be calculated from reflectance data by
using the Kramers-Kronig relation:

0(0) = 57 | g5 —1n

21 dw

® -+ o,

0 — 0,

do. (100)

By solving the system of equations (98) and (99) together with relation (100),
the dependence of the refraction and extinction coefficients on the energy of
incident photons can be determined.

As far as the photoelectron emission in the far-ultraviolet range is con-
cerned, Smith [164] and Brust [165] have shown that the energy distribution
of electrons emitted without energy loss from the sample is given by the
formula

IE;, ho) ~ 3 f d% | Pyr; (k) [ 8 (Ej» (k) — E; (k) —Ho) X
X 8(E,— (k)T (E,, K),

where T(Ej', k) represents the exit function that determines the probability that
an electron excited into the state (k) will reach the sample surface and es-
cape out of it. At sufficiently high energies, #ico, the magnitude of I(E;, hw) is
approximately proportional to that part of €,(w) corresponding to transitions
from the states E;, i.e., [(E;, iw)dE; ~ €,(w).

In conclusion, it can be stated that optical methods offer the possibility to
study the structure of valence and conduction bands. In the majority of cases,
however, it is just the structure of the conduction band at excitation photon
energies of the order of 10-15 eV that hinders the determination of the char-
acteristics of the crystal valence bands with the method of photoelectron
spectroscopy.

Park et al. [166] have proposed a new method for the determination of the
binding energies of electrons in crystals, namely, the so-called appearance poten-
tial spectroscopy (APS). The principle of this method is to apply a linearly and
slowly increasing accelerating potential between a cathode and an anode, the
latter being the sample itself. The increasing accelerating potential results in an
increasing number of photons in the bremsstrahlung spectrum. When the edge
potential corresponding to the excitation of a characteristic spectrum is reached
the detector will record an additional number of photons. To improve the sensi-
tivity of the method, the voltage derivative of the radiation intensity dI/dV is
recorded rather than the intensity itself. Knowing the values of edge potentials,
it is possible to determine the binding energies of core electrons belonging to
atoms inside a surface layer of 5-10 A thickness.



118 CHAPTER 2

Information on the chemical shifts of core levels obtained with photoelec-
tron spectroscopy can in some cases be complemented with data obtained from
Maossbauer spectroscopy, in which the distribution of y quanta emitted under
nuclear transitions from excited to ground states is studied. It can be considered
that, during the nuclear transition, the electron distribution remains unchanged.
The total energy of the system includes the total electron and nuclear energy,
and also the energy of Coulomb interaction between the electronic and nuclear
charge distributions. It is determined by the magnitude of the overlap of nuclear
and electronic charge distributions at the nucleus sites. The size of the nucleus
in the excited state is different from its size in the ground state, and this affects
the energy of emitted 4 quanta. Of course, the variation of nuclear dimensions
in the excited states does not depend on the chemical environment of the
nucleus. However, the density of electronic charge at the nucleus site is sensi-
tive to the chemical environment.

In spite of the fact that the main contribution to the density of electronic
charge at the nucleus arises from core electrons, while variations related to the
chemical environment only contribute approximately 103 of the total charge
density at the nucleus, Mdssbauer spectroscopy is characterized by a very high
sensitivity, making possible the detection of extremely low changes in the chemi-
cal environment.

The isomer shift between two compounds 4 and B (B being the absorbant)
is given by the formula

8a=C{|¥, ()4 —| ¥, (0)5 2} 22 (101)

5

where |W,(0)|? is the charge density of s electrons at the nucleus, and A(r?)/¢?)
is the relative change of the square of nuclear radius during the excitation. Equa-
tion (101) contains only the density of s electrons because electrons having non-
zero orbital momenta will have singularities in their charge density distribution
at the nucleus site. The magnitude of A(r?) depends on the isotope type and on
the type of v transition, and can be positive or negative. One way to determine
the magnitude of A(r?)/(r?) is to calculate the charge density at the nucleus site
for a particular group of molecules. It is then possible to determine C and the
ratio A(r?)/(r?) using equation (101). Since the main contribution to the charge
density at the nucleus arises from the core electrons, it follows that these calcu-
lations should take into account relativistic effects, as well as effects related to
the correlation between the core electrons. In order to reduce energy losses aris-
ing from recoil effects, in Mossbauer spectroscopy the sample atoms or mole-
cules are included in a solid state matrix. Consequently, the calculations should
also include solid state effects. Because of their interdependence, each of these
factors gives rise to tedious theoretical calculations. This explains the fact that
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for the majority of Mossbauer transitions the magnitude of A(r?)/(r?) is as yet
not sufficiently well known. The accuracy in the determination of its value is at
best £20%, and in the common cases as poor as +100%. Consequently, the in-
formation on electron structure obtained by the study of isomer shifts is as yet
of qualitative rather than quantitative character.

In a qualitative description of the electron structure, the most important
information is the sign of A(r®). If A(r?) is positive, the electron density at the
nucleus site increases, while if it is negative, the electron density decreases. How-
ever, a change of sign of A{r?) is not always connected to a change in the density
of s electrons at the nucleus of the given atoms. In fact, both an increase in the
number of s electrons in atom A and a decrease in the number of its p, d,
fvalence electrons have the same effect, namely, to produce an increase in
[P, (0) |2. This is because the p, d, f valence electrons screen the s-core electrons
from the nucleus, so that their removal causes a contraction of the s orbitals.
Theoretical calculations performed for free atoms have shown that this effect is
less important than the direct increase of the density of s electrons. Nevertheless,
both effects should normally be taken into account. This is the reason the com-
plementary use of photoelectron spectroscopy and Mossbauer spectroscopy
would be useful in the study of the nature of chemical bonds in molecules.

The correlation between chemical and isomer shifts has been established by
Barber et al. [167] and Adams et al. [168] . Figure 49 shows the relationship
between chemical and isomer shifts for inorganic complexes of bivalent iron
$7Fe, for a transition energy of 14.4 keV [168]. In general, a correlation be-
tween the chemical and isomer shifts is not to be expected. However, it is possi-
ble to predict certain series of compounds, having a given type of hybridization,
for which a linear relation between AE and 8 ; would be valid. Possible devia-
tions from such a linear dependence are of particular interest.

%’AE, eV
T

709

708

Figure 49. Chemical and isomer shifts
for 37Fe in the inorganic complexes of
bivalent iron, according to the data from
[168]. -0.2 0 0.2 04 OEp, nm sec™!
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The advanced and rapid development of computational techniques will soon
allow accurate determinations of the factor A(r2)/(r?), and interesting quantita-
tive information will become possible.

In nuclear magnetic resonance experiments, the electron cloud in molecules
in the initial state is already excited by the action of the strong magnetic field.
As a reaction of the electron system to the field B, a screening field B' = —G 4B
is generated at the nucleus. The chemical shifts appearing in nuclear magnetic
resonance arise from the different screening constants of the atomic nuclei situ-
ated in different chemical environments. The magnitude of 4 is determined as
the mean value:

— 1
04 = 3 (Oxx + Oy + Uzz),

where 0y, 0, 0, depend on molecular properties, namely, the molecular
dimensions, the local electron density, and the stability of the electron distri-
bution of the ground state with respect to the perturbations due to the magnetic
fields. The change of 54 for an element A in various environments is called the
“NMR chemical shift.”” A more efficient magnetic screening corresponds to a
positive value of the chemical shift. The screening constant 6,4 may be repre-
sented as the sum

- d o
0a = 04 |- Og,

where aﬂ and o are the diamagnetic and paramagnetic screening constants,
respectively. The diagmagnetic screening describes the screening related to the
spherically symmetric part of the charge distribution. The paramagnetic term
appears as a result of the fact that in molecules the charge distribution is not
spherically symmetric. Therefore, the paramagnetic contribution to the screening
compensates the diamagnetic screening. For ¢, one may write the following

expression:
d e? A
°A=—3,n72—<‘y0'2 ‘I’0>.
i

Here, ¥, represents the electron wave function corresponding to the ground
state of the molecule, and the summation is performed over all the electrons in
the system. Gelius et al. [67] have demonstrated that the magnitude of the
chemical shift Ag§ is given by the expression

1
Tai

AE, , e A Zg
3mc? i 3mc? Z RAB :
B=£A

d



PHYSICAL PRINCIPLES 121

Therefore, if the chemical shifts AE 4 and the relevant structural data are known,
it is possible to determine the diamagnetic screening constant.
For the paramagnetic screening constant the following formula is obtained:

4 (o]
dh=—gub 3 (Yol BLIY, Y
Ul D LR 1Y (B — B

where W, represents the wave function of the nth excited state of the nonper-
turbed Hamiltonian, and ug = eh/2mc is the Bohr magneton. Calculation of the
magnitude of ¢ is difficult since it requires knowledge of the wave functions of
the whole system in the excited state. Unfortunately, it is just ¢4 that is the
dominant term in the NMR chemical shift.

The total shift Ao 4 is in many cases two orders of magnitude greater than
Ao9 , and for this reason a correlation between the chemical shifts observed in
X-ray photoelectron spectroscopy and those observed by NMR is hardly to be
expected. Figure 50 shows the shift of the boron 1s line, as determined with
X-ray photoelectron spectroscopy, and the NMR shift of boron nuclei (*! B), in a
series of 28 specimens containing boron atoms in various chemical environments
[67] . The dotted line indicates the correlation that would be expected if the
term related to AE 4 were dominant in the NMR shift. Large deviations from
such a correlation are caused by variations in the paramagnetic screening con-
stant. Therefore, though in general a linear correlation between the shifts corre-
sponding to the compounds in Figure 50 can hardly be expected, such a cor-
relation is not out of the question in certain cases [169, 170} . Figure 51 shows
the chemical shifts determined by X-ray photoelectron spectroscopy and by
nuclear magnetic resonance for some compounds of the CH,, X, _,, type, where X
may be fluorine, chlorine, bromine, or iodine, and # takes values from 1 to 4.
This figure demonstrates that molecules can exist for which a nearly linear cor-
relation is observed between the two shifts. It is to be noted that for the bromine
compounds in Figure 51 there is a marked deviation from linearity.
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Figure 51. Chemical shift of the
carbon 1s level and the NMR shift on
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Lindberg [171] has discussed the correlation between the shifts determined
by X-ray photoelectron spectroscopy and by nuclear magnetic resonance for a
large series of compounds. A practically linear correlation has been found for
methyl compounds of the CH;3X type (CH;l, CH3Br, CH;Cl, CH;F) between
the chemical shift of the carbon 1s line and the NMR shift of the hydrogen
nuclei, as well as for some phenyl compounds. In order to demonstrate this cor-
relation, compounds should be chosen for which the NMR shift can occur as a

result of the change of the effective charge and not as a result of magnetic an-
isotropy effects.



3
Metals and Alloys

The structure of the valence bands of many metals is characterized by a great
complexity and contains features that can be observed experimentally only by
using spectroscopic instruments with a resolving power of the order of some
tenths of an electron volt. At present, however, since most electron spectrom-
eters have a resolution of about 0.6-0.9 €V, it is not yet possible to determine
the detailed structure of the valence bands of most transition metals from their
electron spectra. Thus the resolution of available instruments is completely in-
adequate for a determination of the accurate valence band structure of transition
metals in which the density of the d states is high and their bandwidth is not
large. As the atomic number increases, however, the valence band broadens. For
gold, for example, it is possible to determine experimentally the whole fine
structure previously predicted by relativistic band calculations.

For alloys, the calculations are much more difficult and, therefore, in the
study of the electronic nature of processes that accompany the formation of
alloys, experiment will continue to play the predominant role.

Electron spectroscopy has already revealed a series of important character-
istics of the structure of valence bands in alloys and has allowed the quantitative
determination of the essential parameters in the development of the electronic
theory of disordered alloys. Thus, the study of X-ray photoelectron spectra of
alloys of transition and noble metals has revealed the existence of strongly
localized d states. These experimental results have been explained by inter-
preting the electron structure of disordered alloys within the framework of the
coherent potential method.

Density of States of Valence Electrons as Given by the X-Ray
Photoelectron Spectra of Light Metals

The light metals have not been studied by X-ray photoelectron spectroscopy
as extensively as the transition and noble metals. This is because their sample
surface undergoes a rapid oxidation, and, consequently, it is necessary to per-
form the measurements in ultrahigh vacuum of the order of 107'° torr. At

123
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present, experimental data exist for the X-ray photoelectron spectra of the
valence bands of only two light metals, sodium and aluminum. Since their
valence electrons may be treated in terms of the nearly free electron approxi-
mation, it is sufficient to use only a small number of orthogonal plane waves
for the description of the band structure of these metals.

The X-ray photoelectron spectra of sodium have been studied by Kowalczyck
et al. [172] and by Citrin [173]. In the work of Kowalczyck et al. [172], the
sodium sample was prepared by evaporation on an aluminum substrate. The
electron spectra were recorded at a pressure of 8 X 107! torr. The intensity
of oxygen and carbon lines was insignificant, and, therefore, it can be con-
sidered that the presence of such minute amounts of oxygen and carbon on the
sample surface does not result in a modification of the shape of the valence elec-
tron spectra. In the work of Citrin [173], the sample was prepared in a similar
way, but since the pressure of residual gases in the spectrometer was somewhat
higher (of the order of 107 torr), a number of evaporations of sodium onto the
substrate were performed before its valence and core-electron spectra were re-
corded. Since the photoionization cross section of the valence electrons in
sodium is low, the valence band spectra were recorded continuously for eight
hours. An HP-5950A electron spectrometer was used. The long duration of the
spectra recording might explain the relatively high fluctuations in the valence
band photoelectron spectra of the sodium sample illustrated in Figure 52. A
parabola may be drawn through the experimental points, which is consistent
with the free-electron representation of the valence electrons of sodium. The
width of the valence band of sodium determined from these data is equal to
32 +0.1 eV. However, if the linear background of secondary electrons is sub-
tracted from the data in Figure 52, and a new parabola is drawn through the
resulting points, a lower value for the width of the valence band is obtained,
namely, 2.8 £ 0.1 eV. Since these approximations give the upper and the lower
values, respectively, one may take the mean value 3.0 0.2 eV as the more
plausible value of the valence bandwidth. Studies of ultrasoft X-ray spectroscopy

/1, arb. units

L L | | Figure 52. Photoelectron spectraof sodium valence
4 3 2 1 0 E eV electrons.
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by Crisp and Williams [174] have yielded a value of 2.6 eV for the valence
electron bandwidth.

Calculation of the bandwidth within the framework of the free-electron
model, or by using the pseudopotential method [175] or the method of Green’s
functions [176], gives values of 3.2 eV, 3.1 eV, and 3.3 eV, respectively. It
should be noted that the shape of the X-ray photoelectron spectra in the region
of the Fermi energy is determined by the experimental resolution function of
the instrument, which amounts to 0.5-0.6 eV. Temperature broadening is
insignificant (of the order of some hundredths of an electron volt).

As is shown by Figure 53, in the X-ray photoelectron spectra of 1s, 25, and
2p core electron levels there also exists a background of secondary electrons.
This appears as a result of inelastic scattering processes involving photoelectrons
on their way out of the sample. In these spectra, peaks are also observed, that
correspond to the electrons that have lost part of their energy in the excitation
of plasmon oscillations in the bulk of the sample (bulk plasmons) or on its sur-
face (surface plasmons). In the spectrum of 1s electrons, besides the four bulk
plasmons (v), peaks corresponding to the excitation of surface plasmons (s) and
of combined surface and bulk plasmons (v + s) are also observed. The energy of
the first bulk plasmon was found to be #iw, = 5.83 + 0.6 €V, which is consistent
with the results obtained by other authors: 5.85 0.1 eV [177],5.71 £0.1
eV [178]. The existence of surface plasmons has been predicted theoretically
by Ritchie [179] and by Stern and Ferrel [180]. The experimental data on the
energy of surface plasmons agree well with those predicted theoretically.

In the compound NaOH the 3s electrons of sodium take part in the forma-
tion of the chemical bond and cannot be considered as being free. This is the
reason why in the X-ray photoelectron spectra of this compound, plasmons are
not observed (Figure 54). The experimental values of the binding energies of
sodium core electrons in the pure metal and in NaOH compound are given in
Table 7. The accuracy in the determination of the binding energies is depen-
dent on the uncertainty in the determination of peak positions by the method
of least squares (which is of the order of 0.02 V), the uncertainty in the deter-
mination of the Fermi level (approximately 0.06 ¢V), and the operating insta-
bility of the spectrometer itself. The instrument instability can be estimated by
measuring the position of the same line over a long period of time. It also
amounts to several hundredths of an electron volt. In spite of the fact that the
binding energy values may be subject to an error of the order of 0.08 eV, the
relative position of the lines can be determined with a greater precision. In the
case of sodium in NaOH, the binding energy values were determined relative to
the Fermi level of the spectrometer. It should be mentioned that the work
function of sodium, as determined by van Oirschot et al. [181], is equal to
236+0.02¢eV.

Baer and Busch [56] have studied the X-ray photoelectron spectra of the
valence band of aluminum. The method of sample preparation and the ex-
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Figure 53. Core-level photoelectron
spectra of sodium: (a) 2p; (b) 2s; (c)
Is.

perimental conditions have been mentioned in Chapter 1. The features of the
density of states of valence electrons of aluminum predicted in the theoretical
calculations of Rooke [182] (Figure 55a) were also found in the experimental
X-ray photoelectron spectra (shown in Figure 55b). These features were also
observed by Dimond [183] in the L, 3 X-ray emission spectra of aluminum
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Figure 54. Core-level photoelectron
spectra of sodium in NaOH: (a) 2p;
(b} 2s.

(Figure 55d). In the K band of aluminum [184], owing to the influence of the
transition probability, only the states connected to the singular points X, and
K, of the Brillouin zone appear (Figure 55c).

The calculations of Smrika [185] successfully reproduce the intensity
distribution of the radiation in X-ray emission bands. Figure 56 shows the X-ray
photoelectron spectrum of aluminum 2p electrons. Besides the main line cor-
responding to 2p electrons, additional lines related to the excitation of volume

TABLE 7. Binding Energy of Na Core Electrons in Metallic Na and in NaOH

State
Sample 1s 2s 2p
Na Metal 1071.76 + 0.03 63.57 £ 0.03 30.52+ 0.04

NaOH 1072.59 £ 0.04 64.21 + 0.04 31.39 + 0.05
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and surface plasmons can be observed. The spectrum also exhibits plasmon
satellites (structure a) arising from the excitation of 2p electrons by the Kas 4
satellite line of magnesium, with the subsequent energy loss #iw,.

Studies of X-ray photoelectron spectra of sodium and aluminum indicate
that in these cases the quasimomentum dependence of the electron excitation
probability is not significant. This is because the isoenergetic surfaces of these
metals in the k space are nearly spherical, and on each isoenergetic surface the
probabilities corresponding to different values of the quasimomentum are about
the same. This explains why the X-ray photoelectron spectra of valence electrons
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in sodium and aluminum are so close to the distributions of the electron density
of states.

Influence of Transition Probability on the Shape of X-Ray
Photoelectron Spectra of Transition and Noble Metals

The electron structure of transition and noble metals is more complicated.
This is because in these metals there exist two markedly different groups of s,
p, and d electrons. The d electrons, unlike the s and p electrons, are localized,
but the degree of their localization is lower than in free atoms. The structure of
energy bands in the transition metals is determined essentially by the hybridiza-
tion of s, p, and d states. The existence of localized states on the broader energy
background of the relatively smooth distribution of s and p states has led to the
concept of d resonance states [5]. The high localization of d electrons in solids
may be understood if one realizes that, in the calculation of d-type radial wave
functions, the term /(I + 1)/r? that enters into the radial Schrodinger equation
describes the centrifugal repulsion of the electron by the nucleus. In a bound
state, for / > 2, the electron experiences both the centrifugal barrier and the
atomic potential. By adding the term I( + 1)/r? to the crystal potential in the
vicinity of the atom and taking into account the particular structure of the
crystal potential, the effective potential with barrier that prevents the electron
from being transferred to the neighboring atom is obtained. There exists, how-
ever, a quantum-mechanical probability of transition from bound states with
1 =2 through the barrier, and therefore the resonance state is extended over a
rather large energy region.

The electron structure of transition metals has been treated theoretically
in a large number of investigations. In many cases, rather good agréement has
been obtained between the calculated and experimental values of the parameters
that describe the electron structure of these metals: the width of the valence
band, the density of states at the Fermi level, and the energy position of van
Hove singularities. When transition metals are studied by the method of electron
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spectroscopy, it is important to find out whether the density of states of the
valence band electrons is reflected in the X-ray photoelectron spectra. In the
first studies in this field [186-190], the electron spectra of transition metals
were measured with a relatively low resolution, of the order of 1.2 eV. Recently,
however, studies of some transition and noble metals have been made with a
better resolution (0.5-0.6 V) [191-193]. In these experiments, unlike the
earlier ones [186-190], some fine structure could be observed in the X-ray
photoelectron spectra. One of the most extensively studied metals is gold.
Shirley [194] measured the valence band electron spectra of three gold samples.
The samples were cut from a monocrystal in such a way that the three specimen
surfaces were oriented parallel to the planes (100), (110), and (111), respec-
tively. The samples were polished, chemically etched, and heated. The photo-
electron spectra were produced by using the monochromatized Ka; , aluminum
line as excitation radiation. The spectra of the three specimens were very similar
to each other, and therefore in Figure 57 only the spectrum corresponding to
the (110) surface is shown. It has been smoothed by use of the formula:

Iy(N) = %(1' (N—1) 4 2I' (N) + I (N + 1)),

where I'(V) represents the intensity in the Nth channel, before smoothing.
From the quantity Ig(N) =Ig(N)— I (see Figure 57), the contribution of the
background of inelastic electron scattering should also be subtracted. This cor-
rection is proportional to the area bounded by the curve of the intensity distri-
bution and the abscissa axis, in an energy interval between the given energy value
and the Fermi level. Therefore,
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Shirley has performed a careful analysis of the valence band photoelectron
spectra of the gold (110) surface by comparing them with the calculated spectra
[195-199] and taking into account the relativistic effects in the density of states
of valence electrons (Figures 58, 59). Figure 58 shows the results of the theoreti-
cal calculations performed by Ramchandani [195] and by Smith and Traum
[196]. The poor agreement with the experimental data may be attributed to the
fact that in these theoretical calculations some inadequate approximations were
made. Ramchandani [195], for example, used only a low number of functions
in the basis, whereas Smith and Traum [196] used an approximate scheme for
the inclusion of relativistic effects, namely, the spin-orbit interaction was
introduced in a band structure obtained by nonrelativistic calculations. In the
work mentioned above [195], Ramchandani also performed calculations of the
density of states by choosing for the parameter « of the exchange potential
(V&) the values a = % anda= % The results obtained using these values of the
parameter o show an even worse agreement with the experiment than those in
Figure 58, which were obtained with & = 1. In the calculations of Connoly and
Johnson [197], based on the method of Green’s functions, an exchange poten-

Figure 58. Photoelectron spectra of
gold valence electrons as compared to
the density-of-states curves: (1, 3)
photoelectron spectra from [194];
(2, 4) density-of-states histograms
calculated in [195] and [196],
respectively.
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Figure 59. Photoelectron spectra of
gold valence electrons as compared to
the density of states curves: (1, 3, 5)
photoelectron spectra from [194];
(2, 4, 6) density of states histograms
calculatedin [197], [198], and [199],
respectively.

tial of the Slater type was used, which led to a value of the valence bandwidth in
good agreement with the experimental value. Kupratakuln [198] used the

APW method witha =1, %, %, but better agreement with the experiment is ob-
tained for the density-of-states curves calculated with o = % . The best agree-
ment with experimental data was obtained by Christensen and Seraphin [199]
using the APW method with ¢ = 1.

The results of theoretical calculations are very sensitive to the choice of the
parameter « in the exchange potential. Sommers and Amar [200], for example,
have shown that for a = %, the predicted value of the valence bandwidth is too
large. On the other hand, as can be seen from Figure 59, the density-of-states
curves calculated by different authors agree rather well with each other. All the
density-of-states curves shown in Figure 59 show the best agreement with ex-
perimental data in the region of the peak situated close to the Fermi level, and
the worst agreement in the region of greater binding energy values. It is in just
this region, however, that the partial density of s states is increasing. Therefore,
if it is assumed that the magnitude of the ionization cross section is lower for
s states than for d states, it becomes clear why the values of the density of states
are higher than the intensity of the energy distribution of photoelectrons. We
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should mention that the scale for the density-of-states curves in Figure 59 was
chosen so that the height of the maximum in the density of states at 3 eV fits
the intensity at this point in the experimental spectrum. This type of analysis
shows that experimental data provided by X-ray photoelectron spectroscopy
may be used as a criterion to assess the validity of theoretical calculations of the
band structure of gold.

So far, we have discussed only calculations in which relativistic effects have
been taken into account. In all the work mentioned above, with the exception
of the work of Smith and Traum [196], the relativistic Dirac equation was
solved. The calculations performed by Smith and Traum [196] without taking
into account the relativistic effects led to a distribution of electron density of
states which exhibits only one maximum situated in the energy region in which
the experimental curve exhibits a minimum. Therefore, the occurrence of two
maxima in the intensity distribution of the X-ray photoelectron spectra orig-
inates entirely from the relativistic effects.

In order to give an idea of the magnitude of the spin-orbit interaction in
gold, it can be noted that the energy distance between the states I's and I}
resulting from the splitting of the state I';5 is equal to 1.3 eV, which is signifi-
cantly lower than the experimental value (2.8 eV) of the distance between the
maxima.

Eastman and Grobman [201] and Freeouf et al. {202] have studied the
valence band photoelectron spectra of gold in the energy region 10.2-90 eV,
by using synchrotron radiation as the excitation source. The samples were
prepared by evaporation of a gold layer of 1000-5000 A thickness onto the
(111) surface of a silicon monocrystal as substrate. During operation, the
vacuum in the spectrometer chamber was about 3 X 10710 torr, while the
evaporation was performed at about 1 X 107!° torr. As is shown in Figure
60, the intensity in the energy distribution of photoelectrons, in the region
10.2-50 eV, depends strongly on the excitation energy, while this dependence
is much weaker at other energy values. Even though at photon energies greater
than 50 eV the overall structure of the photoelectron spectra does not undergo
significant changes, their fine structure exhibits observable variations. These
variations are probably due to the quasi-momentum dependence of the matrix
elements of transitions from the valence band to the free states, as well as to
Bragg-diffraction effects at the exit of electrons from the sample. However, as
can be seen from Figure 61, the photoelectron spectrum of gold obtained at 80
eV energy differs from the X-ray photoelectron spectrum in the energy region
in which both the first and the second peak are situated. It may be presumed
that here the dependence of the transition matrix elements on the excitation
energy is making itself felt.

It should be mentioned that, in the work of Eastman and Grobman [201]
and Freeouf et al. [202], polarized radiation was used, and the geometry of the
experiments was different in the two cases. Figure 61 also shows the Ng ; X-ray
emission spectrum of gold (corresponding to transitions from 5d to 4f states) as
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measured by McAlister ez al. [203]. In their experiment, the resolution (0.5 eV)
was close to the resolution in the X-ray photoelectron spectrum of gold (0.6-0.8
eV). Since the maxima in the valence-band density of states of gold are observed
at about 3.4 eV and 6.2 eV, while the binding energy values of the 417, and
4fs/, electrons are equal to 84.0 eV and 87.7 eV, respectively, it is to be ex-
pected that the maxima in the Ng ; X-ray emission spectrum of gold will be
situated at 77.8, 81.0, 81.5, and 84.7 eV. Figure 61 shows that this prediction is
in fact correct, the energies of the three maxima a, b, d and the bump c agreeing
rather well with the above values of transition energies.

Shirley has shown that the X-ray photoelectron spectrum of the valence elec-
trons of gold provides rather reliable information about the density of electron
states in the valence band. The observed discrepancy may be attributed to the
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Figure 61. Photoelectron and X-ray
emission N¢ 7 spectra of gold valence
electrons as compared to the density-of-
states curves: If -)—photoelectron
spectrum obtained at 80 eV excitation
energy; (—-—-—- ) —photoelectron spec-
trum obtained at 1253.6 eV excitation
energy; (———) —electron density of
states; II-X-ray emission N¢_7 spectrum.

influence of transition probabilities on the shape of photoelectron spectrum.
The problem of the influence of transition probabilities on the X-ray photo-
electron spectra of a few transition and noble metals, namely, copper and
silver, has been investigated in detail by Nemoshkalenko et al. [204, 205].

The energy distribution of electrons emitted from the sample under the
action of incident X rays with frequency w is given by formula (67), which,
in the scheme of reduced bands, may be written as follows:

o, E)= Y |(Yu|W|¥era) (102)

nk.k’,Q

where W, (r) and Wy, g (r) represent the wave functions of electrons in the
valence band and in the conduction band, respectively; W represents the opera-
tor describing the interaction of the emitted electron with the external electro-
magnetic field:

e .
=— ——expiq-rA-p.
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The electromagnetic field is described by a linearly polarized plane wave with
wave vector q and polarization vector A. In formula (102), the summation
is performed over the vectors k and k', which satisfy the conditions

E(k ‘I“Q)"‘En (k/) = h(l), (103)
E=Ek-+Q=|k+Q=P

where E(k + Q) represents the final-state electron energy, and P represents the
momentum of the electron emitted from the sample. In the interpretation of
X-ray photoemission processes, the electron work function y of the specimen
may be neglected.

The wave functions of valence electrons of copper, silver, and palladium have
been found by using the interpolation method of Hodges and Ehrenreich [146].
The wave function of valence electrons is given in this case by the following
expression:

}_C (k) (Pku(r)+§-CK(PkK() (104)

where i, for u =1, 2, 3 represents the Bloch combination of #, 4 orbitals:

B =) ROE =) RO 0= ()" RN E

while for u =4 and u = 5 it represents the Bloch combination of e, orbitals:

15 \'e R (r) 5 \Y: (322 —r2 .

Py = ( 167 ) (x2—y2) PORRE) ¢ = ( 167 ) ( 72 & R(f’),
i(k+K)-r
o 1) = SR

¢k, K; are plane waves characterized by the vectors of the reciprocal lattice:

Thus, in the method of Hodges and Ehrenreich, the basis contains nine func-
tions, and therefore the matrix of the Hamiltonian operator

(105)

PW-PW |, PW-LCAO )
PW-LCAO {LCAO-LCAO

has the dimension (9 X 9).
The most complicated expression has the block (LCAO-LCAO):
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Huu' (k) = <(Pk,u| -V + V (r)l (Pk,u’>-
By taking into acount that

V() =Y ofr —Ry),

one obtains
Hyp = [Ey + A (81 + 8s)] Sy +
+ 3 exp(— ik - Ry) 5 a; (r —Ry) (V —v) ay (1) dV, (106)

V0
where

[ay = V2 +omau(rdv

is equal to E, for the t, 4 orbitals, and to £, + A for the e, orbitals. If only the
interaction of the nearest neighbors is taken into account, the matrix elements
H,,’ may be written as follows:
H,, = E,—4A,cosEcosn 4 44, cos { (cos & + cosn);
H,, = E,— 4A, cosnycos - 44, cos & (cos  + cos )
H, = E,— 4A, cosEcos{ + 44, cos 1 (cos E + cos),
Hy =Ey+ A+ 4A, cosEcosn — 44, cos L (cos§ + cos n);
Hy=Ey+ A —-%'(A4+ 4A,) cosEcosn +
+ —g— (24, — A;) cos L (cos & -+ cos n);
H,, = H, = —44;sinEsing;
H,; = Hy; = — 4A,sinnsing;
Hyy = Hyy = — 4A;sinEsiny;
Hy=H,; =0
H, = H;, = — 4A;sinnsin§;
H, = H;3 = 4AsinEsing;
Hy = Hy = —(8/)/3) AysinEsinn;
Hyy = Hyy = (4/1/3) AgsinmsinG;
Hy=Hyp= (4/‘/3) Agsingsing;
Hys = Hy= (4/V'3) (A4 + A;) cos{ (cos n — cos ),

where £ = nk,,n=nk,,and { = 7k,.
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The block of matrices (105), corresponding to the matrix element (PW-PW),
has the following form:

B+alkf V(4 F, V(@3 F; V@3)F,
VA F, Pp+oalk+K, V(3) FyF, V (3) FyF,
V(3)F, VER)FoFs  pt+oalk+ K2 V(4)FsF,
V(3)F, V(3) FyF, V (4) Fyf, B+alk+K,f

(107)
Thus, the matrix elements entering into this block depend on two Fourier
components of the potential ¥ (3) and V(4), and also on the quantities o and 8.
The occurrence of the symmetrization factors F, , F5, and F, is related to the
fact that the bases that contain plane waves and symmetrized plane waves are
essentially different from each other. At the points of high symmetry these
factors are equal to zero or to unity, depending on whether or not the given
plane wave enters into the symmetrized combination of plane waves having the
lowest energy at the given point. If the factors F, , F5, and F,4 had not been
taken into account then, in the calculated energy bands, undesirable shifts and
splittings would have appeared. The values of symmetrization factors for the
points of high symmetry in the Brillouin zone are given in Table 8. For the
points inside the Brillouin zone, the following possible values of the symmetriza-
tion factors may be used:

= by —ky e
Fy= k, — ky 1 0.001 cos (nk,) (2k, — k),
Fy= b [IQ(kx+ky+kz)——4(kx+ky_;_kz)z
; ; |

2
k- 0,001 cos (stky) cos (T ik |

F,— ke — ke i
ky + &k, -+ 0,001 cos (stk,) cos (? nkx)

12 (Ry + ky) — 4 (ky + ky)? ]
9 .

TABLE 8. Values of the Symmetrization Factors in the High-
Symmetry Points of the Brillouin Zone

Symmetry point Fy(k) F3(k) Fa(k)
r (0,0,0) 0 0 0
X(0,2,0 1 0 0
L (4,4,4) 0 1 0
K (3/4,3/4,0) 0 1 1
W(1/2,1,0) 1 1 1
U@/a,1.1/8) 1 1 0
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The matrix elements of the block (PW-LCAQ) may be written as

. (k + K, (k+ Ky
Hio= Baja (1 -+ K 1By |00 R, 109)

where s, i, v take, respectively, the values (1, x,y), (2,, 2), (3, z, x) for the
t, ¢ orbitals, and

] (k 4 K)i — (k -+ K);
HK'4=B3]2(Ik+K‘BI)[ 2|k+K|2 y}FK(k)y

3 (k -+ K] (109)

HK.5=Bsf2(|k+K|Bx)[‘Tk_+Tlr—l}FK(k)

for the e, orbitals. The matrix elements (106)-(109) contain 15 parameters.
The values of these parameters are chosen by taking into account the results ob-
tained in calculations of the energy bands of the metal, by applying the APW
method and the method of Green’s functions. The origin on the energy scale
may be chosen so that the parameter § is equal to zero.

The interpolation method allows reproduction of the energy-band structure
of the crystal with a mean square error of the order of several thousandths of a
Rydberg. The wave functions obtained by Hodges and Ehrenreich [146] provide
a good approximation to the density of electronic states in the valence band.
The parameters that describe the energy-band structure of copper and silver
were taken from the works of Stocks et al. [206, 207]. In the first article
[206] on copper, these parameters were determined from the calculations of the
copper band structure by Burdick [208], using the APW method with the
potential proposed by Chodorow [209]. By comparing the results of calcula-
tions performed with different approximations [210], it can be concluded that
the Chodorow potential leads to energy spectra that show the best agreement
with experiment. For silver, the energy band structure has been calculated by
the method of Green’s functions, with a model of the crystal potential proposed
by Mattheiss [211] and a Slater-type exchange. For copper, it is not yet neces-
sary to take into account the spin-orbit splitting, since the experimental
spectra were recorded with a resolution of 0.6-0.9 eV, but the spin-orbit split-
ting amounts to only 0.2 eV. For silver, however, it is desirable to take into
account the spin-orbit interaction, since the spin-orbit splitting may reach
values of the order of 0.5-0.6 V.

Since the d-wave functions of valence band electrons in these crystals are
localized mainly in the region 1.4-1.5 a.u., it follows that gr 0.6 <1, and
therefore the dipole approximation may be used. This statement is also sup-
ported by the great similarity between the X-ray photoelectron spectra obtained
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at excitation energies 100-1486.6 eV. By using the plane waves

expik+Q-r

as the wave functions of the electrons in the conduction band, formula (102)
becomes for the dipole approximation:

Pk+a (1) =

I, Ey= ¥ 3 Ci (k) Ciir (k)Y 3 (Bta, Prsa) X

nk,Q pp’
2 You (Bra, Prpa) (4, (k + Q)2 B3 (k + Q)), (110)

where

You Octa, Peto)

represents the linear combinations of spherical harmonics corresponding to the
angular dependences of ez and 7, 4 orbitals:

By((k + Q) = { drrjy (K + Q1) Rua (1)

In using the functions given by the expression (104), because K; << @, the
contribution of s and p electrons to the energy distribution of electrons ex-
pressed by equation (110) is equal to zero. This fact, however, is not obviously
reflected in the calculated results, because the contribution of the partial den-
sities of s and p electrons to the total density of electronic states in the valence
band of copper, silver, and palladium is low [206, 207] .

At an acceptance angle of photoelectrons in the electron spectrometer equal
to 8°, the summation in formula (110) is performed over all the states (n, k) in
the Brillouin zone compatible with the law of conservation of energy. In this
case, the law of conservation of electron momentum is satisfied for all the points
k in the Brillouin zone. Expression (110) can be significantly simplified if the
summation over the whole Brillouin zone is replaced by the summation over its
irreducible 21'18' part. If the symmetry properties of electron wave functions are
taken into account, it can be shown that the cross terms in formula (110) com-
pensate each other, so that the intensity of the photoelectron spectrum can be
written as follows:

I(waE3P)~ Z [2Ct2g,n(k)(?% + )7% + ?%)
k,n

+3Ce,, ) (Y5 + Y3)] 04(E), (111)
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where
Chopn®)= C1 L, (K) TC3 (0t (5, (K),
Cepn®) = C3,n(0) + €1 (),
04(E) = B3(IP1) = B3(E).

In formula (111), the summation is performed only over the electron quasi-
momenta in % part of the Brillouin zone. Therefore, the energy dependence
of the angular distribution of photoelectrons is determined by the #,, and ez
components of the density of states:

1
pt2g_——E Z tzg,n(k)7
n

1
eg='—EZ eg,n( )-
n,

The variation of the photoionization cross section of d electrons, 64, over the
whole range of the occupied part of the valence band, at a photon energy of the
order of 1500 eV, is not greater than 1%. At photoelectron emission along the
(001) direction, the functions Yl ,Y,,and Y3 become equal to zero for 6,

¢p =0, while Y4 and Ys remain different from zero. In the case of photoemls-
sion along the (111) direction, and for 6, = 54. 7°,0p = 45°, the functions

Y, =Y, = Y; are different from zero, while Y4 and Y are equal to zero.
Therefore, in the first case, the photoelectron spectrum must be determined by
the e, component of the density of states, and in the second case by its z,
component. One should notice that, for polycrystalline materials, the intensity
of photoelectron spectra can be represented as follows:

I(w,E)~ 04p4(E).

For polycrystalline copper and silver, calculation of the density of states of d
electrons has been done by using the interpolation method of Hodges and
Ehrenreich. As Figures 62 and 63 show, the main features of the electron
density of states of copper and silver are seen in the experimental spectra ob-
tained by Hiiffner ef al. [192]. Their experiment was performed using an HP-
5950A electron spectrometer with a resolution of 0.6 eV and a vacuum of
~107° torr. However, the shape of the experimental and theoretical curves are
significantly different. In the valence band photoelectron spectrum of copper,
the intensity of the maximum at ~2.5 eV is greater than that of the maximum
at ~3.5 eV, while in the density-of-states curve, the greatest maximum is that
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Figure 62. The X-ray photoelectron spec-
trum and the density of states of valence elec-
trons in copper: (a) the photoelectron spec-
trum; (b) the density of states calculated:
{——) without taking into account the spin-
orbit interaction; (- - - - - ) by taking into
account the spin-orbit interaction (the theo-
retical curves were smoothed by a dispersion
curve with a half-width of 0.25 eV); (c) the
density of states calculated without taking
into account the spin-orbit interaction:
(- ) tag states; (———) eg states;

(——— ) s States; (- ) total.

situated nearer the Fermi level. Consideration of the spin-orbit splitting does not
change significantly the density of states of valence electrons of copper. One
possible explanation is that the discrepancy between the photoelectron spectra
and the partial density of states of d electrons is due to relaxation effects, which
might be different for electrons of #,4- and e,-symmetry type. One can admit
that, in copper, the contribution of electrons of e,-symmetry type is greater in
the photoelectron spectrum than in the density of states. An increase in the
density of e, states near the Fermi level can be caused by a small energy shift of
the position of e, states with respect to t,, states. Therefore, the #,¢ and e,
components of the density of states should show, separately, a rather good
consistency with the photoelectron spectra corresponding to photoemission
along (111) and (001) directions, respectively. In the case of silver, as it results
from Figure 63, it is necessary to consider also the relativistic effects. The
density of states calculated by taking into account the relativistic effects [192]
has a minimum that is absent in the density-of-states curve calculated without
inclusion of the relativistic effects.
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Figure 63. The X-ray photoelectron spectrum and
the density of states of valence electrons in silver.
{a) the photoelectron spectrum; (b) the density of
states calculated: (- -) without taking into ac-
count the spin-orbit interaction; (- - - - - ) by taking
into account the spin-orbit interaction (the theo-
retical curves were smoothed by a dispersion curve
with a half-width of 0.25 eV); (c) the density of
states calculated without taking into account the
spin-orbit interaction: (- - - - - ) tag states; (———)
eg states; (— —-—) s states; (——) total.

The discrepancy between the photoelectron spectrum and the density of
states of valence electrons in silver consists in a different intensity ratio of the
two main maxima. In order to illustrate the energy distribution of s, £,4, and
e, electron states throughout the valence band of copper and silver, the partial
density of these states is also shown in Figures 62 and 63. Figures 64 and 65
show the theoretical curves and the experimental data for photoelectron emis-
sion along (001) and (111) directions in copper, and along (100) and (111)
directions in silver [211a, 211b]. One should mention that, for cubic crystals,
the (001) and (100) directions are equivalent. The agreement between the theo-
retical and experimental data for copper and silver is quite good. One should
notice that in copper the maximum in the photoelectron spectrum corres-
ponding to e, states is shifted toward the Fermi level, as compared to the cor-
responding maximum in the partial density of e, states.

Dobbyn et al. [213] and Liefeld [214] have studied the M and L X-ray
emission spectra of copper. As can be seen from Figure 66, the L band is
narrower than the M band. This is explained by the authors [213] as being due
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Figure 64. (a) X-ray photoelectron spectra
of copper along the (111) and (001) direc-
tions. (b) Calculated partial density of
states of electrons with ty¢ and eg sym-
metry. The theoretical curves were
smoothed by a Gaussian curve with a
half-width of 0.4 eV.

to a different energy dependence of the radial wave functions for 3p and 2p
electrons of copper. However, the work of Hiifner ef al. [193] indicates that
the width of the copper 3p level is equal to 1.4 eV, and that of the 2p level is
equal to 0.8 eV. This result is essentially different from that obtained by
Dobbyn et al. [213]. Therefore, although the transition probability has an in-
fluence on the width of the X-ray emission band, if in this case the calculations
of Hiifner et al. [193] are correct, it follows that the difference in the width

of the L and M bands is mainly related to the different widths of the 3p and 2p
levels.

Wehner et al. [214a] have studied the valence band photoelectron spectra of
silver using synchrotron radiation in the energy range 32-250 eV. This offered
the possibility to observe the intensity change of photoelectron spectra caused
by a specific atomic effect due to the radial singularity of the 4d electron wave
function of silver, since in this case there exists an energy range in which the
photoionization cross section has a strong energy variation. The valence band
electron spectra of silver, obtained by using synchrotron radiation, are con-
sistent with those obtained by using the K, radiation of aluminum. In the region
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Figure 65. (a) The X-ray photoelectron
spectra of silver along the (111) and (001)
directions. (b) Calculated partial density
of states of electrons with tyg and eg
symmetry. The theoretical curves were
smoothed by Gaussian curves with a half-
width of 0.4 eV in the case of tyg states,
and 0.5 eV in the case of eg states.

Figure 66. M, 3 ( ) and L 3(—~—)
X-ray emission spectra, and valence band
photoelectron spectrum (- - +) of copper.
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of ultrasoft X rays, a change in the energy of the exciting photons is accom-
panied by a change in the intensity ratio of the two main peaks in the valence
band photoelectron spectra of silver. In this energy region of exciting radiation,
the intensity of the photoelectron spectrum of silver is proportional to the
photoionization cross section of 4d electrons:

1)~ o, E) ~ Ut EAPINSEp),

where Ey = b_"] +%w (Ej represents the center of gravity of the valence band
photoelectron spectrum), N¢(E) is the electron density of states in the final
state, and (|#p, 2} is the square modulus of the matrix element of the electron
transition probability, averaged with respect to the photoelectron emission
angle. The minimum in the curve of relative intensity of the valence band photo-
electron spectrum of silver (Figure 67) is due to the energy dependence of (| 2).
Figure 68 shows the energy dependence of (Itf,-lz) for silver and copper in the
orthogonal plane wave approximation. In silver, the minimum occurs at an elec-
tron kinetic energy of 140 eV. In copper, such a minimum does not exist, since
the 3d electron wave functions do not have radial singularities. In conclusion,
in solid materials also, the existence of a radial singularity of the electron wave
function results in a minimum in the energy dependence of the electron photo-
ionization cross section. This minimum can be named “Cooper minimum,” in
analogy with the corresponding one occurring in the photoionization cross sec-
tion of free atoms [91].

Figure 67. (a) The valence band photoelectron spectra of silver obtained at an exciting
photon energy of 70 eV, 90 eV, 110 eV, 130 eV. (b) The relative intensity of the 4d peaks
in the photoelectron spectra of silver
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Figure 68. The square modulus of the radial matrix element of the electron transition
probability, as a function of the electron kinetic energy for silver ( ) and copper (———).

Hifner and Wertheim [215] have studied the valence band photoelectron
spectra of a series of transition metals from manganese to copper, using an HP-
5950A electron spectrometer with a resolution of 0.5 eV. The measurements
were performed with a vacuum of 10 torr. For all of the metals investigated,
with the exception of manganese, the detected oxygen and carbon signals were
low and did not increase significantly even after 24 hours of continuous opera-
tion of the spectrometer. In the case of manganese, an oxide layer had already
formed on the sample surface after 2 hours. This limited the duration of spectra
recording and consequently led to statistically poorer results. Figure 69 shows
the experimental valence band photoelectron spectra of manganese, iron, cobalt,
nickel, and copper. As has already been pointed out, the fine structure of the
X-ray photoelectron spectrum of copper successfully reproduces the energy
position of the singular points in the density of states of copper. For ferromag-
netic nickel, the calculations of Zornberg [216] have predicted that certain
particular features should appear in the X-ray photoelectron spectrum at 0.4,
1.6, and 3.2 €V, and in fact these predictions agree with the experimental data.
For ferromagnetic cobalt, Wong et al. [217] have predicted peaks situated at
0.5, 1.8, and 2.5 eV, and these are also found in the experiment. For manganese,
the density of states of valence electrons calculated by Yamashita et al. [218]
does not show any significant structure, which again is confirmed by experi-
ment. The broad peak at 6 eV in nickel is possibly due to plasma oscillations
[186]. In approximately the same energy region, weak structures have also been
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observed in the X-ray photoelectron spectra of cobalt and iron. The dotted line
in Figure 69 connects the corresponding features observed in the spectra of

copper, nickel, cobalt, and iron.
Hiifner et al. [219] have measured the valence band photoelectron spectra



METALS AND ALLOYS 149

of thodium, palladium, silver, and gold (Figure 70) using an HP-5950A electron
spectrometer with a resolution of 0.5 eV, and the Ka; , line of aluminum as
exciting radiation. The specimens were prepared as evaporated thin films, or as
foils cleaned by argon ion bombardment. The spectra of silver and gold differ
only slightly from the spectra shown in Figures 63 and 57. For rhodium, the
band structure calculated by Christensen [220] is completely consistent with
the experimental data. Also shown in Figure 70 are the spectra of iridium and
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Figure 70. Valence band photoelectron spectra of (1) rhodium (foil, cleaned by argon
ion bombardment); (2) rhodium (evaporated onto a substrate); (3) palladium; (4) silver;
(5) iridium; (6} platinum; (7) gold.
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palladium measured by Kowalczyk et al. [221] on high-purity monocrystalline
samples. Before starting the experiment, the specimens were mechanically
polished and then electropolished. Inside the spectrometer, the cleaning opera-
tion was continued by argon ion bombardment. During the measurements the
vacuum level in the spectrometer chamber was 8 X 107 torr. From Figure 70
it can be seen that the spectra of iridium and platinum are rather similar to the
spectrum of gold, which demonstrates the great similarity between the energy
band structures of these metals.

The same group of authors have also studied the X-ray photoelectron spectra
of the series of elements from palladium to xenon, in the energy region in which
the 44, 55, and 5p electrons of these elements are localized. The X-ray photo-
electron spectra of all of these elements, excepting iodine, were measured using
an HP-5950A electron spectrometer provided with a monochromatized source of
Ka, , radiation of aluminum. All the samples were monocrystals of high purity
except antimony and iodine, which were polycrystalline. The method of sample
preparation was similar to that used in the work mentioned previously [221].
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Figure 71. Valence band photoelectron spectra of (1) palladium; (2) silver; (3) cadmium;
(4) indium; (5) tin; (6) antimony; (7) tellurium.
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The experimental resolution in all these cases, except for iodine, amounted to
0.55 eV. lodine was studied by using an iron-free electron spectrometer con-
structed at Berkeley. The doublet structure of the 4d levels of these elements
is clearly seen in Figure 71. Figure 72 shows the energy distance between the
doublet components as well as the theoretical values obtained from the data of
Carlson et al. for free atoms [223]. The values in Figure 72 are matched so that
for antimony the experimental and theoretical values of the splitting coincide.

Such a matching procedure yields rather good values of the spin-orbit
splitting for the investigated crystals. This has been confirmed, for xenon, for
example, by the good agreement between the magnitude of spin-orbit splitting,
determined by extrapolating the theoretical curve and its value determined
experimentally for xenon gas [2]. This normalization lowers the value of the
splitting for free atoms by 0.1 eV. The intensity ratio of the two components of
the doublet is of the order of 1.3, which is consistent with the value 1.5 resulting
from the multiplicity of 4ds;, and 4ds), states.

A lack of agreement between the theoretical and the experimental values of
the splitting has been observed for cadmium and silver. This indicates how im-
portant it is for these metals to account for the effects related to the structure
of energy bands. Figure 72 also shows the variation of the full-width-at-half-
maximum of the 4d line, for the series of elements investigated. This quantity
increases for elements situated after indium, which is explained by the increase
of the magnitude of spin-orbit interaction in these elements. For cadmium, the
linewidth is greater than for indium, which indicates the presence of band-struc-
ture effects.

The fine structure of 55 and 5p energy bands has been studied for cadmium,
indium, tin, antimony, and tellurium. In the case of tin and antimony, these
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Figure 72. Splitting of 4d3, and 4ds, photo- 3r
electron lines and their full width in the series 2l
of elements from palladium to xenon. The
value for cadmium, indicated by m, was ob- r
tained for cadmium atoms evaporated on the 0 L

1 1 1 1 | 1 !
(111) surface of gold. Pd Ag Cd In Sn Sb Te 1 Xe
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TABLE 9. Binding Energies of 4d, 55, and 5p Electrons for Elements from Silver to Xenon

Energy Ratio of the Ratio of the

State splitting areas for occupation
of 4d the 5s and numbers
Element 4d3, 4ds;y  S5s Sp states 5p states ngny
Sitver - - - - 1.6 - -
Cadmium 1.5 105 2.2 - 1.0 - -
Indium 176 167 41 0.7 0.9 1.8 2.0
Tin 248  23.7 1.0 1.2 1.1 0.7 1.0
Antimony 334 321 9.1 23 1.2 0.6 0.7
Tellurium 41.8 403 115 4.0 1.5 0.5 0.5
1.1
Todine - - - - 1.8 - -
Xenon - - - - 2.0 - -

energy bands contain two peaks, while in the case of tellurium they exhibit three
peaks. In indium, tin, antimony, and tellurium, the band that is closest to the
Fermi level is the Sp band, and therefore the peak in the spectrum situated at
the greatest binding energy corresponds mainly to the Ss states.

Figure 71 shows how the atomization of Ss electrons occurs as one pro-
gresses in the series of elements. From the data in Table 9, it follows that the
ratio of the areas under the characteristic 5s and 5p lines is the same as the ratio
of the occupation numbers for the free atoms with configuration 5s” 5p™.
Figure 73 shows the position relative to the Fermi level and the width at half-
height of the 55 and 5p lines, for the series of elements investigated. For ele-
ments from cadmium to tellurium, all the energy bands are significantly broader
than the corresponding levels in xenon. The splitting of 5p states in tellurium is
due to the formation of energy bands, since the magnitude of the splitting
(2.9 eV) is much greater than the spin-orbit splitting in xenon (1.3 eV).
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2r yd Figure 73. Position of the 5s and 5p bands
0 L relative to the Fermi level. The vertical bars
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For the elements in the sixth period of the periodic system—thallium, lead,
and bismuth—in contrast to lighter elements, the spin-orbit splitting of valence
energy bands is of the same order of magnitude as the splitting due to the crystal
field. The X-ray photoelectron spectra of the valence electrons in these crystals
have been measured by Ley et al. [224] using an HP-5950A electron spectrom-
eter and the monochromatized Ka; , radiation of aluminum. Cleaning of the
sample surfaces was performed by argon ion bombardment. The top of the
valence band is mainly occupied by 6p states, while at the bottom of the valence
band, mainly 6s states are localized. Figure 74 shows that, when passing from
thallium to bismuth, the atomization of 6s states takes place, while the 6p states
undergo splitting. The spin-orbit splitting at a number of high-symmetry
points of the Brillouin zone has been calculated for these metals by Soven
[225], Loucks [226], and Ferriera [227] . Typical values for this splitting are
0.3 eV for thallium, 1.4 eV for lead, and 2.0 eV for bismuth. As seen in Table
10, the calculated values are consistent with the experimental ones. This indi-
cates that the spin-orbit interactions in the valence band lead to greater splitting
than the crystal field. Table 10 also shows that the value of spin-orbit splitting
of 6p states, calculated by Lu et al. [228] for the free atom of bismuth, also
agrees well with the experimental data obtained for crystalline bismuth.

For the elements indicated in Table 10, besides the spin-orbit splitting,
account should also be taken of other relativistic effects, i.e., the dependence of
mass on the velocity of light, and the Darwin correction.

Comparison of binding energy values for the s bands in thallium, lead, and

1, arb. units

Figure 74. Valence band photoelectron
spectra of (1) thallium, (2) lead, and M T SR S S B N
(3) bismuth, 40 30 20 1 0 E eV
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TABLE 10. Binding Energies of Valence Electrons of Tl, Pb, and Bi

Parameter of the electron structure Thallium Lead Bismuth
Binding energy of 5d3/, electrons 14.5 20.3 26.9
Binding energy of 5d J2 electrons 12.3 17.7 23.9
Energy splitting of 5d states 2.2 2.6 3.0
Energy splitting of 5d states in free atoms 2.4 2.8 3.3
Binding energy of 65 electrons 4.9 7.7 9.9
Binding energy of 6p electrons 0.8 2.3 3.3

0.5 1.2
Energy splitting of 6 p states - 1.8 2.2
Energy splitting of 6 p states in free atoms - - 2.2

bismuth with those in indium, tin, and antimony indicates that in heavy ele-
ments the binding energy of the s electrons increases. This also is related to
relativistic effects.

Characteristics of the Structure of X-Ray Photoelectron
Spectra of the Rare-Earth Metals

The physical and chemical properties of the rare-earth elements can be ex-
plained mainly by the fact that they have an unfilled 4f shell. Energetically, the
4f electrons are situated in the valence band of the crystal, but because of the
high orbital quantum number /, the wave functions of the f electrons are rather
localized. The basic configuration for the atoms of the rare-earth group in
crystalline form is 4" 5d" 65%, with the exception of europium and ytterbium
whose configurations are 477 6s% and 4f'* 652, respectively. It should be men-
tioned here that numerous attempts have been made to study the structure of
the 4f states of these elements by optical methods, as well as by ultraviolet
spectroscopy. These attempts have not, however, been successful because of the
low value of the probability of transition from the valence band to the conduc-
tion band. Hagstrom and co-workers have studied the valence band photoelectron
spectra of ytterbium [229], neodymium, samarium, dysprosium, erbium [230],
europium, gadolinium, lutetium, and holmium [231]. The photoelectron spectra
of the rare-earth metals were measured in a vacuum of 1077 torr, using an
electron spectrometer similar to that described by Siegbahn et al. [1]. The
samples were prepared by evaporation i situ. As excitation radiation, the Ko, ,
line of aluminum was used. Formation of oxide layers on the sample surface was
already detected 5-10 min after evaporation. Therefore, during the experiment,
a series of repeated evaporations was performed. Because of these circumstances,
the data obtained from the analysis of the above-mentioned experiments [229-
231} offer only a general representation of the energy localization of 4f elec-
trons in the valence band of rare-earth metals.
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Figure 75. Valence band photoelectron L ) | ) \
spectra of (1} europium and (2) barium. 20 10 E eV

Brodén et al. [232] have shown that the valence band photoelectron spectra
of barium and europium at an excitation energy of 7.7 eV are very similar to
each other (see Figure 75), which means that at this value of the excitation
energy, the 4f electrons have a low photoionization cross section. The photo-
ionization cross section of f, d, and s electrons have a different dependence on
the energy of the exciting photons. In the case of atoms of the rare-earth ele-
ments, the photoionization cross section for different subshells increases with
increasing aximuthal quantum number [ {232]. Therefore, the principal features
in the structure of X-ray photoelectron spectra of rare-earth metals are due to
the excitation of 4f electrons. Figure 75 shows also the valence band photoelec-
tron spectrum of barium, in which the outer subshell of the free atom is charac-
terized by the configuration 652, and also the spectrum of europium, this ele-
ment being characterized by the configuration 4f76s%. The X-ray photoelectron
spectrum of barium up to about 15 eV does not exhibit any clear structure
related to the s states. The maximum at about 15 eV corresponds to the excita-
tion of 5p electrons. In the spectrum of europium, a clear maximum is observed
at a binding energy of about 2.1 eV, corresponding to the 4f electrons. The
X-ray photoelectron spectra of the metals with completely filled or half-filled
4f shells, such as europium, gadolinium, ytterbium, and lutetium, have a rather
simple structure.

A number of rare-earth metals have been studied under ultrahigh vacuum
(5 X 107*2 torr) using the AEI-100 photoelectron spectrometer. The samples
were prepared by evaporation onto a quartz substrate, at a pressure of the
order of 107!% torr. The valence band photoelectron spectra of terbium,
holmium, thullium, and ytterbium were measured with a resolution of about
0.8 ¢V, using the Ka, , line of magnesium as excitation source. In the case of
samarium, dysprosium, and erbium, a resolution of 0.3 eV was achieved using
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Figure 76. Valence band photoelectron spectra of samarium, according to the data from
[230] (-- ) and [233] ).

Figure 77. Valence band photoelec-
tron spectra of (1} terbium; (2] dys-
prosium; (3) holmium.
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the Ka, , line of aluminum, a rotating anode, and a monochromator with a
spherically bent quartz crystal. The photoelectron spectra of samarium measured
by Hedén et al. [230] and by Baer and Busch [233], illustrated in Figure 76,

are chosen as an example to show how drastically the photoelectron spectra of
rare-carth metals are affected by the resolution of electron spectrometers and by
the quality of vacuum. The spectrum measured in better experimental condi-
tions is characterized by a fine structure that reflects the multiplet structure
caused by electron emission from the incompletely filled 4/™ shell.

Figures 77 and 78 show the valence band photoelectron spectra of the rare-
earth metals measured by Baer and Busch [233]. Cox et al. [235] have cal-
culated the intensity of photoelectrons emitted from the 4f™ shell, for different
final states of the 4f™? shell. In these calculations it was assumed that the
intensity of photoelectron lines is proportional to the square of the fractional
parentage coefficient. The calculated data reproduce well the observed values of
the intensities of electron transitions from the 4f" shell to the free states, and

Figure 78: Valence band photoelectron
spectra of (a) erbium; (2) thulium;
(3) ytterbium.
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also the splitting energy of the multiplet states. McFeely et al. [236] have shown
that the energy split of final states in the far-ultraviolet absorption spectra is
8-13% lower than the value observed in X-ray photoelectron spectroscopy . This
discrepancy is explained as being caused by a stronger intra-atomic potential due
to the additional positive charge felt by the electrons in the photoemission
final state.

The valence band in rare-earth metals is made up of the hybridized 6s and
5d states. In the vicinity of the Fermi level, the partial density of d states is
significantly higher than the partial density of s states. In the study of valence
band photoelectron spectra, it is important to use monochromatized radiation.
Otherwise, the high-energy satellites corresponding to transitions from the 4f™
shell will hinder appreciably the observation of the structure of electron spectra
near the Fermi level. Figure 79 illustrates the electron density of states near the
Fermi level, calculated by Keeton and Loucks [237] taking into account the
distortion introduced by the instrument. The figure also shows the correspond-
ing X-ray photoelectron spectra. Correct determination of the energy position of
the 65 and 5d valence band is difficult because of the background of electron
inelastic scattering and because of the tails of 4f photoelectron lines. As can be
seen from Figure 79, the photoelectron spectra reproduce only the most signifi-
cant changes in the electron density of states on passing from gadolinium to
erbium.

Fuggle et al. [238] have measured the valence band photoelectron spectra of
uranium and thorium by using an ESCA-3 electron spectrometer equipped with

Figure 79. Valence band photoelectron
spectra (- - -) and the density of states

{ ) of (1) gadolinium, (2) dysprosium,
(3} erbium.
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Figure 80. Valence band photoelectron
spectra of (1) uranium; (2) uranium ox- 1 | 1 1 1
ide; (3) thorium; (4) thorium oxide. 0 8 6 4 2 0Eev

a magnesium Ka, , radiation source. The specimens were prepared by evapora-
tion inside a special sample preparation chamber, at a pressure of 1078 torr.
During the measurements, the pressure in the analyzer was lower than 5 X 107°
torr. It should be pointed out that the uranium and thorium specimens had an
exceptionally high oxidation reactivity. Figure 80 shows the spectra of uranium
and thorium in pure metallic state and in oxidized state. The oxidation process
was performed at a pressure of 1073 torr. The spectrum of thorium exhibits a
maximum on the side of higher binding energies, which is due to plasma energy
losses.

Influence of Transition Probability on the Shape of X-Ray
Photoelectron Spectra of Alloys of Transition Metals

Electron spectroscopy has made it possible to show experimentally that, in
the disordered binary alloys of the transition and noble metals, the d states of
both of the components are strongly localized. This circumstance can result in
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different values of the excitation probability for the d electrons of the different
types of atoms in the alloy and consequently to an energy distribution of photo-
electrons that differs from the density-of-states distribution. Unfortunately, the
theoretical investigation of this problem involves great difficulties with regard to
the description of electron states in disordered alloys. This is due principally to
the absence in these systems of a periodic potential. Nemoshkalenko and Aleshin
[239] have calculated the X-ray photoelectron spectra of binary alloys by using
the two-band model proposed by Schwartz et al. [240] and by Brouers and
Vedyaev [241]. For a binary alloy with composition A, B, _, the Hamiltonian
is given by the following expression:

H = 3 E,(Q[k,) (] + S ea(K) [ ka) (k| + 3 851 1) (ma] +
+ N1k, (kg |+ 1ka) (kDI
k

where E(k) and e4 (k) are the kinetic energies of s and d electrons; € is the
energy of the resonance d levels, which can take one of the two values €4 and
B depending on which atom is situated at the node n; v is a constant that deter-
mines the magnitude of s-d hybridization.

In order to describe the energy distribution of photoelectrons, use is made
of the Green’s function G = (G) averaged over all the atomic configurations in
the alloy. This Green’s function has the following expression in the |k), |kg)
representation:

G:-_-(Z-_Es(k) -y >_l
-y z—e(k)— D (2)

Here, Z ;(2) is the operator of the eigenenergy. A self-consistent choice of this
operator may be made by using the method of coherent potential. In this case,
according to Brouers and Vedyaev [241], the eigenenergy operator satisfies the
following equation:

D@ =g — (e — 2a(2) Faa (2, Da(2) (€8 — Da (@), (112)

where

gd = xag"*" (] ——x)Sg,

Faa(e, 2u(@) = i (% le— a @) — e () — ¥ 2 — E, (1)

It can be shown that the relation between the energy distribution of photoelec-
trons and the Green’s function G is analogous to the relation between the
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Green’s function and the intensity distribution of radiation in X-ray emission
spectra [242]

l(©, E) ~ N Im (k +Q|WGW |k 4- Q). (113)
k,Q

In this expression, W represents the operator describing the interaction of the
electron with the electromagnetic radiation:

W=i

,:C A-V; G=0G(o— Exyq+id),
where E, q is the energy of an electron having momentum k + Q situated in the
conduction band of the alloy. In the study of X-ray photoemission processes, it

is convenient to assume that the states of the excited photoelectrons can be
described by plane waves:

1 .
(rik+ Q) =7_N_Kexpt(k+Q)-r.

The summation in formula (113) is performed over all the vectors k and Q that
give rise to the same value of the energy of the emitted electron:

E=|k+QpP=P (114)

We will not consider here the processes that accompany the exit of electrons
from the specimen. We will assume that these processes do not appreciably
affect the energy distribution of photoelectrons. Use of the dipole approxima-
tion for describing the processes of electron excitation by X-ray quanta is justi-
fied up to high values of photon excitation energies, of the order of 1500 eV,
since the wave functions of electrons in crystals (and especially the wave func-
tions of d electrons) have a great amplitude only in a limited region of the
elementary cell of the crystal, namely, the region in which q - r <1 (q is the
wave vector of the X rays).

Let us transform formula (113) by introducing the Wannier functions pg;
(R is the radius vector of the node in which the Wannier function is centered,
and / denotes the type of state). From the strong localization of the Wannier
functions in the elementary cell of the crystal, the following is obtained:

I@ E)~Im¥ % (k+Q[Ry) (Rik| GIRL) X

k,Q R, Rzl 0,

X (Rela |k + Q) (4, (k + Q). 115)
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We will now transform this expression further, by assuming that the Wannier
functions pg; are given approximately by the expression g; = ¢;(r — R). In this
case, the following relation is valid:

(k+Q|Rl) =exp[—i(k +Q)- R](k +Q|0l). (116)
By using the Fourier expansion of the Green’s function

(Ryly |G| Roly) = = 3 Guy, (K) exp ik - (R, — Ry)
k

and the expression (116), the following expression for I(w, £) is obtained:

l@, E) ~ ¥ 1m ¥ (0L [k + Q) (k 4- Q) 0,) Gy, (k) (4, (k + Q)%

k,Q L,

Because of the high energy of the X-ray quanta, the summation in this expres-
sion may be performed over all the vectors k in the Brillouin zone, since it is
always possible to find vectors Q of the reciprocal lattice that satisfy the relation
(114). The number of these vectors is proportional to Q. By taking into
account that

= 3 Guy, (k) = (0L, |G| 0L,),
k

one obtains

I (0, E) ~ E*: 3 (0L, | P)(P|0L) (0L |G|Ol,)cos?6,

L,

where 8 is the angle between the vectors A and P. After averaging over these
angles, taking into account that the crystal has one s band and one degenerate

d band (its degree of degeneracy is 5), and assuming that the angular dependence
of Wannier functions is the same as for atomic functions, then for crystal
samples the following expression is obtained:

I(o, E) ~ E*2[P4(E) py (E) + Ps(E) o, (E) 4 Psa (E) psa (E)]. (117)
Here

p4(E) = — 2 1m (0d |G| 0d)
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and
l —
0 (E) = ——Im(0s| G| Os)
represent the d and s components of the density of states of valence electrons;

Psd(E)Z—%Im(Os\a)Od),

and the radial factors of the transition probability have the following expressions:

Py(E) ==+ “ Ry(r)j, (VEr) rzdr} ,
. 2
Py(E) = % |§ R )iV Er)ridr]’,
Pt = [ R ]
where R, and R represent the radial parts of the Wannier functions, and j, and
Jo represent the spherical Bessel functions.

The density of states py and pg and the magnitude of pg; may be determined
by the following formulas:

pa(z=E+i0)=
59 s 2—Es(b)
== % gy ™ Sdk @—Es K)z—eg®) — ¥ ) — 7
ps(z=E+iO)=
__ z—eg(k)—3 (118)
S (2n)3 Imgdk @—Es(®) @—eg(R)— ) —v* °
psa (2= E + i0) =

% 3 v

7 Ty Im (4% C—E W) E— a0 — 3 —

Nemoshkalenko and Aleshin [239] have studied a model equiatomic alloy

Ay 5By s characterized by the following parameters: the width of the s band
2w, = 1.11 Ry, the hybridization constant y = 0.0571, Ey(k) = €,(k)—0.278,
€4 (k) = 0.167¢4(k), the distance 8 between the d resonances undergoing scatter-
ing, 8 = 0.14 Ry. The eigenenergy X,;(z) was determined self-consistently from
equation (112). The obtained Z;(z) value was used for the determination of
pa(E), ps(E), and pgy(E) from formulas (118). Because of the model character
of the problem, it was meaningless to perform an accurate calculation of Pg(E)
and P4(F). Since at high excitation energies these functions exhibit a weak
energy dependence, we have assumed that the ratio [ Rgj,r? dr/f Ryjor? dr is
equal to 1. If this ratio were to differ from 1 by a factor of several units, then an
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unrealistically high or low ratio between the contributions of d and s electrons in
the X-ray photoelectron spectrum would be obtained. The results of these cal-
culations are shown in Figure 81 for the two values v, = 3y and y, = v. This
figure shows clearly that the magnitude of the hybridization constant determines
in a significant degree the shape of X-ray photoelectron spectrum. The third
term in formula (117) is of comparable magnitude to the second term, which
causes some deformation of the shape of the band. Particularly large defor-
mations occur for the alloy with hybridization constant v, . Therefore, in the
study of 4, B,_, alloy systems, it cannot in general be considered that the mag-
nitude of the ordinate values, taken at the Fermi energy, is proportional to the
density of the corresponding electron states. This conclusion is also valid for
pure metals, since in this case, in formula (117), €4 = €5. The model described
above is of limited validity because one of the most important assumptions was
the equality of Wannier functions centered at different nodes in the alloy. Thus
the model is more likely to be valid for alloys in which the atoms 4 and B have
similar scattering properties.

Consideration of the difference in excitation probability for atoms of dif-
ferent types in disordered alloys is a difficult problem. However, some informa-

Figure 81. Structure of the valence band photoelectron spectrum of the alloy Ay 5By s,
with hybridization constants: v, = 3vy(a) and v, = v(b): ( ) photoelectron spectrum of
valence electrons; (- - - ) d-electron contribution to the photoelectron spectrum; (———)

s electron contribution to the photoelectron spectrum; (— ——) s-d term contribution to
the photoelectron spectrum.
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tion about the influence of transition probability on the shape of X-ray photo-
electron spectra of alloys may be obtained by comparing experimental data
with the theoretically calculated electron density of states. Stocks et al. [206,
207] and Nemoshkalenko ef al. [243-245] have calculated the density of
electronic states in the valence bands of the disordered alloys nickel-copper,
palladium-silver, copper-palladium, and manganese-copper by using the two-
band model of alloys proposed by Kirkpatrick [246] . This model allows for
the existence in the valence band of alloys of states of #,¢- and eg-symmetry
type. It also takes into account a more correct hybridization of states of the
s-, p-, and d-symmetry type, than that considered by Schwartz et al. [240] and
by Brouers and Vedyaev [241].

The Hamiltonian of the alloy may be written in matrix form as

w. W 0 -
H=W+D={( % T ). (119)
v Wee Wer 0 D 0
G Wrg Wop : 0 Drp

The different blocks in the Hamiltonian are labeled by the index s for the

s states, d for the d states, and £ and T for the states of the eg- and £,¢-sym-
metry type. The basis functions used in the representation of the Hamiltonian
by formula (119) are not invariant under translation operations, since the
orbitals centered at different sites of the lattice may be different from each
other. However, approximately, it may be considered that the matrix elements
of the operator W are translation invariant and configuration independent. The
block D of the Hamiltonian (119) is also not translation invariant. The total
dd block of the Hamiltonian may be written as follows:

Huy=Xlpn)egn(pn| + X |00) tunw (00"}, (120)
n,n n=kn',p,0’

where |un) represents the d orbital centered at the nth site. Foru=1, 2, 3,

the orbital at the nth site is characterized by a symmetry of the #,, type,
whereas for u = 4, 5, it is characterized by a symmetry of the eg type. If the
nth site is occupied by an atom A, then the orbital |un) is chosen as the orbital
of the atom A. If instead the nth site is occupied by an atom B, then the orbital
|un) is taken as the orbital of the atom B. The nondiagonal elements ¢,,,, .’ in
formula (120) are translation invariant. The configuration-averaged Green’s
function {(G) may be written as

- 1 (121)
(G) = (=W —D") = s—p—s»
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and

0 (E) = _HLNlmSmG (E + i6)).

By making use of the projection operators for the space of functions with s-,
t1¢-, and e;-symmetry type, it follows that the density of states p(E’) may be
expressed as a sum:

P = P + ptgg + pegv

where
1
b= — - Im[Sp (1 — P) (G)]
by, = — =5 I [SpPr (G)],
|
Peg = — W Im [SpPke (G)).

Pe, and Pty satisfy the sum rule

[dEp, (E) =2,
§ dEp, (E) = 3.

The eigenenergy X entering into formula (121) may be written as

Z = ; P” Zn P"’

where P, = P,g + P, represents the operator of projection to the space of the
states which characterize the node n. Then

2’1: zEP”E+ETP”T’ Pn<G)Pn=FEPn,E +FTPHT7
where Zgr, Fi, and Fr represent scalars determined by the equations

ZE = &p— (z-:f;1 —_ ZE) Fg (Sg -— EE),
Dr=er —(er — 21) Fr(ef — 1),
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in which Fg and F are functions of £ and Z4. Making the approximation
Ap = 25——8?%0, Ar = ZT"*S;*‘:O‘

then for the alloy with high content of the A component the following is
obtained:

Fe(2) = F£(z — X + €b),
Fr(2) = Ff(z— X1 + €7),

where F£ and F4 are characteristic for the pure A component. In integral
representation, these functions are given by

A A
© PR - o7 (0
F;f«—_-%s Sl:_L; dr, F/;:SLS T,
Then
pe(E) = — = Im Fe (E + i0),

pr (E) =— —-Im Fr (E -+ i0).

The local density of states pﬁ , p‘Tl, pg, p? with €,- and #,,-symmetry type may
also be determined. Thus

pf = ——— Im SpPG (E + i0).
p? and pB may be expressed as follows:

pr=p2 + 04, B =pE+ 5,
pp=pp+ 08 o0, =08+ pb

The main parameter that determines the density of states p(E') of the alloy is
o, = eﬁ — eﬁ . It gives the energy distance between the centers of gravity of
the d states in the alloy. For this reason, the study of alloys with different 6,

is of particular interest.

Binary Alloys of Neighboring Elements of the Same Period

Nickel-Copper Alloys. As can be seen from Figure 82, copper is charac-
terized by a smaller density of states at the Fermi level than nickel. In nickel-
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Figure 82. Valence band photoelectron spectra of
nickel, copper and their alloys [247] : (a) copper;
(b} Niy3Cugq; (c) Niz3Cuqq; (d) NizgCugy;

(e) Ni51€u39; (f) NisgCXl 115 (g) nickel; ( .. )
theoretical curves [206] .
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copper alloys, the density of states at the Fermi level increases when the concen-
tration of nickel in the alloy increases [247]. In these alloy systems, the position
of the d states of nickel and copper remains practically unchanged upon the
formation of the alloy. Studies of the X-ray emission M spectra of nickel and
copper in nickel-copper alloys [248] have revealed that these spectra also
preserve the shape characteristic of the pure elements. As in the case of X-ray
photoelectron spectra, the M emission spectra mainly reflect the energy distribu-
tion of d electrons, although they are the result of transitions from s- and d- to
3p-type states. A similar distribution for electron of s-type symmetry cannot be
revealed for a number of reasons, namely: their low number, the broad energy
extension of their distribution, the high-energy satellites of the M bands and also
the very high density of electrons of d-type symmetry. The X-ray photoelectron
spectra of nickel-copper alloys have also been studied by Hiifner et al. [249],
but at a different concentration of the components.

The X-ray photoelectron spectra of nickel-copper alloys have been measured
at those nickel concentrations for which Stocks et al. [206] calculated the
density of valence band electron states using the coherent potential method. In
these calculations, the following assumptions were made: (a) the two-band
model was assumed to be valid, allowing for the presence of only s and d elec-
trons; (b) a common § band was supposed to exist in the crystal; (c) translation
invariance was assumed; and (d) the nondiagonal elements of the Hamiltonian
were assumed to be independent of concentration. The calculated density-of-
states curves of the alloys, corrected by taking account of instrumental distor-
tion, have been compared with the X-ray photoelectron spectra (see Figure 82).
The theoretical results illustrated in this figure are consistent with the experi-
mental data with respect to the shape and the width of bands and also the
number of observed structures. The salient feature of the spectra obtained for
the alloys is the occurrence of d resonances characteristic for the pure elements.

Hiifner et al. [249] have suggested that the X-ray photoelectron spectra of
valence bands in alloys, because of their simplicity, may be obtained simply by
superposition of the spectra corresponding to the pure components. The data
of Stocks et al. [206] show, however, that this procedure is not justified. The
authors of the work mentioned above also calculated the local density of states
of nickel and copper. It was found that it is significantly different from the total
density of electronic states in the valence band of the alloy. It can be stated that
the main contribution to the density of electronic states of these alloys in the
region situated at about 2-eV distance from the Fermi level is given by the d
states of nickel, whereas at a greater distance, the total density of electronic
states is mainly determined by the local density of the d states of copper.

It should be noted that the local density of d states in nickel and copper in
alloys is essentially different from that of pure nickel and pure copper. The



170 CHAPTER 3

Figure 83. Valence band photoelectron spectra of nickel,
copper and their alloys [193] : (1) copper; (2) NiyoCuog;
(3) Ni530447; (4) nickel.

increased resolving power of X-ray photoelectron spectroscopy makes it possible
to distinguish the difference between the valence band density of states in
nickel-copper alloys and the simple superposition of the density of states corre-
sponding to the individual components. Thus Hiifner et al. [193] have used an
instrument with high resolution (0.6 eV) to measure the X-ray photoelectron
spectra of the valence bands in pure nickel, pure copper and a number of nickel-
copper alloys (Figure 83). The X-ray photoelectron spectrum of the Ni;oCugq
alloy clearly shows a maximum corresponding to the d resonances of copper,
but in the spectrum of the Ni,3; Cug, alloy no maximum is observed in this
energy region (see Figure 82b). In Figure 83 it can be seen that the detailed
structure characteristic of pure copper is less evident in the spectrum of alloys
and becomes already unobservable in the spectrum of Nis3; Cuy alloy. Figure 84
shows the energy position of the maxima corresponding to the d states of nickel
and copper in nickel-copper alloys, according to the data of Hiifner ez al. [193].
These authors also showed that the band structure in the region where the reso-
nance d states of nickel in the Ni;oCugq alloy are localized may be described by
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Figure 84. Energy position of the maxima in the valence

band photoelectron spectra of nickel-copper (Cu ;_xNiy) L
alloys:0—copper, h—nickel. 0 02 04 06 08 X

the formula

g A
) =2y
where A =0.35eVand E; =0.8eV.

For nickel-copper alloy systems, the binding energies of the core electrons
have also been measured. It was found [247] that the binding energies of the
2p3j2, 3812, and 3py2 electrons of nickel, and the 2pyj2, 3512, and 3p,,
electrons of copper are practically the same in the alloys as in the pure elements.
The observed shifts do not, as a rule, exceed 0.3 eV, which means that the cor-
responding charge transfer cannot be large. The absence of a significant charge
transfer between the components of nickel-copper alloys is consistent with the
results obtained from the measurement of Mossbauer isomer shifts by Love
et al. [250] . These data indicate that the electron density at the site of the
nickel atoms does not depend on the concentration of copper in the alloys. The
calculations of Stocks et al. [206] have also shown that, in nickel-copper alloys,
the charge density of the d electrons of nickel and copper atoms in the alloy
does not undergo any change. It is to be noted that in the coherent-potential
method, the parameter § is used, which, on the assumption that the alloy has a
common § band, determines the energy distance between the scattering d reso-
nances. Stocks et al. {206] used in their calculations the value 6 = 1.8 eV, while
the value determined experimentally is § = 2.2 eV. Use of this experimental
value in the calculations would result in an improvement of the agreement
between theory and experiment.

Palladium-Silver Alloys. The X-ray photoelectron spectra of valence elec-
trons in palladium-silver alloys and of the corresponding pure elements, as mea-



172

1, arb. units

CHAPTER 3

N\
;o)
I ‘\
/ \
/ \ a
S N\
- e ~—_—r——
/ \
/ \
/
!
/ —_
/ \
-—/ \\
"."-\ b
I\
7\
I A
/ 'o'
// N

Figure 85. Valence band photoelectron
spectra and the density of states in silver-
rich palladium-silver alloys [212] : (——)
photoelectron spectra; (——) density of
states; (. . . ) local density of states of
silver; (———) local density of states of
palladium; a—silver; b—Agge 2 Pd13 8,

c—Ag7s.4Pdyq 6; d—Ags9 8 Pdao 2.

sured by Nemoshkalenko et al. [212], are shown in Figures 85 and 86.1 The top
of the d band of silver is situated 4 eV under the Fermi level, whereas palladium
exhibits a high density of states at the Fermi level and the position of its Fermi
level does not correspond to the midpoint of the low-energy branch of the
spectrum. It should be pointed out that in some experimental works [186, 251},
the calibration of X-ray photoelectron spectra has been made on the assumption
that the Fermi level of palladium corresponds exactly to the midpoint of the
low-energy part of the spectrum. This assumption is not justified either by ex-

tEditors’ note: This alloy system, as well as others discussed below, was first investigated
with UV-photoelectron spectroscopy. For Ag-Pd, see, e.g., C. Norris and P. O. Nilsson,
Solid State Commun. 6, 649 (1968) and C. Norris and H. P. Myers, J. Phys. F' 1, 62 (1971).



METALS AND ALLOYS 173

|
/ |
|

1, arb. units

Figure 86. Valence band photoelectron spectra
and the density of states in palladium-rich pal-
ladium-silver alloys [212] : (——) photoelec-
tron spectra; (- -) density of states; (- - -)
local density of states of silver; (— — —) local
density of states of palladium; (a) palladium; N
(b) Pd70Ag30; (c) Pd57_4Ag42_6. 05 0 E, eV

periment or by the existing theoretical calculations of the density of states in the
valence band of palladium made by Mueller ez al. [252]. These calculations were
performed by the relativistic augmented plane-waves method, with 108 k points
in the Brillouin zone.

Nemoshkalenko et al. [244] have calculated the distribution of d states in
the valence band of palladium-silver alloys. As a measure of the density of the
d states of the pure components, the intensity distributions of the X-ray photo-
electron spectra of palladium and silver, measured earlier by the same research
group, were taken [212]. It has been pointed out earlier that the intensity dis-
tributions in the X-ray photoelectron spectra of both palladium and silver differ
from the corresponding distributions of the density of electronic states. How-
ever, to a first approximation, it can be considered that these differences are not
too great.

The palladium-silver alloy system, like the system nickel-copper, is suited to
a calculation of the density of electronic states by the coherent-potential
method since these elements are neighbors in the periodic system. Therefore,
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the nondiagonal matrix elements of the block d-d of the Hamiltonian can
approximately be considered as being translation invariant. Some contribution
to the valence band density of states of pure palladium and silver comes also
from the density of s electrons, but the magnitude of this density is much lower
than the density of d electrons. In the determination of the density of states of
palladium-silver alloys, the experimental value 6 = 0.18 Ry was used. The calcu-
lated density of states of valence band electrons in these alloys are also included
in Figures 85 and 86. In the calculation of the density of states for alloys with a
high-percentage silver content, the density of states of pure silver was used,
whereas for the alloys with high palladium content, use was made of the density
of states of pure palladium.

As Figures 85 and 86 show, the calculated density of states allows a descrip-
tion of effects related to alloying. First, it is to be noted that in the alloys con-
taining 13.8 and 24.6% palladium, the valence states corresponding to palla-
dium appear in the density-of-states curve of the alloys as a structureless
enhancement situated between the maximum corresponding to the d states of
silver and the Fermi level. The density of states of the palladium component in
the alloys has a Lorentzian shape. The density of states of pure silver exhibits
two maxima; with increasing concentration of palladium, the structure of this
part becomes more and more smeared out. At high palladium concentrations,
the part of the band corresponding to the valence states of silver becomes
structureless. The Fermi level in alloys is determined on the assumption that the
valence band of silver contains 10 d electrons, and that of palladium contains 9
d electrons. An alternative choice of the occupation numbers is also possible, for
example, 9.5 d electrons for both silver and palladium, that would not result in
a significant change of the position of the Fermi level in alloys.

The density of states of palladium-silver alloys calculated by Stocks et al.
[207] using the coherent-potential method is consistent with the data in Figures
85 and 86. These figures show a qualitative agreement between the structure of
the calculated density of states and the shape of the energy distribution of photo-
electrons. With increasing palladium concentration there occurs a significant
change of the energy distance between the maxima in that part of the spectrum
corresponding to pure silver. Thus, in pure silver, the energy separation between
these maxima is 1.6 eV, but in the alloy containing 70% palladium, it is 0.9 eV.
The magnitude of spin-orbit splitting in pure silver is relatively low, and there-
fore the two maxima in the density of states of pure silver can be attributed
mainly to the particularities of the structure of the d bands rather than to the
spin-orbit splitting of the d states. A large change of the energy separation be-
tween the maxima characteristic for pure silver has also been observed by Fuggle
et al. [57] in the study of silver-aluminum alloys. Our experiments [212] have
also confirmed the presence of a flat maximum in the energy region character-
istic for pure palladium in alloys with 70% and 57.4% palladium content and its
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absence at lower palladium concentrations. However, the intensity ratio of the
maxima associated with silver and palladium obtained from the density-of-states
curves of the alloy differs from that measured on energy distribution of valence
band photoelectrons. Comparison of the experimental curves of the valence
electron distribution with the theoretical curves of the valence electron density
of states indicates that the photoionization cross section of the d electrons of
silver in alloys is approximately 1.5 times greater than that of the d electrons of
palladium. Comparison of the electron density of states of alloys with the local
density of states confirms that the structure of the density of states in the
energy region characteristic for pure silver is determined mainly by the local
density of states of silver, and similarly, the structure of the density of states in
the energy region characteristic for palladium is determined by the local density
of states of palladium. This explains why the shape of the energy distribution of
photoelectrons in different regions of the spectrum is determined mainly by the
local density of electronic states of silver and palladium.

Table 11 shows the values of the core-level binding energies of pure atomic
palladium and silver and of palladium-silver alloys. It can be seen from this table
that the binding energies of the core electrons of palladium in alloys coincide
with those of pure palladium, to within 0.1 eV, but for silver, the values of
core-level binding energies differ by up to 1.0 eV. That the core-level binding
energies of silver in alloys are lower than in pure silver indicates that, in the
alloys, silver is an electron acceptor. This is consistent with the enhancement of
electron density at the site of silver atoms. At first sight this contradicts the
generally accepted representation of the charge transfer, i.e., from the silver
atoms to the palladium atoms, resulting in the occupation of 0.5 holes in the
d shell of palladium. It should be realized, however, that the concept of charge
transfer between the atoms of the components of the alloy is valid only if the
entire electron density is localized at the atomic sites of the components of the
alloy. It is well known, however, that part of the electron density is concen-
trated in the crystal lattice between the atoms of the components of the alloy,

TABLE 11. Values of Core-Electron Binding Energies of Pd and Ag Atoms in Pd-Ag Alloys

Level

Sample 3p1p2 3d3/, 3ds, 3p1p2 3d3p, 3ds)y
Pd 559.7 340.2 334.9
Pd;0Ag30 559.7 340.1 334.8 602.9 373.1 367.1
Pdgq4A844.6 559.8 340.1 334.8 603.2 373.5 367.5
Pdyp ,A59 5 559.5 340.1 334.8 603.2 373.6 367.6
Pdyg 6Ag75.4 560.0 340.1 334.8 603.5 373.7 367.7
Pd;3 3Agge.o - 340.1 334.8 603.6 373.8 367.8

Ag 603.8 374.1 368.1
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and a change of this charge density does not directly affect the magnitude of the
shifts of atomic core levels. Consequently, the measured shifts may only indicate
an enhancement of the electron density in the vicinity of silver atoms and its
stability near palladium atoms. The case when the observed shifts indicate an
increase of the electron density in the vicinity of the atoms of both components
of the alloy is also possible. In such alloys, the electron density in the inter-
mediate region between the atoms will probably decrease. As we will see later
on, such a situation is encountered in the case of copper~gold alloys.

The study of the X-ray emission spectra of the components of palladium-
silver alloys [4] has shown that the mechanism of the change of their electronic
structure is much more complicated than for a simple donor-acceptor inter-
action. On one hand, this agrees well with the X-ray photoelectron spectra and
the shifts of core levels discussed in the present monograph. On the other hand,
it explains completely satisfactorily the magnetic behavior of these alloys.

The X-ray photoelectron spectra of palladium-silver alloys have also been
studied by Hedman et al. (the system Pd,9Ag4,) [251] and by Hiifner et al.
[253, 193] using an HP-5950A electron spectrometer. Figures 87 and 88 illus-
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Figure 88. Valence band photoelectron spectra and the
density of states in palladium-rich palladium-silver
alloys: (1) palladium; (2) PdgoAg10; (3) Pdq5Ag2s;

(4) PdgoAgao.

trate more clearly than Figures 85 and 86 the change of the fine-structure char-
acteristic for silver and palladium in the alloy. The energy position of the
maxima in the spectra, corresponding to the d electron states of palladium and
silver in the alloys, is practically constant, while their width changes appreciably
with composition. Figure 89 illustrates the change of width of the characteristic
peaks of palladium and silver as a function of the concentration in the alloys.
Platinum-Gold Alloys. The X-ray photoelectron spectra of platinum-gold
alloys are shown in Figure 90. The val~nce bands of pure platinum and pure gold
exhibit a strong overlap in energy. In the calculation of the valence band density
of states of both gold and platinum, it is very important to take into account the
relativistic effects. To illustrate the significance of the relativistic effects, it is
enough to point out that if these effects are neglected, then the calculated
density of states of gold will exhibit a maximum [196] in that energy region in
which the X-ray photoelectron spectrum exhibits a minimum situated between
two maxima. The necessity to include relativistic effects makes the calculation
of the valence band density of states of alloys containing gold extremely diffi-
cult. Therefore, experiment is as yet the only source of information about the
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Figure 89. Energy width of the d bands of palladium
and silver in palladium-silver (Pdx Ag, _x/ alloys:

(1) silver; (2) palladium.

density of electronic states in the valence bands of disordered binary alloys of

heavy elements.

From the experimental data illustrated in Figure 90, it can be seen that in
the valence bands of platinum-gold alloys the characteristics of gold appear
more prominent. As in the case of palladium, the position of the Fermi level
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Figure 90. Valence band photoelectron spectra of
platinum, gold, and their alloys: (1) platinum;

(2) PtgoAuag; (3) PtygAugg; (4) gold.
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TABLE 12. Values of Core-Electron Binding Energies of Pt and Au Atoms in Pt-Au Alloys

Level
Sample 4dg), 4fs)s 4fqp, 4ds), 4fs)o 4fap2
Pt 314.5 74.4 71.0
PtgoAuso 314.1 74.0 70.6 334.5 87.2 83.5
PtyoAugg 314.0 74.0 70.6 335.0 87.7 84.0
Au 335.1 87.5 83.8

does not coincide with the position of the midpoint of the low-energy part of
the X-ray photoelectron spectrum. With increasing gold content, the density of
states at the Fermi level decreases, while the maximum in the density of d states
of platinum, which is situated 1 eV below the Fermi level, is shifted approx-
imately 2 eV toward the bottom of the valence band. In the alloy Ptgo/Augg, a
small enhancement is observed on the low-energy part of the electron spectrum,
caused by the contribution of the d electrons of platinum. It should be noted
that even in the alloy with 80% gold, the high-energy maximum does not coin-
cide with the corresponding maximum in the electron spectrum of gold.

The values of core-level binding energies of the component elements of
platinum-gold alloys are given in Table 12, based on the data from the work of
Nemoshkalenko et al. [254] . The binding energies of the 4d 512> 4f5/2, and
4f7 core electrons of platinum diminish somewhat (by up to 0.4 eV) upon the
formation of disordered binary alloys. The analogous energies for gold remain
almost unchanged, although the scatter of the data for the given alloys is some-
what higher than usual.

Alloys of Elements from Different Periods

Copper-Palladium Alloys. Nemoshkalenko et al. [243] studied the X-ray
photoelectron spectra of the valence bands of copper-palladium alloys, using an
HP-5950A electron spectrometer.

The samples were prepared by alloying palladium with copper with a high-
frequency furnace in a helium atmosphere, followed by annealing and quenching.
The X-ray photoelectron spectra were recorded with an instrumental resolution
of 0.6-0.7 eV. Before measurements were made, the samples were cleaned by ar-
gon ion bombardment at a pressure of 107 torr. After cleaning, the intensity of
the oxygen 2s line diminished by a factor of 10, while the carbon 1s line practi-
cally disappeared. The vacuum level in the spectrometer was about 107° torr.

In palladium-silver and nickel-copper alloys, the centers of gravity of the
d bands of the pure components are relatively far apart, namely, at energy
separations of 2.5 and 1.9 eV, respectively. Copper-palladium alloys are dif-
ferent since the d bands of pure copper and palladium overlap considerably. It
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is therefore interesting to investigate the changes in the fine structure of the
valence band as a function of alloy composition to establish whether the local-
ization of the d states of both components is preserved.

Nemoshkalenko et al. [255] have used the coherent-potential method to
calculate the electron density of states in the valence band of copper-palladium
alloys. The calculations were performed as follows. Energy values in the high-
symmetry points of the Brillouin zone were determined by the APW method.
The crystal potential included the Coulomb and the exchange contribution. A
Slater-type exchange potential was chosen. The contribution to the potential
of the neighbors situated on the three nearest coordination spheres was found
by using the scheme proposed by Mattheiss [211]. From the values of the
eigenenergy at the points of high symmetry of the Brillouin zone (T', X, L,

W, K), the parameters of the Hodges-Ehrenreich interpolation scheme were
determined for each concentration of the alloy. To do this, a system of 15 equa-
tions with 15 unknowns was solved (three of these equations were nonlinear).
The parameters obtained allowed the calculation of the energy values at any
point of the Brillouin zone. The density of states of pure copper and palladium
were found from the energy values calculated for 5230 points in 1/48 of the
Brillouin zone. The calculations also yielded the eg, #,¢, and s components of
the density of states.

The density of states of pure copper and palladium was used for calculating
the density of states in the valence band of the alloys. For the alloy with high
copper content, the valence band was calculated on the basis of the density of
states of pure copper, and for the alloy with high palladium content, it was
calculated on the basis of the density of states of pure palladium. The experi-
mental and calculated results are shown in Figures 91 and 92. The X-ray photo-
electron spectra of pure copper and palladium, also measured with an HP-5950A
spectrometer, were taken from the work of Hiifner ez al. [193] . Owing to the
low partial density of the s states of the pure components, the density of s states
of the alloy was taken as a superposition of the density of states of both compo-
nents (taking into account their concentration). As Figures 91 and 92 show, the
basic features of the density of electronic states are reflected in the spectra. In
particular, the X-ray photoelectron spectra of the valence band in the alloys with
high-percentage copper content, illustrated in Figure 91, change markedly with
concentration: the energy extension of the spectra increases, the intensity ratio
of the peaks changes, and the fine structure gradually disappears. In alloys with
high-percentage copper content, the d states of palladium appear as a resonance
peak that moves closer to the Fermi level with increasing palladium content
from 10% to 40%. This result is confirmed by the calculations. As can be seen
from Figure 92, in alloys with high-percentage palladium content, an addition of
10% copper results in a change of the fine structure characteristic for pure
palladium. The maximum of the local density of states of copper in alloys with
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Figure 91. Valence band photoelectron
spectra and the density of states in copper-
rich copper-palladium alloys: (——) photo-
electron spectrum; (——) electron density of
states; (— —-—) smoothed density of states;

(- - - -) local electron density of states of
copper; (———) local electron density of
states of palladium; (a) copper; (b)

CugoPdyo; () CugoPdap.

high palladium content is situated at about 5 eV from the Fermi level, whereas
in alloys with high copper content, this separation is about 3 eV. Figure 92 also
shows that in the alloys with high palladium content investigated, the d reso-

nance states of copper are not observed.
In conclusion, calculations performed using the coherent-potential method

provide also, in the case of copper-palladium alloys, a general picture of the
shape of the energy distribution of electrons. The discrepancies observed are due
not only to the inadequacies of the theoretical model in the calculation of the
valence band density of states in the alloys, but also to the fact that, in these
calculations, the energy dependence of the photoionization cross sections of
valence electrons has not been taken into account.

Table 13 gives the binding energies for a number of core electrons of copper
and palladium in alloys and in the pure metals, as measured with an IEE-15
electron spectrometer [254]. For copper, the binding energy values are approx-
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Figure 92. Valence band photoelectron
spectra and the density of states in pal-
ladium-rich copper-palladium alloys: (——)
photoelectron spectrum; (- ) electron
density of states; (—-—-— ) smoothed density
of states; (- - - +) local electron density of
states of copper; (———) local electronic
density of states of palladium; (a) palladium;
(b) PdgoCut19; (¢) Pd75Cusys.

imately 1 eV lower in alloys than in the pure metal. For palladium, the shifts

in alloys as compared with the pure metal are lower, but the binding-energy
values are higher in alloys than in the pure metal. Therefore, upon the formation
of copper-palladium alloys, there occurs an increase in the electron density at
the copper-atom sites and a decrease of it at the palladium-atom sites.

TABLE 13. Values of Core-Electron Binding Energies of Pd and Cu Atoms in Cu-Pd Alioys

Level

30172
Sample 2p1/2 2[73/2 3S1/2 3p3/2 3p1/2 3d3/2 3d5/2
Pd 559.7 340.2 334.9

CuyoPdog 951.2 931.3  121.8 74.5 559.8 3403  335.0
CugoPdsy 9514 931.6  121.4 74.2 559.8 3404  335.1
CugoPd;o  951.7 9320  121.8 74.5 559.7 3407  335.4
Cu 952.1 932.1 1222 75.0
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spectra of iron, gold, and their alloys in
quenched (a) and unquenched (b) states:
(1) iron; (2) Fegg 14Aug gg;

(3} FeyqAuss; (4) gold.
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Iron-Gold Alloys. The iron-gold spectra studied by Nemoshkalenko and
Aleshin [54] are interesting in that d subbands of the valence bands of the pure
metals have very different widths. Furthermore, the maximum in the density of
the iron d states is situated near the Fermi level, but for gold, the s and p states
that have a low density are situated in this energy region.

One of the iron-gold alloys studied had a low gold content (0.86%) but, as is
seen in Figure 93a, the distribution of photoelectrons in this alloy differs from
that of pure iron on the high-binding-energy side of the main maximum. For the
other alloy that contained 53% gold, a narrow maximum corresponding mainly
to the local d states of iron appeared near the Fermi level.

Figure 93b shows the X-ray photoelectron spectra of the same alloys in the
unquenched state. Since in this case the alloys consist of a mixture of two
phases, it is easy to understand the smooth structure of the spectra; the spec-
trum of pure iron is superimposed over the X-ray photoelectron spectrum of
the solid solution. Measurements of the binding energies of the 2p,, core
electrons of iron and of the 4d3/, and 4f), electrons of gold have shown that in
these alloys iron behaves as an electron acceptor, but the charge state of gold
practically does not change.

Nickel-Gold Alloys. Nickel-gold alloys are similar to the iron-gold alloys
discussed above. Figure 94 shows the X-ray photoelectron spectra of the valence
electrons in nickel-gold alloys, as measured by Nemoshkalenko et al. [256].

It can be seen that in these alloys there is also a narrow peak corresponding to
the d states of nickel reflected in the valence band of nickel-gold alloys. The
binding energies of the core electrons of gold in the nickel-gold alloys are lower
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Figure 94. Valence band photoelectron
spectra of nickel, gold, and their alloys:
{I} nickel; {2} Ni70All30,' (3) Ni30Au70;

(4) gold.

than in pure gold, which indicates that in alloys the electron density at the
gold-atom sites is increased. For nickel, the shift of the core levels falls inside
the experimental error bars (Table 14).
Palladium-Gold Alloys. Palladium-gold alloys are formed from elements
characterized by broad d bands extended over energy ranges that exhibit con-
siderable overlap. Figure 95 shows the X-ray photoelectron spectra of palla-
dium-gold alloys produced from the data of Ref. 257. Also shown in Figure 95
are the corresponding spectra of pure palladium and gold taken from the works
of Hiifner et al. [193] and Shirley [194]. It is seen that also in this system, the
characteristic features of the spectra of pure palladium and gold appear in the
spectrum of the alloys.

TABLE 14. Values of Core-Electron Binding Energies of Ni and Au Atoms in Ni-Au Alloys

Level
Sample 2012 2p3ja 3syy2 3Pujp,3ja 4dapy 4dspy Afsp Afq
Ni 869.5 852.2 110.2 65.9
NiqgAusg 869.4 852.1 110.1 65.9 352.7 334.7 87.3 83.6
NigoAuso 869.5 8522 1100  66.0 3529 3348 873 836
Au 353.1 335.1 87.5 83.8




METALS AND ALLOYS 185

2
S
3
g
® Ne
/J\
N-
5
Figure 95. Valence band photoelectron
spectra of palladium, gold, and their alloys:
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Alloys of Isoelectronic Elements

Copper-Gold Alloys. Metals situated in the same subgroup of the periodic
table may have essentially different valence band energy spectra even though
they have the same electronic configuration in the free atomic state. This results
in an appreciable change in their electronic properties in alloys [258]. Partic-
ularly marked is the change of the valence band density of states versus atomic
number for isoelectronic metals at the end of the long periods. The magnitude
of spin-doublet splitting actually increases sharply in the series Cu > Ag — Au,
as also does the width of the valence band.

An interesting feature of copper-gold alloys is that they can be studied both
in the disordered and ordered states. To obtain homogeneous solid solutions, the
alloys Cu,s Au, s and Cu,s Au,s were quenched from a temperature of 650°C
in a solution of 15% KOH.t To obtain ordered systems, the Cu,5Au, s alloy was
T Note added in proof: The experiment on Cuys Auss and Cuq5Ag,s was performed by

V. V. Nemoshkalenko, K. V. Chuistov, V. G. Aleshin, and A. L. Senkevich, J. Electron
Spec. 9(2), 169 (1976).
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annealed at 350°C for 12 hr, and the Cu,5 Au,s alloy at 230°C for the same
time. The alloy Cu,s Au, s exhibits a large degree of ordering of copper-gold
alloys, but in Cu,5 Au,s the degree of ordering is less.

The X-ray photoelectron spectra of copper-gold alloys, measured with an
IEE-15 electron spectrometer with the Ka, , line of magnesium as excitation
source, are shown in Figure 96 for both the disordered and ordered states. The
background of inelastic electron scattering was corrected for.

The greatest difference between the photoelectron spectra of the two states
is observed in the Cu,5 Au,s alloy, in which significant changes in the electron
density of states occur. At the same time, the probability of photoelectron emis-
sion in the region of the high-energy maximum decreases.

The magnitude of the binding energies of the core-level electrons in pure
copper and gold, and in copper-gold alloys, after the data from Ref. 254, are
given in Table 15. For both copper and gold, it was found that the binding en-
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4 Figure 96. Valence band photoelectron
spectra of copper, gold, and their com-
pounds in the disordered (- ) and
ordered (- - -) states, respectively:

1 1 (1) copper; (2) CuzAu; (3) Cudus;

10 5 0 E eV (4) gold.
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TABLE 15. Values of Core-Electron Binding Energies of Cu and Au Atoms in Cu-Au

Compounds
Level
Sample 2p1/2 2p3/2 4d3/2 4d5/2 4f5/2 4f7/2
Cu 951.2 932.3
CuzAu 951.6 931.8 352.8 334.8 87.4 83.7
CuAug 951.5 931.7 352.7 334.7 87.2 83.4
Au 353.1 335.1 87.5 83.8

ergies of the core electrons of the pure elements are lower than in the alloys.

This means that in alloys, the electron density at the sites of both copper and
gold atoms is increased relative to that in the pure metals. Upon ordering, no

significant change of the core-level binding energies occurs.

Silver-Gold Alloys. The X-ray photoelectron spectra of silver-gold alloys
are illustrated in Figure 97 [54]. As in the case of nickel-copper alloys, the
width of the valence band in silver-gold alloys increases with the concentration
of the component with larger valence bandwidth. Thus in silver the valence
bandwidth is 8.9 eV, and in gold it is 9.4 eV. For both silver and gold, the den-
sity of states at the Fermi level is relatively low. It is in general determined by
the s- and p-type states. The X-ray photoelectron spectra clearly show the max-
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Figure 97. Valence band photoelectron spectra of 6
silver, gold, and their alloys: (1) silver; (2) Aggy Aug;
(3) Ag75Au25;{4) Ag49Au51; (5} Ag”Augg; A A TR . T
(6) gold [54]. 10 ) 0 Eev
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imum B corresponding to the high-energy maximum in the X-ray photoelectron
spectra of pure gold and silver, as well as the peak C corresponding to the low-
energy maximum in the spectrum of pure silver. Also apparent is the enhance-
ment on the low-energy branch of the spectrum corresponding to the maximum
A of pure gold.

Studies of silver-gold alloys have also been performed by Siegbahn et al. [1].
Even at a relatively low concentration of the second component, it was possible
to observe changes in the structure of the valence band of the atoms. Thus a
concentration of only 11% silver results in the appearance of the maximum C,
while 9% gold causes changes in the band structure at the bottom and at the top
of the valence band.

We have mentioned earlier that in a number of investigations of nickel-
copper alloys, attempts were made to represent the valence band of the alloy as
the superposition of the bands of the pure components. Since the resolution of
X-ray photoelectron spectrometry is not very high (amounting to 1.1 eV in the
work of Nemoshkalenko et al. [259], in which the X-ray photoelectron spectra
of valence bands of silver-gold alloys were measured), and since the spectra of
nickel-copper are quite narrow and exhibit practically no fine structure except-
ing the two maxima corresponding to the d electrons of nickel and copper, it
follows that the validity of this approach is difficult to test for these alloys.

Figure 98 illustrates the X-ray photoelectron spectrum of the alloy
Ags9Aus, and also the superposition of the spectra of pure gold and silver,
weighted in proportion to the concentration of these elements in the alloy. The
effect of alloying is evident.

Table 16 gives the values of the core-level binding energies of gold and silver
in alloys and in the pure metals, after the data from Ref. 254. It is seen that the
binding energies of the core-level electrons in the alloys are practically the same
as in the pure elements. The differences do not exceed 0.2 eV. Therefore, it
can only be assumed that the electron density in the vicinity of silver atoms in
alloys is a little higher than in the pure metal. This assumption does not contra-
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Figure 98. Valence band photoelec-
tron spectra of the alloy Aga9Aus;

{ -) and the curve (- - -) obtained
by superposition of the photoelectron
spectra of the pure components.




METALS AND ALLOYS 189

TABLE 16. Values of Core-Electrons Binding Energies of Ag and Au Atoms in Ag-Au
Alloys

Level

Sample 3p1/2 3p3/2 3dsy 3d5/2 4d3/2 4dsy 4f5/2 4f7/2

Ag 603.8  572.8 374.1  368.1

AgojAug 6037 5729 3740 3680 353.0 3349 875 838
AggsAups 6037 5729 3741  368.1 3531 3352 877  84.0
AgioAus; 6037  573.0 3740  368.0 3531 3351 876  83.9
AgijAugy 6037 5728 3740 3680 3531 3351 87.6 839
Au 353.1 3351 875  83.8

dict the results of Levin and Ehrenreich [260], who, on the basis of the analysis
of the parameters of optical spectra, have concluded that some transfer of charge
occurs from gold to silver in silver-gold alloys.

All the alloys investigated by Nemoshkalenko and co-workers in the works
mentioned above [54, 254, 256, 257, 259] were prepared from metals of high
purity (99.99%), in vacuum or in a noble gas atmosphere. Since the studies were
concerned with solid solutions, specimens were quenched from a temperature
about 100°C above the transformation temperature for those alloys that nor-
mally become two-phased (Pt-Au, Cu-Pd, Cu-Au) or ordered (Pt-Au, Cu-Pd,
Cu-Au) upon cooling. The effectiveness of quenching was checked by X-ray
diffraction.

Alloys of Noble Metals with Aluminum and Magnesium

Fuggle et al. [57] studied the X-ray photoelectron spectra of the valence
electrons of aluminum alloys with copper, silver, and gold. Their method of
sample preparation and of spectra measurement have been discussed in Chap-
ter 1. Figures 99-101 illustrate the X-ray photoelectron spectra of aluminum-
copper, aluminum-silver, and aluminum-gold alloys. The spectra of the pure
metals are consistent with the spectra obtained by Baer et al. [186]. In all the
spectra shown in Figures 99-101 the Fermi level is well-defined. Most clearly
appear in these spectra the d states. The splitting of the d states is absent in the
copper alloys, but appears to be rather great in silver and gold alloys. In each
alloy system, the energy distance of the d levels from the Fermi level increases
with the aluminum content. In the X-ray photoelectron spectra of the valence
electrons in Al, Au measured by Hiifner et al. [261] using an IEE-15 electron
spectrometer with the magnesium Ko, , line as excitation source, the splitting
of d states is less evident than in the spectra in Figure 99. This can possibly be
explained by the fact that, in the experiment of Hiifner, Wernick, and West, the
sample was cleaned by argon ion bombardment. According to the results of
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Figure 99. Valence band photoelec-
tron spectra of aluminum-copper com-
pounds: (1) copper; (2) AlyCuy;

(3) Al,Cu.

Hiifner et al. [58], this treatment can result in the formation of an amorphous
layer on the specimen surface. Particularly evident is the discrepancy between
the spectra of palladium prepared by evaporation and palladium cleaned by

argon ion bombardment.

One should notice that the alloys corresponding to the formulas Al; Cug
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Figure 100. Valence band photo-
electron spectra of aluminum-silver
compounds: (1) silver; (2) AIAgy;
(3) AlAgp,
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TABLE 17. Energy Position of the Peaks in the Photoelectron
Spectra of Valence Electrons of Compounds of Al with Cu, Ag,

and Au
Sample Peaks position FWHM
Cu 2.7 2.6
AlyCug 2.9 2.7
AL Cu 4.3 1.6
Ag 45 6.2 3.5
AlAg, 5.7 6.5 2.8
AlAg, 6.2 21
Au 3.3 6.1 5.3
AlAu, 45 1.0 4.6
AlAu 5.7 74 4.2
Al Au 6.1 7.4 3.2

and AlAg, are, in fact, not intermetallic compounds, since a whole series of pos-
sible alloys exists near the stoichiometric composition. AlAg, form a metastable
solid solution of silver and aluminum (approx. 20 at. % Ag). The energy position
of the maxima in the X-ray photoelectron spectra and their full width at half-
maximum (FWHM) are shown in Table 17.
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Figure 101. Valence band photoelectron spectra of aluminum-gold compounds: (1) gold;
(2) AlAuy; (3) AlAu; (4) AlxAu.
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Figure 102. Photoelectron and X-ray emission spectra of the compound Al,Au: (———)
valence band photoelectron spectrum; ( ) Ly 3 emission spectrum of aluminum.

Figures 102 and 103 show the X-ray photoelectron spectra of alloys Al, Au,
Mg; Al and the L, ; emission line of aluminum, according to the data from Ref.
262. The two peaks corresponding to the splitting of the d states in the alloys
may easily be correlated to the energy positions of the two peaks in the X-ray
emission spectra. However, in the emission spectra there exists an additional
structure which is absent in the X-ray photoelectron spectra. It reflects the dis-
tribution of s electrons in the higher part of the valence band of these alloys. In
the X-ray photoelectron spectra this is suppressed by the d electrons, which have
a much higher density of states and a much higher photoionization cross section.

Hufner et al. [261] have also studied the alloys GaAu and In, Au. The mag-
nitude of d state splitting in these intermetallic compounds is lower than in pure
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Figure 103. Photoelectron and X-ray emission spectrum of the compound Mg3Au:
(———) valence band photoelectron spectrum, (- ) Ly 3 emission spectrum of
magnesium.
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Figure 104. Valence band photoelectron
spectra of pure gold and its compounds:
(1) gold; (2) Gay Au; (3) Iny Au;

(4) Al 2 Au,

gold (Figure 104). The widths of the d bands determined experimentaily and
theoretically [263] are significantly different from each other.

Model Representations of the Density of States of Alloys

Large advances have been made in the study of the electron structure of
many pure metals, but this cannot be said about disordered alloys. Use has
largely been made of a number of very simplified theoretical models of the elec-
tron structure of alloys, for example, the model of rigid bands [264], the model
of virtual bound states [265, 266], the model of virtual potential [267], and
the two-band model [268].

In the model of rigid bands, the assumption is made that in the alloy a com-
mon valence band exists containing the valence electrons of both component
atoms. The structure of this band may be obtained from the valence band struc-
ture of one of the components by simply shifting the Fermi level up to the
energy value corresponding to the mean concentration of valence electrons for
the given alloy. The model is most extensively used for calculation of the den-
sity of states in the valence band using measured values of the electronic specific
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thermal capacity and paramagnetic susceptibility [269]. Attempts to introduce
restrictions into the model of rigid bands are well-known. Thus, analysis of the
X-ray spectra of transition metals and of alloys of elements of groups IIl and VI
led Nemnonov [270] to develop a modified rigid-band model, which he named
the model of collective (generalized) d, s band. Unfortunately, many recent ex-
perimental studies [271-276] have proved that this model is not valid for the
description of the properties of a series of alloys.

The model of virtual bound states has a limited area of validity, namely,
for highly dilute solid solutions in which the valency of the impurity atoms is
different from that of the atoms of the basic component. The excess charge
formed at the impurity atom is effectively screened by the local deformation of
the valence band. However, this model is not valid when the impurity concentra-
tion is sufficiently high to cause significant interaction between the impurity
atoms.

In the model of virtual potential, the disordered alloy of components 4 and
B, having the potentials v, and vpg at the lattice nodes of the A and B atom sites,
is replaced by an ordered system having the potential cvy + (1 —c)vp (c is the
concentration of A atoms). It is assumed that the dispersive potential vy — vg is
small. This assumption is not valid, however, for alloys of metals having disper-
sive resonances in the conduction band, that is, for the transition and noble
metals.

Another special case of the rigid-band model was treated by Varley [268],
and was named the two-band model. In this model, it is assumed that the valence
electrons exist in two separate groups of energy states, each of them being re-
lated to the potential fields of the ionic components of the alloy. The models
of virtual bound states and virtual potential are intermediate between the model
of rigid bands and the two-band model.

The most important difficulties in the theoretical analysis of disordered sys-
tems arise from the lack of periodicity of the potential. Therefore, in the treat-
ment of disordered alloys within the framework of the one-electron approxima-
tion, it is necessary to introduce simplifications, not only with respect to the
choice of the one-electron potential for each of the alloy components, but also
in the solution of the resulting one-electron Schrodinger equation. As we have
already mentioned, a recently developed and successful method of solution of
the one-electron Schrodinger equation for disordered systems is the coherent-
potential approximation [158, 159]. It is more realistic than the virtual poten-
tial approximation and may be used for calculation of the density of states, in
alloys of arbitrary concentration of the components. The coherent-potential
approximation has led to the conclusion that the density of electron states
localized in the vicinity of the atom of a given alloy component may differ sig-
nificantly from the mean density of electronic states. This implies that the local
density of electron states will be extremely sensitive to the local environment.
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The band structure of binary alloys with a low concentration of the second com-
ponent, obtained by using the coherent-potential method is intermediate be-
tween those obtained using the virtual bound states of Friedel and Anderson and
the two-band model of Varley.

Stocks et al. [276] have compared the results of theoretical calculations us-
ing the rigid-band model, the virtual-potential model, and the coherent-potential
model with the experimentally measured energy position of the midpoint of the
uppermost subband. This midpoint characterizes the position relative to the
Fermi level of the subband of the valence band constituted mainly of the copper
states in nickel-copper alloys. The samples investigated were nickel-copper
alloys of various compositions, up to 40% nickel.

The predictions of these theoretical models differ considerably among them-
selves. The rigid-band and virtual-potential models predict that an increase in
nickel concentration in the alloy results in an almost linear approach of the
subband to the Fermi level. The coherent-potential model predicts an insignifi-
cant change in its energy position, thus providing the best agreement with
experiment.

We have in this chapter studied alloys formed from a variety of pure ele-
ments situated either closely to each other in the periodic system or in different
periods.

It should be noted that in the alloys of elements in groups VIII and IB, the
number of d electrons is much higher than that of p electrons, and therefore the
X-ray photoelectron spectra mainly reveal the behavior of the d electron distri-
bution in the valence band. The strong individuality of the valence d electrons
of the components in alloys is to a great extent caused by their high centrifugal
barrier, since this determines their energy and space localization.

The density of states in alloys is not a result of the simple superposition of
the density of states of pure metals. In disordered alloys, the local density of
electronic states, which is significantly different from the density of states in
the pure components, is very important. Consequently, if the energy positions
of the centers of weight of the d states of the pure components are separated
from each other, then the total density of states in various parts of the energy
spectra is mainly determined by the local density of states of one or other of
the components.

Comparison of calculated valence band density of states in alloys, obtained
with the coherent-potential method, with the corresponding X-ray photoelec-
tron spectra indicates that this method provides a rather satisfactory theoretical
description of the electron structure of disordered alloys.



4

Crystals with a
Sphalerite-Type Lattice

Crystals with a sphalerite-typeJf lattice, characterized by a tetrahedral distribu-
tion of atoms, have a relatively simple crystal structure and are suitable for
theoretical calculations. For a long time, these crystals have been the object of
study in order to test both old and new theoretical and experimental methods
of examining the band structure of solid state materials. In particular, their
optical and ultraviolet photoemission properties have been actively investigated.
This has made it possible to establish how well theoretical predictions about
their band structure agree with experiment. The work of Cohen and Bergstrasser
[138] using the pseudopotential approach has been of great importance to the
theoretical and experimental investigations of the large group of crystals includ-
ing diamond, silicon, germanium, A;Bs, and A,B¢ compounds. These authors
have shown that in the interpretation of a great number of experimental results,
the empirical pseudopotential method can be successfully used. It has been
shown that, for the interpretation of the band structure of GaP, GaAs, GaSb,
CdTe, ZnSe, InAs, InP, and InSb compounds, it is sufficient to use six parameters,
three symmetrical and three antisymmetrical form factors for the pseudopoten-
tial. For diamond, silicon, and germanium, three parameters are sufficient, since
in this case the antisymmetric form factors of the potential are equal to zero.

In the work of Cohen and Bergstrasser [138], the parameters were deter-
mined mainly from the optical reflection spectra. Studies of the optical proper-
ties of crystals are in general an important factor in the determination of their
band structure. However, a detailed interpretation of the optical reflection spec-
tra is seldom possible without a semiquantitative calculation of the energy-band
structure, since the optical excitations fall into the energy region for which the
valence band states and the states of the conduction band make a significant

TEditors’ note: The more common name for sphalerite in English is zinc blende.
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contribution to the observed structure of the spectra. In their turn, the reality
and the accuracy of these calculations depend very much on the correctness of
interpretation of the experimental results. This process for the determination of
the band structure is, undoubtedly, a method of trial and error, but it often leads
to a noncontradictory, quantitative, and to a high degree detailed picture of the
band structure of semiconductors in a limited energy region in the vicinity of the
forbidden band gap. However, the band structure of a great number of semicon-
ductors is not as yet satisfactorily known, in spite of the fact that for these ma-
terials reliable experimental data exist.

Much progress has also been made with regard to the determination of the
initial and final states of electrons participating in transitions, by studying the
photoemission in the far-ultraviolet region. This information is extracted from
the photoemission spectra by analyzing the dependence of their shape on the
excitation energy. However, it is also necessary to take into account preliminary
theoretical conclusions regarding the energy structure of the valence and con-
duction bands. The shape of the optical and photoemission spectra is strongly
affected by the structure of the conduction band. Only when the energy of the
exciting photons is increased to 50-100 eV, will the density of final states be-
come a smooth function.

Such a condition is satisfied for exciting energies of the order of 50-100 eV.
However, even in this case, the photoemission spectra do not allow a direct de-
termination of the density of states of valence electrons, since the magnitude of
the photoionization cross section for electrons of different symmetries varies as
a function of the excitation energy. It has, however, been established that at low
values of photon energies this variation has a rather small influence on the shape
of the spectra, in comparison with that due to the structure of the final states.
Therefore, in dielectrics, as in metals, the density of valence states can be deter-
mined more accurately from photoemission spectra measured at high excitation
energies, than from spectra measured at low excitation energies or from the
optical spectra.

The energy bands calculated using the values of the parameters determined
by Cohen and Bergstrasser [138] are consistent with the experimental data in
the energy region close to the top of the valence band and the bottom of the
conduction band. This is just that energy region in which are found the main
optical transitions that have been used for the determination of the form factors
of the pseudopotential. The method of vacuum ultraviolet spectroscopy doesnot
allow a study of energy states over the whole width of the valence band, which
may be relatively large (of the order of 12-15 eV) in the majority of crystals.T

TEditors’note: Most UV photoemission experiments today are carried out either with re-
sonance lamps, which give photon energies up to 40.8 eV, or with synchrotron radiation,
which in this connection is used up to several hundred electron volts.
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The accuracy in the description of states situated at the bottom of the valence
band may be assessed by comparing the calculated results with the experimen-
tal data provided by the X-ray emission spectroscopy and photoelectron
spectroscopy.

Calculations of the density of states of the valence band have been per-
formed by the authors of the present monograph and their co-workers [5, 277-
281] and compared with the data from X-ray emission spectroscopy, the pur-
pose being to test the accuracy with which the form factors calculated by Cohen
and Bergstrasser [138] provide a description of the structure of valence hands in
crystals. The present authors [5, 148, 282] have shown that the X-ray emission
spectra of light elements reflect the van Hove singularities in the electron den-
sity of states. Therefore, by using the theoretical and experimental data for the
energy-band structure, it is possible to determine the regions in k space that lead
to the observed features of the experimental spectra. It is at the same time possi-
ble to determine the energy position of states with different types of symmetry.
It should be remembered that, for the simplest crystals, the symmetry properties
of the energy bands determine—to some extent—the order of their distribution.

The results provided by X-ray emission spectroscopy should be used in con-
junction with the optical data, to ensure that the derived empirical pseudopoten-
tial yields, first, a satisfactory trend in the distribution of electron density of
states over the whole valence band of crystals, and, second, energy values of the
optical transitions that are consistent with the experimental data. Nemoshkalenko
etal. [277,278] constructed a pseudopotential for §-SiC and for silicon that
correctly reproduced the positions of van Hove singularities found from X-ray
emission spectra. The consistency of this pseudopotential with the optical data
was, however, rather poor. Use of the local approximation and of a potential
independent of energy is possible only when applied to a limited energy region
[120].

The necessity of using a nonlocal pseudopotential became apparent when it
was found to be possible to measure energy levels difference between states with
different quasimomenta k. Measurement of the parameters of X-ray photoemis-
sion allow the determination of these energies, and, therefore, in order to de-
scribe the experimental data, one should make corrections to the local pseudo-
potential. Pollak ez al. [283] and Chelikowski et al. [284] have shown that, in
using the local approximation, the nonlocal character of the pseudopotential
may be taken into account approximately by replacing the electron mass m with
an effective mass m*, More accurate calculations have shown that, in spite of its
simplicity, this replacement allows for the main effects of the nonlocal character
of the pseudopotential and improves agreement with experiment for the upper
part of the valence band. In order to obtain satisfactory agreement at the bottom
of the valence band, it is necessary to make more accurate allowance for the
nonlocal character of the pseudopotential.
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Energy-Band Structure of Diamond, Graphite, Silicon,
and Germanium

The crystals of elements in the fourth group of the periodic system have in-
teresting physical properties. Silicon and germanium are semiconductors with
small gaps. Diamond, although it has the same crystal structure, is a good insula-
tor. However, at normal temperature and pressure, the thermodynamically stable
phase is not diamond, but graphite—a semimetal that does not have any ana-
logues in the fourth group of elements. Graphite, unlike diamond, is character-
ized by a trigonal coordination of carbon atoms.

Cora et al. [285] were the first to study the energy band structure of dia-
mond by using the method of X-ray photoelectron spectroscopy. Unfortunately,
their experiment was performed with poor resolution (1.5-1.7 eV) and a rather
poor vacuum (2 X 1077 torr). Though the specimen was cleaned with respect to
adsorbed gases and carbon, the X-ray photoelectron spectra of the valence elec-
trons still show a clear structure due to the presence of oxygen. Much better ex-
perimental conditions were used by Cavell et al. [286] and McFeely et al. [287],
who measured the X-ray photoelectron spectra with an HP-5950A electron
spectrometer, with a resolution of 0.55 eV. The vacuum level in the spectrom-
eter was about 8 X 107 torr, and as the excitation source, the monochromatized
Ka, , radiation of aluminum was used. Without cleaning of the diamond surface,
the intensity ratio of the 1s peaks of carbon and oxygen was 4. After cleaning in
a nitrogen atmosphere, a better ratio, viz., 13, was attained. This permitted the
determination of the valence band electron spectra of diamond without signifi-
cant distortion. Since the 1s line of carbon is energetically closest to the valence
electron band, it was used for the subtraction of the background of inelastically
scattered electrons from the photoelectron spectrum of the valence electrons.
For this purpose, the fine structure of the carbon 1s line was studied carefully in
the region of high energies. The corrected spectrum, together with the density of
valence band electronic states, is shown in Figure 105. The calibration of the
spectrum was performed using the 47, line of gold, the binding energy of which
was taken to be 84.0 eV.

The density of electronic states has been calculated by Painter et al. [288]
using a modified tight-binding method (MLCAO). Here, in contrast to the ordi-
nary tight-binding method, the many-center integrals were not calculated. In-
stead, the matrix elements H;; = (p;|H|y;) and S;; = (y;l¢;) were calculated di-
rectly, where |;) are the Bloch sums of atomlike functions. Account was also
taken of the deviation of the potential from the MT potential. It turned out that,
in order to obtain more accurate qualitative results, it was necessary to introduce
corrections to the MT potential. For example, if the deviations from the MT po-
tential are neglected, a width of the indirect gap is obtained for diamond that is
five times smaller than that obtained when the parameter « in the exchange po-
tential V'S, is changed from 1 to 2.
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Since in diamond the elementary cell contains two atoms, the valence band
contains eight electrons distributed over four energy bands. Maximum (1) (Fig-
ure 105) in the density of states is determined by the states in the first energy
band. This band has an s-like character, since it contains only a small number of
p states. Along the X-Z-W directions in the Brillouin zone, the first and the sec-
ond bands are degenerate. The second band has a higher content of p states com-
pared to the first band, and the second maximum is determined by the details of
its structure. The top of the valence band, where the third and the fourth bands
are localized, appears as the third maximum (3) in the density-of-states curve.
The states situated close to the top of the valence band have a high content of
p-type states. This picture of the distribution of states in the valence band de-
rived on the basis of their symmetry is confirmed by the investigation of the
X-ray emission K line [289] resulting from electron transitions from the valence
band to the 1s level. Since the shape of the K spectrum is determined by the
density of states of electrons with a p-type symmetry in the valence band, it fol-
lows that the intensity will be highest in that energy region of the valence band
in which p-type symmetry states are preponderant, i.e., at the top of the valence
band. Since the width of the inner 1s level in the transitions leading to X-ray
emission is 0.1-0.2 eV, the resolution of the X-ray emission spectra is deter-
mined mainly by the instrumental resolution. Wiech and Zopf [289] maintained
that the resolution in their work was approximately 0.6 eV, which is similar to
the resolution of the HP-5950A spectrometer that was used for measuring the
valence band spectra of diamond. However, the X-ray emission spectrum con-
tains details of structure that were not present in the photoelectron spectrum.
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Figure 105. (a) Valence band photoelectron spectrum, (b) density of states, (c) X-ray emis-
sion K spectrum (experiment), and (d) X-ray emission K spectrum (theory) of diamond.
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This indicates that the X-ray photoelectron spectrum was recorded with a greater
spread in the intensity values than the emission spectrum.

The comparison of the X-ray emission and photoelectron spectra was per-
formed as follows [287]. The maximum B is characterized by an energy of
271.1 eV of the emitted photon. In the photoelectron spectrum, it corresponds
to the maximum II, since the difference between the binding energies of the car-
bon 1s line and of this maximum, measured with respect to the Fermi level of
the spectrometer, is equal to E5(1s) — EE(II) = 284.4 —13.2=271.2¢V. The
two values are equal to within 0.1 eV, which lies inside the limits of experimen-
tal errors. From Figure 105 it can be seen that the width of the X-ray emission
line is close to that calculated, while the bandwidth determined from the photo-
electron spectrum is greater than the calculated width of the valence band. This
is possibly related to the fact that the contribution of electron multiple scatter-
ing could not be correctly subtracted from the experimental photoelectron spec-
trum. Therefore, in order to determine the width of the valence band, the curve
in the region of high binding energies was approximated to a parabola. In this
way, the width of the valence band was estimated to be 24.2 eV. Although the
width of the X-ray emission spectrum is close to the width of the valence band
calculated by Painter et al. [288] (20.8 eV), it is evident from Figure 105 that
its value is difficult to be determined with sufficient accuracy. This is caused
above all by the fact that in the region of maximum 1, the X-ray emission spec-
trum does not have any structure, probably because of Auger-smoothing of the
states situated at the bottom of the valence band [290]. The valence bandwidth
determined from the X-ray emission spectra is approximately 21.0 + 1.0 eV.

The shapes of the X-ray emission and X-ray photoelectron spectra are signifi-
cantly different, although their structures are basically similar. This results from
the different probabilities of electron excitation and photon emission. As we
have mentioned in Chapter 2, the transition probability of X-ray emission pro-
cesses is determined by the matrix element of the transition probability:

Mk) = (Yo (r)| V| ¥k (1)),

where ¥, (r) represents the wave function of the electron in the valence band
and ¥, (r) is the wave function of the electron in the conduction band.
Nemoshkalenko et al. [291] have calculated the X-ray emission spectrum of
diamond using the APW method. The crystal potential for the configuration
15s2252p* of the diamond atom was obtained according to the scheme proposed
by Mattheiss [211]. As Figure 105 shows, the influence of the transition proba-
bility results in a significant discrepancy between the X-ray emission spectrum
and the curve of the density of states of the valence band electrons. The calcula-
tions, however, were not able to reproduce the flat top of the maximum D ob-
served in the X-ray emission spectrum. This is possibly due to the fact that the
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interpolation of matrix elements was performed with only 89 k points in zlg of
the Brillouin zone. In spite of the great number of k points used in the Brillouin
zone as a whole (approximately 10 points), the basis of principal points that
was chosen is probably still insufficient for a detailed reproduction of the fine
structure of the emission spectrum.

As was shown in Chapter 2, the intensity of X-ray photoemission may be
written approximately:

1(E)=~p! (E) ¢! (fo— E) o (Ho, E),

where p'(E) represents the density of valence electron states, p’(E) is the den-
sity of final states of photoelectrons, and o (fiw, E) is the photoionization cross
section. When the Ka; , line of aluminum is used as the source of exciting pho-
tons, the magnitude of plthw —E ) is practically the same as for free electrons,
and therefore

I(E) =~p'(E) o (i, E).

If the wave functions of electrons in the conduction band are chosen as plane
waves, exp i(k + Q) * r, and the wave functions of electrons in the valence band
as Bloch functions, ¥ (r) = exp (ik * r) uy(r), then the following is obtained:

o (ho, k) =| (¥ (r)|expi(k + Q) - r)]*

The wave function W, (r) may be represented as an expansion over spherical
functions of s, p, and d type. The s functions are characterized by sharper varia-
tions than p functions, and, consequently, the magnitude of the overlap integral
of the function Wi (r), with the plane wave corresponding to high Kinetic ener-
gies, is greater for s functions than for p functions. The magnitude of o(fiw, k) is
therefore greater for states in which the wave functions contain a significant con-
tribution from s-type functions. In diamond, the photoelectron spectrum should
have a greater intensity in the energy region in which the valence band mainly
contains s-type states, than in the region where mostly p-type states exist. This
conclusion is confirmed by the experimental curve shown in Figure 105.

The simultaneous use of X-ray emission and photoelectron spectra allows a
determination of the degree of hybridization of the s and p states in diamond,
since both spectra are determined by the behavior of the valence electron wave
function in the immediate vicinity of atomic nuclei.

Let us consider the expression

[I" (E)p (E)]; —
UVERPE),,
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If peak I was determined only by the 2s states and peak III only by the 2p
states, then this ratio would have a value close to
o (25)

'_0‘(?,‘))—=13.

In order to determine Rypg = I'(E)/p(E) and Ry = J(E)/p(E) from the data
in Figure 105, McFeely et al. [287] succeeded in extending somewhat the energy
region in which the density of states p(E') is finite. They were then able to
smooth the rather rough curve obtained by direct calculation of these functions
at points chosen on the energy scale. The smoothed functions R xpg and Ry are
shown in Figure 106. In order to use them further for the determination of the
character of the hybridization of the s and p states in diamond, it is necessary to
introduce the functions f((E) and f,(E), which determine the contribution of
these states to the states of the energy F in the valence band. These functions
satisfy the relation:

fs(E) + o (E) = 1.

Since the X-ray emission K spectra are determined by the p components of the
wave function, it follows that

(1) _ Rx(T) _
fp(B) RX(B) 7

where T and B stand for the top and the bottom of the valence band, respec-
tively. Since the ratio of the photoionization cross sections of the 2s and 2p
electrons for the free ion is 13, the following is obtained:

fp(B) + 13fs(B) _ Rxps (B)
fp(T)+13f(T) Rxps(T)

=5.86.

Solving these two equations yields f,(B) = 0.16 and f,(T") = 0.92. By compar-
ing Rxpg(E) and R x(F) separately with these two values it is possible to deter-
mine the energy dependence of f,, on the basis of the data from X-ray emission
and photoelectron spectroscopy. These two independent methods of determin-
ing f,, (Figure 107) lead to consistent results. For further calculations, it is con-
venient to make use of the mean value

= [hEpE)dE

- = 0.695.
? (o (&) dE )
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Figure 106. Transition probability as
a function of energy in X-ray photo-
electron spectra (R xpg) and X-ray
emission spectra (R x).
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Knowing fp, it is possible to calculate the occupation numbers n,, and n for the

p and s electrons, sincefp =np/(ng+np)=0.695,and n, +ny=4.

Thus, the carbon atom in diamond is characterized by the configuration
s2p2-® which is much closer to the configuration sp® than to the configuration
s2p?. In this way, X-ray photoelectron spectroscopy and X-ray emission spec-
troscopy give complementary information in an investigation of the s and p
states in diamond. The position of critical points in the density of states of the

Figure 107. Energy distribution of
p states in the diamond valence band
as determined by the methods of (1)
X-ray photoelectron spectroscopy
and (2) X-ray emission spectroscopy.
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TABLE 18. Comparison between Experimental and Theoretical Values of Energy for the
High-Symmetry Points of the Brillouin Zone of Diamond?

State
X4 (middle Width of
Method of energy of the valence
determination® Ly(D) X, (D) Ki(C) peak III) Ly band
OPW [292] 15.5 12.5 - 5.6 2.0 21.2
PPW [293] 19.6 11.5 7.3 5.2 24 19.6
MLCAO [288] 15.7 12.1 8.7 6.2 2.8 20.8
Pseudopotential [294] 22.6 18.1 9.4 6.6 2.8 27.5
XPS [287] 17.0 12.9 - 5.5 - 242
XES [289] 17.5 13.2 9.8 - 2.8 22.0

ZThe energy values are given in electron volts with respect to the top of the valence band.
XPS = X-ray photoelectron spectroscopy; XES = X-ray emission spectroscopy.

valence band electrons can hardly be determined from the experimental data in
Figure 105. However, the peak A(I) may be correlated to the point L5, the peak
B(II) with the point X, and the peak C with the point K ;. The experimental
data and the calculated energy-band structure of diamond are given in Table 18.
Van Haeringen and Junginger [294] found that the valence bandwidth of dia-
mond, calculated by the pseudopotential method, was significantly greater than
the experimental value, which indicates that the authors did not calculate the
pseudopotential form factors correctly. In such cases, the experimental data ob-
tained from X-ray emission and photoelectron spectroscopy may be used as a
test of the validity of the theoretical models.

McFeely et al. [287] also studied the photoelectron spectra of microcrystal-
line graphite, and of amorphous carbon. The results of their experiment are
shown in Figure 108. The position of the top of the valence band in diamond
may be determined by extrapolating the decreasing intensity side of the photo-
electron energy distribution toward lower energies, down to the background
level. Graphite is a semimetal, and its metallic conductivity prevents it from be-
coming charged. Amorphous carbon is more difficult to investigate than diamond
and graphite. Its band structure cannot be determined in the same terms as the
band structure of diamond and graphite. In making the comparison of the photo-
electron spectra of graphite and amorphous carbon (see Figure 108), it has been
assumed that the binding energies of the most intensive peaks in the valence
bands of graphite and of amorphous carbon coincide, and, consequently, the
position of the Fermi level of graphite was chosen as the origin for the energy of
amorphous carbon. Each of the spectra illustrated in Figure 108 may be charac-
terized by the rather broad and intensive peak I, situated between 16 and 21 eV,
the narrower and less intensive peak II between 10 and 15 eV, and the very
broad, nearly structureless peak III between 10 eV and zero. The spectra shown
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Figure 108. Valence band photoelectron spectra of (1) diamond; (2} fine-grained graphite;
(3) crystalline graphite; (4) amorphous carbon; (a) without and (b) with subtraction of the
background of inelastic electron scattering.

differ significantly from each other: the peaks I, II, and III are more clearly de-
fined in the spectra of diamond than in the spectra of graphite and amorphous
carbon. For graphite and microcrystalline graphite, the minimum between peaks
I'and II is still clearly seen, but in amorphous carbon it is less clear.

The elementary cell of graphite contains four atoms, and therefore its va-
lence band contains eight filled subbands. The band structure of carbon has been
calculated by Painter and Ellis [295] by the LCAO method. The carbon atoms
in graphite are distributed in layers, and therefore the eight valence bands in
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Figure 109: Energy-band structure
of graphite, according to data from
[295] (———) and [296] (—).

graphite may be grouped in two classes—six ¢ bands and two 7 bands. The latter
are mainly described by 2p, wave functions of the electrons in carbon atoms.
Kortela and Manne [296] calculated the band structure of diamond by the semi-
empirical LCAO method. In order to improve the agreement with the results of
Painter and Ellis [295], the filled o bands were shifted to 3.5 eV below the
Fermi level. However, the total width of the valence band was still 6 eV higher
than the value obtained by Painter and Ellis [295]. This difference is due to the
structure of the ¢ band situated at the bottom of the valence band.

The energy-band structure of graphite, as obtained by Painter and Ellis [295]
and by Kortela and Manne [296], is shown in Figure 109. It can be seen that the
o and 7 bands in graphite overlap. The magnitude of the overlapping is equal to
2.6eV.

The X-ray emission and photoelectron spectra of graphite are shown in Fig-
ure 110. In order to place the spectra on the same energy scale, the binding
energy of the 1s line of carbon in graphite was taken as E' I[; = 284.7 eV. Because
of the extreme anisotropy of graphite, the intensity distribution in the X-ray
emission spectra is influenced strongly by the polarization of X radiation. This
effect was first observed experimentally by Borovski et al. [297] using an Mc-46
electron probe microanalyzer. Similar experiments have also been performed by
Beyreuther and Wiech [298], Brimmer et al. [299], and Miiller et al. [300].
Figure 111 shows the X-ray photoelectron spectra of graphite, measured by
Beyreuther and Wiech [298] at various incidence angles of the exciting photons
on the crystal monochromator of the spectrometer. The lower curve in this fig-
ure represents the emission spectrum corresponding to translations from the o
states. The radiation with energy between 280.7 and 284.5 €V is due to transi-
tions from the 7 states. There exists an intermediate energy region in which
radiation from both 7 and o states is present. Figure 110 illustrates the 7 and
o emission spectra measured by Miiller ez al. [300]. The intensity of X-ray emis-
sion spectra calculated by Kortela and Manne [296] agree quite well with the
structure of the experimental curves. However, the X-ray emission and photo-
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Figure 110. Valence band photo-
electron spectrum of graphite. The ¢
and m components of the X-ray K
emission spectrum are also shown.

electron spectra are significantly different from each other, due to the different
influence of transition probabilities. Within an energy region extended over
approximately 10-13 eV, at the bottom of the valence band, the energy distribu-
tion of photoelectrons reaches a maximum, whereas the intensity of X radiation

Figure 111. X-ray K emission spectra
of graphite, corresponding to dif-
ferent incidence angles of the X rays
on the crystal-monochromator:

(1) 5% (2) 10°; (3) 15°; (4) 45°;

(5) 80°.
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in the same region is insignificant. This indicates that at the bottom of the va-
lence band, the o states have s-type symmetry.

As in the case of diamond, the bottom of the valence band in graphite may
be determined by extrapolating the photoelectron spectrum. This extrapolation
is necessary because the background of inelastically scattered electrons could not
be correctly subtracted from the experimental curve. The peak in the electron
energy distribution, situated at 13.8 eV from the Fermi level and separated by a
minimum from the flat maximum, is probably due to the high density of states
in the vicinity of the point P} in the Brillouin zone.

The X-ray emission spectra have made it possible to establish that the energy
region in which the o and 7 bands overlap is situated 6 eV under the Fermi level,
which is consistent with the results of calculations. The region of overlapping is
determined by the states I';,, and Ff{g. The rapid decrease of intensity as the
Fermi level is approached, starting at about 4 eV, arises from the fact that in the
region of localization of the 7 states, the contribution of s states is low, and the
density of states p(E) also decreases rapidly. The width of the valence band de-
rived from the photoelectron spectroscopy data is about 24.0 eV, whereas the
values calculated by Kortela and Manne [296] and by Painter and Ellis [295]
were 25.6 eV and 19.3 eV, respectively. The width of the X-ray K emission band
determined by Beyreuther and Wiech [298] is of the order of 21.7 eV.

The detailed interpretation of the structure of the energy bands of graphite
is difficult because of the lack of thorough theoretical calculations. For graphite,
the complementary use of X-ray emission and photoelectron spectra has proved
to be useful. If account were not taken of the data from X-ray photoelectron
spectroscopy, it might have been considered that the valence bandwidth calcu-
lated by Painter and Ellis [295] agreed rather well with experiment [298, 300].
However, the value obtained by Kortela and Manne [296] is more reliable.

Inspection of the X-ray photoelectron spectrum of the valence electrons in
amorphous carbon (see Figure 108) shows that it is more like the spectrum of
graphite than of diamond. In fact, the dip between the maxima I and II and the
maximum III in amorphous carbon is less evident than in diamond. Weaire and
Thorpe [301] have shown that the main features in the structure of the valence
electron density of states are determined by the atomic properties and short-
range ordering in the crystal, whereas long-range ordering is responsible for the
fine structure. Therefore, the disappearance of the distinct minimum between
the peaks I and II indicates that it is an example of long-range ordering. The
details of the structure of the X-ray photoelectron spectra of amorphous carbon
are consistent with the carbon atoms existing in trigonal and/or tetrahedral coor-
dination. The most probable is, however, the trigonal coordination.

Figure 112 shows the X-ray photoelectron spectra of the 1s line of carbon
for diamond, crystalline and microcrystalline graphite, and amorphous carbon.
In all four spectra, besides the main line, a structure related to the characteristic
energy losses of photoelectrons is observable. The energy position of the maxima
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Figure 112. 1s photoelectron spectra
of (1) diamond; (2) fine-grained
graphite; (3) crystalline graphite;

(4) amorphous carbon.

in this structure are given in Table 19. The characteristic loss spectra of amor-
phous carbon are more similar to those of graphite than to those of diamond. It
is more probable that the maximum P, arises from interband transitions than
from collective oscillations of wp electrons. This conclusion is based on the fact
that the maximum P, is also observed in the spectrum of diamond.
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TABLE 19. Characteristic Losses in Diamond, Graphite, Microcrystalline Graphite, and
Amorphous Carbon

Energy position of the spectral
structures, eV

Method of energy
determination Sample P, P, Py
XPS calculations Diamond 11.3 254 34.1
12.5 - 31.1
XPS calculations Graphite 6.3 28.1 333
7.5 [302] 25.1 —
12.5 [303]
XPS calculations Microcrystalline graphite 5.6 22.0 30.3
6.7-7.2 22.3-24.1
XPS calculations Amorphous carbon 5.6 26.5 31.6
6.1 20.3 -

The data obtained for diamond are consistent with those provided by the
measurement of reflectance [304]. For graphite, microcrystalline graphite, and
amorphous carbon, the positions of the maxima P, and P, are in good agreement
with other experimental data on characteristic losses [302, 305]. However, the
maximum P; has not been observed earlier in graphite and amorphous carbon.
The energy loss measurements for amorphous carbon provide added confirma-
tion that its electron structure is closer to that of graphite than to that of
diamond.

On the basis of X-ray diffraction studies, a series of models has been devel-
oped, which describes the structure of amorphous carbon [306, 307]. The re-
sults that have been described above are consistent with those models in which
it was presupposed that amorphous carbon has both trigonal and tetrahedral
bounding. Studies of the X-ray emission spectra of amorphous carbon have es-
tablished that the carbon K spectrum has an intermediate energy position be-
tween the carbon K spectra of diamond and graphite.

Silicon and germanium are isoelectronic analogues of diamond. The X-ray
photoelectron spectra of silicon and germanium, like that of diamond, have
three maxima (Figure 113). Therefore, the first maximum (I) may be attributed
to the first band, the second (II) to the second band, and the third (III) to the
third and fourth bands. The first band is mainly of the s type, the third and the
fourth bands are of the p type, and the second band contains a mixture of both
s and p states. Therefore, any variation in the ratio (S; + Sy1)/Siy of areas under
the maxima should be related to variations in the ratio of photoionization cross
sections 0(s)/o(p) of the atomic orbitals.

To study this problem in more detail, Cavell et al. [286] measured the X-ray
photoelectron spectra of valence electrons in gaseous CH,, SiHy, and GeH, com-
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Figure 113. Valence band photoelectron
spectra in (1) diamond; (2) silicon; (3)
germanium.

pounds, using a spectrometer specially constructed for the study of gaseous sam-
ples and of free ions. The Ka; , line of magnesium was used as excitation source.
As Figure 114 shows, the X-ray photoelectron spectra in all three cases exhibited
only two maxima, corresponding to the levels 4, (s type) and T, (p type). The

binding energies of these states were measured with respect to the binding energy

Figure 114. Valence band photo-
electron spectra in gases: (a) CH,;
(b} SiH4,' (C} GeH4.
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TABLE 20. Values of Binding Energy and FWHM for the Molecular
Orbitals of CHy, SiH,4, and GeHy (in eV)

Al T,
Sample Ep FWHM Ep FWHM
CH, 23.08 1.71 14.5 2.8
SiH,4 18.01 1.16 12.67 1.69
GeHy 18.46 1.17 12.28 1.75

of the 2s electrons of neon, taken as equal to 48.72 eV. With the LCAO method
it is possible to derive the wave functions of these two states (the energy and
HWHM values are given in Table 20) in terms of atomic s and p orbitals. This
makes it possible to determine the ratio of photoionization cross sections
o(s)/o(p) from the known intensities of the maxima. According to the data in
Table 21, this ratio changes more, in moving from diamond to germanium, than
the ratio of peak areas (Sy + Sy;)/Siy1- This is because the energy bands in solids
do not have pure s or pure p character.

A change of the excitation energy from that of Mg-Ka to that of Al-Ka does
not have a significant effect on the photoionization cross section. '

The X-ray photoelectron spectra of silicon and germanijum will now be con-
sidered in more detail. The X-ray photoelectron spectrum of the valence elec-
trons of silicon is illustrated in Figure 115. The intensity distribution in the Kf
emission spectrum confirms the above conclusions regarding the localization of
s- and p-type states in the valence band of silicon. The X-ray emission spectrum
of silicon, measured by Nemoshkalenko et al. [277], is illustrated in Figure 115.
It shows good agreement with the data of Linger [308], with the exception of
the enhancement B’, which appears more clearly.

The X-ray emission spectrum of silicon is characterized by a rather clear fine
structure. Nemoshkalenko et al. [277, 278] used the information provided by
this spectrum and that of 8-SiC crystals, to determine the Fourier components

TABLE 21. Comparison between the Ratios of

Atomic Photoionization Cross Sections and the

Ratios of Areas of the Peaks |, I, 11 in the Photo-
electron Spectra of Diamond, Si, and Ge

S+ S o(s)
Sample B
Sm o(p)
Diamond 2.9+0.3 12
Si 1.6 £+ 0.2 34

Ge 0.7+0.1 1.0
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Figure 115. Electron density of states
in the silicon valence band, and the cor-
responding photoelectron and X-ray
emission spectra: (a) density of states;
(b) photoelectron spectrum; (c) experi-
mental [ ) and calculated (———)
X-ray emission K g spectra of silicon;
(d) experimental ( ) and calculated
{———) L3 3 band of silicon.

P,arb. units
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of the pseudopotential. To find the magnitude of the potential form factors, it
is only necessary to use the values of energy positions of the high symmetry
points, obtained from the study of X-ray emission spectra. It turned out that
such data were indeed sufficient for the determination of the structure of the
valence bands of silicon and §-SiC crystals. However, the width of the direct and
indirect gaps and the structure of the conduction band, determined from the
X-ray data alone, did not agree with the corresponding optical data. Therefore,
in determining the potential form factors, Nemoshkalenko et al. [277] also took
into account the energies of several optical transitions.
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From the position of the enhancement 4, B, C, D, E and from the high-
energy and low-energy limits of the X-ray emission K spectrum, as well as
from the transition energies E(I'y5, —T'z5'y) =34, E(L,c —L3'p) =322,
FE(X,e —X4)=4.1,E(Ly. —Ly'y) = 5.3 eV, the values of pseudopotential
form factors V5(3) = —0.233, V°(8) = 0.045, V5(11) = 0.080 Ry were deter-
mined. These values are close to the results obtained by Cohen and Bergstrasser
[138] . The density of states of silicon was calculated by using 1638 points in
1/48 of the Brillouin zone, which is equivalent to 61,776 points in the entire
zone. The result of the calculation was consistent with that obtained by Kane
[309], although Kane used the Animalu~Heine pseudopotential form factors
[120],,modified in such a way as to reproduce the experimental value of the
width of the band gap in silicon (1.1 eV), and also the electron effective mass
of the crystal, as determined by the method of cyclotron resonance.

Figure 115 demonstrates that the structure of the X-ray photoelectron spec-
trum is significantly different from that of the X-ray emission K spectrum. This
can be explained, as in the case of diamond and graphite, by the significantly
different influence of the transition probability on the shape of the photoelec-
tron energy distribution and the intensity of emitted X-ray quanta. Compari-
son of the density of states with the photoelectron spectrum confirms that the
photoionization cross section in silicon is higher for 2s electrons than for 2p
electrons.

The position of the critical points in the density of states can be determined
from the experimental curves. For this, it is first necessary to determine the
relation between the positions of critical points in the smoothed and un-
smoothed theoretical density-of-states curves, on one hand, and the width of
the excitation line and the instrument aberrations, on the other hand. Table 22
gives the experimental and theoretical energy values of the high symmetry states
in the Brillouin zone. These values agree rather well with each other. For the
states at the bottom of the valence band of silicon, the best agreement with

TABLE 22. Theoretical and Experimental Values of Energy for the High-Symmetry Points

Method of energy

determination L3 X4 W,
XPS [310, 311] - 2.5+0.3 3.9+0.2
UPS? [312] 1.2+0.2 2.9+0.3 -
UPS [313] - - -
Pseudopotential [138] 1.1 2.8 4.0
Pseudopotential [314] 1.2 2.9 —
OPW [315] 2.7 2.7 -

2The energy values are given in electron volts with respect to the top of the valence band.
UPS = ultraviolet photoelectron spectroscopy.
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experiment is given by the results of Chelikowsky and Cohen [314] obtained
by taking into account the nonlocal character of the potential. For the $-SiC
crystal, the X-ray spectroscopy data also give good agreement with the structure
of the energy bands.

For the germanium crystal, in contrast to silicon, the states near the point
L, in the k space produce a maximum in the X-ray photoelectron spectrum that
is much lower than the two other maxima. For germanium, good agreement
exists between the photoelectron energy distribution and the calculated density
of electronic states. In the calculation of the density of states by the pseudo-
potential model, an effective electron mass m* was used to achieve optimum
agreement with experimental data obtained using X-ray photoelectron spectros-
copy and ultraviolet photoelectron spectroscopy. For germanium, m/m* =
1.089. However, Pandey and Phillips [316] have expressed doubts regarding
the validity of replacing the electron mass m by the effective mass m* for ger-
manium and GaAs crystals. First, there is no physical foundation for this proce-
dure. Second, the procedure is unsatisfactory even from the empirical point of
view, since the difference m —m* that has to be introduced to obtain the cor-
rect value of the valence bandwidth has the opposite sign to that which would
be necessary to improve the agreement with the magnitudes of interband
energies.

Figure 116 illustrates the photoelectron spectrum of the valence electrons
in germanium, measured by Eastman et al. [317] using synchrotron radiation
of 25 eV as the excitation source. The states situated in the two lowest subbands
have in this case a somewhat higher excitation probability than the states in the
upper subband of the valence band. The main peaks and the characteristic fea-
tures in both of these curves agree well with each other. An exception is the
structure at 0.4 eV observed in the spectrum measured by using photons of
energy hv = 25 eV. This can be explained assuming the participation of surface
states in the photoemission process [318] . The ultraviolet photoemission spectra

of the Valence Band of Si?

State
i Ly W, Ly ry
4.7+0.3 6.8 0.2 8.1+0.3 9.3+ 0.4 12.5+ 0.6
44+03 - - - -
4.7+0.2 6.4+0.4 - - 12.4 £ 0.6
4.5 7.2 8.1 10.2 12.6
45 7.0 — 9.5 12.4

- 6.7 - 9.4 11.7
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Figure 116. Valence band photoelectron spectra of germanium at 25 eV |
eV (———) excitation energy.

) and 1486.6

of germanium give information about the electronic states in the region 4-8 A
from the sample surface, whereas the X-ray photoelectron spectra characterize
alayer of 15-30 A thickness. The good agreement between the X-ray photoelec-
tron spectra and the ultraviolet photoelectron spectra indicates that the bulk
band structure is not changed significantly by the presence of surface states.
However, the electron emission from the sample surface is superposed on that
from the bulk, and this superposition seems to give rise to the structure at
04eV.

In germanium, an interesting phenomenon is observed, namely, an increase
in the yield of Auger-electron emission when the energy of ultraviolet quanta is
changed. Figure 117 shows the curves of photoelectron distributions for differ-
ent energies of exciting photons. At 27.5 eV excitation energy, ionization of
d electrons of germanium does not occur (it starts at 29 eV). The spectrum
changes significantly when the excitation energy is increased to 30 ¢V. This
change is due to the M, 5 V'V Auger emission, which is superposed on the photo-
emission spectrum excited by the incident photons. The energy of electrons in

TABLE 23. Theoretical and Experimental Values of Energy for the High-Symmetry Points

Method of energy
determination Ly X4 W,
Pseudopotential [138] 1.1 24 3.3
Pseudopotential [284] 1.2 3.0 4.0
OPW [315] 1.2 2.8 -
UPS {312] 1.1+0.2 - -
XPS [284] - 2.7+0.3 3.920.2

2 The energy values are given in electron volts with respect to the top of the valence band.
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Figure 117. Valence band photoelectron spectra of germanium, at (a) 27.5 eV and (b)

30 eV excitation energy.

the M, s V'V Auger spectrum cannot exceed a maximum value determined by the
energy position of the core d levels with respect to the top of the valence band.
Therefore, the superposition of the Auger spectrum on the photoemission spec-
trum may be eliminated by further increasing the energy of exciting photons to

about 40 eV.

As can be seen from Table 23, the theoretical and experimental energy values
of the characteristic features in the band structure of germanium agree well with

each other.

of the Valence Band of Ge?

State
spin Ly Wi L} ry
3.8 6.9 8.2 9.9 12.0
4.4 7.8 9.1 11.0 13.3
- 7.4 - 10.6 12.6
45+0.2 7.7+0.2 — 10.6 £ 0.3 12.6 £ 0.3
4.5+0.3 7.4 +0.2 8.7+0.3 10.5+£ 0.4 12.8+ 0.4
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Energy-Band Structure of A;B;- and A,B,-Type Compounds

The similarity of the structure of the energy spectra of binary semiconduc-
tors and insulators with a crystal lattice of the sphalerite type suggests that their
X-ray photoelectron spectra reflect characteristics common to all compounds of
this type. The photoelectron spectra of the compounds investigated in the energy
region up to 50 eV are illustrated in Figures 118-121. The valence band photo-
electron spectra are characterized by three maxima, which reflect the distribu-
tion of the outermost s and p electrons of the anion and cation. The cation d
states are localized in the energy region 10-20 ¢V, and those of the anion in the
energy region 35-40 eV. In indium and gallium compounds, the 4d states of
indium and the 3d states of gallium are located below the nondegenerate sub-
band of the valence band. In cadmium and zinc compounds the 4d states of
cadmium and the 3d states of zinc prevent observation of the photoelectron
lines corresponding to the lower subband of the valence band. The lines corre-

Figure 118. Valence band photoelectron
spectra of: a—GaP; b—GaAs; c—GaSbh.
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Figure 119. Valence band photoelec-
tron spectra of a—InP; b—InAs; c—InSb.

Figure 120. Valence band photoelectron
spectra of a~ZnS; b—ZnSe; c—ZnTe.
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Figure 121. Valence band photoelectron
spectra of a—CdS; b—CdSe; c—CdTe.

sponding to the d states are much more intense than the maxima related to the
valence band. At a separation of up to about 15 eV from the d peaks, in the
region of high energy values, a structure with an intensity of about 5-10% of
the intensity of the d peaks is observed. This structure can be related to the
excitation of d electrons together with the simultaneous excitation of plasma
oscillations. To obtain information about the energy states of electrons in the
valence band from the experimental curves, I'(E), the distribution of elastically
scattered electrons on the high-binding-energy side of the d states maxima was
used and the background of secondary electrons was subtracted.

As in the case of diamond, silicon, and germanium, the unit cell in A;Ds and
A,Bg compounds with sphalerite structure contains two atoms with eight val-
ence electrons. Therefore, the valence band of these crystals consists of four
completely filled subbands. The top of the valence band in all the compounds
has I'y 5 symmetry, and, in the following discussion, energy values will be ex-
pressed as referred to this state.
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When establishing the correspondence of features observed in the experimen-
tal spectra with theoretically calculated critical points in the energy bands E'(k)
and with the density of electronic states p(E), it is necessary to take into ac-
count the magnitude of the spectrometer resolution. Consequently, calculated
densities of states are smoothed by using the curve of instrumental aberrations
of the spectrometer. Ley et al. [16] smoothed the curves p(E) with a Gaussian
having for the states at the bottom of the valence band a full-width at half-
maximum (FWHM) of 0.8 eV and for the states at the top of the valence band,

a HWHM of 0.7 eV. Aleshin [279] used for smoothing a dispersion curve with
HWHM equal to 0.6 eV. As a result, the features of the curve p(E’) and of the
smoothed curve p'(E) will be somewhat shifted with respect to each other. This
shift should be taken into account in the determination of the energy positions
of features in the experimental curves I'(E).

Let us consider the example of GaP (Figure 122), which is typical for this
class of compounds, to see how relations can be established between the features
observed in the experimental and theoretical curves. The first, rather flat maxi-
mum at the top of the valence band is situated between the energy states L5 and
X This flat portion is even more smoothed in the curve p'(E), but the peaks
related to L3 and X5 are distinguishable in the photoelectron spectrum. In order
to determine the energy of the state " (the high-energy limit of the third
peak), it can be assumed to a good approximation that TP g situated at an
energy where the intensity is the average of the intensity at W, and at the
minimum.

Peak II appears because at the surface of the Brillouin zone, the states in the
second band have rather close energy values. The top of this peak coincides with
the position of point W, within up to 0.2 eV. It is worth noting that the energy
position of the top of this peak is usually one of the most accurately determined
structural features in the photoelectron spectrum. Point X3 corresponds to the
high-energy edge of peak II in the photoelectron spectrum. The first energy band
is correlated with peak L.

The energy values at points X; and W, of this band are nearly coincident.
To a good approximation, it can be considered that, at these points, the intensity
is % of the intensity of peak I. The top of peak I agrees rather accurately with
the position of point L.

In the remainder of this chapter, the energy band structure of A;B5 and
A, B¢ compounds will often be discussed in terms of the data from ultraviolet
photoelectron spectroscopy. The results obtained from X-ray photoelectron spec-
troscopy and ultraviolet photoelectron spectroscopy may be different. Besides
the difference in resolution, there are three other basic reasons for this discrep-
ancy, namely, the variation of the density of states in the conductivity band, the
variation of photoionization cross section, and the relaxation effects. In ultravio-
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TABLE 24. Theoretical and Experimental Values of Energy for the High-Symmetry Points

Method of energy

determination Ly Xs W,
XPS [287] 1.2+ 0.3 2.7+0.2 36402
UPS [320] 0.8 - -
Pseudopotential [284] 1.0 2.5 3.7
OPW [315] (with adjusted 0.9 2.3 -

parameters)

OPW [315] (V523 0.9 23 -
ROPW [321] (V&F)? 0.9 2.2 -

2Values of energy (eV) are given with respect to the top of the valence band.
bROPW —relativistic OPW method.
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let photoelectron spectroscopy, the distribution of the density of states in the
conduction band is superimposed on the distribution of the density of states in
the valence band of the crystal. By increasing the photon energy up to values
characteristic for X-ray photoelectron spectroscopy, the influence of the struc-
ture of the conduction band can be efficiently eliminated. The photoionization
cross sections for s, p, d, and f electrons are different, and they may change dif-
ferently when the excitation energy is increased. The ultraviolet photoelectron
spectra are determined by the behavior of the wave function of valence electrons
in the outer atomic region, and the X-ray photoelectron spectra are determined
by the behavior of the wave function of valence electrons in the vicinity of the
nucleus. The problem of final-state relaxation effects is completely neglected in
photoemission spectroscopy, although Spicer [319]has drawn attention to these
effects. Since, in the calculation of energy bands, the exchange potential is not
taken to be of the Hartree-Fock type, but of the Slater type, the Koopmans’
corrections should be added to the energy values obtained. For deeply lying
valence bands, the relaxation in the final state results in a shift of the structural
particularities upwards, towards the top of the valence band. Particularly large
will be the shift of the states situated at the bottom of the valence band. This
shift upward is revealed by p(F) curves derived by any self-consistent energy-
band calculation, without introduction of corrections related to the relaxation
of electron states in the valence band of crystals.

From Table 24, it is evident that differences exist between the data from
X-ray photoelectron spectroscopy and from ultraviolet photoelectron spectros-
copy. The difference between energy values increases toward the bottom of the
valence band. For GaP, rather good agreement is observed between the theoreti-
cal and experimental energy values. This is also the best agreement of all the
calculations performed by the pseudopotential method.

of the Valence Band of Crystalline GaP?

State
Ellnin W, X3(Ly) X, L, ry
40+0.2 6.5+0.2 6.9 £0.2 9.6 £ 0.3 10.6 + 0.3 13.2+04
4.1 — 6.9 9.7 - 11.8
4.1 6.6 6.9 10.9 11.7 13.6
- - 6.1 9.2 10.0 11.8
- - 6.1 9.4 10.1 11.9

- - 6.1 9.5 10.3 12.0




226 CHAPTER FOUR

Figure 123 illustrates the photoelectron spectra of valence electrons in GaAs,
and also the X-ray emission Kf spectrum of gallium in GaAs. It is seen that the
transition probability affects the shape of the X-ray photoelectron spectrum and
the X-ray emission spectrum differently. Since transitions from s states to the
1s level are forbidden, the presence of transitions from the nondegenerate sub-
band of the valence band confirms the existence of hybridization between s and
p states in this nondegenerate subband. However, the detailed structure of the
valence band of the GaAs crystal is less clearly represented in the X-ray emission
spectra than in the X-ray photoelectron spectra, because of the significant
width of the inner K level (half-width of the order of 0.9 eV). For the GaAs
crystal, rather good agreement is observed between the structure of the electron
spectra and the density-of-states curve, as well as between the experimental and
theoretical values of the energy position of the structural particularities of the
valence band (see Table 25). Characteristic for the photoelectron spectrum of
GaAs is the absence of a deep minimum between the degenerate and nondegen-
erate parts of the valence band, which indicates that the background of inelasti-
cally scattered electrons cannot be adequately subtracted from the X-ray photo-
electron spectrum.

In the case of GaSb crystal (Figure 124), a significant discrepancy (1.2 eV)
in the position of peak I in the degenerate part of the valence band is observed.
The data in Table 26 show that the calculated energy values of the critical points
in the GaSb crystal are consistent with the experimental values.

For the InP crystal, as can be seen from Figure 125, rather good agreement
is observed between the X-ray photoelectron spectra and the calculated structure
of the valence band. The density of electron states was calculated using the form

TABLE 25. Theoretical and Experimental Values of Energy for the High-Symmetry Points

Method of energy

determination L3 X5 Wy
XPS [16] 1403 25403 40+02
UPS [320] 0.8 - -
Pseudopotential [284] 0.9 25 35
OPW [315] (with adjusted 0.9 2.3 -

parameters)

OPW [315] (V23 1.0 23 -
ROPW [321] (v&P) 1.1 2.4 -
SOPW? [322] (V23 1.0 2.5 34
SOPW [322] (VXY 1.0 23 3.0

@ Values of energy (in electron volts) are given with respect to the top of the valence band.
bsOPW—self-consistent OPW method.
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Figure 123. Density of states, X-ray 5
emission spectrum, and photoelectron g
spectrum of crystalline GaAs: 1-valence  ®
band photoelectron spectrum of crystal- <
line GaAs; 2—-X-ray emission K spectrum
of gallium in crystalline GaAs; 3—electron
density of states. E, eV
of the Valence Band of Crystalline GaAs?
State
CH W X3(Ly) X Ly ry
44+0.2 6.1 0.1 7.1+0.2 10.7 + 0.3 12.0 £ 0.5 13.8+ 0.4
4.1 - 6.9 10.0 - 12.9
3.9 6.6 6.8 11.4 - 13.8
— - 5.5 10.7 11.1 12.4
- - 6.3 9.7 10.4 12.0
- - 6.4 10.2 10.9 12.4
4.0 6.2 6.6 9.2 10.1 11.9
33 6.0 6.3 9.5 10.2 11.8
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Figure 124. Electron density of states and valence band photoelectron Sspectrum of crys-
talline GaSbh.

factors of Cohen and Bergstrasser [138] . Investigation of the X-ray photoelec-
tron spectra leads to an interpretation of some of the structural particularities of
the X-ray K and L emission spectra of phosphorus in crystalline InP [323, 324].
In Figure 125, the main features in the K and L spectra are shifted on the energy
scale by about 0.7 eV, which may, for example, be due to incorrect scaling of
the K and L spectra by Wiech [323], and also to the different influence of tran-

TABLE 26. Theoretical and Experimental Values of Energy for the High-Symmetry Points

Method of energy

determination Ly Xs W,
XPS [16] 1.3£0.2 27402 2.6+0.2
OPW [315] (with adjusted 0.9 2.2 -
parameters)
OPW [315] (V523 1.1 24 -
ROPW [321] (V&P) 1.2 2.5 -

2Values of energy (in electron volts) are given with respect to the top of the valence band.
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Figure 125. Electron density of states,
valence band X-ray emission spectrum,
and valence band photoelectron
spectrum of crystalline InP: 1—valence
band photoelectron spectrum of crys-
talline InP; 2— X-ray emission Lj 3
band of phosphorus in crystalline InP; di " A
3—electron density of states. 25 B 10 0 Eev

/v

p, arb. units

sition probabilities on the shape of these spectra. In the X-ray emission L spec-
trum of phosphorus, an enhancement on the high-binding-energy side of the
main peak is observed. The nature of this enhancement remained unclear as long
as data from X-ray emission spectroscopy alone were used. Investigation of the
photoelectron spectra of valence electrons in InP suggested that this enhance-
ment might arise from a contribution from the 4d electrons of indium to the
X-ray emission spectra of phosphorus. This would confirm that the overlapping
integral of 2p electron wave functions of phosphorus and 4d electron wave
functions of indium in InP compound is finite. As the data in Table 27 show,
good agreement exists between theoretical and experimental results.

The X-ray photoelectron spectra and the valence band density of states of
the compound InAs are shown in Figure 126. The density- of-states calculation
was performed using the form factors taken from the work of Cohen and Berg-
strasser [138] . Again, good agreement is observed between the photoelectron

of the Valence Band of Crystalline GaSb?

State
Dl W, X3(Ly) X, Ly Iy
3.8:0.2 6.4 +0.1 6.9+0.3 9.4 +0.2 10.3+0.3 11.6 £ 0.3
- - 5.2 9.8 9.9 11.1
- - 6.3 7.9 9.0 10.7

- - 6.9 8.9 9.7 11.3
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TABLE 27. Theoretical and Experimental Values of Energy for the High-Symmetry Points

Method of energy
determination Lj Xs W,
XPS [16] 1.0£0.3 2002 2.5+0.2
OPW [325] (with adjusted 0.6 1.7 -
parameters)
OPW [325] (V23) 0.6 17 -
ROPW [321] (V&) 0.7 1.6 -

%Values of energy (in electron volts) are given with respect to the top of the valence band.

TABLE 28. Theoretical and Experimental Values of Energy for the High-Symmetry Points

Method of energy
determination Ls X5 Wy
XPS [16] 0.9+0.3 24 +0.3 2.7+0.3
OPW [325] (with adjusted 0.6 1.7 -
parameters)
OPW [325] (V523 0.7 1.8 -
ROPW [321] (V5P 0.8 1.9 -

%Values of energy (in electron volts) are given with respect to the top of the valence band.

spectra and the density of states of valence electrons. Table 28 shows the calcu-

lated and experimental values of the energy of singular points of crystalline InAs.
The last indium compound to be discussed in the present context is InSb.

Figure 127 illustrates the valence band photoelectron spectra as well as the struc-

ture of the valence band, calculated by the pseudopotential method taking into

account spin-orbit interactions. The theoretical and experimental energy val-

ues are given in Table 29.

Figure 126. Valence band density of
states (———) and photoelectron spec-
trum (- ) of InAs. The theoretical
curve is smoothed by a dispersion curve
with 0.3 eV half-width.

p, 1, arb. units
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State
ipin Wi X3(Ly) X, L, ry
3.2+0.2 54+0.2 59+0.2 8.9+0.3 10.0+£ 0.3 11.0+ 0.4
- - 4.6 9.7 10.1 11.1
- - 4.5 9.0 9.4 10.6
— - 4.6 9.2 9.7 10.8
of the Valence Band of Crystalline InAs?
State
zipin Wi X3(Ly) X L, ry
33+0.2 5.8+0.2 6.3+0.2 9.8+0.3 10.6 £ 0.3 12.3+ 0.4
- — 4.7 10.3 10.6 11.5
_ — 4.7 9.4 9.8 10.8
- - 5.1 10.0 10.4 11.4
:
3
g
©
Ql

Figure 127. Valence band density of
states and photoelectron spectrum of
crystalline InSb. The theoretical
curve is smoothed by a dispersion
curve of 0.3 eV half-width.

0
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TABLE 29. Theoretical and Experimental Values of Energy for the High-Symmetry Points

Method of energy

determination Ly Xs W,
XPS [16} 1.4:03 24:04 31:0.2
UPS [320] 1.05 - -
Pseudopotential [284] 1.2 2.1 2.8
OPW [325] (with adjusted 0.7 1.8 -

parameters)

OPW [325) (V&3 0.8 1.9 -
ROPW [321] (V&P 1.1 2.1 -

2Values of energy (in electron volts) are given with respect to the top of the valence band.

Let us now consider the compounds of zinc (ZnS, ZnSe, ZnTe). Their X-ray
photoelectron spectra are shown in Figure 128, with the calculated and the ex-
perimental energy values of the singular points of the valence zone given in
Tables 30-32. Comparison of Figure 128 with Figure 120 shows that in Figure
128 the contribution of d states to the photoelectron spectrum has already been
subtracted. In Figure 120, however, owing to the overlapping of the intense
d-electron spectrum with the nondegenerate subband of the valence band, this
contribution is difficult to estimate correctly. In such a case, use of the method
of X-ray emission spectroscopy is particularly useful. As Figure 129 shows, the
KB line of zinc in the compound ZnSe allows the determination of the energy
position of the bottom of the valence band. In compounds with a crystal lattice
of the sphalerite type, the s and p states at the bottom of the band are hybri-
dized, and the presence of the mixture of p states allows identification of the
K X-ray emission spectrum from this subband. It is to be noted that, in the
energy region of the d state of zinc, the X-ray emission spectrum of zinc in the
compound ZnSe does not exhibit any structure. The d - s transitions are of
quadrupole type. The absence of any enhancement in the emission spectrum
that would correspond to this transition confirms that no hybridization of d
and p states occurs.

In the series of cadmium compounds CdS, CdSe, CdTe, the density of states
have been calculated only for CdTe by using the pseudopotential method, with
[284] and without [148] account being taken of spin-orbit effects. The
shapes of the density-of-states curves obtained in these works are similar. Figure
130 shows the density of states in the valence band of CdTe, as calculated by
Aleshin [279] . The peak of the d states of cadmium does not allow a better
identification of the region of localization of the lower subband of the valence
band. The figure shows that the calculation does not give the correct position
of this subband, since the maximum in the density of states which corresponds
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State
i Wy X3(Ly) X, L, ry
34:0.2 59+0.2 6.4+0.2 9.5+0.2 10.5+ 0.3 11.7 £ 0.3
3.65 - 6.5 9.0 - 11.2
3.2 5.7 6.2 9.5 10.1 11.3
- - 4.7 9.0 9.3 10.2
— — 5.0 7.7 8.3 9.6
- - 5.7 8.8 9.3 10.5
nid

Figure 128. Valence band photoelectron
spectra of (a) ZnS; (b) ZnSe; (c) ZnTe
after subtraction of the background of
inelastic electron scattering.

1, arb. units

N

E, eV
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TABLE 30. Theoretical and Experimental Values of Energy for the High-Symmetry Points

Method of energy

determination L; Xs W,
XPS [16] 1.4+04 25+0.3 3.0+0.2
OPW [326] (with adjusted 0.3 1.1 -

parameters)

OPW [326] (Vex a=2/3, 0.4 1.2 -
ROPW[16] (Vex ) 0.5 1.3 -
SOPW [326] 0.6 1.6 2.0
KKR [327] 0.6 14 -
APW [328] 0.9 1.7 -

2Values of energy (in electron volts) are given with respect to the top of the valence band.

TABLE 31. Theoretical and Experimental Values of Energy for the High-Symmetry Points

Method of energy

determination L, X5 W,
XPS [16] 1.3£0.3 2.1+0.3 2.6+ 0.2
UPS [320] 0.7 - -
Pseudopotential [284] 0.9 2.1 33
OPW [315] (with adjusted 0.4 1.4 -

parameters)

OPW [315] (V&) 0.4 1.3 -
ROPW [16] (V%P) 0.7 1.6 -
SOPW [322] (VX213) 0.7 2.0 2.7
SOPW [322] (V&) 0.7 1.6 2.3
KKR? [327] 0.6 1.3 -

2vyalues of energy (in electron volts) are given with respect to the top of the valence band.
bKKR = the method of Green’s functions.

TABLE 32. Theoretical and Experimental Values of Energy for the High-Symmetry Points

Method of energy

determination Lj X5 W,
XPS [16] 1.1:£0.3 24 £0.2 2.7+0.2
OPW [315] (with adjusted 0.5 14 -

parameters)

OPW [315] (Vg‘;l) 0.6 1.5 -
ROPW [16] (V%) 1.0 2.0 -
KKR [327] 0.6 1.6 -

2values of energy (in electron volts) are given with respect to the top of the valence band.
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of the Valence Band of Crystalline ZnS?
State
s W, Xa(Ly) X, Ly ry
34 £0.3 4.9+0.2 5.5+0.2 12.0+0.3 12.4 £ 0.3 13.5+ 0.4
- - 3.5 - - -
- - 3.5 - - -
- - 3.8 11.2 11.5 12.2
2.1 3.7 4.2 10.0 10.6 11.7
2.1 — 3.3 11.9 12.1 12.6
- - 34 13.4 13.4 14.0
of the Valence Band of Crystalline ZnSe?
State
i Wy X3(Ly) X, Ly ry
34+0.2 5.2:0.2 5.6+£0.3 12.5 £ 0.4 13.1+£0.3 15.2+ 0.6
34 - 5.3 - - -
3.8 5.3 5.9 14.2 14.5 15.8
- - 3.7 - - -
- - 3.8 - - -
- - 42 11.6 11.9 12.6
3.1 4.5 4.7 10.4 10.8 11.8
4.5 4.2 4.4 10.5 10.9 11.8
2.2 - 3.6 12.0 12.2 12.6
of the Valence Band of Crystalline ZnTe?
State
in W, X3(Ly) X, L, ry
3.2+0.3 5.1+0.2 5.5+0.2 11.6 £ 0.3 12.0+ 0.3 13.0+ 0.4
- - 37 - - -
- - 43 - - -
- - 5.0 10.2 10.6 11.5
2.8 - 4.3 9.6 9.7 10.5
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Figure 129. Valence band density of
states, X-ray emission spectrum, and
photoelectron spectrum of crystalline
ZnSe: (a) photoelectron spectrum; (b)
X-ray emission K spectrum of zinc in
crystalline ZnSe; (c) electron density of

P arb. units
———)

,’ \\ states. The theoretical curve is smoothed
e —— by a dispersion curve of 0.3 eV half-
15 10 width.

TABLE 33. Theoretical and Experimental Values of Energy for the High-Symmetry Points

Method of energy

determination Ls Xs W,
XPS [16] 0.9+0.3 1.8 £+ 0.2 2.2+0.3
UPS [320] 0.7 - -
Pseudopotential [284] 1.0 1.5 2.0
OPW [315] (with adjusted 0.4 1.1 -

parameters)

OPW [315] (V&Y 0.4 1.1 -
ROPW [16] (V%5) 0.8 1.6 -
KKR [327] 0.6 14 —

2Values of energy (in electron volts) are given with respect to the top of the valence band.
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Figure 130. Valence band photo- |
electron spectrum (a) and electron L \] |
density of states (b) of crystalline / /’ X
CdTe. The theoretical curve is P Il e TR Dk S
smoothed by a dispersion curve of 15 10 5 0E, ev
0.3 eV half-width. b

to this subband is not observed at energies greater than that of the maximum in
the d states in the photoelectron spectrum. Table 33 indicates that, for the
degenerate part of the valence band, the calculated energy values agree with the

experimental values.
Figure 131 shows the photoelectron spectra of CdS and CdSe after subtrac-

tion of the background of electron inelastic scattering and the contribution of
d states.

of the Valence Band of Crystalline CdTe?

State
Zipin W, X3(Ly) X, L ry
2.7+0.3 45+0.2 5.1+0.2 - - —
2.8 - 4.7 8.8 - -
2.7 4.3 4.6 10.6 - 11.8
- - 3.0 - - -
- - 3.1 - - -
- - 3.9 10.1 10.3 10.8

21 - 3.5 8.7 9.2 10.3
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!
-
2
S
g
m\
2 Figure 131. Valence band photoelec-
tron spectra of (1) CdS and (2) CdSe
L 1 L after subtraction of the background of
8 6 4 2 0 E,eV  inelastic electron scattering.

Binary compounds differ from the monoatomic crystals of diamond, silicon,
and germanium in having a forbidden band between the top of the valence band
and the subband of nondegenerate states. For monatomic crystals the sym-
metry group includes inversion, and therefore the states at the point X are
degenerated. In compounds, however, the magnitude of band splitting at this
point depends—as has already been pointed out by Cohen and Bergstrasser
[138] —on the antisymmetric form factors of the pseudopotential and, conse-
quently, on the ionic character of the compounds. A general tendency has been
observed, namely, an increase of the splitting when passing from A;B5 com-
pounds to A,B¢ compounds. Grobman et al. [329] used the two-band model
to show that the magnitude of the splitting is close to the parameter C intro-
duced by Phillips [330], which is determined by the magnitude of the antisym-
metric Fourier component of the potential.

A more detailed study of this problem has been performed by Harrison
[331] with a model in which hybridized s and p states were taken into account.
The author constructed for each atom the sp® hybrid orbitals directed toward
the four nearest neighbors. Thus, for the anion, such an orbital may be expressed
as follows:

1 —
| 9a) = 5 (Is2) + V31 p%),
where |p?) is a linear combination of p-type states. The orbitals of each atom in
the crystal are orthogonal to each other. The mean value of the Hamiltonian for

the ¢, orbital is given by the expression

1
g% == ((Pa‘ Hl (Pa> = T(Sf T 38?,)v



SPHALERITE-TYPE LATTICE 239

where €§ = (s*|H|s% and ej = (p®|H|p®). Similar expressions may be written
for the wave function |¢.) and the energy € of the cation. V3 = 1 (¢¢ —¢?)is
one of the basic parameters of the model, and it describes the change in the
polarity of the binding. It is to be expected that the electrons would be trans-
ferred toward the anion if V5 has positive values. Though the hybrid orbitals of
any atom are orthogonal, two hybrid orbitals are correlated by a nonzero matrix
elements of the Hamiltonian. The second important parameter is

Vi=—(q | H|ga) =

1

4 (8: - 8‘81)1

where the sign is chosen in such a way that V{ will be positive. The parameter
V§ can be determined in a similar way.

Let us now find the matrix element of the Hamiltonian between two hybrid
orbitals of a single binding:

V2: ""(@c\H\(Pa)'

Here, the sign is chosen so that the parameter ¥, may be considered as positive.
Let us consider for each binding the linear combination of hybrid orbitals that
yields the minimum energy

l@) =ty | @a) + | @),
where u2 + u2 = 1. Here, u, and u, are given by the following expressions:

Uy = [%(1 + ap)} "

1 2
Uy = [7(1 — %)] ;
where

Vs
V3V

oy =
The matrix element {p|H| ¢} is given by

(9 H] @) = - (e + &9 — (V3 V).
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By using the matrix elements between two binding orbitals of the anion and
cation, the following parameters can be determined:

A=—(9|H[¢)0 = (1 +,) Vi,
C=—(p|H|¢') = (1 —a,)Vi

Knowing the matrix elements, the energy bands can also be calculated. For this
purpose, Harrison [331] used, as basis functions, combinations of binding orbi-
tals having the orientation a:

Yk, 1) = _VIW ;exp ik - R;| % (r—R))),
where the sum is performed over NV positions of the vector R; defining the
middle point of the binding a. For each state k, the wave function is expressed
as the sum of four Bloch functions with different « values. By analyzing the
secular equation obtained, the magnitude of the splitting of energy bands can be
determined. In the above model, this splitting is given by AE(x; —x3) =

414 — C|. Figure 132 shows that the experimental values agree satisfactorily

with the theoretical ones.
The spin-orbit term in the Hamiltonian is given by the expression

H =_°LE<L

oV
(5L s

where « is the fine-structure constant, V is the electrostatic potential, and L and
S are the orbital and spin momenta, respectively.

101 NaCl
L °
i L
0 InSe RbCl
sl >
S <CdTe
3 e GO As
- ®InSb , .
Ge.Si Figure 132. Correlation between exper-
0 ¥ T imental and theoretical values of valence

5 10 4(A-C) band energy splitting at the point X.
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Comparison of the magnitudes of the splitting AE_, for different charge
states of the free ions [332] has shown that for the given configuration of d
electrons, the spin-orbit splitting increases with increasing ionic charge, but
not more than 2% per unit change in charge. Transition from the configuration
d? to the configuration d® results in a significantly greater change in the magni-
tude of spin-orbit splitting (typically 7%). The magnitudes of spin-orbit split-
ting in the d states of cations and anions in A3;Bs and A;B4 compounds given in
Tables 34 and 35 show that, for core d electrons of atoms in a tetrahedral struc-
ture, AE;_, does not increase significantly (it increases less than 1%) as com-
pared with the corresponding values in free ions. The compounds of tellurium
are an exception. For these the spin-orbit splitting increases by 2.8%. In metals
(indium, cadmium, and lead) AE;_, is 7%, 4%, and 1% greater than the values
obtained for free ions, respectively. An even greater difference is observed for
zinc. In zinc AE_, = 0.54 eV [333], although in free ions of zinc (Zn II) its
value is only 0.34 ¢V [334]. For lead and antimony no increase of the spin-
orbit interaction was observed when passing from free ions to compounds. The
observed variations in the magnitude of AE_, arise from multiplet splitting in
the crystal field. Thus, because of the spin-orbit interaction and the octahedral
crystal field, the energy levels of d electrons are split into the doubly degener-
ated level I'; with energy E(T';) = —4Dq + £, and the two I'g, four-times-

TABLE 34. Spin-Orbit Splitting of the Cation d States in the Compounds A3B5 and A;Bg

Magnitude of

Sample Level Lattice type the splitting (eV) Ref.
GaP 3dGa Sphalerite 0.4 [336]
GaAs 3dGa Sphalerite 0.4 [336]
GaSb 3dGa Sphalerite 0.4 [336]
InP 4dIn Sphalerite 0.78 [336]
InAs 4dIn Sphalerite 0.82 [336]
InSb 4dIn Sphalerite 0.84 [336]
In (metallic) 4dIn Tetragonal 0.91 [336]
In III (free ion) 4dIn — 0.85 [336]
CdTe 4dCd Sphalerite 0.70 [320]
Cds 4dCd Sphalerite 0.76 [337]
CdSe 4dCd Sphalerite 0.87 [337]
Cd (metallic) 4dCb Hexagonal 0.95 [333]
Cd II (free ion) 4dCd - 0.67 [334]
PbS 5dPb NaCl type 2.58 [338]
PbSe 5dPb NaCl type 2.61 [338]
PbTe 5dPb NaCl type 2.61 [338]
Pb (metallic) 5dPb Face-centered cubic 2.66 [333]

Pb IV (free ion) 5dPb - 2.64 [334]
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TABLE 35. Spin-Orbit Splitting of the Anion d States in the Compounds A3;Bs and A;Bg¢

Magnitude of

Sample Level Lattice type the splitting (eV) Ref.
GaSb 4dSb Sphalerite 1.21 [16]
InSb 4dSb Sphalerite 1.22 [16]
Sb (metallic) 4dSb Rhomboid 1.25 [339]
Sb V (free ion) 4dSb - 1.24 [334]
ZnTe 4dTe Sphalerite 1.47 [16]
CdTe 4dTe Sphalerite 1.44 [16]
HgTe 4dTe Sphalerite 1.44 [16]
Te (metallic) 4dTe Hexagonal 1.51 [339]
Te VII (free ion) 4dTe — 1.41 [334]
HgTe 5dHg Sphalerite 1.77 [16]
HgSe S5dHg Sphalerite 1.81 [337]
HgS 5dHg Sphalerite 1.79 [337]
Hg (liquid) SdHg - 1.83 [16]
Hg II (free ion) 5dHg 1.80 [334]

degenerate levels

Ey (1) = 6Dg + )/ T tcoso,

| —
E,(Ty) = ——4Dq-—-—2—§—— V—g—gcose,

where £ is the magnitude of spin-orbit interaction and @ is given by the equation

10Dg + ¢

These results may also be used for the tetrahedral field since it also splits the d
levels into the #,; and e, components, which in this case are in the reverse order.
In the above formula, —10Dg can be replaced by the empirical splitting param-
eter B. Moreover, all the constant factors can be included in B. The spin-orbit
interaction constant is negative for hole states, while B may change sign in A;B;
and A,B4 compounds. Figure 133 shows AE,; [in energy units (5/2)]£]] versus
B for hole states in a tetrahedral field. Here, £ is fixed and B is variable. If the
lines are narrow, then the photoelectron spectrum should exhibit three peaks.
However, if the lines are rather broad, the effects caused by the crystal field
result in a redistribution of the intensity of two photoelectron lines.
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=05

Figure 133. Spin-orbit splitting and crystal -
field splitting of d states in crystals with a
sphalerite-type lattice. [B is given in units of -15 N
(5/2) l€l.] -252-15-1-050 051 1.5 2 258

Evidently, for tellurium compounds the ratio |B/¢| is approximately 0.5, and
B is negative. Ley er al. [332] have analyzed the possible splittings for hexagonal
crystals. They have also used the experimentally determined values of AE_, to
evaluate the constants that characterize the crystal field splitting of energy levels.

To illustrate the influence on AE;_, of the symmetry of surrounding atoms
in crystals, Figure 134 shows the 4d doublet of cadmium for both the alloy
AgyoCdyo and pure cadmium. The latter was evaporated onto a gold substrate
in a sufficient amount to form a monolayer of cadmium. Cadmium atoms in a
cubic lattice are characterized by a AE;_ value close to that corresponding to
free atoms. For cadmium evaporated onto gold, the magnitude of spin-orbit
splitting is also small, and therefore, because of the low dissociation energy of
cadmium atom clusters, it follows that in this case AE,_, reflects the properties
of separate cadmium atoms. When atomic clusters are formed on the surface,
the magnitude of AE_, increases.

Thus, the variation of the magnitude of spin-orbit interaction in compounds,
as compared to free atoms and ions, is determined by the influence of the crystal
field on AE,_,. The acquisition of quantitative data regarding this problem,
however, still requires a large amount of work.

Chemical Shifts of Core Levels

As we have shown in Chapter 2, the binding energy values of core-level elec-
trons are sensitive to the charge distribution of valence electrons and can thus be
used for the determination of the ionic character of compounds. In the determi-
nation of binding energies of core electrons in compounds, however, account
must be taken of the possible oxidation of the surface layer of the sample under
investigation, as well as effects arising from electrostatic charging. As a conve-
nient reference point for estimating the values of binding energies, the top of the
valence band of the crystal is often used. In this case, the absolute value of bind-
ing energies may be found by adding the value of the work function of the sam-
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1, arb. units
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Figure 134. Valence band photoelectron
. . 1 ] spectra of (1) cadmium; (2) AggoCd10;
1413 12 11 10 9 E, eV (3) cadmium on gold substrate.

ple. Shevchik et al. [336] proposed a formula for the chemical shift of cation
core levels, which is much simpler than the formulas (30) and (31):

_ A, o
AE, = Aqe(—T———R—) ,

where r, has a value close to the ionic radius of the cation; R is the distance
between the cation and the nearest anion; A(T") is a geometrical factor that
accounts for the particularities of the distribution of the density of electronic
charge; and Agq is the magnitude of the charge transferred from the cation to the
anion. The magnitude of cation charge in compounds with a sphalerite-type lat-
tice can, according to the work of Phillips [330], be expressed as follows:

q. = 46(1 _ii)y
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where f; is the ionicity. Then

Ag=2Z—4de(1 —F).

The magnitude of the shift AE, is given by

—[9— — o ATl o
AE = (2= 4(1—fet| AT — #|
It should be noticed that this formula describes the shift of the given cation core

level with respect to the vacuum level of the sample. The similar expression for
the shift of anion core levels is

AE, = —12—4(1—f)]e 2[ ”“h%}.

The model described above for calculating chemical shifts gives less accurate
results for anions, because in this case it is more difficult to determine the exten-
sion and the shape of the charge distribution at the anion. The expression A(T")
for a charge distribution shaped like a spherical shell with radii I' + 7 and r may
be written as follows:

1 —T?

AD) = =1

Estimation of I" on the basis of the electron charge distribution in atoms yields

the value I'' ~ 0.5. Table 36 gives the data obtained by Shevchik et al. [336] on
the shift of 3d, 4d, and 5d core levels in pure metals as compared to those in a

TABLE 36. Energy Shifts of Cation 3d, 4d, 5d Levels with Respect to Their Position in

Metals
Compound af AEyg  AE}  AT=1) BT=00 CT=1/2)
GaAs 0.24 —0.3 —1.7 —0.22 —1.41 —0.90
GaSb 0.045  —04 ~1.1 —0.06 —0.29 —0.19
InP 0.69 005 —1.6 0.39 —2.49 —1.12
InAs 0.47 025  —1.0 0.15 —1.77 —0.93
InSb 0.27 005  —0.7 —0.02 —1.17 —0.69
ZnSe 0.7 081  —1.65 —0.43 —3.85 —2.48
ZnTe 0.18 037  —L1.19 —0.24 —0.86 —0.67
cds 0.72 154  —1.56 —0.11 —2.98 —1.65
CdSe 0.79 116  —1.34 —0.12 —3.50 2.1
CdTe 0.69 0.66  —1.44 —0.52 —3.50 —22
HgS - —0.6 —-3.0 - - -
HgSe 0.66 ~1.9 —29 0.06 —2.46 —1.35

HgTe 0.72 -2.3 -3.7 —0.32 —3.37 —2.08
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number of compounds of A3Bs and A,Bg type. In the third column the energies
of the core levels were measured with respect to the top of the valence band
(Eyg), whereas in the fourth column they were measured with respect to the
vacuum level (E}). The table also shows the values of the shifts predicted by the
potential model for three particular cases A, B, C corresponding to values of I" of
1,0, and %

Shifts determined with respect to the top of the valence band have small
negative values for gallium compounds, small positive values for indium com-
pounds, large positive values for zinc and cadmium compounds, and large nega-
tive values for mercury compounds.

The change in sign indicates that in the determination of core-level shifts
it is wrong to use binding energy values measured with respect to the top of the
valence band. In fact, the cation transfers part of its charge to the anion, and,
consequently, the binding energy of the cation core electrons is increased. Using
the first model (model A) for the study of shifts, the values obtained for the
shifts in InP, InAs, and HgSe are positive, because of geometrical factors. If the
binding energies are measured with respect to the vacuum level it follows that
all the experimental shifts are negative. Model C describes the compounds of
indium, zinc, and cadmium well, and model B describes the compounds of mer-
cury successfully. However, for mercury the chemical shifts were determined
with large error (1.0 eV), although for all the other compounds studied the
error amounted to 0.1 eV. The large values of the chemical shifts in HgTe and
HgSe compounds are explained in both model B and model C as being due to the
geometrical factor, because the magnitudes of the charges Aq for these com-
pounds practically coincide. The anomalously small value of the predicted shift
for GaSb arises from the low value of the charge Ag determined from the ion-
icity f;.

Influence of the Disordered Distribution of Atoms
on the Density of States of Valence Electrons

Disordered solids may be grouped into two classes. The first class consists of
solids for which the disorder has a more qualitative character, the atoms being
distributed randomly at the sites of the crystal lattice, so that each site can take
an atom of any type. If the system contains only two types of atoms, A and
B, then the electron structure can be studied by using the theoretical models
developed within the theory of disordered binary alloys.

For solids in the second class, the disorder has a spatial character. For exam-
ple, the system may contain atoms of only one type, which, however, do not
exist as a periodic crystal lattice; that is, a disorder exists in the spatial distribu-
tion of the atoms. A particular case of spatial disorder, in which the disordered
system exhibits the same coordination of nearest neighbors but different binding
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Figure 135. Various disorder types in solid
state materials: (a) ideal order; (b) disorder of
a binary alloy; (c) space disorder; (d) topolog-
ical disorder. d

lengths, is the topological disorder. The types of disorder mentioned above are
illustrated in Figure 135.

The amorphous semiconductors—silicon and germanium-are characterized
by topological disorder. In describing the amorphous semiconductors, it can be
assumed that the deviation in binding lengths and angles from their values in
crystals amounts to, say, 10%.

Weaire and Thorpe [301] studied the electron structure of amorphous sili-
con and germanium by using the tight-binding approximation. Joanopoulos and
Cohen [340] used the pseudopotential method to calculate the simple tetrag-
onal structure of silicon and germanium with 12 atoms in each elementary cell
(ST = 12). As Figure 136 shows, the X-ray photoelectron spectra of crystalline
and amorphous silicon and germanium obtained by Pollak [341] and Ley et al.
[342] using an HP-5950A electron spectrometer are significantly different. The
s-type bands in amorphous germanium and silicon do not exhibit two separated
peaks in the density-of-states curve. The density of states calculated by Joanno-
poulos and Cohen [340] confirms the experimentally determined structure of
the X-ray photoelectron spectra of materials in the amorphous state.

Ley et al. [342] measured the X-ray photoelectron spectra of arsenic, anti-
mony, and bismuth in the crystalline as well as the amorphous states, by using
an HP-5950 A electron spectrometer. The monocrystalline samples were cleaned
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Figure 136. Valence band photoelectron
spectra and density of states in crystalline
and amorphous silicon (a) and germanium (

in a nitrogen atmosphere followed by argon ion bombardment. Throughout the
measurement the pressure in the spectrometer was no lower than 5 X 107® torr.
The amorphous arsenic sample was obtained by in situ evaporation onto a gold
substrate. Amorphous antimony and bismuth were prepared by argon ion bom-
bardment of monocrystal surfaces. The valence band protoelectron spectra ob-
tained are shown in Figure 137. The similarity of the photoelectron spectra for
crystalline samples demonstrates the similarity of their elementary structure
(electron configuration s2p%). Since the elementary cell contains two atoms, ten
valence electrons will fill up five valence subbands. In free atoms, the binding
energies of the s-type valence electrons are 8-10 eV greater than those of elec-
trons with p-type symmetry. The peaks 1 and 2 in the X-ray photoelectron
spectra are situated at about 7-8 eV from the peaks 3 and 4, and therefore they
can be attributed to the s electrons. The existing theoretical calculations of the
energy band structure [343-348] show that in these crystals there exist two
energetically separated s bands and three p subbands situated at the top of the
valence band. However, since the calculations [343-348] have not been ex-
tended as far as to calculate the electron density of states in the valence band,
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it is difficult to make a detailed comparison of the experimental and theoretical
results. The magnitude of the splitting of s bands is consistent with the theoreti-
cal values. In bismuth, peak 3 is split into two peaks, 3 and 4, separated by

2.2 eV. This is consistent with the value 2.16 eV for the spin-orbit splitting

of the 6p states in free atoms [349].

The density of states for amorphous samples is significantly different from
that of crystals. As in the case of silicon and germanium, the density of s s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>